Improved Impossible Differential Cryptanalysis of CLEFIA *

Wei Wang ${ }^{1}$ and Xiaoyun Wang ${ }^{2 \star \star}$
${ }^{1}$ Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education, Shandong University, Jinan, China
wwang@math.sdu.edu.cn
${ }^{2}$ Center for Advanced Study, Tsinghua University, Beijing, China
xiaoyunwang@tsinghua.edu.cn

Abstract

This paper presents an improved impossible differential attack on the new block cipher CLEFIA which is proposed by Sony Corporation at FSE 2007. Combining some observations with new tricks, we can filter out the wrong keys more efficiently, and improve the impossible differential attack on 11-round CLEFIA-192/256, which also firstly works for CLEFIA-128. The complexity is about $2^{98.1}$ encryptions and $2^{103.1}$ chosen plaintexts. By putting more constraint conditions on plaintext pairs, we give the first attack on 12 -round CLEFIA for all three key lengths with $2^{114.3}$ encryptions and $2^{119.3}$ chosen plaintexts. For CLEFIA-192/256, our attack is applicable to 13 -round variant, of which the time complexity is about 2^{181}, and the data complexity is 2^{120}. We also extend our attack to 14 -round CLEFIA-256, with about $2^{245.4}$ encryptions and $2^{120.4}$ chosen plaintexts. Moreover, a birthday sieve method is introduced to decrease the complexity of the core precomputation.

Key words: Block ciphers, cryptanalysis, impossible differential attack, CLEFIA

1 Introduction

CLEFIA [5] is a new 128 -bit block cipher algorithm, developed by Sony Corporation. Compatible with AES, CLEFIA supports three different key lengths (128, 192 and 256 bits), which is denoted as CLEFIA-128, CLEFIA-192 and CLEFIA-256 respectively. Sony claimed that the CLEFIA is designed to concentrate state-of-the-art cryptanalysis techniques, and achieve sufficient immunity against known cryptanalytic attacks. Sony will seek to establish an environment in which CLEFIA can be used across various applications and products such as AV devices.

[^0]Since CLEFIA was presented at Fast Software Encryption (FSE) 2007 [4], there has been little analysis on its security except the security and performance evaluations [6] published by Sony Corporation and a differential fault analysis [3]. However, because of its advantage in hardware and software implementations and wide potential applications, it's necessary to give further security evaluation. In this paper, we present the impossible differential attacks on reduced CLEFIA with more rounds.

Impossible differential cryptanalysis [1] is a sieving attack which considers a differential with probability 0 . If a pair of plaintexts is encrypted or decrypted to such a difference under some trial key, we filter out this trial key from the key space. Thus, the correct key is found by eliminating all the other keys which lead to a contradiction. Reference [6] presented an impossible differential attack on 10-round CLEFIA-128/192/256, 11-round CLEFIA-192/256, and 12-round CLEFIA-256 without key whitenings using a 9 -round impossible differential.

This paper improves the impossible differential attack on reduced CLEFIA. Observing the inner structure of the F-functions, we conclude that the time complexity of recovering subkeys can be decreased by some table lookups and sieving less subkey space. By these observations, our attack on 11-round CLEFIA only takes $2^{98.1}$ encryptions and $2^{103.1}$ chosen plaintexts while the result in [6] is 2^{188} encryptions and $2^{103.5}$ chosen plaintexts. We also propose another attack on 11-round variant with $2^{66.5}$ encryptions and $2^{118.5}$ chosen plaintexts. Moreover, combining the above techniques with a special way to choose plaintexts, we present the first attack on 12-round CLEFIA for all three key lengths with $2^{114.3}$ time complexity and $2^{119.3}$ data complexity. The attack can be extended to 13round CLEFIA-192/256, and the complexity is about 2^{181} encryptions and 2^{120} chosen plaintexts. Finally, we give an attack on 14 -round CLEFIA-256, which needs about $2^{245.4}$ time complexity and $2^{120.4}$ data complexity. In addition, we introduce a birthday sieve method to reduce the complexity of searching chosen plaintext pairs in the precomputation.

This paper is organized as follows: in Section 2, we give a brief description of CLEFIA. Section 3 summarizes some important observations on CLEFIA. In Section 4, we present two attacks applicable to 11-round CLEFIA with all three key variants, and extend to 12 -round variant. Section 5 describes the attacks on 13 -round CLEFIA-192/256 and 14-round CLEFIA-256. Finally, we conclude this paper in Section 6.

2 Description of CLEFIA

2.1 Notations

We first describe the symbols used throughout this paper.
P or P^{\prime} : the 128-bit plaintext
C or C^{\prime} : the 128-bit ciphertext
$C^{r} \quad$: the 128 -bit output of the r-th round
$C_{i}^{r} \quad$: the i-th 32 -bit word of C^{r}
ΔP or ΔC : the plaintext or ciphertext difference
$\Delta C^{r} \quad$: the XOR value of C^{r} and $C^{r \prime}$
$F_{i}^{r} \quad: F_{i}$ involved in the r-th round, $i=0,1$
$\Delta F_{i}^{r} \quad$: the output XOR of F_{i} in the r-th round, $i=0,1$
$\operatorname{In} S_{F_{i}}^{r}$: the 32 -bit value after the key addition in F_{i}^{r}, i. e., the input to the S-boxes involved in F_{i}^{r}
$A \ggg x$: the rotation of A to the right by x bits positions
$A \lll x$: the rotation of A to the left by x bits positions
$a \mid b \quad:$ the concatenation of a and b
$a^{T} \quad:$ the transposition of a vector a

2.2 Data Processing Part of CLEFIA

Fig. 1 Encryption Process of r-round CLEFIA

CLEFIA [5] is a 128-bit block cipher with the key length of 128,192 and 256 bits. It employs a generalized Feistel structure with four data lines, and the width of each data line is 32 bits. Additionally, there are key whitening parts at the beginning and the end of the cipher. Figure 1 shows the encryption process of r-round CLEFIA.

Let $W K_{0}, W K_{1}, W K_{2}, W K_{3} \in\{0,1\}^{32}$ be whitening keys and $R K_{i} \in\{0,1\}^{32}$ ($0 \leq i<2 r$) be round subkeys produced by the key scheduling part. For a 128bit plaintext $P=P_{0}\left|P_{1}\right| P_{2} \mid P_{3}$, we compute the ciphertext $C=C_{0}\left|C_{1}\right| C_{2} \mid C_{3}$ as follows:

1. $C_{0}^{0}=P_{0}, C_{1}^{0}=P_{1} \oplus W K_{0}, C_{2}^{0}=P_{2}, C_{3}^{0}=P_{3} \oplus W K_{1}$.
2. For $i=1$ to $r-1$,

$$
\begin{aligned}
& C_{0}^{i}=C_{1}^{i-1} \oplus F_{0}\left(C_{0}^{i-1}, R K_{2 i-2}\right), C_{1}^{i}=C_{2}^{i-1}, \\
& C_{2}^{i}=C_{3}^{i-1} \oplus F_{1}\left(C_{2}^{i-1}, R K_{2 i-1}\right), C_{3}^{i}=C_{0}^{i-1} .
\end{aligned}
$$

3. $C_{0}^{r}=C_{0}^{r-1}, C_{1}^{r}=C_{1}^{r-1} \oplus F_{0}\left(C_{0}^{r-1}, R K_{2 r-2}\right) \oplus W K_{2}$,

$$
C_{2}^{r}=C_{2}^{r-1}, C_{3}^{r}=C_{3}^{r-1} \oplus F_{1}\left(C_{2}^{r-1}, R K_{2 r-1}\right) \oplus W K_{3} .
$$

The number of rounds r can be 18, 22 and 26 for CLEFIA-128, CLEFIA-192 and CLEFIA-256 respectively, and the two F-functions F_{0} and F_{1} are described in the next.

Fig. 2 F-functions

Denote the 32 -bit output of F-functions as $T_{i}, T_{i} \in\{0,1\}^{32}$. Then $F_{0}\left(C_{0}^{i-1}\right.$, $\left.R K_{2 i-2}\right)(1 \leq i \leq r)$ is computed as follows:

1. $T_{i}=C_{0}^{i-1} \oplus R K_{2 i-2}$.
2. Let $T_{i}=T_{i, 0}\left|T_{i, 1}\right| T_{i, 2} \mid T_{i, 3}, T_{i, j} \in\{0,1\}^{8}(j=0,1,2,3)$, then compute $T_{i, 0}=S_{0}\left(T_{i, 0}\right), T_{i, 1}=S_{1}\left(T_{i, 1}\right), T_{i, 2}=S_{0}\left(T_{i, 2}\right), T_{i, 3}=S_{1}\left(T_{i, 3}\right)$.
3. $\left(T_{i, 0}, T_{i, 1}, T_{i, 2}, T_{i, 3}\right)^{T}=M_{0}\left(T_{i, 0}, T_{i, 1}, T_{i, 2}, T_{i, 3}\right)^{T}$.

Here, S_{0} and S_{1} are two nonlinear 8 -bit S-boxes, and M_{0} is a 4×4 Hadamardtype matrix. $F_{1}\left(C_{2}^{i-1}, R K_{2 i-1}\right)(1 \leq i \leq r)$ is similar to F_{0} by replacing S_{0} with S_{1}, S_{1} with S_{0}, and M_{0} with another 4×4 Hadamard-type matrix M_{1}. See Figure 2 for a pictorial depiction of F_{0} and F_{1}.

We suppose that all the round subkeys and whitening keys are independent of each other, and omit the description of the key scheduling part.

3 Some Observations on CLEFIA

This section describes some important observations for analyzing CLEFIA, which lead to more efficient attacks on reduced CLEFIA variants.

Reference [6] presented two 9-round impossible differentials which resulted in the attack on 10-round CLEFIA-128/192/256 and 11-round CLEFIA-192/256. We utilize the same impossible differential, and explore more technique details to achieve a prominent improvement.

Proposition 1. (Impossible Differentials of 9-round CLEFIA [6]) For 9-round CLEFIA, given a plaintext pair with difference (0, $\alpha, 0,0)($ or (0, 0, 0, $\alpha)$), where $\alpha \in\{0,1\}^{32}$ is any non-zero value, the output difference can't be equal to ($0, \alpha, 0,0$) (or ($0,0,0, \alpha)$). We denoted the two 9 -round impossible differentials as

$$
(0, \alpha, 0,0) \nrightarrow(0, \alpha, 0,0) \text { and }(0,0,0, \alpha) \nrightarrow(0,0,0, \alpha)
$$

The correctness of Proposition 1 can be verified easily.
By observing the inner structure of F-functions, we find out that the time complexity of attacks in [6] can be can be decreased by fast searching the 32-bit key in F-function with the help of XOR distribution tables of S-boxes [2].

Proposition 2. For the F-function $F\left(F_{0}\right.$ or $\left.F_{1}\right)$, let (In, In ${ }^{\prime}$) be two 32-bit inputs, and Δ Out be the difference of the corresponding output, the 32-bit round subkey RK involved in F can be deduced with about one F-computation.

Proof: Because the diffusion matrix M is linear and invertible, we can easily compute the input difference $\Delta O u t^{-1}$ of M, i. e.,

$$
\Delta O u t^{-1}=M^{-1}(\Delta O u t)=\Delta O u t_{0}^{-1}\left|\Delta O u t_{1}^{-1}\right| \Delta O u t_{2}^{-1} \mid \Delta O u t_{3}^{-1}
$$

where $\Delta O u t_{0}^{-1}, \Delta O u t_{1}^{-1}, \Delta O u t_{2}^{-1}$ and $\Delta O u t_{3}^{-1}$ are four 8 -bit output XOR of the four S-boxes in F respectively.

Therefore, for each S-box in F, we get the input XOR and the corresponding output XOR. It is easy to obtain the four inputs to the four S-boxes by searching the XOR distribution tables of S-boxes. Denote the four inputs as $\operatorname{In} S_{0}, \operatorname{In} S_{1}, \operatorname{In} S_{2}, \operatorname{In} S_{3}$ respectively. Then we get the 32 -bit value

$$
\operatorname{In} S_{0}\left|\operatorname{In} S_{1}\right| \operatorname{In} S_{2} \mid I n S_{3}=I n S
$$

Thus the 32-bit round subkey $R K$ can be deduced from the equation

$$
R K=I n S \oplus I n
$$

Clearly the time complexity is about one F-computation.
Usually, the efficiency of the impossible differential attack depends on the subkey space related to the impossible differential. For 11-round CLEFIA-192/256, 9 -round impossible differential can be used to sieve 128-bit subkey involved in rounds 10 and 11 [6]. The following proposition is an important phenomenon that can be used to sieve only 96 -bit subkey instead of 128 -bit subkey.

Proposition 3. For r-round CLEFIA, let $\left(R K_{2 r-3}, R K_{2 r-4}\right)$ be the subkey in the ($r-1$) th round, ($R K_{2 r-1}, R K_{2 r-2}$) be the subkey key in the r-th round, ($W K_{2}$, $\left.W K_{3}\right)$ be the whitening key in the final round, and $C^{r}=\left(C_{0}^{r}, C_{1}^{r}, C_{2}^{r}, C_{3}^{r}\right)$ be the ciphertext, we have the following two equations which reveal the correlations among subkeys $W K_{2}, W K_{3}, R K_{2 r-3}$ and $R K_{2 r-4}$:

$$
\begin{align*}
& W K_{3} \oplus R K_{2 r-4}={I n S S_{F_{0}}^{r-1} \oplus F_{1}^{r}\left(C_{2}^{r}, R K_{2 r-1}\right) \oplus C_{3}^{r}}_{W}^{W K_{2} \oplus R K_{2 r-3}=\operatorname{In} S_{F_{1}}^{r-1} \oplus F_{0}^{r}\left(C_{0}^{r}, R K_{2 r-2}\right) \oplus C_{1}^{r} .} . \tag{1}
\end{align*}
$$

Here $\operatorname{In} S_{F_{0}}^{r-1}$ and $\operatorname{In} S_{F_{1}}^{r-1}$ are the inputs to the four S-boxes of F_{0}^{r-1} and F_{1}^{r-1} in the ($r-1$)-th round respectively.

Proof: From the encryption algorithm, we obtain that

$$
C_{3}^{r}=C_{3}^{r-1} \oplus F_{1}^{r}\left(C_{2}^{r-1}, R K_{2 r-1}\right) \oplus W K_{3}, \text { where } C_{2}^{r-1}=C_{2}^{r}
$$

Then it is clear that

$$
C_{3}^{r}=C_{3}^{r-1} \oplus F_{1}^{r}\left(C_{2}^{r}, R K_{2 r-1}\right) \oplus W K_{3} .
$$

Since

$$
C_{3}^{r-1}=C_{0}^{r-2} \text { and } I n S_{F_{0}}^{r-1}=C_{0}^{r-2} \oplus R K_{2 r-4},
$$

we know that

$$
\begin{aligned}
C_{3}^{r} & =C_{0}^{r-2} \oplus F_{1}^{r}\left(C_{2}^{r}, R K_{2 r-1}\right) \oplus W K_{3} \\
& =I n S_{F_{0}}^{r-1} \oplus R K_{2 r-4} \oplus F_{1}^{r}\left(C_{2}^{r}, R K_{2 r-1}\right) \oplus W K_{3}
\end{aligned}
$$

i. e.,

$$
W K_{3} \oplus R K_{2 r-4}=I n S_{F_{0}}^{r-1} \oplus F_{1}^{r}\left(C_{2}^{r}, R K_{2 r-1}\right) \oplus C_{3}^{r}
$$

Similarly, we can prove that Equation (2) holds.
Furthermore, for the 1st and 2nd rounds, there are two other similar equations about $W K_{0} \oplus R K_{2}$ and $W K_{1} \oplus R K_{3}$:

$$
\begin{align*}
& W K_{0} \oplus R K_{2}=\operatorname{In} S_{F_{0}}^{2} \oplus F_{0}^{1}\left(P_{0}, R K_{0}\right) \oplus P_{1}, \tag{3}\\
& W K_{1} \oplus R K_{3}=\operatorname{In} S_{F_{1}}^{2} \oplus F_{1}^{1}\left(P_{2}, R K_{1}\right) \oplus P_{3} . \tag{4}
\end{align*}
$$

4 Attacks on CLEFIA-128/192/256

In this section, we present two improved impossible differential attacks on 11round CLEFIA, and extend the attack to 12 -round variant. The improved attack works for CLEFIA-128/192/256. Especially for CLEFIA-128, this is the first known attack. The main attack process is as follows. Firstly, select many structures of chosen plaintexts, and sieve the pairs satisfying the required output differences. Secondly, for each sieved pair, discard the wrong subkeys which cause the partial encryption and decryption to match the impossible differential. Finally, analyze enough pairs, and sieve the correct subkey.

4.1 The Improved Attack on 11-round CLEFIA

This section describes the improved key recovery attack on 11-round CLEFIA with two additional rounds at the end of the 9 -round impossible differential. We use the same 9 -round impossible differential $(0, \alpha, 0,0) \nrightarrow(0, \alpha, 0,0)$ throughout this paper. The other 9 -round impossible differential $(0,0,0, \alpha) \nrightarrow(0,0,0, \alpha)$ can be used in a similar way. Different from [6], the attack recovers the 96 -bit subkey ($R K_{20}, R K_{21}, R K_{18} \oplus W K_{3}$) by Proposition 3 instead of recovering the 128-bit subkey ($R K_{18}, R K_{20}, R K_{21}, W K_{3}$). Combining with Proposition 2, the total complexity can be improved from the original 2^{188} encryptions to $2^{98.1}$ encryptions with $2^{103.1}$ chosen plaintexts. See Figure 3 for the following attack.

Sieving pairs

A structure composed of 2^{32} plaintexts is defined as follows:

$$
\text { Struc }=\left\{P_{0}, P_{1} \oplus \alpha, P_{2}, P_{3} \mid P_{0}, P_{1}, P_{2}, P_{3} \text { are fixed, } \alpha \in\{0,1\}^{32} \text { is non-zero }\right\}
$$

By the encryption process of CLEFIA, only the plaintext pair with ciphertext difference $\Delta C=(\beta, \gamma, 0, \alpha)$ may result from $\Delta C^{9}=(\alpha, 0,0,0)$, where $\beta \in$ $\{0,1\}^{32}$ and $\gamma \in\{0,1\}^{32}$ are non-zero. It is clear that every two structures can produce about one pair with the target ciphertext difference. In our attack, about $2^{70.1}$ such plaintext pairs are necessary to sieve the right key. So, we choose $2^{71.1}$ such structures.

Because there are $2^{134.1}$ plaintext pairs from $2^{71.1}$ structures totally, we need to explore a fast algorithm to obtain the $2^{70.1}$ pairs. We employ a type of birthday sieve to search these pairs more efficiently.

Birthday Sieve Algorithm 1:

For each structure, we fulfill the following steps:

1. For each plaintext P, compute $\widetilde{C}=(P \ggg 64) \oplus C$, where C is the corresponding ciphertext.
2. Store the 2^{32} values of \widetilde{C} in a table.
3. Search $\left(P, P^{\prime}\right)$ with the corresponding $\Delta \widetilde{C}=(\beta, \gamma, 0,0)$ by the birthday attack.

Fig. 3 Impossible Differential Attack on 11-round CLEFIA (1)
4. Output $\left(P, P^{\prime}\right)$.

It is clear that $\Delta C=(\beta, \gamma, 0, \alpha)$ if and only if $\Delta \widetilde{C}=(\beta, \gamma, 0,0)$. So, the above algorithm outputs one plaintext pair corresponding to $\Delta C=(\beta, \gamma, 0, \alpha)$ with probability $1 / 2$. From the birthday attack [7], the time complexity is only 2^{32} XOR computations, and the table memory is about 2^{34} words. Thus, we can obtain $2^{70.1}$ pairs with about $2^{103.1}$ XOR computations by neglecting the table lookups.

Recovering the subkey $\left(R K_{20}, R K_{21}, R K_{18} \oplus W K_{3}\right)$
We discard the subkeys which cause the partial decryption of the selected pair to match $\Delta C^{9}=(\alpha, 0,0,0)$.

For each pair with ciphertext difference

$$
\Delta C=(\beta, \gamma, 0, \alpha),
$$

it is obvious that

$$
\Delta C_{0}^{9}=\Delta C_{3}^{10}=\Delta C_{3}^{11}=\alpha
$$

From

$$
C_{3}^{9}=C_{2}^{10} \oplus F_{1}^{10}\left(C_{2}^{9}, R K_{19}\right), C_{2}^{10}=C_{2}^{11} \text { and } \Delta C_{2}^{11}=0
$$

it is clear that

$$
\Delta C_{3}^{9}=0 \text { if and only if } \Delta C_{2}^{9}=0
$$

Thus, we only need to discard the subkeys which lead to

$$
\Delta C_{1}^{9}=0 \text { and } \Delta C_{2}^{9}=0
$$

For each ciphertext pair $\left(C, C^{\prime}\right)$ with $\Delta C=(\beta, \gamma, 0, \alpha)$, we can prove that there are 2^{32} wrong subkeys $\left(R K_{20}, R K_{21}, R K_{18} \oplus W K_{3}\right)$ which suggest the impossible differential.

1. For $\Delta C_{2}^{9}=0$, from $C_{1}^{10}=C_{2}^{9}$, it is clear that

$$
\Delta C_{2}^{9}=0 \text { if and only if } \Delta C_{1}^{10}=0
$$

Since

$$
C_{1}^{11}=C_{1}^{10} \oplus F_{0}^{11}\left(C_{0}^{10}, R K_{20}\right) \oplus W K_{2}
$$

we obtain that

$$
\Delta F_{0}^{11}=\Delta C_{1}^{11} \text { when } \Delta C_{1}^{10}=0
$$

The two corresponding input to F_{0}^{11} are

$$
C_{0}^{10}=C_{0}^{11} \text { and } C_{0}^{10 \prime}=C_{0}^{11 \prime}
$$

so the subkey $R K_{20}$ can be calculated with about one F-computation by Proposition 2.
2. For $\Delta C_{1}^{9}=0$, we have

$$
\Delta F_{0}^{10}=\Delta C_{0}^{11}
$$

by

$$
C_{0}^{10}=C_{1}^{9} \oplus F_{0}^{10}\left(C_{0}^{9}, R K_{18}\right) \text { and } C_{0}^{10}=C_{0}^{11}
$$

Because the corresponding input XOR

$$
\Delta C_{0}^{9}=\alpha
$$

$\operatorname{In} S_{F_{0}}^{10}$ is calculated by Proposition 2.
For each $R K_{21} \in\{0,1\}^{32}$, according to Proposition 3, we deduce that

$$
R K_{18} \oplus W K_{3}=\operatorname{In} S_{F_{0}}^{10} \oplus F_{1}^{11}\left(C_{2}^{11}, R K_{21}\right) \oplus C_{3}^{11}
$$

So, we totally obtain 2^{32} wrong values of $\left(R K_{21}, R K_{18} \oplus W K_{3}\right)$ with about 2^{32} F-computations.

Summing up 1) and 2), we can filter out 2^{32} wrong subkeys ($R K_{20}, R K_{21}$, $R K_{18} \oplus W K_{3}$) which support the impossible differential. Thus, for each pair, a wrong subkey $\left(R K_{20}, R K_{21}, R K_{18} \oplus W K_{3}\right)$ survives with probability $1-2^{-64}$. After analyzing $2^{70.1}$ pairs, the number of the remaining subkeys is

$$
2^{96} \cdot\left(1-2^{-64}\right)^{2^{70.1}} \approx 0.13<1
$$

That is to say, only the right subkey $\left(R K_{20}, R K_{21}, R K_{18} \oplus W K_{3}\right)$ is left. This completes our attack.

Complexity evaluation

The data complexity for the attack is about $2^{70.1+32+1}=2^{103.1}$ chosen plaintexts. The time complexity of recovering the 96 -bit subkey is about $2^{70.1} \cdot 2^{32}=$ $2^{102.1}$ F-computations. Using rough equivalence of $2^{4} \mathrm{~F}$-computations to one encryption, the $2^{102.1} \mathrm{~F}$-computations are equivalent to about $2^{98.1}$ encryptions.

4.2 Another Improved Attack on 11-round CLEFIA

This subsection describes another key recovery attack on 11-round CLEFIA, with one additional round on top of the 9 -round impossible differential and one at the end. The complexity of the attack is only about $2^{66.5}$ encryptions and $2^{118.5}$ chosen plaintexts. This attack is about 2^{32} times faster than the first attack because we only need to recover the 64 -bit subkey $\left(R K_{0}, R K_{21}\right)$ instead of the 96 -bit subkey $\left(R K_{20}, R K_{21}, R K_{18} \oplus W K_{3}\right)$. Although this attack needs more chosen plaintexts, it is necessary to 12 -round attack in the next section. See Figure 4 for a pictorial depiction of the following attack.

Sieving pairs

To guarantee the impossible differential hold, we need to select the plaintext pairs with $\Delta P=(0,0, \alpha, \delta)$ and $\Delta C=(\alpha, \beta, 0,0)$, where $\alpha \in\{0,1\}^{32}, \delta \in$ $\{0,1\}^{32}$ and $\beta \in\{0,1\}^{32}$ are non-zero. Choose a structure of 2^{48} plaintexts, where the first and second 32 -bit words are fixed, the third word ranges over all 2^{32} possibilities, and the fourth word takes 2^{16} distinct random values. Similar to Section 4.1, we select pairs with $\Delta C=(\alpha, \beta, 0,0)$ in the following way.

Birthday Sieve Algorithm 2:

1. For each plaintext P, compute $\widetilde{C}=(P \lll 64) \oplus C$, where C is the corresponding ciphertext.
2. Store the 2^{48} values of \widetilde{C} in a table.
3. Search $\left(P, P^{\prime}\right)$ with the corresponding $\Delta \widetilde{C}=(0, \gamma, 0,0)$ by the birthday attack.
4. Output $\left(P, P^{\prime}\right)$.

It is clear that $\Delta C=(\alpha, \beta, 0,0)$ if and only if $\Delta \widetilde{C}=(0, \gamma, 0,0)$. The table memory is about 2^{50} words. We collect $2^{69.5}$ such pairs from $2^{70.5}$ structures.

Fig. 4 Impossible Differential Attack on 11-round CLEFIA (2)
Recovering the subkey ($R K_{1}, R K_{20}$)
For each selected pair (P, P^{\prime}), the wrong subkeys $\left(R K_{1}, R K_{20}\right)$ resulting in the impossible differential are computed as follows.

1. Compute the subkey $R K_{1}$ which produces the partial encryption of the pair to match $\Delta C^{1}=(0, \alpha, 0,0)$.
From

$$
C_{0}^{1}=P_{1} \oplus F_{0}^{1}\left(P_{0}, R K_{0}\right) \oplus W K_{0} \text { and } \Delta P=(0,0, \alpha, \delta),
$$

the selected pair already satisfies

$$
\Delta C_{0}^{1}=\Delta P_{1}=0, \Delta C_{1}^{1}=\Delta P_{2}=\alpha \text { and } \Delta C_{3}^{1}=\Delta P_{0}=0
$$

So we only compute subkeys that cause

$$
\Delta C_{2}^{1}=0 .
$$

By

$$
C_{2}^{1}=F_{1}^{1}\left(P_{2}, R K_{1}\right) \oplus P_{3} \oplus W K_{1},
$$

it is clear that

$$
F_{1}^{1}\left(P_{2}, R K_{1}\right)=C_{2}^{1} \oplus P_{3} \oplus W K_{1}
$$

Thus, if $\Delta C_{2}^{1}=0$, then $\Delta F_{1}^{1}=\Delta P_{3}$ holds.
As the two inputs of F_{1}^{1} are P_{2} and P_{2}^{\prime}, one 32-bit $R K_{1}$ can be computed with one F-computation on average by Proposition 2.
2. Compute the subkey $R K_{20}$ which causes the partial decryption of the pair to match $\Delta C^{10}=(\alpha, 0,0,0)$.
According to

$$
C_{3}^{10}=C_{3}^{11} \oplus W K_{3} \oplus F_{1}^{11}\left(C_{2}^{11}, R K_{21}\right) \text { and } \Delta C=(\alpha, \beta, 0,0),
$$

we derive that

$$
\Delta C_{0}^{10}=\Delta C_{0}^{11}=\alpha, \Delta C_{2}^{10}=\Delta C_{2}^{11}=0 \text { and } \Delta C_{3}^{10}=\Delta C_{3}^{11}=0
$$

Hence, it is sufficient to guarantee

$$
\Delta C_{1}^{10}=0
$$

From

$$
C_{1}^{11}=F_{0}^{11}\left(C_{0}^{10}, R K_{20}\right) \oplus C_{1}^{10} \oplus W K_{2}
$$

it is obvious that

$$
\Delta F_{0}^{11}=\Delta C_{1}^{11} \text { when } \Delta C_{1}^{10}=0
$$

By

$$
C_{0}^{10}=C_{0}^{11} \text { and } C_{0}^{10 \prime}=C_{0}^{11 \prime}
$$

$R K_{20}$ can be derived with one F-computation by Proposition 2.
Till now, for each pair, we find one 64 -bit wrong subkey $\left(R K_{1}, R K_{20}\right)$ with two F-computations, and discard it from the subkey space. After analyzing $2^{69.5}$ pairs, the number of subkey left in the 2^{64} subkey space is about

$$
2^{64} \cdot\left(1-2^{-64}\right)^{2^{69.5}} \approx 2^{64} \cdot e^{-2^{5.5}} \approx 0.41<1
$$

So, only the right subkey $\left(R K_{1}, R K_{20}\right)$ is left.

Complexity evaluation

The number of chosen plaintexts is $2^{70.5} \cdot 2^{48}=2^{118.5}$, and the time complexity is about $2^{70.5}$ F-computations which is equivalent to about $2^{66.5}$ encryptions.

4.3 Attack on 12-round CLEFIA

We try to extend the attack on 11 -round variant to 12 -round, with one additional round on top of the 9 -round impossible differential and two rounds at the end. Basically, the attack is the combination of the two attacks presented above. However, the direct combination will a little exceed the complexity of
the exhaustive attack. We put more constraint conditions on the plaintext difference to enforce the first two bytes of ΔC^{1} to be zero. So, only 112-bit subkey ($R K_{1,2}, R K_{1,3}, R K_{22}, R K_{23}, R K_{20} \oplus W K_{3}$) can guarantee the impossible differential, instead of the original 128-bit subkey ($R K_{1}, R K_{22}, R K_{23}, R K_{20} \oplus W K_{3}$).

Sieving pairs

For all the 2^{16} possible α, of which the first two bytes are zero, we compute a table $T B_{1}$ to store the 2^{16} values of $M_{1}(\alpha)$. Because M_{1} is linear, for $\delta_{1}, \delta_{2} \in T B_{1}$, it is obvious that $\delta_{1} \oplus \delta_{2} \in T B_{1}$.

Choose a structure of 2^{32} plaintexts as follows:
Struc $=\left\{P_{0}, P_{1}, P_{2} \oplus \alpha, P_{3} \oplus \delta \mid P_{0}, P_{1}, P_{2}, P_{3}\right.$ are fixed, the first two bytes of α are zero and the other two take 2^{16} possibilities, $\left.\delta \in T B_{1}\right\}$.

Fulfilling Algorithm 1 in Section 4.1, in which \widetilde{C} is selected as $(P \ggg$ 32) $\oplus C$, we can easily search a pair with $\Delta C=(\beta, \gamma, 0, \alpha)$, where $\beta \in\{0,1\}^{32}$ and $\gamma \in\{0,1\}^{32}$ are non-zero. $2^{-1} n$ such pairs can be found by searching n structures, and n is determined later.

Recovering the subkey $\left(R K_{1,2}, R K_{1,3}, R K_{22}, R K_{23}, R K_{20} \oplus W K_{3}\right)$
For each selected pair, because $M_{1}^{-1}(\delta)$ and the first two bytes of α are zero, we know that the input XOR and output XOR of the first two S-boxes involved in F_{1}^{1} are zero. So only the last 16 -bit ($R K_{1,2}, R K_{1,3}$) of $R K_{1}$ affects ΔC_{2}^{1}. Thus, we only discard 112-bit wrong subkeys $\left(R K_{1,2}, R K_{1,3}, R K_{22}, R K_{23}, R K_{20} \oplus W K_{3}\right)$ involved in the impossible differential.

To ensure the impossible differential occur, we need

$$
\Delta C^{1}=(0, \alpha, 0,0) \text { and } \Delta C^{10}=(\alpha, 0,0,0)
$$

1. For $\Delta C^{1}=(0, \alpha, 0,0)$, the situation is the same as step 1$)$ of Section 4.2. Therefore, we can compute one ($R K_{1,2}, R K_{1,3}$) in one F-computation.
2. For $\Delta C^{10}=(\alpha, 0,0,0)$, the output differences of the last two rounds are the same with those shown in Figure 3, and we can deduce 2^{32} wrong subkeys ($R K_{22}, R K_{23}, R K_{20} \oplus W K_{3}$) by the same method as Section 4.1. This step takes about $2^{32} \mathrm{~F}$-computations.
For each collected pair, we can filter out 2^{32} wrong 112-bit subkeys ($R K_{1,2}$, $\left.R K_{1,3}, R K_{22}, R K_{23}, R K_{20} \oplus W K_{3}\right)$ in about 2^{32} F-computations.

In order to satisfy

$$
2^{112} \cdot\left(1-\frac{2^{32}}{2^{112}}\right)^{2^{-1} n}<1
$$

the expected n is about

$$
2 \cdot 2^{80} \cdot 112 \cdot \ln 2 \approx 2^{87.3}
$$

Therefore, after analyzing $2^{86.3}$ pairs, the right $\left(R K_{1,2}, R K_{1,3}, R K_{22}, R K_{23}, R K_{20} \oplus\right.$ $W K_{3}$) is left.

Complexity evaluation

The data complexity is about $2^{32} \cdot n=2^{119.3}$. The time complexity is about $2^{86.3} \cdot 2^{32}=2^{118.3} \mathrm{~F}$-computations, which equals to $2^{114.3}$ encryptions.

5 Attacks on 13-round CLEFIA-192/256 and 14-round CLEFIA-256

5.1 Attack on 13-round CLEFIA-192/256

This section extends our attack to 13 -round CLEFIA-192/256, by adding one more round on top of the 12 -round attack (See Figure 5). The main purpose is to sieve the related subkey $\left(R K_{1}, R K_{0,2}, R K_{0,3}, R K_{3} \oplus W K_{1}, R K_{24}, R K_{25}\right.$, $R K_{22} \oplus W K_{3}$) by the similar techniques in Section 4.1 and Section 4.3.

Sieving pairs

Similar to Section 4.3, for all the 2^{16} possible δ, of which the first two bytes are zero, construct a table $T B_{0}$ to store the 2^{16} values of $M_{0}(\delta)$.

A structure is a set of 2^{64} plaintexts defined as follows:
Struc $=\left\{P_{0} \oplus \delta, P_{1} \oplus \epsilon, P_{2}, P_{3} \oplus \alpha \mid P_{0}, P_{1}, P_{2}, P_{3}\right.$ are fixed, the first two bytes of δ are zero and the other two randomly take 2^{16} cases, $\epsilon \in T B_{0}, \alpha \in\{0,1\}^{32}$ is non-zero\}.

We select the pairs with $\Delta C=(\beta, \gamma, 0, \alpha)$, where $\beta \in\{0,1\}^{32}$ and $\gamma \in$ $\{0,1\}^{32}$ are non-zero. Select $2^{63} n$ such pairs from n structures.

Recovering the subkey $\left(R K_{1}, R K_{0,2}, R K_{0,3}, R K_{3} \oplus W K_{1}, R K_{24}, R K_{25}, R K_{22} \oplus\right.$ $W K_{3}$)

As described in Section 4.3, because $M_{0}^{-1}(\epsilon)$ and the first two bytes of δ are zero, only ($R K_{0,2}, R K_{0,3}$) is related to the condition $\Delta C_{0}^{1}=0$.

For each of the $2^{63} n$ remaining pairs, we can filter out 2^{63} wrong 176-bit subkeys ($R K_{1}, R K_{0,2}, R K_{0,3}, R K_{3} \oplus W K_{1}, R K_{24}, R K_{25}, R K_{22} \oplus W K_{3}$) by the following steps.

1. Guess $R K_{1} \in\{0,1\}^{32}$ and $R K_{25} \in\{0,1\}^{32}$.
2. For the guessed $R K_{25}$, we compute one wrong ($R K_{24}, R K_{22} \oplus W K_{3}$) with the techniques in Section 4.1. This step takes about one F-computation.
3. For the guessed $R K_{1}$, we focus on the related subkey ($R K_{0,2}, R K_{0,3}, R K_{3} \oplus$ $W K_{1}$) of the first two rounds.
It is easy to prove that

$$
\Delta C^{2}=(0, \alpha, 0,0) \text { if and only if } \Delta C_{2}^{2}=0 \text { and } \Delta C_{3}^{2}=0
$$

(a) For $\Delta C_{3}^{2}=0$, according to

$$
C_{0}^{1}=C_{3}^{2} \text { and } C_{0}^{1}=F_{0}^{1}\left(P_{0}, R K_{0}\right) \oplus P_{1} \oplus W K_{0}
$$

we can derive the 16 -bit key ($R K_{0,2}, R K_{0,3}$) with one F-computation by Proposition 2.
(b) For $\Delta C_{2}^{2}=0$, from

$$
C_{2}^{2}=F_{1}^{2}\left(C_{2}^{1}, R K_{3}\right) \oplus C_{3}^{1},
$$

we get

$$
\Delta F_{1}^{2}=\Delta C_{3}^{1}
$$

By

$$
C_{2}^{1}=F_{1}^{1}\left(P_{2}, R K_{1}\right) \oplus P_{3} \oplus W K_{1} \text { and } \Delta P_{2}=0
$$

we have

$$
\Delta C_{2}^{1}=\Delta P_{3}
$$

So we search $\operatorname{In} S_{F_{1}}^{2}$ involved in F_{1}^{2} by Proposition 2.
According to Proposition 3, for the guessed $R K_{1}$, we can derive $\left(R K_{3} \oplus\right.$ $W K_{1}$) in one F-computation, such that

$$
R K_{3} \oplus W K_{1}=I n S_{F_{1}}^{2} \oplus F_{1}^{1}\left(P_{2}, R K_{1}\right) \oplus P_{3}
$$

From a) and b), one wrong ($R K_{0,2}, R K_{0,3}, R K_{3} \oplus W K_{1}$) is computed.
Summing up 1)-3), we filter out one wrong subkey ($R K_{0,2}, R K_{0,3}, R K_{3} \oplus$ $\left.W K_{1}, R K_{24}, R K_{22} \oplus W K_{3}\right)$ for each guessed $\left(R K_{1}, R K_{25}\right)$. Totally, for each pair, we capture $2^{64} 176$-bit wrong subkeys $\left(R K_{1}, R K_{25}, R K_{0,2}, R K_{0,3}, R K_{3} \oplus\right.$ $\left.W K_{1}, R K_{24}, R K_{22} \oplus W K_{3}\right)$ in 2^{66} F-computations, and delete them from the subkey space.

From

$$
2^{176} \cdot\left(1-2^{-112}\right)^{2^{63} n}<1
$$

we know that n is at least 2^{56}.

Complexity evaluation

Clearly, the number of chosen plaintexts is about $2^{56} \cdot 2^{64}=2^{120}$. The time complexity is $2^{63} \cdot 2^{56} \cdot 2^{66}=2^{185} \mathrm{~F}$-computations, which is about 2^{181} encryptions.

Remark 1. We use a table to keep the list of discarded keys where the entries are initialized to 0 , and are set to 1 when the corresponding keys are discarded. As described in [1], for each chosen $\left(R K_{1}, R K_{25}\right)$, we only need to save the 112bit subkey ($R K_{0,2}, R K_{0,3}, R K_{3} \oplus W K_{1}, R K_{24}, R K_{22} \oplus W K_{3}$) to sieve the right subkey, so the required memory is 2^{112} bits.

5.2 Attack on 14-round CLEFIA-256

Furthermore, our attack can be applicable to 14-round CLEFIA-256, with three rounds at the end of the 9-round impossible differential and two additional rounds on the top.

Fig. 5 Impossible Differential Attack on 14-round CLEFIA-256

In our attack, the related subkey $\left(R K_{0,2}, R K_{0,3}, R K_{1}, R K_{3} \oplus W K_{1}\right)$ can be directly found by the same method in Section 5.1. Because there exist more subkeys ($R K_{26}, R K_{22}, R K_{25} \oplus W K_{2}, R K_{24} \oplus W K_{3}, R K_{27}$) in the last three rounds which are related to the impossible differential, we will give more computational details about searching the right subkey. The attack on 14-round CLEFIA-256 is illustrated in Figure 5.

Sieving pairs

A structure is composed of 2^{64} plaintexts as described in Section 5.1, Struc $=\left\{P_{0} \oplus \delta, P_{1} \oplus \epsilon, P_{2}, P_{3} \oplus \alpha \mid P_{0}, P_{1}, P_{2}, P_{3}\right.$ are fixed, the first two bytes of δ are zero and the other two randomly take 2^{16} cases, $\epsilon \in T B_{0}, \alpha \in\{0,1\}^{32}$ is non-zero\}

Choose the pairs with $\Delta C=(\gamma, \zeta, \alpha, \eta)$, where $\gamma, \zeta, \eta \in\{0,1\}^{32}$ are non-zero. We find 2^{95} pairs with such ΔC from each structure, and select $2^{95} n$ pairs from n structures.

Recovering the subkey $\left(R K_{0,2}, R K_{0,3}, R K_{1}, R K_{3} \oplus W K_{1}, R K_{22}, R K_{24} \oplus\right.$ $\left.W K_{3}, R K_{25} \oplus W K_{2}, R K_{26}, R K_{27}\right)$

1. Guess each $R K_{1} \in\{0,1\}^{32}$ and $R K_{27} \in\{0,1\}^{32}$.
2. For the guessed $R K_{1}$, we deduce one wrong ($R K_{0,2}, R K_{0,3}, R K_{3} \oplus W K_{1}$) by about two F-computations.
3. For the guessed $R K_{27}$, we intend to derive the related subkey ($R K_{26}, R K_{22}$, $\left.R K_{25} \oplus W K_{2}, R K_{24} \oplus W K_{3}\right)$ which leads to $\Delta C^{11}=(\alpha, 0,0,0)$.
To match $\Delta C^{11}=(\alpha, 0,0,0)$, it is equivalent to satisfy the following three conditions:

$$
\Delta C_{1}^{11}=0, \Delta C_{1}^{12}=0 \text { and } \Delta C_{1}^{13}=0
$$

(a) For $\Delta C_{1}^{13}=0$, from

$$
C_{0}^{13}=C_{0}^{14} \text { and } C_{1}^{14}=F_{0}^{14}\left(C_{0}^{13}, R K_{26}\right) \oplus C_{1}^{13} \oplus W K_{2},
$$

the wrong $R K_{26}$ is derived with one F-computation by Proposition 2.
(b) For $\Delta C_{1}^{11}=0$, we know that

$$
\Delta F_{0}^{12}=\Delta C_{0}^{12}=\Delta C_{3}^{13}
$$

by

$$
C_{0}^{12}=C_{3}^{13} \text { and } C_{1}^{11}=C_{0}^{12} \oplus F_{0}^{12}\left(C_{0}^{11}, R K_{22}\right)
$$

In order to deduce $R K_{22}$, we have to calculate C_{0}^{11} and ΔC_{3}^{13}. It is clear that ΔC_{3}^{13} can be easily obtained by the final round operation:

$$
C_{3}^{13}=C_{3}^{14} \oplus F_{1}^{14}\left(C_{2}^{13}, R K_{27}\right) \oplus W K_{3}, \text { where } C_{2}^{13}=C_{2}^{14}
$$

The following step is to compute C_{0}^{11}.
Since

$$
C_{0}^{11}=C_{3}^{12}, C_{2}^{13}=C_{3}^{12} \oplus F_{1}^{13}\left(C_{2}^{12}, R K_{25}\right) \text { and } C_{2}^{13}=C_{2}^{14}
$$

we have

$$
C_{0}^{11}=C_{2}^{14} \oplus F_{1}^{13}\left(C_{2}^{12}, R K_{25}\right)
$$

According to the structure of F_{1}^{13}, it is easy to know

$$
C_{2}^{12} \oplus R K_{25}=\operatorname{In} S_{F_{1}}^{13}=\operatorname{In} S_{F_{1}, 0}^{13}\left|\operatorname{In} S_{F_{1}, 1}^{13}\right| \operatorname{In} S_{F_{1}, 2}^{13} \mid \operatorname{In} S_{F_{1}, 3}^{13}
$$

For each guess of $R K_{25} \oplus W K_{2}$, we compute

$$
\begin{aligned}
\operatorname{In} S_{F_{1}}^{13} & =C_{2}^{12} \oplus R K_{25} \\
& =C_{1}^{13} \oplus R K_{25} \\
& =C_{1}^{14} \oplus F_{0}^{14}\left(C_{0}^{14}, R K_{26}\right) \oplus W K_{2} \oplus R K_{25} .
\end{aligned}
$$

So, $F_{1}^{13}\left(C_{2}^{12}, R K_{25}\right)$ can be computed by

$$
M_{1}\left[S_{1}\left(\operatorname{In} S_{F_{1}, 0}^{13}\right), S_{0}\left(\operatorname{In} S_{F_{1}, 1}^{13}\right), S_{1}\left(\operatorname{In} S_{F_{1}, 2}^{13}\right), S_{0}\left(\operatorname{In} S_{F_{1}, 3}^{13}\right)\right]^{T}
$$

Thus, we get the value of C_{0}^{11}.
Combining C_{0}^{11} with $\Delta C_{3}^{13}, R K_{22}$ can be computed by Proposition 2.
Totally, we obtain 2^{32} values of $\left(R K_{22}, R K_{25} \oplus W K_{2}\right)$ in this step, taking about $2^{34} \mathrm{~F}$-computations.
(c) For $\Delta C_{1}^{12}=0$, we have

$$
\Delta F_{0}^{13}=\Delta C_{0}^{13}=\Delta C_{0}^{14}=\gamma
$$

by

$$
C_{0}^{13}=C_{1}^{12} \oplus F_{0}^{13}\left(C_{0}^{12}, R K_{24}\right)
$$

From

$$
\Delta C_{0}^{12}=\Delta C_{3}^{13}
$$

which is obtained in b), we can deduce $\operatorname{In} S_{F_{0}}^{13}$.
According to Proposition 3, $R K_{24} \oplus W K_{3}$ can be computed by the following equation

$$
R K_{24} \oplus W K_{3}=C_{3}^{14} \oplus F_{1}^{14}\left(C_{2}^{14}, R K_{27}\right) \oplus \operatorname{In} S_{F_{0}}^{13}
$$

Thus, we calculate 2^{32} values of $\left(R K_{26}, R K_{22}, R K_{25} \oplus W K_{2}, R K_{24} \oplus W K_{3}\right)$ for each $R K_{27}$ in about 2^{34} F-computations.

So far, we can discard $2^{32} \cdot 2^{64}=2^{96}$ wrong 240-bit subkeys $\left(R K_{0,2}, R K_{0,3}\right.$, $R K_{1}, R K_{3} \oplus W K_{1}, R K_{26}, R K_{22}, R K_{25} \oplus W K_{2}, R K_{24} \oplus W K_{3}, R K_{27}$) with about 2^{98} F-computations. After analyzing $2^{95} n$ pairs, the number of wrong subkeys left is

$$
2^{240} \cdot\left(1-\frac{2^{96}}{2^{240}}\right)^{2^{95} n}<1
$$

where n is about $2^{56.4}$.

Complexity evaluation

The number of chosen plaintexts is about $2^{56.4} \cdot 2^{64}=2^{120.4}$. The time complexity is about $2^{151.4} \cdot 2^{98}=2^{249.4}$ F-computations, which equals to $2^{245.4}$ encryptions.

As described in Section 5.1, for each $R K_{1}$ and $R K_{27}$, we save only the 176 -bit subkeys, so the required memory is about 2^{176} bits.

6 Conclusions

In this paper, we present a chosen-plaintext attack on reduced CLEFIA variants. Table 1 shows the comparison between the attack in [3] and our attack. Reference [3] only cryptanalyzes 10 -round CLEFIA-128/192/256, 11-round CLEFIA192/256 with key whitenings, and 12-round CLEFIA-256 without key whitenings. In our attack, we explore some observations and some tricks to break 11-12 rounds CLEFIA-128/192/256. The attack can be applied to 13-round CLEFIA192/256 and 14-round CLEFIA-256. It is deserved to notice that all our attacks are applicable to the reduced CLEFIA with key whitenings.

Table 1. Summary of Impossible Differential Attacks on Reduced CLEFIA

Round Num.	Ref. [3]			This paper		
	Key Length	Data	Time	Key Length	Data	Time
10	$128 / 192 / 256$	$2^{101.7}$	2^{102}	-		
11	$192 / 256$	$2^{103.5}$	2^{188}	$128 / 192 / 256$	$2^{103.1}$	$2^{98.1}$
12	256^{a}	$2^{103.8}$	2^{252}	$128 / 192 / 256$	$2^{119.3}$	$2^{114.3}$
13	-			$192 / 256$	2^{120}	2^{181}
14	-			256	$2^{120.4}$	$2^{245.4}$

[^1]
References

1. E. Biham, A. Biryukov, and A. Shamir. Cryptanalysis of Skipjack Reduced to 31 Rounds Using Impossible Differentials. Eurocrypt 1999, LNCS 1592, pp. 12-23, 1999. Springer-Verlag.
2. E. Biham and A. Shamir. Differential Cryptanalysis of DES-like Cryptosystems. Journal of Cryptology, vol. 4, no. 1, pp. 3-72, 1991. Springer-Verlag.
3. H. Chen, W. L. Wu, and D. G. Feng. Differential Fault Analysis on CLEFIA. ICICS 2007, LNCS 4861, pp. 284-295, 2007. Springer-Verlag.
4. T. Shirai, K. Shibutani, T. Akishita, S. Moriai, and T. Iwata. The 128-bit Blockcipher CLEFIA. FSE 2007, LNCS 4593, pp.181-195, 2007. Springer-Verlag.
5. Sony Corporation. The 128-bit Blockcipher CLEFIA: Algorithm Specification. Revision 1.0. June 1, 2007.
6. Sony Corporation. The 128-bit Blockcipher CLEFIA: Security and Performance Evaluations. Revision 1.0. June 1, 2007.
7. G. Yuval. How to Swindle Rabin. Cryptologia, vol. 3, pp. 187-189, 1979.

[^0]: * This paper is a preprint of a paper submitted to ETRI Journal, and is subject to ETRI Journal Copyright.
 ** This research was supported by 973 Project (No.2007CB807902) and the National Natural Science Foundation of China (NSFC Grant No. 90604036 and No.60525201).

[^1]: ${ }^{a}$ without key whitenings

