
Faster Multi-Exponentiation through Caching:
Accelerating (EC)DSA Signature Verification

Bodo Möller and Andy Rupp

Horst Görtz Institute for IT Security, Ruhr-Universität Bochum
bmoeller@acm.org, arupp@crypto.rub.de

Abstract. We consider the task of computing power productsQ
1≤i≤k gei

i (“multi-exponentiation”) where base elements g2, . . ., gk are
fixed while g1 is variable between multi-exponentiations but may repeat,
and where the exponents are bounded (e.g., in a finite group). We present
a new technique that entails two different ways of computing such a re-
sult. The first way applies to the first occurrence of any g1 where, besides
obtaining the actual result, we create a cache entry based on g1, invest-
ing very little memory or time overhead. The second way applies to any
multi-exponentiation once such a cache entry exists for the g1 in ques-
tion: the cache entry provides for a significant speed-up. Our technique
is useful for ECDSA or DSA signature verification with common domain
parameters and recurring signers.

Keywords: Efficient implementation, elliptic curve cryptography,
ECDSA verification, exponentiation, DSA verification

1 Introduction

Consider a scenario where we repeatedly have to verify ECDSA signatures [1],
trying to keep the computational delay small for each verification. A time-
consuming step in ECDSA signature verification is computing a linear combina-
tion u1G+u2Q of elliptic curve points G and Q, where G is specified by domain
parameters and where Q constitutes the signer’s public key, with integers u1

and u2 in the interval
(
0, ord(G)−1}

)
both depending on the specific signature.

The same group with the same point G will typically be shared by many sign-
ers since elliptic curve domain parameters are often taken from (intersecting)
standards such as [19, Appendix 6], [1, Annex J], and [6] (with domain parame-
ter specifications NIST P-192 aka prime192v1 aka secp192r1 and NIST P-256
aka prime256v1 aka secp256r1 common to all three of these). Also, we usually
can expect some signers and thus their Q values to recur. Consider public-key
infrastructures:

– A verifying party will encounter end-entity certificates signed by possibly
very many different intermediate certification authorities. When a new cer-
tification authority appears for the first time, the verifying party does not
yet know how popular this particular certification authority is, i.e. if it has
signed many or just very few end-entity certificates.

1

– The same applies to signatures on documents, such as the ECDSA signa-
tures stored on the new digital “e-passports”. When verifying a passport for
airport immigration procedures, then quite possibly the next passenger in
line may be using a passport signed by the same agency. On the other hand,
the current passenger could be the only one from his particular country.

Thus, for a given G, we have to compute linear combinations u1G + u2Q where
Q sometimes is “new” and sometimes is “old” (has been seen before); but when
a new Q appears for the first time, we generally do not know if it will appear
again later on.

There are well-known techniques to compute u1G + u2Q much faster than
by computing both u1G and u2Q individually, and this can be done yet faster
if both G and Q are fixed and a one-time precomputation depending on these
points has been done. Performing such precomputation whenever a “new” Q
shows up may pay out if Q turns out to repeat, so that G and Q are fixed for a
number of linear combinations. However, precomputation depending on Q is an
investment of resources that would be lost if this particular Q does in fact not
repeat.

We present a new technique that nearly avoids this drawback, provided that
space for permanently fixed precomputation depending on G only is not severely
limited. The first occurrence of some point Q in a computation u1G + u2Q
will incur very little penalty in terms of memory or time, and yet will leave
behind useful precomputed data that can be cached to speed up subsequent
linear combination computations involving the same G and Q.

The ECDSA scenario best illustrates the practical use of our technique1,
which we describe in more general form. It applies to any abelian group or
(more generally) abelian semigroup with an identity element, henceforth writ-
ten multiplicatively so that what we just described as linear combinations now
turns into power products. Computing power products sometimes is called multi-
exponentiation since it is a generalization of computing powers (exponentiation).
The computational task that we will consider is computing power products of
the form ∏

1≤i≤k

gei
i

where base elements g2, . . ., gk are fixed once and for all, whereas g1 is vari-

1 Another approach to speed up ECDSA signature verification is due to Antipa
et al. [2, 24]. It works best for a slightly modified variant of the original signature
scheme, dubbed ECDSA∗, but under appropriate circumstances, it can be useful for
the verification of standard ECDSA signatures. Where it makes sense to use the
technique from [2, 24], our technique may be preferable depending on the expected
proportion of “old” to “new” Q values. In fact, we can get some of the benefit of
[2, 24] for any “new” Q and all of the benefit of our technique for any “old” Q by
using a combination of both techniques in the case of a “new” Q, using specific
imbalanced-scalar parameterizations within [2, 24]. We omit further details on this.

2

able between multi-exponentiations and may repeat, while all exponents ei are
assumed to be ephemeral. We will assume that the exponents are positive and
at most ` bits long. (An appropriate value of ` is usually implied by the group
order. A negative exponent for a group can be handled through inversion of the
base element, or by reduction of the exponent modulo o where o is some multiple
of the order of the base element, such as the group order.) For our technique
to work as intended, we also assume that the exponent to variable base g1 is
not pathologically short (i.e., its length not just a fraction of `); rare statistical
outliers are no problem. Besides ECDSA signature verification, this setting also
covers DSA signature verification [19]; however, it only applies when using com-
mon domain parameters, which is customary for ECDSA but not necessarily for
DSA.

We assume that at least read-only memory is not severely limited, so that
precomputation depending on g2, . . ., gk can be permanently stored. We also
assume that some memory is available for caching at least one group element
with an integer. Such data will be put into cache memory when performing
a multi-exponentiation

∏
1≤i≤k gei

i involving a “new” g1 (i.e., one for which no
cache entry currently exists), and can be used to speed up any subsequent multi-
exponentiation repeating the same g1 as long as the cache entry is kept. While
the method is easier to describe assuming that dedicated cache memory is avail-
able, Appendix C will show that the technique can be quite useful even if this
is not the case and a portion of fast read/write memory has to be sacrificed
instead: In a specific example scenario where read/write memory is very scarce
(which is typical of smart cards and other embedded devices), we have a 10 %
average speed advantage. The technique also is useful for devices without such
constraints.

Like many approaches for exponentiation using precomputation (such as the
Lim/Lee approach [12]), our technique has roots that can be traced back to
Pippenger [21, 22]; see also [4]. The novelty here in this regard is that for cached
precomputation, we do not store powers of the form g2n

1 as by [21], which would
impose some computational overhead while computing

∏
1≤i≤k gei

i when g1 is
new. Instead, we store other powers of g1 that happen to come up without effort
if we arrange the computation suitably.

Section 2 describes preliminaries for our technique: interleaved multi-
exponentiation, and radix-2 exponent splitting. Then, Section 3 presents the
novel multi-exponentiation technique, which relies on caching certain interme-
diate results that can be obtained by investing very little additional read/write
memory or time, allowing us to speed up later multi-exponentiations if an appro-
priate cache entry is available. Section 4 gives example performance figures for
the new technique in certain use scenarios. Appendix A provides a comprehensive
example to illustrate the technique. Appendix B discusses some implementation
aspects. Finally, Appendix C considers a particular scenario to demonstrate the
performance gain that can be obtained by using the new technique.

3

2 Multi-Exponentiation

We show known techniques that we later will use and combine in a novel way.
Section 2.1 describes interleaved multi-exponentiation, an approach for com-
puting power products. It also briefly describes some properties of radix-2 ex-
ponent representations that can be used in interleaved multi-exponentiation.
Section 2.2 describes the technique of radix-2 exponent splitting, which can be
used to obtain shorter exponents by converting exponentiation tasks into multi-
exponentiation tasks, or converting k-fold multi-exponentiation tasks into k′-fold
multi-exponentiation tasks with k′ > k. Radix-2 exponent splitting is a useful
technique for fixed bases (namely, for exponentiation or multi-exponentiation
with precomputation that can be done in advance).

2.1 Interleaved Multi-Exponentiation

We build on the straightforward multi-exponentiation strategy that has been
called interleaving in [14], which generalizes well-known methods for single expo-
nentiations such as the (left-to-right) binary or sliding window methods. Assume
that radix-2 representations

ei =
∑

0≤j≤`

bi,j · 2j , bi,j ∈ Bi,

of all exponents are given where each Bi is a set of integers. We write ei =
(bi,`, bi,`−1, . . ., bi,1, bi,0)2 and call the bi,j digits and Bi a digit set. We require
that every gb

i for b ∈ Bi \ {0} be available from precomputed data. Note that in
a group where inversion is particularly easy (such as those used in elliptic curve
cryptography where an inversion requires just obtaining an additive inverse in the
underlying field or performing a field addition), obtaining g−b

i from precomputed
data is easy if gb

i has been stored; so both b and −b can be included in set Bi if
the single element gb

i has been stored in a precomputed table of powers. In this
setting, interleaved multi-exponentiation computes the power product as follows.

A← 1G {Start with identity element}
for j = ` down to 0 do

A← A2

for i = 1 to k do
if bi,j 6= 0 then

A← A · gbi,j

i {Multiply by [inverse of] precomputed element}
return A

This is a left-to-right technique in that it proceeds from the most significant
digits (“left”) down to the least significant digits (“right”).

Digit sets usually are quite small, typically of the form B±(m) =
{±1,±3,±5,±7, . . .,±m, 0} for groups where inversion is easy, or B(m) =
{1, 3, 5, 7, . . ., m, 0} for semigroups in general. Here parameter m is an odd inte-
ger, often but not necessarily of the form 1, (11)2, (111)2, . . ., (11. . .11)2, i.e.,

4

2w − 1, w ≥ 1 an integer. This special form applies to the sliding window
technique (cf. [9]) and to various variants of it that employ signed-digit rep-
resentations of exponents, such as those introduced in [13] using a right-to-left
conversion from binary to signed-digit representation and in [17, 3, 20] using left-
to-right conversions. The general case with an arbitrary odd m was introduced as
fractional window representations in [15], with left-to-right conversions for the
signed-digit case suggested in [11, 23, 16]. Different digits sets can be used for
different exponents, so we have Bi = B(mi) or Bi = B±(mi) with per-exponent
parameters mi when employing such representations.

The length of a representation is the number of digits that remain if we
drop any leading zeros (so the length of (b`, b`−1, . . ., b1, b0)2 is ` + 1 if b` 6= 0).
Maximum length l+1 is sufficient to represent any l-bit integer e (2l−1 ≤ e < 2l)
in any of the representations mentioned above [18] (length l is sufficient for
any of the unsigned-digit representations), and the minimum length with these
representations is l + 1 −

⌈
log2 m

⌉
. Thus, the maximum outer loop index ` in

the algorithm as shown above is sufficient for integers up to ` bits.
The weight of a representation is the number of digits that are non-zero. The

conversion techniques mentioned above are known to achieve, for any integer e,
the minimum weight possible given the respective digit set [18, 16]. For unsigned
and signed fractional window representations using digit set {1, 3, 5, . . ., m, 0} or
{±1,±3,±5, . . .,±m, 0}, the average weight for random integers up to ` bits is
slightly above

`

1 + w(m) +
m + 1− 2w(m)

2w(m)

and
`

2 + w(m) +
m + 1− 2w(m)

2w(m)

,

respectively, where
w(m) =

⌊
log2(m + 1)

⌋
;

the average density (weight divided by `) converges to according estimates as
` goes to ∞ (see [16]). For the special case m = 2w − 1 (i.e., the sliding window
technique and its non-fractional signed-digit counterparts), such that w(m) = w,
the above is simply `/(1 + w) and `/(2 + w), respectively.

Observe that in the interleaved multi-exponentiation algorithm as shown
above, (semi-)group operations need not actually be performed until after the
first multiplication of A by a precomputed element or its inverse, since A = 1G

holds up to this point. This means that the initial squarings of 1G can be skipped,
and the first operation A← A · gbi,j

i amounts to an assignment A← g
bi,j

i .
To estimate the time required to perform an interleaved multi-

exponentiation, we thus need the maximum length of the representations of
the ei to determine the number of squarings, and the weight of the represen-
tation of each ei to determine the number of other multiplications by elements
available from precomputed data. (The maximum length is one more than the
number of squarings, and the sum of the weights is one more than the number
of other multiplications.) This is not counting any group inversions, since we
would only use these in the algorithm if inversion is easy. In addition to this,

5

we have to look at the time needed for precomputation. If gi is a fixed base,
we can assume that the required powers gb

i have been precomputed in advance
(and possibly built into ROM) and thus do not enter the time estimate. How-
ever, if gi is not fixed, some effort goes into precomputing these powers: from gi,
the powers g3

i , . . ., gmi
i can be computed using one squaring (to obtain g2

i as an
intermediate value) and mi−1

2 other multiplications.
(Note that the minimum-weight property of a conversion technique does not

mean that it always provides the best radix-2 representation possible given the
particular digit set. As discussed in [15, Section 5.1] and [16, Section 4], modified
signed fractional window representations can sometimes reduce length without
increasing weight. In certain situations, it may even be of advantage to accept
a slight increase of weight for the sake of length reduction if saved squarings
[due to length reduction] outweigh the additional multiplications [due to weight
increase]. To pursue this approach, we can generalize the concept of radix-2
representations: e.g., (100000)2 = 25 could be converted into 3 ·22 +5 ·22, which

is not a proper radix-2 representation but might be written as
(3
5 00

)
2

using a

“double digit” of weight 2. Details are out of the scope of the present paper; we
just mention this as a reminder that minimum-weight radix-2 representations
can sometimes be improved by applying appropriate substitution rules.)

2.2 Radix-2 Exponent Splitting

We have seen that the length of exponent representations is important to effi-
ciency since it determines the number of squarings needed for interleaved multi-
exponentiation. For an exponent e, this length is around log2 e with any of the
representations mentioned in Section 2.1 as long as parameter m is reasonably
small. Radix-2 exponent splitting, shown in the following, is a simple but effec-
tive idea (underlying [5] and made explicit in [8]) to get better performance if
all bases are fixed.

For exponentiations ge with exponent representations e = (b`, . . . , b0)2 of
maximum length ` + 1, we can decide to split each such representation into
some number s of shorter exponent representations. To wit, let ` + 1 = L1 +
· · · + Ls with positive integers Li ≈ `+1

s , and then let e1 = (bL1−1, . . ., b0)2,
e2 = (bL1+L2−1, . . ., bL1)2, and so on:

e = (b`, . . . , b0)2 = (bL1+···+Ls−1, . . ., bL1+···+Ls−1︸ ︷︷ ︸
es

,

bL1+···+Ls−1−1, . . ., bL1+···+Ls−2︸ ︷︷ ︸
es−1

, . . .,

bL1+L2−1, . . ., bL1︸ ︷︷ ︸
e2

, bL1−1, . . ., b0︸ ︷︷ ︸
e1

)2

Then from e =
∑

1≤i≤s ei · 2L1+···+Li−1 it follows that

ge = ge1 ·
(
g2L1)e2 · · · · ·

(
g2L1+···+Ls−2)es−1 ·

(
g2L1+···+Ls−1)es ,

6

and thus by defining gi = g2
P

1≤I<i LI we have transformed the task of com-
puting ge into the s-fold multi-exponentiation

∏
1≤i≤s gei

i . There is no need to
actually evaluate the ei as integers here since we already have appropriate rep-
resentations of them—namely, portions of the original representation as shown.

Thanks to exponent splitting, the maximum length of exponent representa-
tions can go down from ` + 1 to

⌈
`+1

s

⌉
if the Li are chosen accordingly. If g is

fixed (and the parameters Li are constant), then so are the gi as defined here.
Thus, the powers gb

i needed by the interleaved multi-exponentiation algorithm
in Section 2.1 can be precomputed in advance. So using additional memory for
precomputed data (possibly ROM) allows us to save time in each exponentiation.

So far, we have looked at radix-2 exponent splitting applied to exponen-
tiation, not to multi-exponentiation: each single exponentiation is converted
into a multi-exponentiation. Radix-2 exponent splitting can just as well be ap-
plied for any fixed base in multi-exponentiation tasks, converting a k-fold multi-
exponentiation into some k′-fold multi-exponentiation, k′ > k. However, since
the exponent splitting technique needs additional precomputed data (the powers
gi = g2

P
1≤I<i LI of base g), it cannot be used to advantage for bases that are

not fixed. Thus, if there is any base that is not fixed (as in the case of DSA
and ECDSA signature verification), long exponent representations may remain,
and radix-2 exponent splitting hence will typically provide essentially no speed
advantage in this situation.

3 Faster Multi-Exponentiation by Caching Intermediate
Results

This section describes a novel technique for computing power products∏
1≤i≤k gei

i assuming that g2, . . ., gk are fixed base elements, while g1 is a vari-
able base element whose values may recur. The technique is based on interleaved
multi-exponentiation and on exponent splitting, but adds new features. It con-
sists of two different multi-exponentiation algorithms. The first algorithm, de-
scribed below in Section 3.1, is employed whenever a “new” g1 value appears.
This algorithm not only computes the multi-exponentiation result, but also out-
puts certain intermediate results, intended to be cached for later use. The second
algorithm, described below in Section 3.2, can be employed whenever an “old” g1

value appears, namely one for which a cache entry already exists. This algorithm
then exploits the cache entry created by the first algorithm to compute the new
multi-exponentiation result faster.

For both algorithms, we assume that parameters for radix-2 exponent split-
ting have been fixed, i.e. we have constant integers s and L1, . . ., Ls as de-
scribed in Section 2.2, used identically for all bases g2, . . . , gk. We demand that
L1 + 1 ≥ max1≤i≤s Li. For these bases, we furthermore assume that digit sets
for exponent representations have been fixed (see Section 2.1), and that there is
a fixed length limit `+1 for exponent representations. (This is enough for expo-
nents up to ` bits, using any of the representations mentioned in Section 2.1.) We
also require that powers of g2, . . ., gk as required for radix-2 exponent splitting

7

using the given digit sets and exponent splitting parameters are precomputed in
advance. These are constant elements, so they may be stored in ROM. Due to
our assumption that at least read-only memory is not severely limited, it should
be possible to store quite a number of such precomputed elements, allowing us
to use reasonably large digit sets in the representations of exponents e2, . . ., ek

that will undergo radix-2 exponent splitting.
Of course, since cache entries take up read/write memory, they eventually

may have to be expired as new g1 values occur. Once the cache entry for a cer-
tain g1 has been deleted, this particular value again will have to be considered
“new” if it occurs once more later. In extreme cases, the cache might provide
space just for a single cache entry. Then, depending on the caching strategy im-
plemented, g1 might be recognized as “old” only if two immediately consecutive
multi-exponentiations involve the same g1 value, since any new value might lead
to an instant cache eviction to make space for a new entry. However, it would
also be possible to keep the existing cache entry for a while even if new g1 values
appear, meaning that any cacheable data created for such a new g1 value would
have to be discarded for lack of space. Which caching strategy is to be preferred
depends very much on the statistical properties of the application scenario.

3.1 Multi-Exponentiation for a New Base g1

If no cache entry based on g1 is available,
∏

1≤i≤k gei
i should be computed as

follows. As in Section 2.1, we assume that the exponents are given in represen-
tations ei =

∑
0≤j≤` bi,j · 2j , bi,j ∈ Bi.

First, apply radix-2 exponent splitting (Section 2.2) to the representations
of exponents e2 through ek such that all of the resulting exponent represen-
tations observe maximum length L = max1≤i≤s Li (≈ `+1

s). This transforms
the k-fold multi-exponentiation task into a multi-exponentiation task with more
bases, where the exponent to g1 appears unchanged but all other exponent rep-
resentations have been split into parts no longer than L digits. The list of bases
has expanded from (g1, g2, . . ., gk) into(

g1, g2, g
2L1

2 , . . ., g2L1+···+Ls−1

2 , . . . , gk, g2L1

k , . . ., g2L1+···+Ls−1

k

)
;

we will assume that g1 keeps its index (i = 1). Now apply the interleaved
multi-exponentiation algorithm from Section 2.1 to this new

(
1 + (k − 1)s

)
-

fold power product. (Remember that appropriate precomputed powers of the
bases except g1 are assumed to be available e.g. from ROM.) This will generate
the desired result,

∏
1≤i≤k gei

i . Additionally, it will generate certain intermediate
values that turn out to be very useful.

Observe that no loop iteration before j = L1 may involve non-zero exponent
digits for any base other than g1 (since we have L1 + 1 ≥ Li for any of the
exponent splitting parameters L2, . . ., Ls). In other words, before this round,
A has never been multiplied with a power of a base other than g1 . In particular,
we have A = g

(b1,`,...,b1,L1)2
1 just after the inner loop iteration for j = L1, i = 1

8

(and still after the outer loop iteration for j = L1 if L1 ≥ maxi Li). From this
and earlier loop iterations, we can obtain the following s−1 intermediate values:

j = L1 + · · ·+ Ls−1 ⇒ A = g
(b1,`,...,b1,L1+···+Ls−1)2
1

.

j = L1 + L2 ⇒ A = g
(b1,`,...,b1,L1+L2)2
1

j = L1, i = 1 ⇒ A = g
(b1,`,...,b1,L1)2
1

Thus, we can output the following data to be cached—a cache entry comprising
g1 itself (as index to the cache) and s−1 pairs, each consisting of an integer and
the corresponding power of g1:(

g1,
(
(b1,`, . . ., b1,L1)2, g

(b1,`,...,b1,L1)2
1

)
,(

(b1,`, . . ., b1,L1+L2)2, g
(b1,`,...,b1,L1+L2)2
1

)
,

. . .,(
(b1,`, . . ., b1,L1+···+Ls−1)2, g

(b1,`,...,b1,L1+···+Ls−1)2
1

))
Note that when writing this to cache, the integers may be evaluated as such—
there is no need to store the specific radix-2 representations. (However, since all
of these integers are derived from e1 following a fixed rule, it is clear that at most
` bits are sufficient to store complete information on all of them, should memory
efficiency be an utmost concern.) With any of the representations mentioned in
Section 2.1, these partial integers are guaranteed to be non-negative, with

(b1,`, . . ., b1,L1)2 ≥ . . . ≥ (b1,`, . . ., b1,L1+···+Ls−1)2 ≥ 0.

Furthermore, if e1 is uniformly random from some set (0, . . ., q) of integers
where q is an `-bit integer, then (unless Ls is very small) all of these inte-
gers will actually be positive with high probability (and will be reasonably
close to 2`−L1 , . . ., 2`−L1−···−Ls−1 , respectively; i.e., since ` =

∑
1≤i≤s Li, to

2L2+···+Ls , . . ., 2Ls).
Depending on the assumed distribution of e1, it may be a good idea to skip

writing a cache entry if it ever turns out that (b1,`, . . ., b1,L1+···+Ls−1)2 = 0. In
any case, writing a cache entry should be skipped if all of the integers in it would
be zero (and thus the corresponding powers of g1 trivial).

3.2 Multi-Exponentiation for an Old Base g1

If a cache entry based on g1 is available (created as described in Section 3.1),
then

∏
1≤i≤k gei

i may be computed as follows.
First, parse the cache entry as(

g1, (λ1, G1), . . ., (λs−1, Gs−1)
)
.

9

Here we have Gi = gλi
1 for 1 ≤ i ≤ s − 1, and if one of the exponent rep-

resentations mentioned in Section 2.1 was used while creating the cache entry
as specified in Section 3.1, we have λ1 ≥ . . . ≥ λs−1 ≥ 0. Now split e1 into
integers Ei (1 ≤ i ≤ s) as follows:

– let d0 = e1;
– for 1 ≤ i ≤ s− 1, let Ei =

⌊di−1
λi

⌋
and di = di−1 − Eiλi;

– and finally, let Es = ds−1.

In the exceptional case that λi = 0, Ei = 0 should be substituted for
⌊di−1

λi

⌋
. By

this construction, we have e1 = E1λ1 + · · ·+ Es−1λs−1 + Es. It follows that

ge1
1 = GE1

1 · · · · ·G
Es−1
s−1 · g

Es
1 ,

and thus we have transformed the power ge1
1 into a power product using new

exponents Ei. This step is similar to radix-2 exponent splitting; we call it modular
exponent splitting. Suitable digit sets for radix-2 representations of each of the
new exponents can be chosen depending on how much read/write memory is
available for storing powers of the bases G1, . . ., Gs−1 and g1 (cf. Section 2.1).

For the exponents to the fixed bases g2, . . ., gk, we again (exactly as in Sec-
tion 3.1) assume that these are given in representations ei =

∑
0≤j≤` bi,j · 2j ,

bi,j ∈ Bi. We apply radix-2 exponent splitting to these, giving us exponent
representations of maximum length L.

In total, by applying both modular exponent splitting and radix-2 expo-
nent splitting, we have converted the k-fold multi-exponentiation into a ks-fold
multi-exponentiation. The maximum length of exponent representations here
may exceed L since we do not have strict guarantees regarding the Ei. However,
under the assumptions regarding the distribution of e1 stated in Section 3.1, the
maximum length will remain around L with high probability.

This completes the description of our new technique. For an illustrative ex-
ample we refer the reader to Appendix A.

4 Performance

Our multi-exponentiation technique can be used under many different
parameterizations—the number of bases may vary; the length of exponents
may vary; the amount of memory available for fixed precomputation (such as
ROM) may vary; the amount of memory available for cache entries (such as slow
read/write memory) may vary; the amount of memory available for variable
precomputed elements needed by the interleaved exponentiation algorithm may
vary; and under any of these parameterizations, we have to decide on parameters
s and L1, . . ., Ls for exponent splitting (s-fold exponent splitting with exponent
segment lengths Li), and we have to decide on digit sets and representation
conversion techniques for the exponents to the fixed bases g2, . . ., gk on the one
hand, and for any of the s partial exponents created from e1 when the algorithm
from Section 3.2 uses a cache entry on the other hand. This encompasses a large
variety of different settings.

10

In the present section, we will look at a specific range of rather simple use
scenarios for our new technique to assess its performance. For a comparison with
other approaches, see also Appendix C.

Here, let us assume that we want to implement the multi-exponentiation tech-
nique in an environment where only a very limited amount of fast read/write
memory is available but where we have some slower memory suitable for the
cache, and where we have plenty of read-only memory for permanently fixed pre-
computed elements. As powers of g1 are frequently needed in the course of the
algorithm, this is what we will use such fast memory for. As particular examples,
let us consider the cases where we have such fast memory space to store 4, 8, 16
or 32 group elements, and let ` be 160, 192 or 256, which are practical values for
ECDSA. Note that restricting the space for storing powers of a base also limits
the number of different digit values that we can use in exponent representations
for the interleaved multi-exponentiation algorithm. We have implemented our
new multi-exponentiation strategy and counted certain group operations under
these prerequisites for different values of the splitting parameter s, always using
reasonable Li ≈ `+1

s and a left-to-right signed fractional window representation
using appropriate digit sets B±(m) = {±1,±3, . . .,±m, 0} such as to fully uti-
lize the fast memory. (See [11, 23, 16] for details regarding left-to-right signed
fractional window conversions.)

We have repeatedly simulated the behavior of our technique for uniformly
random exponents in the interval (0, . . ., 2` − 1), covering both the case of “new
bases” to create cache entries (Section 3.1) and the case of “old bases” to observe
the performance given such cache entries (Section 3.2). In these simulations, we
have counted the following operations:

– Squarings (S) and other multiplications (M) used for precomputing powers
of g1 (including powers of cache entries derived from g1);

– squarings (S) and multiplications (M) by precomputed powers of g1 (or of
cache entries) within the interleaved multi-exponentiation algorithm.

We have excluded from counting any of the multiplications by fixed precomputed
elements (from ROM), since these are not a limiting factor given the assumption
that plenty of space is available for these elements: low-weight exponent repre-
sentations accordingly may be used for the corresponding exponents, so changes
of the parameterization have less of an impact here. (Refer to Section 2.1 for
applicable weight estimates.)

The simulation results can be found in Table 1. The values in the first row
(s = 1) reflect the special situation when no splitting at all is done. This applies
to the multi-exponentiation algorithm for a new base g1 for which no cache entry
is available (Section 3.1), where a signed-digit representation is used for the full-
length exponent e1. The remaining rows contain operation counts for cases where
g1 is an old base, i.e., an existing cache entry is used (Section 3.2). As we can
see from the table, the number of squarings will be reduced to about `/s as
expected using the new modular exponent splitting technique. Moreover, the
number of multiplications performed during the multi-exponentiation slightly
increases from row to row: this due to the fact that smaller digit sets have to be

11

Table 1. Experimental performance figures (squarings and multiplications with
powers of g1) for s-fold exponent splitting with exponents up to `-bits, with space for
4, 8, 16, or 32 elements for variable precomputation.

#var = 4 #var = 8 #var = 16 #var = 32

s = 1

precomp. 1S + 3M 1S + 7M 1S + 15M 1S + 31M
` = 160 159.9S + 31.5M 156.0S + 26.1M 155.0S + 22.3M 154.0S + 19.5M
` = 192 188.9S + 37.9M 187.9S + 31.4M 187.0S + 26.9M 186.0S + 23.5M
` = 256 252.9S + 50.6M 251.9S + 42.1M 251.0S + 36.0M 250.0S + 31.5M

s = 2

precomp. 2S + 2M 2S + 6M 2S + 14M 2S + 30M
` = 160 79.5S + 39.9M 79.1S + 32.0M 78.6S + 26.8M 78.6S + 23.2M
` = 192 95.7S + 47.9M 94.7S + 38.5M 95.0S + 32.2M 93.7S + 27.8M
` = 256 127.6S + 63.9M 126.9S + 51.4M 126.6S + 42.8M 126.8S + 36.8M

s = 3

precomp. 1S + 1M 3S + 5M 3S + 13M 3S + 29M
` = 160 54.7S + 49.4M 53.4S + 37.4M 52.8S + 30.5M 52.4S + 25.9M
` = 192 64.3S + 59.1M 63.3S + 44.7M 62.9S + 36.6M 62.3S + 31.1M
` = 256 85.8S + 78.6M 85.0S + 59.6M 84.5S + 48.5M 84.5S + 41.1M

s = 4

precomp. 0S + 0M 4S + 4M 4S + 12M 4S + 28M
` = 160 40.6S + 53.9M 40.7S + 40.7M 39.3S + 32.8M 38.8S + 27.8M
` = 192 48.4S + 64.5M 47.6S + 48.6M 47.6S + 39.2M 46.9S + 33.1M
` = 256 64.1S + 85.7M 64.1S + 64.7M 63.4S + 52.1M 62.9S + 43.8M

s = 5

precomp. 3S + 3M 5S + 11M 5S + 27M
` = 160 33.0S + 46.4M 31.9S + 36.0M 31.1S + 30.0M
` = 192 39.7S + 55.8M 39.4S + 43.1M 38.4S + 35.7M
` = 256 51.8S + 73.7M 51.4S + 56.9M 50.5S + 47.1M

s = 6

precomp. 2S + 2M 6S + 10M 6S + 26M
` = 160 29.4S + 50.4M 29.0S + 38.8M 27.8S + 31.9M
` = 192 32.0S + 59.6M 32.2S + 45.9M 31.7S + 37.7M
` = 256 45.0S + 79.7M 45.7S + 60.9M 44.3S + 49.8M

s = 7

precomp. 1S + 1M 7S + 9M 7S + 25M
` = 160 27.8S + 53.8M 26.9S + 40.8M 26.0S + 33.5M
` = 192 30.1S + 64.0M 28.9S + 48.6M 28.4S + 39.5M
` = 256 40.5S + 84.7M 39.4S + 64.1M 38.2S + 52.1M

used to obey the space limits while the splitting parameter is increased. (Note
that s ≥ 5 cannot be used with space for only 4 dynamically precomputed
elements, so the corresponding parts of the table are left empty.)

Note that the size of cache entries does not affect the statistics as reflected
in the table. With severe memory constraints for the cache, s = 2 might be the
only option. Comparing the row s = 1 (which describes the case of a multi-
exponentiation not using a cache entry) with the row s = 2 shows that our
technique provides for a noticeable speed-up even with just s = 2.

It also should be noted that our multi-exponentiation technique for old
bases g1 (Section 3.2) involves s− 1 divisions with remainder to perform s-fold
modular exponent splitting. This starts with an `-bit denominator and a divisor
around `− `

s bits; both operands will decrease by around `
s in each subsequent

division. Thus, the total extra cost of these modular divisions should usually be

12

reasonably small. The typical size of results means that around ` bits will still
suffice to store the resulting shorter exponents.

Please refer to Appendix B for certain implementation aspects. See Ap-
pendix C for a performance comparison of our technique with an immediate
approach in a particular scencario.

References

1. American National Standards Institute (ANSI). Public key cryptography
for the financial services industry: The elliptic curve digital signature algorithm
(ECDSA). ANSI X9.62, 1998.

2. Antipa, A., Brown, D., Gallant, R., Lambert, R., Struik, R., and Van-
stone, S. Accelerated verification of ECDSA signatures. In Selected Areas in
Cryptography – SAC 2005 (2006), B. Preneel and S. Tavares, Eds., vol. 3897 of
Lecture Notes in Computer Science, pp. 307–318.

3. Avanzi, R. M. A note on the sliding window integer recoding and its left-to-right
analogue. In Selected Areas in Cryptography – SAC 2004 (2005), H. Handschuh and
M. A. Hasan, Eds., vol. 3357 of Lecture Notes in Computer Science, pp. 130–143.

4. Bernstein, D. J. Pippenger’s exponentiation algorithm. Draft, 2002. Available
from http://cr.yp.to/papers.html#pippenger.

5. Brickell, E. F., Gordon, D. M., McCurley, K. S., and Wilson, D. B. Fast
exponentiation with precomputation. In Advances in Cryptology – EUROCRYPT
’92 (1993), R. A. Rueppel, Ed., vol. 658 of Lecture Notes in Computer Science,
pp. 200–207.

6. Certicom Research. Standards for efficient cryptography – SEC 2: Recom-
mended elliptic curve cryptography domain parameters. Version 1.0, 2000. Avail-
able from http://www.secg.org/.

7. Cohen, H., Ono, T., and Miyaji, A. Efficient elliptic curve exponentiation using
mixed coordinates. In Advances in Cryptology – ASIACRYPT ’98 (1998), K. Ohta
and D. Pei, Eds., vol. 1514 of Lecture Notes in Computer Science, pp. 51–65.

8. de Rooij, P. Efficient exponentiation using precomputation and vector addition
chains. In Advances in Cryptology – EUROCRYPT ’94 (1995), T. Helleseth, Ed.,
vol. 950 of Lecture Notes in Computer Science, pp. 389–399.

9. Gordon, D. M. A survey of fast exponentiation methods. Journal of Algorithms
27 (1998), 129–146.

10. Institute of Electrical and Electronics Engineers (IEEE). IEEE stan-
dard specifications for public-key cryptography. IEEE Std 1363-2000, 2000.

11. Khabbazian, M., and Gulliver, T. A. A new minimal average weight represen-
tation for left-to-right point multiplication methods. Cryptology ePrint Archive
Report 2004/266, 2004. Available from http://eprint.iacr.org/.

12. Lim, C. H., and Lee, P. J. More flexible exponentiation with precomputation.
In Advances in Cryptology – CRYPTO ’94 (1994), Y. G. Desmedt, Ed., vol. 839
of Lecture Notes in Computer Science, pp. 95–107.

13. Miyaji, A., Ono, T., and Cohen, H. Efficient elliptic curve exponentiation. In
International Conference on Information and Communications Security – ICICS
’97 (1997), Y. Han, T. Okamoto, and S. Qing, Eds., vol. 1334 of Lecture Notes in
Computer Science, pp. 282–290.

14. Möller, B. Algorithms for multi-exponentiation. In Selected Areas in Cryptogra-
phy – SAC 2001 (2001), S. Vaudenay and A. M. Youssef, Eds., vol. 2259 of Lecture
Notes in Computer Science, pp. 165–180.

13

15. Möller, B. Improved techniques for fast exponentiation. In Information Security
and Cryptology – ICISC 2002 (2003), P. J. Lee and C. H. Lim, Eds., vol. 2587 of
Lecture Notes in Computer Science, pp. 298–312.

16. Möller, B. Fractional windows revisited: Improved signed-digit representations
for efficient exponentiation. In Information Security and Cryptology – ICISC 2004
(2005), C. Park and S. Chee, Eds., vol. 3506 of Lecture Notes in Computer Science,
pp. 137–153.

17. Muir, J. A., and Stinson, D. R. New minimal weight representations for
left-to-right window methods. In Topics in Cryptology – CT-RSA 2005 (2005),
A. Menezes, Ed., vol. 3376 of Lecture Notes in Computer Science, pp. 366–383.

18. Muir, J. A., and Stinson, D. R. Minimality and other properties of the width-w
nonadjacent form. Mathematics of Computation 75 (2006), 369–384.

19. National Institute of Standards and Technology (NIST). Digital Signa-
ture Standard (DSS). FIPS PUB 186-2, 2000.

20. Okeya, K., Schmidt-Samoa, K., Spahn, C., and Takagi, T. Signed binary
representations revisited. In Advances in Cryptology – CRYPTO 2004 (2004),
M. Franklin, Ed., vol. 3152 of Lecture Notes in Computer Science, pp. 123–139.

21. Pippenger, N. The minimum number of edges in graphs with prescribed paths.
Mathematical Systems Theory 12 (1979), 325–346.

22. Pippenger, N. On the evaluation of powers and monomials. SIAM Journal on
Computing 9 (1980), 230–250.

23. Schmidt-Samoa, K., Semay, O., and Takagi, T. Analysis of fractional window
recoding methods and their application to elliptic curve cryptosystems. IEEE
Transactions on Computers 55 (2006), 48–57.

24. Struik, M., Brown, D. R., Vanstone, S. A., Gallant, R. P., Antipa, A.,
and Lambert, R. J. Accelerated verification of digital signatures and public keys.
United States Patent Application Publication US 2007/0064932 A1, 2007.

A An Example

As an illustrative toy example, let us apply our new technique to multi-
exponentiations gd

1 · ge
2 with exponents of size at most ` = 18 bits. To keep

the example simple, we use unsigned-digit (instead of signed-digit) exponent
representations. Let the digit sets for the fixed base be B2 = {1, 3, 5, 7, 0}. For
radix-2 and modular exponent splitting, we use splitting parameter s = 3. Thus,
g2 is replaced a priori by three fixed bases g2, g3, g4 where g3 = g26

2 , g4 = g212

2 .
Accordingly, we precompute the powers

(g2, g
3
2 , g5

2 , g7
2 , g3, g

3
3 , g5

3 , g7
3 , g4, g

3
4 , g5

4 , g7
4)

and save this data in ROM. We consider an environment with a limited amount of
fast read/write memory and assume that we have only space to store 8 powers of
the variable base g1. Hence, we can choose digit set B1 = {1, 3, . . . , 15, 0} for ex-
ponentiations with a new base (Section 3.1) and digit sets B1 = {1, 3, 0}, BG1 =
BG2 = {1, 3, 5, 0} for exponentiations with an old base (Section 3.2).

14

Multi-Exponentiation for a New Base g1. Let us now consider the computa-
tion of gd

1 · ge
2 for d = 205802 = (110010001111101010)2 and e = 245153 =

(111011110110100001)2 where g1 is a new base, i.e. no cached precomputed data
based on g1 is available. Before the actual multi-exponentiation, we compute the
powers

(g1, g
3
1 , . . . , g15

1)

and save these in fast read/write memory. Encoding e1 := d using B1 yields

e1 = (3, 0, 0, 1, 0, 0, 0, 0, 0, 0, 15, 0, 0, 5, 0, 1, 0)2.

Encoding e using B2 and then splitting into three parts e2, e3, e4 yields

e4 = (7, 0, 0, 0)2,
e3 = (7, 0, 0, 5, 0, 0)2,
e2 = (5, 0, 0, 0, 0, 1)2.

The following table shows what happens while performing the multi-
exponentation

∏4
i=1 gei

i as described in Section 3.1, based on interleaved multi-
exponentiation as explained in Section 2.1:

j A Cache entry (so far)

17 1 (g1)
16 g3

1

13 (g3
1)2

3
g1 = g25

1

12 (g25
1)2 = g50

1

`
g1, (50, g50

1)
´

6 (g50
1)2

6
g15
1 = g3215

1

`
g1, (3215, g3215

1), (50, g50
1)

´
5 (g3215

1)2g5
2g7

3 = g6430
1 g5

2g7
3

3 (g6430
1 g5

2g7
3)2

2
g5
1g7

4 = g25725
1 g20

2 g28
3 g7

4

2 (g25725
1 g20

2 g28
3 g7

4)2g5
3 = g51450

1 g40
2 g61

3 g14
4

1 (g51450
1 g40

2 g61
3 g14

4)2g1 = g102901
1 g80

2 g122
3 g28

4

0 (g102901
1 g80

2 g122
3 g28

4)2g2 = g205802
1 g161

2 g244
3 g56

4

As we can see here, until and including round j = 6, the variable A contains no
powers of bases other than g1. Intermediate powers of g1 for caching are available
at the points j = 12 and j = 6 of the computation.

Multi-Exponentiation for an Old Base g1. Let us compute gd
1 ·ge

2 for d = 73660 =
(10001111110111100)2, e = 236424 = (111001101110001000)2 where g1 is an old
base for which the cache entry

(g1, (λ1 = 3215, G1 = g3215
1), (λ2 = 50, G2 = g50

1))

as created above is available. First, the powers

(g1, g
3
1 , G1, G

3
1, G

5
1, G2, G

3
2, G

5
2)

15

are precomputed and stored in fast read/write memory. Next, we perform mod-
ular exponent splitting as described in Section 3.2:

d0 = d = 73660,

E1 =
⌊

d0
λ1

⌋
= 22 and d1 = d0 − E1λ1 = 2930,

E2 =
⌊

d1
λ2

⌋
= 58 and d2 = d1 − E2λ2 = 30,

E3 = d2 = 30

Encoding E1, E2 and E3 using BG1 , BG2 and B1 yields

E1 = (10110)2 = (5, 1, 0)2,
E2 = (111010)2 = (3, 0, 0, 5, 0)2,
E3 = (11110)2 = (3, 0, 3, 0)2.

By encoding e using B2 and then splitting into 3 parts e2, e3, e4 (using radix-2
exponent splitting), we obtain

e4 = (7, 0, 0, 0)2,
e3 = (3, 0, 0, 0, 7, 0)2,
e2 = (1, 0, 0, 0)2.

The table below shows what happens in the interleaved multi-exponentiation to
compute GE1

1 GE2
2 gE3

1 ge2
2 ge3

3 ge4
4 :

j A

5 g3
3

4 (g3
3)2G3

2 = G3
2g

6
3

3 (G3
2g

6
3)2g3

1g2g
7
4 = G6

2g
3
1g2g

12
3 g7

4

2 (G6
2g

3
1g2g

12
3 g7

4)2G5
1 = G5

1G
12
2 g6

1g2
2g24

3 g14
4

1 (G5
1G

12
2 g6

1g2
2g24

3 g14
4)2G1G

5
2g

3
1g7

3 = G11
1 G29

2 g15
1 g4

2g55
3 g28

4

0 (G11
1 G29

2 g15
1 g4

2g55
3 g28

4)2 = G22
1 G58

2 g30
1 g8

2g110
3 g56

4

B Implementation Aspects

On-The-Fly Signed-Digit Conversions. In our descriptions of multi-
exponentiation algorithms, we have employed radix-2 representations of expo-
nents by referring to their individual digits. However, this by no means is meant
to imply that these digits need to be explicitly obtained and stored in advance,
which would be quite inconvenient if memory is scarce. Left-to-right signed frac-
tional window representations [11, 23, 16] are very convenient for our purposes
since (for any given maximum digit value m) there is a finite-state machine that
transforms the binary representation into the corresponding signed-digit repre-
sentation. As the name suggests, this conversion machine starts at the most sig-
nificant digit (“left”) and continues towards the least significant digit (“right”).
Since interleaved multi-exponentiation is a left-to-right technique as well, this
often means that the signed digits can be obtained on the fly.

To make this work with radix-2 exponent splitting, we need to add an addi-
tional first left-to-right pass through the binary representation. This is essentially

16

a dry run of the signed fractional window conversion, used to determine the first
binary digits that will affect each of the segments of the signed-digit representa-
tion. For s-fold radix-2 exponent splitting, such a dry run can be used to initialize
each of s finite-state machines, which afterwards can be used to obtain the digits
of the individual segments (exactly as in the case of the on-the-fly conversion
using just a single such machine that we would use in the case without splitting).

A simpler alternative would be to first split the binary representation, and
then generate the signed-digit representations individually. This could be done
truly on the fly, i.e., without the additional left-to-right pass. However, this
strategy often will increase the total weight of the resulting representations [15],
so the two-pass technique usually should lead to better performance.

Variants of the Signed Fractional Window Representation. In our per-
formance estimates in Section 4, we optimistically assumed that besides ROM
and fast read/write memory, there is another kind of memory that we can use
for the cache. This is an assumption that we made for simplicity, but which is
not necessary. In fact we may use some of the fast read/write memory for a small
cache without completely losing this memory for precomputed powers of g1.

This can be achieved by observing that we may modify the parameter m for
the left-to-right signed fractional window representation while performing the
conversion. Thus, in the algorithm from Section 3.1, provided that m ≥ 2s− 1,
we may initially use some maximum-size digit set B±(m) = {±1,±3, . . .,±m, 0}
for signed digits b1,` down to b1,L1+···+Ls−1 , then cache the current group el-

ement g
(b1,`,...,b1,L1+···+Ls−1)2
1 in the memory space that so far held gm

1 , and
then use the smaller digit set B±(m − 2) for subsequent digits b1,L1+···+Ls−1−1

down to b1,L1+···+Ls−2 . Continuing in this fashion, we eventually give up digits
±m, ±(m− 2), . . ., ±

(
m− 2(s− 1)

)
.

C Performance Comparison

This appendix demonstrates the merits of our new technique for multi-
exponentiation with caching in one particular situation where very little memory
is available for use as a cache. We show that our method is of advantage even
under this severe restriction. We make the following assumptions:

– We look at two-fold multi-exponentiation, ge1
1 ge2

2 . Base element g2 is fixed;
base element g1 is variable such that the current value will repeat in the
directly following multi-exponentiation with probability Pold = 1

2 .
– The exponents e1 and e2 are uniformly random integers up to ` = 256 bits.
– Storage is available for 128 fixed precomputed elements in read-only memory

(derived from the fixed base g2), and for only 2 precomputed elements in
read/write memory. The latter includes input value g1. In addition to this,
we have space for variable A in the algorithm from Section 2.1, and the
memory holding the exponents. (Note that typically the memory needed for
the exponents is less than the memory needed for a single group element: for

17

elliptic curve cryptography using projective coordinates over a 256-bit field,
one group element takes 768 bits.)

– Different from the assumptions as used in Section 4, we have no additional
cache memory. That is, a group element to be cached has to be kept in one
of the two read/write storage units for precomputed elements.

– We use rough estimates S = 0.7 and M = 1 for the amount of time spent on
each group squaring (e.g., elliptic curve point doubling) and on each group
multiplication (e.g., elliptic curve point addition). (For example, when using
Jacobian projective coordinates for elliptic curves over prime fields, a point
doubling takes 10 or 8 field multiplications depending on the curve, and
a general point addition requires 16 field multiplications [10], or 11 field
multiplications in the case of “mixed coordinates” [7]. Mixed coordinates
require a one-time conversion step to one of the inputs to convert it into
affine coordinates, which is reasonable for precomputed values. Accordingly,
8
11 ≈ 0.73 is one way to justify our estimate S

M ≈ 0.7, although in the
following we neglect the cost of the conversion.)

If (instead of applying our new caching strategy) we directly use interleaved
multi-exponentiation in this situation, employing signed-digit representation as
explained in Section 2.1, we can keep precomputed values g2, g

3
2 , g5

2 , . . ., g255 in
read-only memory, and use read/write memory for g1 and g3

1 , thus achieving an
exponentiation cost of approximately(256

4
+

256
10

)
M + 255S ≈ 268.1

(or 89.5M + 254S ≈ 267.3 according to experimental simulation results) plus
1M +1S = 1.7 to precompute g3

1 from g1 when g1 has changed from the previous
computation. By assumption, this happens with probability 1

2 , resulting in a
total estimate of 268.1 + 1.7

2 ≈ 269.0 (for the simulation: 268.2).
Our method initially performs worse than this, namely, in the case with a new

base (Section 3.1). Here, the read-only memory will contain g2, g
3
2 , g5

2 , . . ., g127,
plus similar powers of g2128

2 . The read/write memory initially is filled with pre-
computed elements g1 and g3

1 . To perform the multi-exponentiation as described
in Section 3.1, we use radix-2 exponent splitting for exponent e2 to obtain partial
exponent representations no longer than 129 digits. For exponent e1, we use a
signed fractional window representation variant as sketched in Appendix B, i.e.,
where digit set parameter m is modified within the conversion: the more sig-
nificant digits can use digits set {±1,±3, 0}, whereas the less significant digits
(digits b1,127, . . .b1,0) are restricted to digit set {±1, 0}. This is because we no
longer keep g3

1 in memory when the method from Section 3.1 has determined
a group element to be cached, thus freeing a memory location for use as cache
space. The performance estimate for this multi-exponentiation is(128

4
+

128
3

+
256
9

)
M + 255S ≈ 281.6

(simulation: 102.7M + 253.8S ≈ 280.4) plus 1M + 1S ≈ 1.7 to precompute g3
1

from g1. We benefit from the extra effort put into this computation whenever

18

the same g1 reappears in the following multi-exponentiation. In this case, the
multi-exponentiation will only take approximate effort(128

3
+

128
3

+
256
9

)
M + 127S ≈ 202.7

(simulation: 113.9M + 128.2S ≈ 203.6). The average cost given Pold = 1
2 comes

to 242.1 (simulation: 242.0). Thus, our method provides an average 10 percent
performance improvement in this scenario.

19

