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Abstract

WEP is a protocol for securing wireless networks. In the past years, many
attacks on WEP have been published, totally breaking WEP’s security. This
thesis summarizes all major attacks on WEP. Additionally a new attack, the
PTW attack, is introduced, which was partially developed by the author of
this document. Some advanced versions of the PTW attack which are more
suiteable in certain environments are described as well. Currently, the PTW
attack is fastest publicly known key recovery attack against WEP protected
networks.
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1 Motivation

Since the IEEE 802.11 standard was released in its first version in 1997, IEEE
802.11 based wireless LANs (also called WLANs) quickly evolved to the most
commonly used technology to wirelessly connect devices to an IP network.
While the first release of the standard only allowed a transmission rate of 2
MBit, newer versions of the standard allowed transmission rates of 11 MBit
(IEEE 802.11b) or 54 MBit (IEEE 802.11a and IEEE 802.11g). With IEEE
802.11n, which was only available as a draft at the moment this document was
written, this will even be raised to 300 MBit bandwidth, which is sufficient for
high definition video content and fast file transfers.

A wireless LAN usually consists of at least one base station called access point
and one or more wireless clients connected to these base stations. The base sta-
tions can be interconnected using wired links or wireless links and be connected
to another wired network. This kind of network is usually called infrastructure
mode. Another more seldom used mode is the so called ad hoc mode, in which
no base stations are used and all clients communicate directly.

Wireless LANs can be found nearly everywhere today. Most mobile computers
ship with built-in wireless LAN hardware by default and most other computers
can be equipped with additional hardware. Even some mobile phones and PDAs
ship with wireless LAN hardware or can be upgraded. Besides that, wireless
LAN is used in some industrial applications like point of sale terminals and info
screen displays.

Most people use wireless LANs to connect all devices in their home network
to a single wire based internet connection. Universities allow their students to
connect their mobile computers to their network and use their internet con-
nection on campus. In popular public places like train stations or restaurants,
companies sell internet access over their wireless LANs, which are also known
as hot spots. Enterprises are using wireless LANs to connect their workers and
sometimes visitors to their company network.

Because all data is transmitted wirelessly, extra security is needed in these
networks. Without, an attacker could read all wireless traffic or use the network
against the network operators will. This also was a concern to the creators
of IEEE 802.11 standard, who designed a simple protocol called WEP which
stands for Wired Equivalent Privacy and which should provide the same level
of privacy to the users of IEEE 802.11 based wireless networks as they would
have on a wired network.

Attacks on the WEP protocol 9



1 Motivation

In a WEP network, all stations share a single secret key, the so called root key.
Every time a station in the network sends data, a so called per packet key is
derived from the root key and used as a key for the RC4 stream cipher [Riv92]
to generate a key stream. An additional checksum is appended to the packet
and the packet then is XORed with the key stream and send. At the first look,
this protocol seems to be a good choice for a small network. Because sharing
a single secret key with all employees and keeping is still secret can be difficult
for an enterprise, modified versions of this protocol have been developed, which
allow other authentication methods like username/password or smartcard based
authentication.

Unfortunately, the WEP protocol has some serious design flaws. Four years af-
ter the release of the first version of IEEE 802.11, in 2001, some cryptographic
researchers showed [FMS01] that the secret key of such a network can be re-
vealed within hours and full access to the network is possible for an attacker.
Because the protocol has no kind of perfect forward secrecy ([Men01] page 496),
the attacker can also decrypt previously captured traffic.

While for the first key recovery attack against WEP fixes where proposed, by
modifying the protocol slightly, without breaking interoperability with older
stations, more advanced attacks started to appear. Soon it became clear that
a redesign of the protocol was absolutely necessary. In 2004, the final version
of the IEEE 802.11i standard was released which defines the successor protocol
for WEP which is mostly known as WPA or WPA2.

While WPA or WPA2 seems to be a secure protocol with no known design
flaws, WEP is still used and some vendors still ship devices which can only
connect to unsecured or WEP networks. In 2006, a German student estimated
that about 61% of all networks in a larger area in Germany still use WEP and
22% use no protection at all. In total, there could be about 5,000,000 networks
in Germany which still use WEP. [Dör06]

Currently, weaknesses in WEP are actively exploited. In 2007, newspapers
reported [BO07] that crackers gained access to a company’s private network
and stole the customer records including credit card data of about 45,000,000
customers.

In 2007, Ralf-Philipp Weinmann, Andrei Pyshkin and I started looking at the
current attacks on the WEP protocol and looked for improvements. As a part of
our results, a new attack on the WEP protocol was developed [TWP07] which
is able to recover the secret key of an WEP protected network a magnitude
faster than all previous attacks.

10 Erik Tews



1.1 Structure of this document

1.1 Structure of this document

The structure of this document is as follows: In Chapter 2, the notation and
the definition of certain special terms is explained. Chapter 3 gives an intro-
duction to the RC4 stream cipher. Chapter 4 gives an overview of IEEE 802.11
and WEP. In Chapter 5, attacks on WEP unrelated to RC4 are described,
while Chapter 6 describes general attack on RC4. Chapters 7 and 8 contain
new attacks on RC4, which are partially the result of my research. Chapter
9 describes WPA, the successor protocol to WEP which prevents all of these
attacks. Chapter 10 contains the conclusion. Chapter 11 lists all contributions
to this document.

Attacks on the WEP protocol 11



1 Motivation

12 Erik Tews



2 Notation and special words

First of all, a common notation for all attacks is needed.

2.1 Mathematical notation

Numbers in this document are usually written in decimal. For example 13 is the
number thirteen. In some cases, most times when it comes to values in headers
of certain data packets, hexadecimal notation is used. In this case, numbers are
written in a bold style; for example 1A is the number twenty six.

The signs +, −, · are the signs for addition, subtraction and multiplication.
(Z/nZ)+ is the additive group of the numbers 0 to n − 1, where all additions
are done modn. When an operation like c = a+b is done in (Z/nZ)+, we write
c ≡n a + b or c = a + b mod n. In some parts of this document, all operations
are done in (Z/nZ)+. If this is the case, it is announced at the beginning of the
section and just c = a+ b is written.

For arrays, the [·] notation is used, like it is used in many popular programming
languages like C or Java. All array indices start at 0. For permutations, the
same notation is used. For example if P is the identity permutation, i = P [i]
holds for every value of i. P−1 is the inverse permutation of P . If F is a finite
field, F[X] is the set of polynomials over F.

If a has a numeric value which is close to b, a ≈ b is written.

For sets, the {·} notation is used. For example, if A is the set consisting of the
values a1, a2 and a3, A = {a1, a2, a3} is written. If a value a is randomly chosen
from a set A using a uniform distribution, a←R A is written.

2.2 Complexity theory

In this document, a system with a mostly fixed key length is examined. This
makes it hard to use complexity theory to describe the security of this system.
However, I will use some terms from the area of complexity theory with an
adapted meaning.

Attacks on the WEP protocol 13



2 Notation and special words

An attack on a cryptosystem is efficient, if it can be executed much faster on a
system than an exhaustive search for the correct key. The computational effort
of an attack is negligible, if it can be performed in some seconds to minutes on
an average computer sold in the year 2007.

2.3 Oracles

Usually, an oracle is a black box which is able to perform certain operations
which an attacker cannot perform himself. The oracle can only be accessed
using a defined interface and an attacker cannot see any of the internals of the
oracle, besides what he can access over the interface. For example, an oracle
could be in the possession of a secret key and have an interface which accepts a
plaintext and returns the corresponding ciphertext. An attacker who has access
to this oracle can now encrypt arbitrary plaintexts, but cannot ask the oracle
for its secret key or for the decryption of a ciphertext.

2.4 Special notation

Later in Chapter 3, a stream cipher called RC4 is introduced. A special notation
for the internal state of the RC4 stream cipher is introduced in this chapter too.

14 Erik Tews



3 The RC4 stream cipher

RC4 [Riv92] is a often used stream cipher designed by Ron Rivest in 1987. RC4
was kept as a trade secret by RSA Data Security until it leaked out in 1994
[Ste94]. Today, RC4 is used in the SSL/TLS protocol, the WEP protocol and
its successor, the TKIP protocol as in many other protocols and applications.

3.1 An overview over the RC4 stream cipher

RC4 consists of two algorithms. The RC4 Key Scheduling Algorithm (RC4-
KSA) transfers a key K of length 1 to 256 bytes 1 into an internal state of RC4.
The internal state of RC4 consists of an array S describing a permutation of
the numbers from 0 to 255 and two integers i and j with 0 ≤ i, j ≤ 255 used as
pointers to elements of S. After the internal state has been initialized, the RC4
Pseudo Random Generator Algorithm (RC4-PRGA) can be used to generate
a key stream of arbitrary length. With every output byte produced by the
RC4-PRGA, the internal state of RC4 is updated.

The function swap(S,a,b) swaps the elements S[a] and S[b] in the array S.

Listing 3.1: RC4-KSA
1 for i ← 0 to 255 do
2 S[ i ] ← i
3 end
4 j ← 0
5 for i ← 0 to 255 do
6 j ← j+S[i]+K[i mod len(K)] mod 256
7 swap(S, i , j)
8 end
9 i ← 0

10 j ← 0

As you can see, RC4 has an interesting design. It just uses 8 bit additions and
bytewise random memory access on a 256 byte memory region. Therefore, it
can even be used on very restricted CPUs like 8 bit processors. Additionally,
RC4 is very fast on modern 32 and 64 bit CPUs outperforming many block
ciphers. For example, RC4 encrypts data with only 7.5 clock cycles per byte on

1Some documents specify, that an RC4 key has to have at least 5 bytes. Technically, RC4
can work with shorter keys, making it totally insecure because the key space is too small.
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3 The RC4 stream cipher

Listing 3.2: RC4-PRGA
1 i ← i + 1 mod 256
2 j ← j + S[i] mod 256
3 swap(S, i , j)
4 return S[ S[ i ] + S[j] mod 256 ]

a Pentium-M 1.7 GHz CPU compared to 23.6 clock cycles per byte for AES128
in CBC mode.

On the other side, RC4 maintains an internal state of at least log2(256! ·2562) ≈
213 bytes, making it unusable in situations where memory is too restricted. Effi-
cient implementations use at least 258 bytes for the internal state. Additionally,
every state update, which happens with every output byte, might affect the next
output byte, making RC4 hard to parallelize and slowing it down on CPUs with
long pipelines.

3.2 Analyzing the RC4 stream cipher

For analyzing the RC4 stream cipher, it is often useful to look at some modified
versions of the algorithm.

3.2.1 The generalized RC4 stream cipher

The generalized RC4 stream cipher was used by Klein [Kle06] in his analysis.
The original RC4 algorithm works on elements of the group (Z/256Z)+. Klein
generalizes this idea to arbitrary groups (Z/nZ)+, where n is an arbitrary nat-
ural number, most times used as a kind of complexity parameter. Please note
that this modified algorithm is usually not used in implementations, it just
helps analyzing the unmodified version of RC4. If you set n to 256, you get the
original algorithm again.

Listing 3.3: Generalized RC4-KSA
1 for i ← 0 to n−1 do
2 S[ i ] ← i
3 end
4 j ← 0
5 for i ← 0 to n−1 do
6 j ← j+S[i]+K[i mod len(K)] mod n
7 swap(S, i , j)
8 end
9 i ← 0

10 j ← 0

16 Erik Tews



3.2 Analyzing the RC4 stream cipher

Listing 3.4: Generalized RC4-PRGA
1 i ← i + 1 mod n
2 j ← j + S[i] mod n
3 swap(S, i , j)
4 return S[ S[ i ] + S[j] mod n ]

We will call a single iteration of the loop between lines 5 and 8 a step of the
RC4-KSA and a the generation of a single word of output by the RC4-PRGA
a step of the RC4-PRGA.

3.2.2 The generalized randomized RC4 stream cipher

In RC4, the variable j seems to change randomly. This observation can be
idealized to the idea of the generalized randomized RC4 stream cipher.

Listing 3.5: Generalized randomized RC4-KSA
1 for i ← 0 to n−1 do
2 S[ i ] ← i
3 end
4 j ← 0
5 for i ← 0 to n−1 do
6 j ← RND(n)
7 swap(S, i , j)
8 end
9 i ← 0

10 j ← 0

Listing 3.6: Generalized randomized RC4-PRGA
1 i ← i + 1 mod n
2 j ← RND(n)
3 swap(S, i , j)
4 return S[ S[ i ] + S[j] mod n ]

RND(n) is a randomized function returning independent values from 0 to n−
1 inclusively from a uniform distribution. Please note that the generalized
randomized RC4 stream cipher is technically not a stream cipher anymore.
Depending on what value is assigned to j, the algorithm is likely to produce
different key streams from the same key.

Ilya Mironov was the first person I know of, who published [Mir02] this formal-
ized randomized version of RC4.
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3 The RC4 stream cipher

3.2.3 Notation and visualization

The following notation is used to analyze what happens in certain steps of the
KSA or PRGA.

Sk is the content of S after exactly k swaps have been done on S during the
KSA or PRGA. Trivial swaps, where an element is exchanged with itself, are
counted too. S0 is therefore the identity permutation. jk respectively is the
content of j after k swaps on S. This notation can be used on all three versions
of the RC4 algorithm we introduced.

K is a key and X is a key stream.

Sometimes the need the first l bytes of output of the RC4-PRGA, initialized
with the key K. This is the output of the function RC4(K, l).

To make RC4 easier to understand, the following visualization is used. Most
times, an attacker is not interested in all values of S, instead the attacker
is mostly interested in the values which are modified in certain steps of the
RC4-KSA, and in the values which are used to generate the output in the
RC4-PRGA. For example, if the key K = 23, 42, 232, 11 is being used and
we are looking at the first 4 steps of the RC4-KSA, we are interested in
S[0], S[1],S[2],S[3], S[4], S[23], S[44],S[58], S[66] and S[85]. These steps are il-
lustrated in figure 3.1.

After the rest of the RC4-KSA, the following 3 bytes of output are generated:
85, 161, 104. These steps are illustrated in figure 3.2.
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3.2 Analyzing the RC4 stream cipher

K = 23

0

42

1

232

2

11

3

i = 0

S0 = 0

0

1

1

2

2

3

3

4

4

23

23

44

44

58

58

66

66

85

85

j1 = 23

K = 23 42 232 11

i = 1

S1 = 23 1 2 3 4 0 44 58 66 85

j2 = 66

K = 23 42 232 11

i = 2

S2 = 23 66 2 3 4 0 44 58 1 85

j3 = 44

K = 23 42 232 11

i = 3

S3 = 23 66 44 3 4 0 2 58 1 85

j4 = 58

K = 23 42 232 11

i = 4

S4 = 23 66 44 58 4 0 2 3 1 85

j5 = 85

Figure 3.1: First 4 steps of RC4-KSA for K = 23, 42, 232, 11
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3 The RC4 stream cipher

i = 1

S256 = 12

1

28

2

16

3

85

4

248

12

60

40

151

56

161

88

134

141

104

167

j257 = 12

i = 2

S257 = 248 28 16 85 12 60 151 161 134 104

j258 = 40

S257[1] + S257[12] = 4

X[0] = 85

i = 3

S258 = 248 60 16 85 12 28 151 161 134 104

j259 = 56

S258[2] + S258[40] = 88

X[1] = 161

i = 4

S259 = 248 60 151 85 12 28 16 161 134 104

j260 = 141

S259[3] + S259[56] = 167

X[2] = 104

Figure 3.2: First 3 bytes of output of RC4-PRGA for K = 23, 42, 232, 11
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4 IEEE 802.11 and WEP

In 1997, the IEEE released the first version of the IEEE 802.11 standard for
wireless networking. Even before 1997, it was possible to connect computers
over a wireless connection:

• A lot of devices are equipped with an infrared port, which allows infrared
communication between two devices over a distance of half a meter or
less.

• A lot of wireless phones use the DECT protocol to communicate with their
base station. Beside the phones, some vendors also sell DECT wireless
modems, which allow wireless modem connections. The range of the
system is limited to a few hundred meters under good conditions.

• GSM was the most common standard for mobile phones in Germany in
1997. Beside voice communication, GSM allows data communication so
that a laptop computer can be connected to another system using a mo-
dem connection over GSM. The distance between a mobile computer with
a GSM modem and the next GSM base station can be several kilometers.

• The ham radio network allows data connections between two hams using
a special transmitter and a computer. The range of such connections can
exceed the maximum range of a GSM mobile phone. To use this network,
a special license has to be obtained.

4.1 IEEE 802.11 (1997)

In general, the speed of these connections was much slower than 2 MBit and
not suitable for larger data transfers. IEEE 802.11 defined a new protocol to
network computers without a wire with a maximum speed of 2 MBit. The
IEEE 802.11 standard allows the transmission of the signal at a frequency band
at about 2.4 GHz or over infrared. In practice, the infrared option is never
used. The range of such connections is usually limited to a few hundred meters
at most, but can be extended to multiple kilometers using special hardware.
Today, the original IEEE 802.11 standard is obsolete and is not used anymore.

In addition, the original IEEE 802.11 document specifies a simple security pro-
tocol called Wired Equivalent Privacy (WEP), which should provide the same
level of privacy to the legitimate users of an IEEE 802.11 network, as they
would have with a wired network. In most scenarios, the range of the network
cannot be fine controlled and an attacker, who is in the same building or next
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to the building, is able to capture all of the traffic on the network. To prevent
unauthorized access to the network by an attacker, all data frames are integrity
protected and encrypted before they are send, if WEP is being used.

In the following years, enhancements of the IEEE 802.11 standard were released.
We will only focus on a few ones, which are of interest for this diploma thesis.

4.1.1 IEEE 802.11b (1999)

In 1999, IEEE 802.11b was released. IEEE 802.11b did not change anything
related to WEP, but the maximum bandwidth was increased to 11 MBit. This
is of interest for us, because an attacker can now send and collect data packets
faster. IEEE 802.11b is backward compatible with the original IEEE 802.11
standard.

Today, IEEE 802.11b hardware is still sold and used, but most new products
support IEEE 802.11g or IEEE 802.11n, which allows faster transfer rates.

4.1.2 IEEE 802.11a (1999)

In 1999, IEEE 802.11a was released too. As IEEE 802.11b, IEEE 802.11a does
not introduce any new security features, but allows transmitting data in a 5
GHz frequency band and allows a maximum bandwidth of 54 MBit. Here, an
attacker would be able to collect data faster than in an IEEE 802.11b based
network.

IEEE 802.11a is not as popular as other versions of the IEEE 802.11 standard
family, which operate at 2.4 GHz, but is integrated in some upper class wireless
cards or laptop computers. No other standard has been released until now,
which offers more bandwidth at the 5 GHz band. Most wireless equipment
sold today which supports IEEE 802.11a additionally supports IEEE 802.11g
or IEEE 802.11b, some even supports a draft version of IEEE 802.11n.

4.1.3 IEEE 802.11g (2003)

In 2003, IEEE 802.11g was released, which offers 54 MBit bandwidth on the 2.4
GHz frequency band, as IEEE 802.11a does in the 5 GHz frequency band. As
all other standards before, IEEE 802.11g does not improve the security. Here,
an attacker will be able to capture traffic at basically the same speed as on
IEEE 802.11a.

IEEE 802.11g can be seen as the most popular standard for wireless LAN today.
Nearly all new wireless cards or laptop computers today support IEEE 802.11g.
IEEE 802.11g is backward compatible with IEEE 802.11b, so that a seamless
migration from IEEE 802.11b is possible.
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4.1.4 IEEE 802.11n (draft, unreleased)

Currently, a draft version of IEEE 802.11n is available, which offers 300 MBit
of bandwidth to its users. IEEE 802.11n based networking cards operate in
the 2.4 GHz frequency band and are backwards compatible to IEEE 802.11g.
Vendors have already begun to sell IEEE 802.11n networking cards based on a
draft version of this standard.

IEEE 802.11n does not have as high a market share as IEEE 802.11g has and
at the moment, IEEE 802.11n hardware is more expensive than IEEE 802.11g
based hardware. Because applications like high definition video and faster inter-
net connections demand a higher bandwidth than IEEE 802.11g offers, this can
be expected to become the next most popular standard for wireless networking.

4.1.5 Proprietary vendor extensions

Because the development of IEEE 802.11n is still not finished, some vendors
have started to implement their own enhancements of IEEE 802.11b or IEEE
802.11g. Some cards are sold which offer 22, 108 or 125 MBit of bandwidth,
which usually means that these cards additionally support a vendor specific
protocol, which allows faster transfer rates than IEEE 802.11b or IEEE 802.11g.
Usually, all of these cards are able to communicate with other IEEE 802.11b or
IEEE 802.11g based hardware at the maximum speed IEEE 802.11b or IEEE
802.11g offers.

Additional remarks

Somebody might wonder why the year 1997, 1999 or 2007 is written on the
IEEE 802.11 standard. This is due to the fact that the IEEE releases updates
of their standards after the first final version has been released. After a new
version has been released, the status of the older versions is changed to archived.

The data rates in these standards must be seen as physical data rates. Due to
protocol overhead, only about 50% of the bandwidth is available to the payload
of the transmissions.

4.2 General structure of an IEEE 802.11 based wireless
LAN

A IEEE 802.11 based network is usually identified by a name, called ESSID
in the terminology of IEEE 802.11. This is a short string, mostly the name
of the operator or manufacturer of the network or the purpose of the network.
For example HotelNetwork, PublicWLAN or Dlink could be valid values for an
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ESSID. There are two types of networks defined in IEEE 802.11: The infras-
tructure network and the ad hoc network.

In an ad hoc network, all stations (STA) communicate directly with each other,
without any kind of central component. This is used seldom, to connect stations
for a short time where no central infrastructure is available. Sending a song
from one portable MP3 player to another one could be such a situation. Figure
4.1 shows an example of such a network.

The second type is called infrastructure network. The infrastructure mode is
the most common mode to operate a IEEE 802.11 wireless LAN. For the rest
of this thesis, we will only focus in infrastructure networks, but most of the
results can be applied to ad-hoc networks too. A basic service set (BSS) is a
station, which acts as a base station for other stations. If this station provides
access to a local network, this station is called access point (AP). For the rest
of this work, I will assume that a BSS is always an AP and only use the word
AP for these kind of stations. All access points are interconnected, but the area
covered by the access points is allowed to be disjoint. I will call a station in an
infrastructure network which is not an AP a client.

Every access point is identified by an BSSID, an 48 bit numerical value, usually
set by the vendor as a hardware address for an Ethernet card. In general, I
will name these addresses MAC addresses, no matter if the station is an AP or
a client. Every access point broadcasts his BSSID and ESSID in intervals of
mostly 100 ms. A client who wants to become a member of a network has to
associate with an access point using a special handshake.

AP 00:13:42:BF:3D:93

AP 00:13:42:BF:3D:95

Client 00:13:42:BF:DD:EF

Switch

Figure 4.1: An example infrastructure network
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Sometimes, network operators disable the broadcasting of the ESSID in their
access point as a kind of security feature. This feature is known as hidden
network. During the handshake, a client must send the ESSID of the network
he wants to join. The idea behind is, that people hope that an attacker will not
be able to join the network, because he does not know the networks ESSID.
Of course this does not provide real security, because an attacker can just sniff
the handshake of another client, read the ESSID there from and then use it for
himself.

Most home networks only consist of a single AP and a single client, while other
networks which span a whole university might consist of hundred of APs and
thousand of clients.

4.3 WEP

The Wired Equivalent Privacy protocol, or short WEP protocol, is described
in the IEEE 802.11 standard. In addition, the IEEE 802.11i standard contains
a description of the protocol. We will later have a look at IEEE 802.11i.

In most networks, a single secret key, called root key (Rk) is shared between
all stations. The WEP protocol allows up to 4 or in special cases even more
different keys, but most network operators just use a single secret key. If a
network is WEP protected, it is announced in the beacon frame. While the first
version of the WEP standard only allowed a 40 bit root key, further versions
allowed 104 bit root keys too. Some vendors additionally implemented longer
root key with a length up to 232 bit.

4.3.1 Data encryption and integrity protection

Every data frame send by a station in a WEP protected network is encrypted
an integrity protected. Non-data frames, like beacon frames, acknowledgment
frames and similar frames are not protected by WEP at all. When a station
sends a packet, the following steps are executed.

1. The station picks a 24 bit value called initialization vector IV. We will
later use this value bytewise and write IV[0]||IV[1]||IV[2] for it. The IEEE
802.11 standard does not specify how to choose this value. Beside some
minor modifications, most vendors implemented one of the following two
methods:

• The IV is chosen by a pseudo random number generator PRNG
independently from all other packets send by this station.
• The station always remembers the last IV used. When a new IV

needs to be chosen, the station interprets the last IV used as a num-
ber and adds 1 to this number. When the highest possible number is
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reached, the station starts again with 0. On startup the IV counter
either takes a fixed value or a random number is assigned to it.

2. The IV is prepended to the root key and form the per packet key K =
IV||Rk.

3. A CRC32 checksum of the payload is produced and appended to the
payload. This checksum is called Integrity Check Value (ICV).

4. The per packet key K is feed into the RC4 stream cipher to produce a key
stream X of the length of the payload with checksum.

5. The plaintext with the checksum is XORed with the key stream and form
the ciphertext of the packet.

6. The ciphertext, the initialization vector IV and some additional header
fields are used to build a packet, which is now send to the receiver.

The whole process is visualized in figure 4.2. The sequence of operations can
be different, for example the CRC32 value can be calculated independently of
the key stream.

Rk

IV

Payload

IV and Ciphertext

⊕

RC4
X

|| K

CRC32 ||

Figure 4.2: WEP encryption diagram

The packet being send now contains the following header fields:

Frame control contains general information about the frame (is it a data, man-
agement, or control frame. . . ) and the transmission (has the station more
packets to send. . . )

Duration, ID contains the expected duration of this transmission and some
other values in special cases.

Address 1,2,3 contains the following addresses. The address of the AP the
packet is send from/to, the address of the destination station and the
address of the source station. In a special mode called WDS, where two
APs communicate directly with each other, there is a fourth address, the
address of the second AP.

Sequence control contains information about fragmentation. The IEEE
802.11 protocol is able to fragment packets before they are transmitted.
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WEP parameters contains the IV which was used to encrypt this packet, and
a key index. The key index is used to identify the correct key, when more
than one key is used in a network.

Payload and ICV is the encrypted payload of the packet including a CRC32
checksum at the end of the payload which is called Integrity protection
value (ICV). Payload and ICV are encrypted.

Frame
control

Duration,
ID

Addr.
1

Addr.
2

Addr.
3

Sequence
control

WEP
parameters

Payload,
ICV

2 bytes 2 bytes 6 bytes 6 bytes 6 bytes 2 bytes 4 bytes variable

Figure 4.3: IEEE 802.11 data frame format

The whole header is shown in figure 4.3. The CRC32 checksum in the ICV is
only computed over the encrypted payload. There is no cryptographic protec-
tion for all unencrypted header fields.

4.3.2 Authentication

WEP additionally defines two modes how a station can authenticate itself before
joining a network.

Open system authentication

In this mode, no authentication is done at all. A client just sends an request
to the AP to be authenticated. The AP responds with success. None of these
messages is encrypted. Figure 4.4 contains an illustration of these protocol
steps.

AP Client

1

2

authenticate

success

Figure 4.4: Open system authentication
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Shared key authentication

In this mode, a challenge response handshake with 4 messages is used. In
the first frame, the client asks the AP to join the network. The AP responds
with a random number rand, which is transmitted in cleartext. The client now
needs to send an encrypted frame containing rand. If this frame is decrypted
correctly by the AP and contains rand, the access point allows the client to join
the network. Figure 4.5 contains an illustration of these protocol steps.

The basic idea is that a client who is not in possession of the secret key will not
be able to construct a valid third frame and will therefore not be able to join
the network.

AP Client

1

2

3

4

authenticate

rand

rand

success

Figure 4.5: Shared key authentication
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not related to RC4

A number of attacks are known on WEP which are not based on a weakness of
the RC4 stream cipher.

Most of these attacks and a lot of attacks based on weaknesses in the RC4 stream
cipher are implemented in the aircrack-ng toolsuite. Aircrack-ng is available
under the GPL license from http://www.aircrack-ng.org.

To benchmark CPU expensive attacks, two machines have been used. One is
running on a quad-core Intel(R) Xeon(R) CPU X3210 running at 2.13 GHz.
The other machine is running on two AMD Opteron(tm) Processor 2218 run-
ning at 2.6 GHz. Both machines got more than 2 GB of main memory, but all
attacks required less than 200 MB of main memory.

5.1 Packet injection

Attack 1 An attacker who has captured an encrypted packet in a WEP net-
work, can later reinject this packet, and it will still be accepted by the network.

Packet injection is sometimes understood as not a real attack on WEP, because
WEP was never designed to be resistant against such an attack. A packet sent
in a WEP protected network which has been intercepted by an attacker, can
later be injected into the network again, as long as the key has not been changed
and the original sending station is still in the network. If the sending station
is not in the network anymore, the senders (and the receivers) address can be
changed to a station that is still in the network. This is possible, because these
fields are not protected by the ICV.

5.1.1 Implementation

aircrack-ng contains various modes how packets can be replayed. To listen to
the interface wifi0 and wait for packets for BSSID 00:18:F3:4D:29:D3, an
attacker has to execute the following command:

./aireplay-ng -2 -b 00:18:F3:4D:29:D3 -h 00:14:6C:F7:17:0E wifi0
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When a suitable packet for injection is received, the encrypted packet will be
displayed and the attacker is prompted if he wants to use this packet. If the
attacker answers with y, the station address 00:14:6C:F7:17:0E will be used
as a source address for the reinjected packets.

Figure 5.1: aircrack-ng 1.0 beta 1 injection results

During the attack, an output similar to the one in figure 5.1 will be displayed.

Alternatively, an attacker can execute the command:

./aireplay-ng -3 -b 00:18:F3:4D:29:D3 -h 00:14:6C:F7:17:0E wifi0

Aircrack will try to find an encrypted ARP packet and use the first one found
for injection. No user interaction is needed here.

5.2 Fake authentication

Attack 2 Fake authentication: An attacker can join a WEP protected network,
which supports Open System authentication, without knowing the secret root
key. An attacker can join a WEP protected network, which support Shared Key
authentication, if he has captured a full Shared Key authentication handshake
between a station and an access point.

The fake authentication attack on the WEP protocol allows an attacker to join
a WEP protected network, even if the attacker has not got the secret root key.

IEEE 802.11 defines two ways a client can authenticate itself in an WEP pro-
tected environment. The first method is called Open System authentication.
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Here, a client just sends a message to an access point, telling that he wants
to join the network using Open System authentication. The access point will
answer the request with successful, if he allows Open System authentication.

As you can see, the secret root key is never used during this handshake, allow-
ing an attacker to perform this handshake too and to join an WEP protected
network without knowledge of the secret root key.

The second method is called Shared Key authentication. Shared Key authenti-
cation uses the secret root key and a challenge-response authentication mecha-
nism, which should make it more secure (at least in theory) than Open System
authentication, which provides no kind of security.

In a Shared Key authentication system, identity is demonstrated by
knowledge of a shared, secret, WEP encryption key.[CWKS97]

First, a client sends a frame to an access point telling him, that he wants to join
the network using Shared Key authentication. The access point answers with a
frame containing a challenge, a random byte string. The client now answers with
a frame containing this challenge which must be WEP encrypted. The access
point decrypts the frame and if the decrypted challenge matches the challenge
he send, then he answers with successful and the client is authenticated.

An attacker who is able to sniff an Shared Key authentication handshake can
join the network itself. First note, that besides the APs challenge, all bytes in
the third frame are constant and therefore known by an attacker. The challenge
itself was transmitted in cleartext in frame number 2 and is therefore known by
the attacker too. The attacker can now recover the key stream which was used
by WEP to encrypt frame number 3. The attacker now knows a key stream
and the corresponding IV which is as long as frame number 3.

The attacker can now initiate an Shared Key authentication handshake with
the AP. After having received frame number 2, he can construct a valid frame
number 3 using his recovered key stream. The AP will be able to successfully
decrypt and verify the frame and respond with successful. The attacker is now
authenticated.

We will later see that there are some more attacks which allow key stream
recovery, so that an attacker does not even need to sniff a valid handshake to
recover an key stream. Additionally, there are possibilities to force a station to
reauthenticate itself immediately.

5.2.1 Implementation

aircrack-ng contains an implementation of the fake authentication attack. To
authenticate the station with the address 00:14:6C:F7:17:0E to the access
point with BSSID 00:18:F3:4D:29:D3 using the wireless interface wifi0 and
open authentication, an attacker has to execute the following command.
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./aireplay-ng -1 10 -a 00:18:F3:4D:29:D3 \\
-h 00:14:6C:F7:17:0E wifi0

Figure 5.2: aircrack-ng 1.0 beta 1 fakeauth results

If the attack was successful, an output similar to the one in figure 5.2 will be
displayed. Because the attacker specified the -1 10 parameter, the attack will
be repeated every 10 seconds.

5.3 KoreK’s chopchop attack

KoreK’s chopchop attack [Kor04a] is quite an remarkable attack on WEP. It
can be summarized as follows:

Attack 3 Chophop (2004): Let Ocrc be an oracle, which takes an arbitrary
encrypted packet and returns true, if the checksum in the encrypted packet was
correct, false otherwise. If an attacker has a single encrypted packet of length l
and access to such an oracle Ocrc, he can decrypt the last m bytes of the packet
and recover the last m bytes of the key stream used to encrypt the packet, with
in average 128 ·m queries to the oracle and negligible computational effort.

KoreK could show, that there is more than one way to use an access point as
such an oracle.

5.3.1 Mathematical background

An arbitrary sequence of bytes can be interpreted as an element of F2[X] by
taking the bits of the sequence as coefficients of the polynomial. 1 Let P be
this polynomial. P has a correct checksum, if and only if the equation:

P mod RCRC = RONE (5.1)

1CRC32 does this by inverting the first 32 bits first, to detect leading zero bytes prependet
to the data. This makes no difference for the following explanation and is only important
for implementations of this attack
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holds, where RCRC is the special CRC32 polynomial and RONE is the poly-
nomial with all coefficients from X0 to X31 being 1. Originally, the CRC32
checksum method was designed to detect transmission errors caused by line
noise and similar effects. CRC32 was never designed to provide cryptographic
protection of data. Why exactly this value gives the receiver a high chance to
detect a random transmission error is out of the scope of this document.

RCRC = X32 +X26 +X23 +X22 +X16 +X12+

X11 +X10 +X8 +X7 +X5 +X4 +X2 +X + 1
(5.2)

RONE =
31∑
i=0

Xi (5.3)

Please note that RCRC is irreducible over F2[X] and F2[X]/(RCRC) is a finite
field.

We will now have a closer look at the one byte shortened version of P . We can
write P as Q ·X8 + P7 with P7 being all elements of P with exponents smaller
than 8.

P = Q ·X8 + P7 (5.4)

We would like to know how Q needs to be altered so that it has a correct
checksum again. From equation 5.4 and 5.1, we know that Q ·X8 + P7 has a
correct checksum:

Q ·X8 = PONE + P7 mod RCRC (5.5)

Because F2[X]/(RCRC) is a finite field, X8 is invertible with inverse:

(
X8
)−1 = X31 +X29 +X27 +X24 +X23 +X22 +X20 +X17+

X16 +X15 +X14 +X13 +X10 +X9 +X7 +X5 +X2 +X

= RINV

(5.6)

We now know, that:

Q = RINV (PONE + P7) mod RCRC (5.7)
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But to be a correct message, Q should have the value:

Q = PONE mod RCRC (5.8)

By adding PCOR = PONE + RINV (PONE + P7) to Q, we get a new corrected
message with correct CRC32 checksum. Because this addition and the RC4
stream cipher are both linear, this can be added too, to an encrypted packet.

This value only depends on known value and P7. Because there are at most
256 possible values for P7, an attacker can now start guessing a value, shorten
the original message by one byte, add the correction and then query the oracle
if his guess was correct. If he has guessed P7 correctly, the oracle will return
true, false otherwise.

In average, the attacker will need 128 query per byte. This results in m · 128
queries in average for decrypting m bytes of ciphertext at the end of a packet.

5.3.2 An example

Let’s assume that we are looking at the following plaintext:

PPLAIN =X39 +X34 +X31 +X26 +X24 +X23 +X22 +X21

X20 +X18 +X17 +X16 +X14 +X13 +X11 +X8

X7 +X6 +X3 +X2 + 1

(5.9)

The binary representation of PPLAIN is:

1000010010000101111101110110100111001101

Or its hexadecimal representation is 84 85 F7 69 CD.

We can verify that:

PPLAIN =RONE mod RCRC (5.10)

So PPLAIN has a valid checksum. We can rewrite PPLAIN as:
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PPLAIN =X8 · (X31 +X26 +X23 +X18 +X16 +X15+

X14 +X13 +X12 +X10 +X9 +X8 +X6+

X5 +X3 + 1)+

(X7 +X6 +X3 +X2 + 1)

(5.11)

Here,

P7 =X7 +X6 +X3 +X2 + 1 (5.12)

which is the rightmost byte and

Q =X31 +X26 +X23 +X18 +X16 +X15 +X14 +X13+

X12 +X10 +X9 +X8 +X6 +X5 +X3 + 1
(5.13)

We can easily see that Q does not have a correct checksum, because Q 6=
RONE mod RCRC . We can now start to calculate the correction value PCOR =
PONE +RINV (PONE + P7)

PCOR =X30 +X29 +X28 +X27 +X25 +X24 +X22 +X21

X20 +X19 +X17 +X11 +X7 +X4 +X2 +X
(5.14)

By adding PCOR to Q, we now get a modified version of Q, which has a valid
checksum again.

5.3.3 Arbaugh inductive attack

The Arbaugh inductive attack [Arb01] can be seen as the inverse version of the
KoreK attack or the KoreK attack can be seen as the inverse version of the
Arbaugh inductive attack. Arbaugh was the first person who demonstrated that
the ICV can be used to extend the key stream used to encrypt a packet byte by
byte. Based on the Arbaugh inductive attack, KoreK developed his chopchop
attack.

In a nutshell, Arbaugh could show the following: If an attacker has recovered
a single encrypted packet of length l and has access to Ocrc, he can determine
the next m bytes of the key stream used to encrypt this packet with in average
m · 128 queries to the oracle and negligible computational effort.
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For a correctly encrypted packet, we know that the plaintext P fulfills the
equation:

P = PONE mod RCRC (5.15)

Adding a single zero byte to the packet is equivalent to multiplying P with X8.
Let now Q be the one zero byte extended version of P

Q =P ·X8 (5.16)

=PONE ·X8 mod RCRC (5.17)

If we add PONE · X8 + PONE to Q, the extend packet will have a valid CRC
checksum again.

An attacker can now start to guess the next byte of the key stream PKS , add
PONE ·X8 +PONE and PKS to Q and query the oracle, if the guess was correct.
Because there are at most 256 different values for PKS , the attacker will succeed
after 128 guesses in average.

5.3.4 Using the AP as an Ocrc oracle

There are at least 2 ways, an attacker can use an AP as an Ocrc oracle.

1. The attacker could join the network with two stations A and B and send
the packet from station A to station B. If the checksum is correct, the
packet will be relayed by the AP to station B. If the checksum was incor-
rect, the packet will be discarded.

2. The attacker could send the packet from a station which is not in the
network to the AP. If the checksum was correct, the AP will send an
error-message to the station, telling it, that it needs to rejoin the network.
If the checksum was incorrect, the packet will be discarded.

5.3.5 Implementation

aircrack-ng contains an implementation of the chopchop attack. To execute
a chopchop attack to decrypt a single packet from the access point with the
BSSID 00:18:F3:4D:29:D3 using the client address 00:11:6B:3A:A0:26 and
the wireless interface wifi0, an attacker has to execute the following command:

./aireplay-ng -4 -b 00:18:F3:4D:29:D3 -h 00:11:6B:3A:A0:26 wifi0
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Figure 5.3: aircrack-ng 1.0 beta 1 chopchop results

If the attack was successful, output similar to the one in figure 5.3 will be
displayed.

5.3.6 Implementation note

By using a lot of stations (256 for example), the attacker can send all 256 guesses
in one burst and encode the guess in the last byte of the senders address. Using
this method, the attacker does not need to wait until the packet has been
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delayed or he can be sure that the packet was discarded before sending the
next packet.

This attack can be hard to detect, because packets with invalid checksums are
not reported to the link- or network layer and therefore will not be seen by
sniffers and IDS systems only working on the link- or network layer.

5.4 Bittau’s fragmentation attack

Bittau noticed that the IEEE 802.11 protocol supports fragmentation and was
able to exploit this feature [BHL06].

Attack 4 Fragementation (2006): A client is able to split a packet into up
to 16 fragments; each of them is encrypted separately. After an attacker has
discovered a single key stream of length m, he can send packets with ((m− 4) ·
16) = 16 ·m − 64 bytes of arbitrary payload (length of the ICV excluded) and
recover a key stream of length 16 ·m− 60 bytes, by splitting them into up to 16
separate fragments.

5.4.1 Technical background

After the attacker has discovered a key stream of length m, he could simply
send packets with arbitrary payload of length m− 4 (length of the 4 byte ICV
excluded). To send longer packets, the attacker can split his payload into up
to 16 packets of length m − 4 bytes payload per packet. These packets are
then encrypted using the discovered key stream. All packets are now marked
to be fragments of a single packet. After the AP has received all fragments,
the original packet is reassembled and, depending on the destination address,
reencrypted with a new key stream and relayed by the AP as a single fragment.

AP

Attacker

#1/3

#2/3

#3/3

p1

p2

p3

#1/1 p1||p2||p3

Figure 5.4: Fragmentation attack example with 3 fragments
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Because the attacker knows the plaintext of the relayed packet, he can recover
the key stream of the relayed packet. Now the attacker knows a key stream of
length (m− 4) · 16 + 4 = 16 ·m− 60 bytes (he has chosen 16 ·m− 64 bytes of
plaintext and can calculate the 4 bytes ICV value).

Usually, an attacker can at least guess the first 8 bytes of an arbitrary encrypted
Ethernet frame or sometimes even more (see Section 8.4). After having sent 16
packets, the attacker now knows a key stream of 68 bytes. After having sent
16 packets again, he knows a key stream of 1024 bytes. After having sent 2
packets, he knows a key stream of length 1504 bytes, which is the maximum
size of an Ethernet packet (with ICV). 2 The attacker can now send packets
with arbitrary length and payload after having received 4 and send 34 packets.

5.4.2 Advanced attack methods using fragmentation

Bittau found more than one way to exploit WEP using fragmentation. A very
interesting attack is the internet redirection attack, which allows an attacker to
redirect arbitrary intercepted packets to a host on the internet of the attacker’s
choice, if the AP is connected to the internet. If the attacker controls the des-
tination host, he can intercept these packets there and just read the plaintext.
All packets are decrypted by the AP before they are send to the internet.

Alternatively, an attacker who has a key stream, which is too short to send a
shared key authentication response, can perform a shared key authentication by
sending the response in multiple short fragments. He can also decrypt packets
in a chopchp-like manner, starting from the beginning of the packet, instead of
the last byte.

The exact technical details are described in Bittau’s paper The Final Nail in
WEP’s Coffin [BHL06], which contains even more attacks using fragmentation.

5.4.3 Implementation

aircrack-ng contains an implementation of the fragmentation attack. To get
a key stream of maximum length from the access point with the BSSID
00:18:F3:4D:29:D3 using the wireless interface wifi0, an attacker has to ex-
ecute the following command:

./aireplay-ng -5 -b 00:18:F3:4D:29:D3 wifi0

aircrack-ng will wait for a suitable packet and ask the attacker if it should be
used, if a suitable packet was found. If the attack was successful, an output

2IEEE 802.11 allows up to 2304 bytes of payload (ICV excluded), but most implementations
just use up to 1500 bytes.
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Figure 5.5: aircrack-ng 1.0 beta 1 fragmentation results

similar to the one in figure 5.5 will be displayed. In this case, the key stream
was saved in the file fragment-1123-010610.xor in the current directory.
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RC4

RC4 has been a subject of extensive research in the past, and a lot of attacks
on RC4 have been found. This includes distinguisher and key recovery attacks
in various modes of operations of RC4. In this Section, we will only focus on
key recovery attacks, which can be mounted in a WEP environment.

First, a theoretical model for a WEP network is needed. In the real world, an
attacker can always passively listen to the communication and seen the whole
IV of all packets, and depending on various aspects, he can guess some parts
of the plaintext and therefore recover some parts of the key stream. A Oracle
called OWEP will be used as a model for a WEP network. Because all of the
following attacks can be generalized and modified for WEP-like scenarios, a
more generic description will be used. OWEP has three parameters:

The parameter liv is the length of the initialization vector. We always assume
that the initialization vector is repented to the main key. Modification
of the following attacks for modes of operations, where the initialization
vector is repented to the main key, is sometimes possible, but will not
be covered by this document. For WEP, liv is always 3. Some modified
versions of WEP have been discussed with a larger value for liv, but have
never been standardized.

The parameter lhs is the length of the secret main key. The official IEEE
802.11 standard only allows lhs = 5, which is known as 40 or 64 Bit WEP,
or lhs = 13, which is known as 104 or 128 Bit WEP. Some vendors have
implemented WEP with larger key lengths.

The parameterlks is the number of key stream bytes the oracle will return. In
a WEP scenario, an attacker can guess at least the first 2 bytes of the
plaintext, and therefore the first 2 bytes of the key stream, by just pas-
sively listen for packets. Using active attacks like fragmentation (Section
5.4) or chopchop (Section 5.3), an attacker can recover up to the first 1504
bytes (1500 bytes for the maximum length of an Ethernet packet + 4 byte
ICV) of the key stream. In Section 8.4, we will see that an attacker can
sometimes recover more bytes of the key stream, by just passively listen
to traffic.
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Additionally, all the following attacks would also be possible if the generalized
randomized RC4 stream cipher would be used with an n 6= 256. No implemen-
tation of RC4 with n 6= 256 has ever been used for WEP, and for all values of
n, which are not a two-pow, it is somehow unclear how the key stream should
be combined with the cleartext. Therefore, I will give a generic description of
all attacks, but focus on n = 256 for estimates how effective these attacks are.
If no information about n is given for any estimate, n has the value 256.

The IEEE 802.11 standard does not specify how a station should choose a value
for IV. There are three different methods which are used by most vendors. Two
of them are introduced here. The third method was invented after the first key
recovery attack was published in 2001 to prevent this attack. This method is
introduced in Section 6.1.

Random IVs In this mode, a station chooses every IV randomly from {0, . . . , n−
1}liv independent of previous and future values from a uniform distribu-
tion. We will use the oracle OWEP to simulate this method for choosing
values for IV.

Counter IVs In this mode, every station keeps track of the last IV used and
interprets it as an unsigned integer. When the next IV is needed, 1 is added
to the last value and the result is used as IV. This has the advantage that
it will take nliv packets before a value for IV is reused. If an attacker is
able to capture two different packets (p1 ⊕ c1) and (p2 ⊕ c2), encrypted
using the same IV, the value (p1 ⊕ c1)⊕ (p2 ⊕ c2) will show the difference
between the two plaintexts of the packets p1 ⊕ p2. We will use the oracle
OWEP CTR to simulate this method for generating values for IV.

Oracle OWEP (liv, lkey, lks)
Rk ←R {0, . . . , n− 1}lkey

while query()
IV ←R {0, . . . , n− 1}liv
X ← RC4(IV||Rk, lks)
output(IV,X)

Oracle OWEP CTR(liv, lkey, lks)
Rk ←R {0, . . . , n− 1}lkey

IV ←R {0, . . . , n− 1}liv
while query()

IV ← IV + 1
X ← RC4(IV||Rk, lks)
output(IV,X)

Most drivers and firmwares generate their initialization vectors like OWEP CTR.
On some attacks on WEP, the mode used to generate the initialization vectors
has a huge impact on the numbers of sessions needed to perform the attack.
We will use OWEP CTR to compare the effectiveness of the following attacks.
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6.1 The FMS attack

The FMS attack [FMS01] was the first key recovery attack against RC4 in
WEP-like operating modes and was published by Fluhrer, Mantin, and Shamir
in 2001. We can summarize the FMS attack as follows:

Attack 5 Fluhrer, Mantin, Shamir (2001): An attacker, who has access to
an oracle OWEP CTR(3, 13, 1) can recover the internal key of the oracle with
a success probability of 50% with about 9,000,000 queries to the oracle and
negligible computational effort.

6.1.1 Mathematical background

For the rest of this Chapter, all additions and subtractions, except for prob-
abilities, are done mod n. Additionally, the following description of the FMS
attack is a modified version for the generalized RC4 stream cipher and some
of the ideas of Stubblefield [SIR04] and KoreK [Kor04b] have been integrated.
Stubblefield was the first person who implemented this attack against a real
network. Fluhrer, Mantin, and Shamir published the theoretical background,
but did not implement their attack.

We will assume that an attacker knows the first l words of a RC4 key and wants
to attack K[l] for an l ≥ 2. Additionally, the attacker knows the first word of
output of the RC4-PRGA. The attacker can now simulate the first l steps of the
RC4-KSA and knows Sl, jl and the value of i. Let’s assume that the following
conditions are met:

1. Sl[1] < l

2. Sl[1] + Sl[Sl[1]] = l

3. S−1
l [X[0]] 6= 1

4. S−1
l [X[0]] 6= Sl[1]

We will refer to this condition as the resolved condition and say, the RC4-KSA is
in resolved state if all these conditions are met. Most papers just use conditions
1. and 2. as resolved condition, conditions 3. and 4. where later introduced by
KoreK to improve the effectiveness of this attack. In the next step, Sl[jl+1] will
be swapped to Sl+1[l].

We will now have a look at the first word of output of the RC4-PRGA. The first
word of output is always Sn+1[Sn+1[1] + Sn+1[Sn[1]]]. If neither Sl[1], Sl[Sl[1]],
nor Sl+1[l] did participate in any further swaps in the rest of the RC4-KSA, the
output will be Sl[jj+1] which is equal to Sl[jl + K[l] + Sl[l]]. With other words,
if none of these swaps occur, the function:

Ffms(K[0], . . . ,K[l − 1],X[0]) = S−1
l [X[0]]− jl − Sl[l] (6.1)
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will take the value of K[l]. If one of these values is swapped during the remaining
RC4-KSA, Ffms will take a more or less random value.

This can be verified by observing the first steps of the RC4-PRGA. First we
assume that neither Sl[1], Sl[Sl[1]], nor Sl+1[l] did participate in any further
swaps in the remaining RC4-KSA. In the first steps of the RC4-PRGA, i will
be set to 1 and j will be set to Sn[1] which is Sl[1]. If the first swap in the RC4-
PRGA does not affect the sum S[1] + S[S[1]] nor S[S[1] + S[S[1]]], the output
will be Sl[jl+1] which is equal to Sl[jl + K[l] + Sl[l]]. By solving this equation
for K[l], you get the function Ffmsl

.

Of course, in the first swap of the RC4-PRGA will swap S[1] and S[S[1]], but
this will not affect the sum S[1] +S[S[1]]. The only possibility for the first swap
to affect the output of the first word would be, if S[S[1] + S[S[1]]] would be
exchanged with another value, which can only happen, if S[1] + S[S[1]] = 1 or
S[1] + S[S[1]] = S[1]. We will check both cases separately.

1. S[1] + S[S[1]] = 1

This case can never happen. We know that all these values did not par-
ticipate in any swaps in the remaining RC4-KSA. So this is equivalent to
Sl[1] + Sl[Sl[1]] = 1. We already know that Sl[1] + Sl[Sl[1]] = l and l ≥ 2.

2. S[1] + S[S[1]] = S[1]

This can never happen too. Again, we know that this is equivalent to
Sl[1]+Sl[Sl[1]] = Sl[1] By subtracting Sl[1] from both sides of the equation,
we know that Sl[Sl[1]] = 0 must hold for this. Because Sl[1] < l and
Sl[1] + Sl[Sl[1]] = l holds, we know that Sl[Sl[1]] ≥ 1 and therefore cannot
be 0.

If the output X[0] is Sl[1] or Sl[Sl[1]], this would indicate that Sl+1[l] did take
the value Sl[1] or Sl[Sl[1]] which would mean that Sl[1] or Sl[Sl[1]] was modified
after step l of the RC4-KSA. Because we require Sl[1] and Sl[S[1]] to remain
unchanged after step l, we check for these conditions and do not use the session
if condition 3. or 4. are met.

What remains is checking, with which probability none of these three values
is swapped in the remaining RC4-KSA, we cannot observe. S[k] will only be
swapped if either i or j takes the value k. i will only take values from l + 1
to n − 1. Because l ≥ 2, i will never again take the value 1, so Sl[1], Sl[Sl[1]],
and Sl+1[Sl[1] + Sl[Sl[1]]] will not be swapped by i in the remaining RC4-KSA,
because S[1] ≤ l and Sl[1] + Sl[Sl[1]] = l.

The only possibility that one of these values will be swapped in the remaining
n−l RC4-KSA steps is, that j takes the value 1, S[1], or Sl[1]+Sl[Sl[1]]. We will
use the generalized randomized RC4 stream cipher to estimate this probability.
Here, j really takes values from a uniform distribution over all n possible values.
Assuming that all three values are different, the probability that j does not take
one of these three values in one step is n−3

n , and the probability that j does not
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take one of these three values in all remaining steps is
(

n−3
n

)n−l. For n = 256
and l = 3, this approximately 5.07% and for l = 15 approximately 5.84% which
is the case for the first and last byte, in a 104 bit WEP scenario.

If two of these three values are equal, the probability that j does not take
two specific values in all remaining steps of the RC4-KSA is

(
n−2

n

)n−l, which
is approximately 13.75% for n = 256 and l = 3 and 15.10% for l = 15. An
attacker might choose to put some more trust in the output of Ffms in such a
special case.

6.1.2 An example

K = 3

0

255

1

70

2

53

3

215

4

i = 0

S0 = 0

0

1

1

2

2

3

3

4

4

75

75

92

92

129

129

j1 = 3

K = 3 255 70 53 215

i = 1

S1 = 3 1 2 0 4 75 92 129

j2 = 3

K = 3 255 70 53 215

i = 2

S2 = 3 0 2 1 4 75 92 129

j3 = 75

K = 3 255 70 53 215

i = 3

S3 = 3 0 75 1 4 2 92 129

j4 = 129

K = 3 255 70 53 215

i = 4

S4 = 3 0 75 129 4 2 92 1

j5 = 92

Figure 6.1: First 4 steps of RC4-KSA for K = 3, 255, 70, 53, 215, 228, 159, 214

Let’s assume that RC4 with the key K = 3, 255, 70, 53, 215, 228, 159, 214 is used,
and an attacker knows the first l = 3 bytes of the key K. The attacker is now
trying to determine K[3]. The attacker can compute S3 and j3 = 75 from K[0]
to K[2]. S3[1] = 0 and S3[S3[1]] = S3[0] = 3. Now
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j4 =j3 + S3[3] + K[3]
= 75 + 1 + 53
= 129

(6.2)

and S3[129] = 129 is swapped to S4[3]. Figure 6.1 illustrates these steps in the
RC4-KSA.

i = 1

S256 = 3

0

0

1

54

2

129

3

140

54

j257 = 0

i = 2

S257 = 0 3 54 129 140

j258 = 54

S257[1] + S257[0] = 3

X[0] = 129

Figure 6.2: First key stream byte for K = 3, 255, 70, 53, 215, 228, 159, 214

For the rest of the RC4-KSA, these values remain unchanged. When the first
byte of output is produced by the RC4-PRGA, j257 is set to 0 and S256[0] = 3
and S256[1] = 0 are swapped. Now the first byte of output X[0] = S257[S257[0] +
S257[1]] = S257[0 + 3] = S257[3] = 129 is produced. Here X[0] = j3 + S3[3] + K[3].
An attacker who would now calculate

Ffms3(3, 255, 70, 129) = S−1
3 [X[0]]− j3 − S3[3]

= S−1
3 [129]− 75− 1 = 129− 75− 1

= 53

(6.3)

would have successfully recovered the secret key byte K[3]. Figure 6.2 illustrates
the output of the first key stream byte.

46 Erik Tews



6.1 The FMS attack

K = 3

0
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1
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2

251

3
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4
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5

i = 0

S0 = 0

0

1

1

2

2

3

3

4

4

5

5

164

164

233

233

237

237

j1 = 3

K = 3 255 232 251 20 158

i = 1

S1 = 3 1 2 0 4 5 164 233 237

j2 = 3

K = 3 255 232 251 20 158

i = 2

S2 = 3 0 2 1 4 5 164 233 237

j3 = 237

K = 3 255 232 251 20 158

i = 3

S3 = 3 0 237 1 4 5 164 233 2

j4 = 233

K = 3 255 232 251 20 158

i = 4

S4 = 3 0 237 233 4 5 164 1 2

j5 = 1

K = 3 255 232 251 20 158

i = 5

S5 = 3 4 237 233 0 5 164 1 2

j6 = 164

Figure 6.3: First 5 steps of RC4-KSA for K = 3, 255, 232, 251, 20, 158, 18, 173

Let’s have a look at another (unsuccessful) example. Here RC4 is used with
the key K = 3, 255, 232, 251, 20, 158, 18, 173 and the attacker again knows the
first 3 bytes of the key and is interested in K[3]. After the first 3 steps of the
RC4-KSA, j3 = 237, S3[1] = 0 and S3[S3[1]] = 3. Now,

j4 = j3 + S3[3] + K[3]
= 237 + 1 + 251
= 233

(6.4)

swaps S3[233] with S3[3] = 1. Unfortunately, in the next step

Attacks on the WEP protocol 47



6 Previous attacks on WEP related to RC4

j5 = j4 + S4[4] + K[4]
= 233 + 4 + 20
= 1

(6.5)

and swaps S4[1] = 0 with S4[4] = 4. When the first byte of output by the
RC4-PRGA is produced, S[1] + S[S[1]] does not point at S[3] anymore but at
S[4]. Therefore X[0] = 4 and

Ffms3(3, 255, 232, 4) = S−1
3 [X[0]]− j3 − S3[3]

= S−1
3 [4]− 237− 1

= 4− 237− 1
= 22
6= 251

(6.6)

Figures 6.3 and 6.4 are illustrating these steps in the RC4-KSA and RC4-PRGA.

i = 1

S256 = 4

1

237

2

0

4

193

241

j257 = 4

i = 2

S257 = 0 237 4 193

j258 = 241

S257[1] + S257[4] = 4

X[0] = 4

Figure 6.4: First key stream byte for K = 3, 255, 232, 251, 20, 158, 18, 173

6.1.3 Mounting the attack

An attacker first collects some IVs and their corresponding first words of output
of the RC4-PRGA using OWEP . In the beginning, the attacker knows the first
l words of the keys used to generate the RC4-PRGA outputs with l = |IV|. The
attacker selects a subset of these keys, where the resolved condition holds after
the first l steps of the RC4-KSA. For all these keys, Ffmsl

is computed and the
most appearing result is assumed to be the next key byte K[l]. Alternatively,
one could say, that for every key, Ffmsl

votes for K[l] having a specific value.
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Now, the attacker knows the first l + 1 words of the keys used to generate the
RC4-PRGA output and can iteratively compute all remaining key bytes.

As soon as all key bytes have been computed, the resulting key can be tested
for correctness, by using a few IVs and generate the corresponding key streams.
If they are the same as the ones returned by the oracle, the key can be assumed
to be correct with a very high probability. If not, at least one of the decisions
for one of the key bytes must have been incorrect.

The attacker can now start looking for a decision for a key byte Rk[k], he sus-
pects to be wrong. For example he could choose a decision where the difference
in number of votes between the most voted value for Rk[k] and the second most
voted value for Rk[k] is minimal. The attacker now assumes that the correct
value for Rk[k] is the second most voted one and continue the computation with
this value. This can be repeated, until the correct key has been found or a time
limit has been exceeded. This is basically the same as key ranking [Mat94] first
used by Matsui for linear cryptanalysis. We will discuss such methods later in
Section 7.2 in detail.

Technically, the FMS attack is a chosen IV attack, which means that an attacker
can only use information from key streams generated using some special IVs.
The condition for these initialization vectors is called resolved condition and
the set of initialization vectors which satisfies this resolved condition was later
called weak initialization vectors or weak IVs. Because in an WEP environ-
ment, the attacker cannot choose the initialization vector of a packet another
station is going to send, he has to wait, until enough packets with these special
initialization vectors have been sent.

Fluhrer, Mantin, and Shamir first suggested to use only sessions with an IV
beginning with l, 255 to recover K[l]. For these values for IV, it is very likely
that Sl[1] < l and Sl[Sl[1]] = l holds. Stubblefield suggested to simulate the first
l steps of the RC4-KSA for every session and then test if these conditions are
met. KoreK did the same and additionally suggested to check if Sl[1] = X[0] or
Sl[Sl[1]] = X[0], which would indicate that Sl[1] or Sl[Sl[1]] has been modified
in the remaining RC4-KSA.

6.1.4 Implementation

An implementation of the FMS attack is available in the aircrack-ng toolsuite.
To start the FMS attack on all packets saved in the file /tmp/fmstest.ivs, an
attacker has to execute the following command:

./aircrack-ng -0 -X -K -k 1 -k 2 -k 3 -k 4 -k 5 -k 7 \\
-k 8 -k 9 -k 10 -k 11 -k 12 -k 13 -k 14 -k 15 -k 16 \\
-k 17 /tmp/fmstest.ivs
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Figure 6.5: aircrack-ng 1.0 beta 1 fms results

If the attack was successful, output similar to the one in figure 6.5 will be
displayed. In this case, the correct key was found without doing a lot of key
ranking. The correct key (except the last key byte) is displayed in the first
column in the table. The numbers next to the key bytes can be seen as the
number of votes for these key bytes. The numbers right to these values are the
alternative candidates for the key bytes and their votes.

6.1.5 Success rate

The success rate for the FMS attack is quite low. If only a low number of
sessions are available, the FMS attack works best, if all sessions are generated
by OWEP . If the sessions are generated by OWEP CTR or OWEP LINUX , it
usually takes much more sessions. For my experimental results, I limited the
CPU time available to aircrack-ng to 3 minutes. With this limit, it was only
successfully less than 80% of all cases, even if the number of available sessions
was very high. Because the initialization vector is only 3 bytes long in WEP,
there are at most 224 = 16, 777, 216 possible different sessions. Other results
show, if much more CPU time is available, a much higher success rate is possible.

To estimate the success rate of the FMS attack the aircrack-ng as described
in Section 6.1.4 was used. If aircrack-ng did find the key within 3 minutes of
CPU time, it was counted as a success. If aircrack-ng exited without finding the
correct key or did not terminate within 3 minutes of CPU time, it was counted
as failure. The total rates can be seen in figure 6.6.
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Figure 6.6: FMS success rate

6.1.6 Countermeasures

Soon after the FMS attack became public, developers started looking for
countermeasures, without breaking compatibility with WEP. Because Fluhrer,
Mantin, and Shamir suggested to use only initialization vectors starting with
3 + k, 255 to attack Rk[k], with 0 ≤ k ≤ |Rk| − 1, developers started to patch
their drivers and firmwares to skip these values for IV when sending packets.
For example, the code in listing 6.1 is used in Linux kernel 2.6.23 to pick the ini-
tialization vector when sending a packet in a WEP protected network. Listing
6.2 shows a similar implementation for OpenBSD. Basically, this code behaves
as OWEP CTR does, but skips all these initialization vectors. We will use the
following oracle OWEP LINUX to simulate the behavior of the Linux kernel.

Oracle OWEP LINUX(liv, lkey, lks)
Rk ←R {0, . . . , n− 1}lkey

IV ←R {0, . . . , n− 1}lkey

while query()
IV ← IV + 1
if((liv ≤ IV[0] ≤ liv + lkey − 1) && (IV[1] == n− 1 ))

IV ← IV + n
X ← RC4(IV||Rk, lks)
output(IV,X)

Of course this does not prevent the FMS attack. It only prevents simple im-
plementations of the FMS attack from finding the secret root key. Advanced
implementations which simulate the first steps of the RC4-KSA and then check
if the resolved condition holds, as described in this document in Section 6.1.1,
will still be able to find enough useful sessions to determine the secret root key.
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Listing 6.1: linux-2.6.23/net/mac80211/wep.c
52 static inline int ieee80211 wep weak iv(u32 iv, int keylen)
53 {
54 /∗ Fluhrer, Mantin, and Shamir have reported weaknesses in the
55 ∗ key scheduling algorithm of RC4. At least IVs (KeyByte + 3,
56 ∗ 0xff , N) can be used to speedup attacks , so avoid using them. ∗/
57 if (( iv & 0xff00) == 0xff00) {
58 u8 B = (iv >> 16) & 0xff;
59 if (B >= 3 && B < 3 + keylen)
60 return 1;
61 }
62 return 0;
63 }
64
65
66 void ieee80211 wep get iv(struct ieee80211 local ∗ local ,
67 struct ieee80211 key ∗key, u8 ∗iv)
68 {
69 local−>wep iv++;
70 if (ieee80211 wep weak iv(local−>wep iv, key−>keylen))
71 local−>wep iv += 0x0100;
72
73 if (! iv)
74 return;
75
76 ∗iv++ = (local−>wep iv >> 16) & 0xff;
77 ∗iv++ = (local−>wep iv >> 8) & 0xff;
78 ∗iv++ = local−>wep iv & 0xff;
79 ∗iv++ = key−>keyidx << 6;
80 }

Although this countermeasure is not a very effective one, it is still in use in a
lot of wireless drivers today, and used by many open source operating systems.
Lucent even started to use the marketing name WEP Plus for this special kind
of choosing IVs.
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Listing 6.2: src/sys/net80211/ieee80211 crypto.c Revision 1.36
414 if ( txflag ) {
415 kid = ic−>ic wep txkey;
416 wh−>i fc[1] |= IEEE80211 FC1 WEP;
417 iv = ic−>ic iv ? ic−>ic iv : arc4random();
418 /∗
419 ∗ Skip ’bad’ IVs from Fluhrer/Mantin/Shamir:
420 ∗ (B, 255, N) with 3 <= B < 8
421 ∗/
422 if (iv >= 0x03ff00 &&
423 (iv & 0xf8ff00) == 0x00ff00)
424 iv += 0x000100;
425 ic−>ic iv = iv + 1;
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6.2 The KoreK key recovery attack

Development did not stop after the FMS attack was published. Instead, people
started looking for more correlations between the secret root key and the first
bytes of output of the RC4-PRGA.

A person under the name KoreK posted [Kor04b] an implementation of a WEP
cracker in 2004 in the netstumbler forum, an internet forum for users of the
netstumbler tool, a famous IEEE 802.11 network scanner for windows. This
implementation uses 17 different attacks, which are able to determine K[l], if
K[0] to K[l − 1] and the first two words of output X[0] and X[1] are known.
Some of them had previously been known, but most of them where found by
KoreK himself. KoreK assigned names like A u15 or A s13 to these attacks.
For example, the original FMS attack has the name A s5 1.

Attack 6 KoreK (2001): An attacker, who has access to an oracle
OWEP CTR(3, 13, 2) can recover the internal key of the oracle with success proba-
bility 50% with 700,000 queries to the oracle and negligible computational effort.

All attacks used by KoreK can be split into three different groups:

• The first group just uses K[0] to K[l − 1] and the first word of output of
the RC4-PRGA X[0] do determine K[l]. The original FMS attack is one
of the attacks in this group.

• The second group additionally uses X[1].

• The third group is called inverse attacks. Instead of trying to determine
the next key byte, these attacks can help to exclude certain values from
being K[l].

I will not give a full description of all attacks used by KoreK. Instead, I will
pick some of them to show how these attacks are working. Who is interested in
a detailed description of those attacks can find an excellent description of them
in the semester project Break WEP Faster with Statistical Analysis [Cha06]
written by Rafik Chaabouni.

6.2.1 Correlation A s13

Let’s assume that the following conditions are met:

1. Sl[1] = l

2. X[0] = l

If Sl[1] did not participate in any swaps for the rest of the RC4-KSA, the
following will happen in the RC4-PRGA:
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1. i will be set to 1

2. j will be set to l

3. Sn[1] and Sn[l] will be swapped, now we got Sn+1[l] = l and Sn+1[1] is
unknown.

If the output now is X[0] = l, that means that Sn+1[l] + Sn+1[1] must have
pointed at Sn+1[l] and therefore Sn+1[1] and Sn[l] must have been 0.

If Sl[l] did not participate in any swaps after step l + 1 in the RC4-KSA, jl+1

must have pointed at 0 in Sl, which was then swapped to Sl+1[l]. This gives us
the formula

S−1
l [0] = jl+1 = jl + Sl[l] + K[l] (6.7)

Solving this for K[l] gives us the following function:

Fkorek A s13(K[0], . . . ,K[l − 1]) = S−1
l [0]− jl − Sl[l] (6.8)

The function Fkorek A s13 itself does not depend on X[0], but X[0] is needed to
check, if the condition X[0] = 0 is met.

If neither Sl[1] nor Sl+1[l] participate in any of the remaining steps in the RC4-
KSA, Fkorek A s13 will take the value of K[l]. The probability of this is n−2

n for
a single step in the RC4-KSA, and

(
n−2

n

)n−l for all remaining steps of the RC4-
KSA. This is higher than the success probability of the original FMS attack,
which needed three instead of two values in S not changing anymore in the
remaining RC4-KSA. For n = 256 and l = 3, this is about 13.75%, and for
n = 256 and l = 15, this is about 15.10%, which is the case for the first and
last key byte in a 104 bit WEP scenario.

An example

Let’s assume that RC4 with the key K = 7, 251, 14, 243, 201, 222, 52, 166 is used
and the attacker knows the first l = 3 bytes of the key. The attacker now tries
to determine the secret key byte K[3].

In the next step, j4 = j3 +S3[3]+K[3] = 19+1+243 = 7 points at S3[7] = 0 and
S3[7] = 0 is swapped with S3[3] = 1. S3[1] = 3 and S4[3] = 0 remain unchanged
during the rest of the RC4-KSA. At the beginning of the RC4-PRGA, Sn[1] = 3
and Sn[3] = 3 are swapped and Sn+1[1] + Sn+1[3] = 3 points at Sn+1[3] = 3
and the first byte of output X[0] = 3 is produced. Figures 6.7 and 6.8 illustrate
these steps.
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K = 7

0

251

1

14

2

243

3

201

4

i = 0

S0 = 0

0

1

1

2

2

3

3

4

4

7

7

19

19

212

212

j1 = 7

K = 7 251 14 243 201

i = 1

S1 = 7 1 2 3 4 0 19 212

j2 = 3

K = 7 251 14 243 201

i = 2

S2 = 7 3 2 1 4 0 19 212

j3 = 19

K = 7 251 14 243 201

i = 3

S3 = 7 3 19 1 4 0 2 212

j4 = 7

K = 7 251 14 243 201

i = 4

S4 = 7 3 19 0 4 1 2 212

j5 = 212

Figure 6.7: First 4 steps of RC4-KSA for K = 7, 251, 14, 243, 201, 222, 52, 166

i = 1

S256 = 3

1

19

2

0

3

202

22

j257 = 3

i = 2

S257 = 0 19 3 202

j258 = 22

S257[1] + S257[3] = 3

X[0] = 3

Figure 6.8: First byte of output for K = 7, 251, 14, 243, 201, 222, 52, 166
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An attacker who calculates

Fkorek A s13(7, 251, 14, 3) = S−1
3 [0]− j3 − S3[3]

= 7− 19− 1
= 243

(6.9)

would have gotten the correct value for K[3].

6.2.2 Correlation A s3

This attack is very similar to the original FMS attack, but instead of X[0], X[1]
is used to get information about K[l].

Again, we assume that the following conditions are met:

1. Sl[1] 6= 2

2. Sl[2] 6= 0

3. Sl[1] < l

4. Sl[2] < l

5. Sl[1] + Sl[2] < l

6. Sl[2] + Sl[Sl[1] + Sl[2]] = l

7. S−1
l [X[1]] 6= 1

8. S−1
l [X[1]] 6= 2

9. S−1
l [X[1]] 6= Sl[1] + Sl[2]

As in the original FMS attack, Sl[jl +Sl[l]+K[l]] is swapped to Sl+1[l]. If neither
Sl[1], Sl[2], nor Sl+1[l] participates in any further swaps in the remaining RC4-
KSA, the following will happen in the first two steps in the RC4-PRGA:

1. i is set to 1.

2. jn+1 is set to Sn[1].

3. Sn[1] and Sn[Sn[1]] are swapped. Because Sn[1] 6= 2 and Sn[1] < l, this
will not affect Sn+1[2] or Sn+1[l]. Because Sn[2] 6= 0, this will not affect
Sn+1[Sn[1] + Sn[2]].

4. The first word of output X[0] = Sn+1[Sn+1[1] + Sn+1[Sn[1]]] is generated.
We do not use it for the attack.

5. i is set to 2.

6. jn+2 is set to jn+1 + Sn+1[2] = Sn[1] + Sn[2]. Because Sn[1] + Sn[2] < l,
jn+2 < l.

7. Sn+1[2] and Sn+1[Sn[1]+Sn[2]] are swapped. Because Sn[1]+Sn[2] < l, this
will not affect Sn+2[l] and will not affect the sum Sn+2[2]+Sn+2[Sn+2[1]+
Sn+2[2]], which is still l.
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8. Now, the second word of output X[1] is generated, which is Sn+2[Sn+2[2]+
Sn+2[Sn+2[1] + Sn+2[2]]] = Sn+2[l] = Sl[jl + Sl[l] + K[l]].

If S−1
l [X[1]] = 1 or S−1

l [X[1]] = 2 or S−1
l [X[1]] = Sl[1]+Sl[2] holds, we know

that S[1], S[2] or S[S[1] + S[2]] was modified in the remaining RC4-KSA.

Solving this equation for K[l] results in the following formula:

Fkorek A s3(K[0], . . . ,K[l − 1],X[1]) = S−1
l [X[1]]− jl − Sl[l] (6.10)

The success probability is as good as the original FMS attack.

This attack has initially been found by David Hulton [Hul02]. This is especially
interesting, because it shows, that skipping the first word of output of the RC4-
PRGA does not prevent attacks in WEP-like modes of operations.

Even if KoreK just uses the first two words of output of the RC4-PRGA, the
idea behind this attack (and some other KoreK attacks) could be extended to
an attack which just uses the third word of output of the RC4-PRGA. But this
attack would require more values not to change for the rest of the RC4-KSA,
and would have a lower success probability. For example, the probability that
four different values remain unchanged by j for 252 steps in the RC4-KSA is
about 2%.

An example

Let’s assume that RC4 is used with the key K =
220, 255, 36, 86, 169, 80, 173, 194. The attacker knows the first l = 4 bytes of K
and now tries to determine K[4]. The attacker can simulate the first 4 steps of
the RC4-KSA.

In the 5th step of the RC4-KSA, j5 = 8 and 8 is swapped to S5[4]. Additionally
we got S4[1] = 0 and S4[2] = 2. Figure 6.9 illustrates these steps in the RC4-
KSA.

In the first step of the RC4-PRGA, jn+1 is set to 0 and Sn[1] and Sn[0] are
swapped. This swap does not affect S[2] or S[4]. Now Sn+1[2] = 2 is added
to j and jn+2 = 2. The second output byte is now Sn+2[Sn+2[2] + Sn+2[2]] =
Sn+2[4] = 8, which reveals the secret key byte K[4] = 169 using

Fkorek A s3(220, 255, 36, 86, 8) = S−1
4 [X[1]]− j4 − S4[4]

= S−1
4 [8]− 91− 4

= 169

(6.11)
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Figure 6.9: First 5 steps of RC4-KSA for K = 220, 255, 36, 86, 169, 80, 173, 194
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j257 = 0

i = 2

S257 = 0 201 2 100 8 204 255

j258 = 2

S257[1] + S257[0] = 201

X[0] = 255

i = 3

S258 = 0 201 2 100 8 204 255

j259 = 102

S258[2] + S258[2] = 4

X[1] = 8

Figure 6.10: First two bytes of output for K = 220, 255, 36, 86, 169, 80, 173, 194
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6.2.3 Correlation A neg

This attack is the most innovative one in my opinion. Let’s assume that the
following conditions are met:

1. Sl[1] = 2

2. Sl[2] = 0

3. X[0] = 2

If Sl[1] and Sl[2] did not participate in any further swaps in the remaining RC4-
KSA, the first step in the RC4-PRGA will swap Sn[1] and Sn[2] and then output
Sn+1[2] = Sn[1] = Sl[1] = 2. So if we observe this output, we can assume, that
K[l] did not alter Sl+1[1] nor Sl+1[2]. With other words, we can assume that:

1. K[l] 6= 1− Sl[l]− jl
2. K[l] 6= 2− Sl[l]− jl

Even if one of these values changes during the remaining RC4-KSA, it is highly
likely, that the output will be something different than 2.

To get an estimate how good these assumptions are, we will use the following
model:

• With a probability of
(

n−2
n

)n−l, these 2 values will remain unchanged in
the remaining RC4-KSA, and the output will be X[0] = 2 .

• With a probability of 1−
(

n−2
n

)n−l, at least one of these values will change
in the remaining RC4-KSA. In the randomized version of the RC4-PRGA,
the first word of output will be 2 with a probability of 1

n , and this is
independent of what happens in the previous RC4-KSA.

So, the total probability that the RC4-PRGA will have 2 as the first word of
output is

(
n− 2
n

)n−l

+

(
1−

(
n− 2
n

)n−l
)
· 1
n

(6.12)

This leads to the following probability, that S[1] and S[2] remained unchanged,
if the first word of RC4-PRGA output is 2:

(
n−2

n

)n−l(
n−2

n

)n−l +
(

1−
(

n−2
n

)n−l
)
· 1

n

(6.13)
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For l = 3 and n = 256, this is about 97.61% and for l = 15 and n = 256 this
is 97.85%, which is the case for the first and last key byte in a 104 bit WEP
scenario. This is much higher than any other success probability, we have seen
before.

This is only a part of the A neg attack. KoreK found some more criteria, which
can be used to exclude certain values from being the next key byte.

An example

Let’s assume that RC4 is used with the key K =
104, 153, 101, 133, 126, 174, 180, 135 and the attacker knows the first l = 3
bytes of K. The attacker now tries to exclude certain values from being K[3].
The attacker knows that S3[1] = 2 and S3[2] = 0 holds and observes X[0] = 2.

K = 104

0

153

1

101

2

133

3

126

4

i = 0

S0 = 0

0

1

1

2

2

3

3

4

4

104

104

114

114

240

240

j1 = 104

K = 104 153 101 133 126

i = 1

S1 = 104 1 2 3 4 0 114 240

j2 = 2

K = 104 153 101 133 126

i = 2

S2 = 104 2 1 3 4 0 114 240

j3 = 104

K = 104 153 101 133 126

i = 3

S3 = 104 2 0 3 4 1 114 240

j4 = 240

K = 104 153 101 133 126

i = 4

S4 = 104 2 0 240 4 1 114 3

j5 = 114

Figure 6.11: First 4 steps of KSA for K = 104, 153, 101, 133, 126, 174, 180, 135

After the 3. step of the RC4-KSA j3 = 104 and i points at S3[3] = 3. Only
K[3] = 150 or K[3] = 151 would have led to a change of S[1] or S[2] in the 4.
step, but K[3] = 133. For the rest of the RC4-KSA, S3[1] = 2 and S3[2] = 0
remain unchanged and the first byte of output is X[0] = 2. The attacker can
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therefore exclude 150 and 151 from being K[3] with a high probability. Figures
6.11 and 6.12 illustrate these steps in the RC4-KSA and RC4-PRGA.

i = 1

S256 = 2

1

0

2

208

4

j257 = 2

i = 2

S257 = 0 2 208

j258 = 4

S257[1] + S257[2] = 2

X[0] = 2

Figure 6.12: First byte of output for K = 104, 153, 101, 133, 126, 174, 180, 135

6.2.4 Mounting the attack

As in the FMS attack, an attacker starts querying the oracle. Again, the at-
tacker knows the first l = liv bytes of the key K, which was used to generate
the key stream. The attacker now checks for every packet, if one of the criteria
of the KoreK attack is met for the known key and key stream. If so, a guess for
the next key byte K[l] is made, and we call it a vote for K[l] having a specific
value. The only exception is the A neg attack, which votes for K[l] not having
a specific value.

After all keys have been processed, a linear combination of all votes is calculated.
The coefficients depend on the success probability of the different attacks (an
attack with higher success probability has a higher coefficient than an attack
with a lower success probability) and are all positive, except for A neg. Now,
the value with the highest number of votes in this result is assumed to be K[l],
and the attacker knows the first l + 1 key bytes of all keys.
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6.2.5 Implementation

As the FMS attack, an implementation of the KoreK attack is available in the
aircrack-ng toolsuite. To execute an KoreK attack on all packets captured in
/tmp/korektest.ivs, an attacker has to execute the following command:

./aircrack-ng -X -K /tmp/korektest.ivs

If the attack was successful, an output similar to the one in figure 6.13 will be
displayed.

Figure 6.13: aircrack-ng 1.0 beta 1 KoreK results

6.2.6 Success rate

The KoreK attack has a much better success rate than the FMS attack. Again,
3 minutes of CPU time was given to aircrack-ng to complete the attack.

The KoreK attack reaches a success rate of up to 97%, if a high enough amount
of packets are available. The KoreK attack is much faster if the initialization
vectors are generated randomly, instead of a sequential counter. The Linux
IV generating code results in nearly no noticeable difference to a plain counter
mode.

64 Erik Tews



6.2 The KoreK key recovery attack

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20

pr
ob

ab
ili

ty
 o

f s
uc

ce
ss

number of sessions collected / 100,000

WEP
WEPCTR

WEPLINUX

Figure 6.14: KoreK success rate
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6.3 Mantin’s second round attack from ASIACRYPT’05

In their final section of the paper about the FMS attack [FMS01], Fluhrer,
Mantin, and Shamir suggested to skip the first 256 bytes of output of the RC4-
PRGA. RSA Security made the same suggestions [Lab01] in response to the
FMS attack :

RSA Security has discouraged such key derivation methods, recom-
mending instead that users consider strengthening the key schedul-
ing algorithm by preprocessing the base key and any counter or
initialization vector by passing them through a hash function such
as MD5. Alternatively, weaknesses in the key scheduling algorithm
can be prevented by discarding the first 256 output bytes of the
pseudo-random generator before beginning encryption. Either or
both of these techniques suffice to defeat the new attacks on WEP
and WEP2.

So we should note, that RSA still considered RC4 to be safe, if the first 256
bytes of output are discarded, even if a simple key generation method as in
WEP is used to generate the per packet key.

In 2005, Itsik Mantin published his paper A Practical Attack on the Fixed RC4
in the WEP Mode [Man05] where he showed, that RC4 in WEP-like modes can
even be attacked, if the first 256 bytes of output are unavailable.

So we need a new theoretical model for this kind of attack scenario. We define
a new oracle OSKIPWEP , which uses OWEP and skips the first lskip bytes of its
output.

Oracle OSKIPWEP (OWEP , lskip)
while query()

(IV,X)← ask(OWEP )
output(IV,X[lskip]|| . . . ||X[length(X)− 1])

Mantin showed the following:

Attack 7 Mantin(2005): An attacker who has access to an Oracle
OSKIPWEP (OWEP (liv, 16, 1), 256) can recover the secret key of Oracle OWEP

with a probability of 80% by sending about 225 ≈ 3.3 ·107 queries to OSKIPWEP

and by testing up to 248 ≈ 2.8 ·1014 different keys for correctness, even if he has
not got direct access to OWEP . Different tradeoffs for CPU-time and number
of queries are possible. liv must be large enough to generate 225 different IVs.
The complexity decreases for shorter root keys.

This attack had no practical impact on WEP, because the first one or two bytes
of the RC4-PRGA output can most times easily be recovered, and it is usually
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difficult to recover the 257th byte of output of the RC4-PRGA. Additionally,
the time and data complexity was much worse than the original FMS attack.
However, Mantin could successfully show, that skipping the first 256 bytes of
output of the RC4-PRGA is not sufficient to prevent key recovery attacks, if
RC4 is used in a WEP-like mode.

For us, this attack is of interest, because it was the first key recovery attack
on RC4, which made use of the so called Jenkins’ correlation [Man05, MS02,
Jen96, Kle06] which is also called Glimpse property or RC4 Glimpse.

6.3.1 The Jenkins’ correlation

In 1996, Robert J. Jenkins published an observation on RC4 and its properties
as a random number generator. Jenkins noted, that:

Prob (S[S[i] + S[j]] + S[j] = i) =
2

256
(6.14)

holds for a random internal state of the RC4-PRGA. This is twice as high, as
someone would intuitively expect it to be.

This property was later generalized and proven by different researchers [Man05,
Kle06]. While Mantin has written a more general generalization [Man05] of the
Jenkins’ correlation, I think that Klein [Kle06] has found a more exact proof.

In a nutshell, Klein could show the following probabilities:

Theorem 1 Let n ≥ 2 and i ∈ {0, . . . , n− 1} be arbitrary but fixed values. For
every value x ∈ {0, . . . , n − 1} and a randomly chosen permutation S of the
numbers 0, . . . , n− 1, we got:

Prob(S[j] + S[S[i] + S[j]] = i | j = x) =
2
n

(6.15)

and for every value c ∈ {0, . . . , n− 1} with c 6= i:

Prob(S[j] + S[S[i] + S[j]] = c | j = x) =
n− 2

n(n− 1)
(6.16)

From that follows that independently of the value of j, we got the following
probability for every value of n ≥ 2 and i ∈ {0, . . . , n − 1} and a randomly
chosen permutation of the numbers {0, . . . , n− 1}:
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Prob(S[j] + S[S[i] + S[j]] = i) =
2
n

(6.17)

and for every value c ∈ {0, . . . , n− 1} with c 6= i:

Prob(S[j] + S[S[i] + S[j]] = c) =
n− 2

n(n− 1)
(6.18)

This can be used to gather information about the internal state of the RC4
stream cipher. Let’s assume we observe an output

X[l] = Sn+l+1[Sn+l+1[l + 1] + Sn+l+1[jn+l+1]] (6.19)

We now know that:

Prob(Sn+l+1[jn+l+1] + X[l] = l + 1) =
2
n

(6.20)

Prob(Sn+l+1[jn+l+1] = l + 1− X[l]) =
2
n

(6.21)

And for every c 6= Sn+l+1[jn+l+1]:

Prob(c = l + 1− X[l]) =
n− 2

n(n− 1)
(6.22)

And we know that Sn+l+1[jn+l+1] was just swapped with Sn+l[l+ 1]. So we can
rewrite these equations to:

Prob(Sn+l[l + 1] = l + 1− X[l]) =
2
n

(6.23)

Prob(c = l + 1− X[l]) =
n− 2

n(n− 1)
(6.24)

6.3.2 Mathematical background

This correlation can be used to recover the secret key of OSKIPWEP . First let’s
assume that an attacker knows K[0] . . .K[l − 1] and he wants to recover K[l].
The attacker can now simulate the first l steps of the RC4-KSA. Let’s assume
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that Sl[1] = l holds. In the next step, a value k = Sl[jl + Sl[l] + K[l]] is swapped
to Sl+1[l]. Knowledge of k would reveal K[l], as it does in the original FMS
attack.

With a probability of about
(

n−2
n

)n−l−1, S[1] and S[l] will remain unchanged in
the remaining KSA. In the first step of the RC4-PRGA, i will be set to 1 and
j will be set to Sn[1] = l. Now, Sn[1] and Sn[l] will be swapped and Sn+1[1]
takes the value k. The actual output produced by the RC4-PRGA cannot be
observed, because the first n words of output of the RC4-PRGA are skipped
by OSKIPWEP . With a probability of about

(
n−1

n

)n−1, this value will remain
unchanged in the next n − 1 steps of the RC4-PRGA. We do not care about
S[l] anymore after the first step of the RC4-PRGA.

We now have a look at step n + 1 of the RC4-PRGA where the first output
byte we can observe is produced. Sn+n+1[1] still contains the interesting value
k. Using Jerkins’ correlation, we know that 1−X[n+ 1] will be Sn+n+1[1] with
a probability of 2

n . If Sn+n+1[1] 6= k holds, 1 − X[n + 1] = k holds with a
probability of n−2

n(n−1) . In total, we can say that

Prob(1− X[n+ 1] = k) ≈ q
(

2
n

)
+ (1− q)

(
n− 2

n(n− 1)

)
(6.25)

q =
(
n− 2
n

)n−l−1(n− 1
n

)n−1

(6.26)

If 1− X[n+ 1] = k = Sl[jl + Sl[l] + K[l]] holds,

FMantin(K[0], . . . ,K[l − 1],X[n+ 1]) = S−1
l [1− X[n+ 1]]− jl − Sl[l] (6.27)

will take the value of K[l].

The actual probability for Prob(1 − X[n + 1] = k) might even be a little bit
higher, because Sn+n+1[1] = k could hold by chance, even if S[1] or S[l] where
modified in the remaining RC4-KSA or S[1] in step 2 to n in the RC4-PRGA.

Mantin used a slightly different theoretical model for estimating Prob(1−X[n+
1] = k), which gives a slightly higher probability for Prob(1 − X[n + 1] =
k). In our model, the probability for n = 256 and l = 3, the probability for
Prob(X[n + 1] = k) is approximately 1.0474

256 . Mantin did empirical tests and
estimated, that Prob(1− X[n+ 1] = k) is approximately 1.075

256 for n = 256 and
a not further specified value for l. (But we can assume that l was reasonably
small for these tests)
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6.3.3 An example

Let’s assume that RC4 with the key K = 221, 37, 135, 232, 150, 200, 133, 253 is
used. The attacker knows the first l = 3 bytes of the key and is interested in
K[3].

K = 221

0

37

1

135

2

232

3

150

4

i = 0

S0 = 0

0

1

1

2

2

3

3

4

4

15

15

117

117

140

140

221

221

j1 = 221

K = 221 37 135 232 150

i = 1

S1 = 221 1 2 3 4 15 117 140 0

j2 = 3

K = 221 37 135 232 150

i = 2

S2 = 221 3 2 1 4 15 117 140 0

j3 = 140

K = 221 37 135 232 150

i = 3

S3 = 221 3 140 1 4 15 117 2 0

j4 = 117

K = 221 37 135 232 150

i = 4

S4 = 221 3 140 117 4 15 1 2 0

j5 = 15

Figure 6.15: First steps of KSA for K = 221, 37, 135, 232, 150, 200, 133, 253

The attacker can simulate the first 3 steps of the RC4-KSA. In the next step,
j4 = 117 and S3[j4] = 117 is swapped with S4[3]. Knowledge of S4[3] would
reveal j4 and K[3]. Figure 6.15 contains a illustration of these steps.

S4[3] and S4[1] remain unchanged for the rest of the RC4-KSA. When the first
byte of output X[0] is produced, j257 = 3 and S256[4] = 117 is swapped with
S257[1]. S257[1] = 117 remains unmodified for the next 255 steps of the RC4-
PRGA. When X[256] is produced, j513 = 221 and S512[1] = 117 and S512[140] =
166 are swapped. The output is now S513[S513[1] + S513[176]] = S513[1] = 140.
Figures 6.16 and 6.17 illustrate these steps.
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An attacker who calculates

FMantin(28, 230, 191, 140) = S−1
3 [1− X[256]]− j3 − S3[3]

= S−1
3 [1− 140]− 140− 1

= S−1
3 [117]− 140− 1

= 117− 140− 1
= 232
= K[3]

(6.28)

would have gotten the correct key byte K[3].

i = 1

S256 = 3

1

11

2

117

3

209

14

152

120

j257 = 3

i = 2

S257 = 117 11 3 209 152

j258 = 14

S257[1] + S257[3] = 120

X[0] = 152

Figure 6.16: First byte of output for K = 221, 37, 135, 232, 150, 200, 133, 253

i = 1

S512 = 117

1

209

2

155

174

140

221

j513 = 221

i = 2

S513 = 140 209 155 117

j514 = 174

S513[1] + S513[221] = 1

X[256] = 140

Figure 6.17: 256th byte of output for K = 221, 37, 135, 232, 150, 200, 133, 253
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6.3.4 Implementation

An implementation of Mantin’s second round attack is not available in the
aircrack-ng toolsuite. The attack performs much worse than any other attack
and the first two bytes of the key stream are nearly always guessable in a WEP
network. This attack is only described because it was the first key recovery
attack against WEP which uses the Jenkins’ correlation.
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Even if Mantin’s attack from ASIACRYPT’05 [Man05] was the first key recovery
attack against WEP, which did use the Jenkins’ correlation (Section 6.3), it
is not the most effective attack you can build using the Jenkins’ correlation.
Again, all additions and subtractions in this Chapter, except for probabilities,
are done mod n.

7.1 Klein’s Analysis on RC4

In 2005, Andreas Klein gave a first talk about his analysis of RC4. In a nutshell,
Klein found two attacks on RC4 in WEP-like modes of operations.

• The first attack is the same as Mantin’s attack from ASIACRYPT’05
[Man05]. Additionally, Klein analyzed the case, where the initialization
vector is appended to the root key (Rk||IV). In WEP, the initialization
vector is always prepended to the root key (IV||Rk). Klein used a slightly
different theoretical model to analyze the success probability for the at-
tack, which is very close to the model I used in Section 6.3.2.

• The second attack is a first round attack as the FMS attack or KoreK
attack. Instead of using just the first two bytes of output of the RC4-
PRGA, X[k] is used to determine the key byte K[k + 1].

I have already discussed the second round attack in Section 6.3.2. For the rest
of this chapter, I will only focus on Klein’s first round attack.

7.1.1 Klein’s first round attack

Klein’s first round attack is the simplest and most pretty attack on RC4 in
WEP-likes modes of operations, I am currently aware of. Basically, Klein could
show the following:

Attack 8 Klein (2005): An attacker who has access to an oracle
OWEP (3, 13, 15) can recover the secret key of OWEP with a success probabil-
ity of 50% with 43,000 queries to OWEP and negligible computational effort.
The same holds if the attacker has access to OWEP CTR or OWEP LINUX . The
attacker can recover the secret key with a success probability of 95% with 70,000
queries to OWEP , OWEP CTR or OWEP LINUX .
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Mathematical background

The idea behind Klein’s attack is quite simple but effective. Let’s assume that
we know K[0] . . .K[l − 1] and want to recover K[l]. We can simulate the first
l steps of the RC4-KSA. In the next step, the value k = Sl[jl + Sl[l] + K[l]] is
swapped to Sl+1[l]. Knowledge of k would reveal K[l], as it does in the FMS
attack or Mantin’s second round attack. i will only take the value l again after
exactly n − 2 steps of the remaining RC4-KSA (n − l − 1 steps are executed
here) and the RC4-PRGA (l − 1 steps are executed, before i takes the value
l again). So Sl+1[l] will only be changed if it is hit by j, which happens with
a probability of exactly

(
1
n

)n−2 in the generalized randomized RC4-KSA and
RC4-PRGA. With a probability of 1−

(
1
n

)n−2, Sl+1[l] will be modified and set
to a different value than k.

We now make use of the Jenkins’ correlation. We have to distinguish between
two cases:

1. Sn+l−1[l] = k

This happens with probability
(

1
n

)n−2. According to Jenkins’ correlation,
the probability for l − X[l − 1] = k in this case is:

Prob (l − X[l − 1] = k | Sn+l−1[l] = k) =
2
n

(7.1)

2. Sn+l−1[l] 6= k

This happens with probability 1 −
(

1
n

)n−2. According to Jenkins’ corre-
lation, the probability for X[l − 1] = k in this case is:

Prob (l − X[l − 1] = k | Sn+l−1[l] 6= k) =
n− 2

n(n− 1)
(7.2)

In total, this gives us the following probability for X[l− 1] = k = Sl[jl + Sl[l] +
K[l]]:

Prob (l − X[l − 1] = k) =

((
1
n

)n−2
)

2
n

+

(
1−

(
1
n

)n−2
)

n− 2
n(n− 1)

(7.3)

Solving this for K[l] gives us the following formula:

FKlein(K[0], . . . ,K[l − 1],X[l − 1]) = S−1
l [l − X[l − 1]]− (Sl[l] + jl) (7.4)

For n = 256, the probability for FKlein taking the value of K[l] is approximately
1.3676

n . This probability does not depend on l, because there are always n − 2
swaps in the RC4-KSA and RC4-PRGA, before i takes the value l again.
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If we look at the Klein attack compared to the FMS or KoreK attack, we should
notice some interesting differences.

• The Klein attack is able to make use out of every single session we receive
from OWEP . Even if the probability that FFMS does return a correct
value is much higher than the probability that FKlein does return a correct
value, the Klein attack totally outperforms the FMS attack, because it is
able to collect information from every single session. The KoreK attack is
able to use more sessions than FMS attack, but is still much worse than
the Klein attack, when it comes to recover a key with a relatively low
number of sessions.

• The success probability of FKlein does not depend on the key byte which
is attacked. Both FMS and KoreK had lower success probabilities for
the first key bytes than for the last key bytes. Additionally, the total
percentage of usable sessions is much lower for the first key bytes than for
the last key bytes.

• The Klein attack uses more bytes of the key stream. The exact number
ob bytes needed by Klein depends on the length of the secret root key and
the length of the IV value. This makes it harder to apply, if a method for
key stream recovery is used, which can not recover all needed key stream
bytes with a high enough certainty. We will discuss that problem later.

Unfortunately, Klein did never implement or tested his attack against a real
WEP secured network.

7.1.2 An example

Let’s assume that RC4 is used with K = 12, 111, 28, 107, 226, 211, 232, 247. The
attacker knows the first l = 3 bytes of K and is interested in K[l].

The attacker can simulate the first 3 steps of the RC4-KSA. In the next step

j4 = j3 + S3[3] + K[3]
= 154 + 3 + 107
= 8

(7.5)

S3[3] = 3 and S3[8] = 8 are now swapped and S4[3] = 8. S[4] remains unchanged
for the rest of the RC4-KSA and the beginning of the RC4-PRGA. These steps
of the RC4-KSA are illustrated in figure 7.1.

When X[2] is generated, jn+3 = 182 and X[2] = Sn+3[Sn+3[3]+Sn+3[182]] = 251
is the output of the RC4-PRGA. An attacker who calculates
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K = 12

0

111

1

28

2

107

3

226

4

i = 0

S0 = 0

0

1

1

2

2

3

3

4

4

8

8

12

12

124

124

154

154

238

238

j1 = 12

K = 12 111 28 107 226

i = 1

S1 = 12 1 2 3 4 8 0 124 154 238

j2 = 124

K = 12 111 28 107 226

i = 2

S2 = 12 124 2 3 4 8 0 1 154 238

j3 = 154

K = 12 111 28 107 226

i = 3

S3 = 12 124 154 3 4 8 0 1 2 238

j4 = 8

K = 12 111 28 107 226

i = 4

S4 = 12 124 154 8 4 3 0 1 2 238

j5 = 238

Figure 7.1: First 4 steps of RC4-KSA for K = 12, 111, 28, 107, 226, 211, 232, 247

FKlein(12, 11, 28, 251) = S−1
3 [3− X[2]]− (S3[3] + j3)

= S−1
3 [3− 251]− (3 + 154)

= S−1
3 [8]− 157

= 8− 157
= 107
= K[3]

(7.6)

would have gotten the right value for K[3] = 107.

7.1.3 Implementation

Aircrack-ng contains an implementation of the Klein attack, which does not
do key ranking. All implementations of previous attacks do key ranking, but
where limited to 3 minutes of CPU time at most in all benchmarks to esti-
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i = 3

S258 = 8

3

91

4

9

17

251

182

j259 = 182

i = 4

S259 = 251 91 9 8

j260 = 17

S259[3] + S259[182] = 3

X[2] = 251

Figure 7.2: Generation of X[2] for K = 12, 111, 28, 107, 226, 211, 232, 247

Figure 7.3: aircrack-ng 1.0 beta 1 Klein results

mate their success rate. To launch a Klein attack on all packets captured in
/tmp/kleintest.ivs, an attacker has to execute the following command:

./aircrack-ng -0 -p 1 -P 2 /tmp/kleintest.ivs

If the attack was successful, an output similar to figure 7.3 will be displayed.

Because no key ranking is done, no progress is displayed by aircrack while
calculating the key.

7.1.4 Success rate

To measure the success rate for the Klein attack, aircrack-ng was used. It
usually takes less than a second to execute the Klein attack. The results are
shown in figure 7.4.

As you can see, the Klein attack reaches nearly 100% success probability.
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Figure 7.4: Klein success rate

7.2 Key ranking

Until now, all attacks we have seen so far, somehow tried to guess an unknown
value K[l], of a RC4 key, using a lot of different sessions with the same value
for K[l], and with K[0] to K[l − 1] known to the attacker. The method used
for deciding on K[l] is always a voting process, where all sessions available to
the attacker or a subset of them are examined and every session can vote for
K[l] having certain values, or in the case of the A neg KoreK attack, not having
a certain value. After all votes have been accounted, a guess or let’s say a
decision for K[l] was made. Now K[l] can be treated as known and the attacker
can continue to recover K[l + 1]. From an abstract point of view, this can be
seen as a kind decision tree for the secret root key.

The first decision needs to be made for Rk[0]. Usually we assume that the
value with the most votes will be the correct value for Rk[0] and continue with
the determination of Rk[1]. This works great if a high number of sessions are
available to the attacker. Unfortunately if the number of sessions is relatively
low, the correct value for Rk[0] is not necessarily the most voted value, but
tends to be one of the top voted values. Let’s assume that the most voted value
is not Rk[0], but Rk[0] is the second most voted value.

A simple implementation of an attack, which always assumes that the most
voted value is the correct value, would fail, because Rk[0] is incorrect and there-
fore the computed key will be incorrect. Of course, an attacker would still like
to be able to compute the key with a lower amount of sessions available. Instead
of computing a single key, an attacker can compute a set of keys, by following
some alternative computations paths too. For example, an attacker could just
assume that Rk[0] was the first or second most voted value and follow both
computational paths. By then testing every single key in this set for correct-
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ness, an attacker can find the correct key in this set. Usually, such an approach
is called key ranking, which comes from linear cryptanalysis [Mat94] or error
correction, which comes from the area of statistical attacks [Sch00].

7.2.1 Key ranking strategies

Of course, an attacker can usually not follow all possible alternative paths,
which would be equivalent to a brute force attack on the whole key space.
There are multiple strategies to decide which alternative computational paths
to follow. I will present some ideas here:

Static number of paths to follow: This is a very simple strategy. At each de-
cision point, the k most probable ways are followed. This is very easy to
implement, but has some disadvantages. First, the number of key candi-
dates cannot really be fine adjusted. In general, if there are lkey decisions
to be made, and k is the number of paths to follow at every single decision,
this strategy will compute

klkey (7.7)

different keys and

klkey+1 − 1
k − 1

(7.8)

different voting processes will happen during these computations. If the
secret root key has a length of lkey = 13 bytes, the only useful values
for k are 2, which results in 213 = 8, 192 different keys and 16, 383 vot-
ing processes, or 3, which results in 313 = 1, 594, 323 different keys and
2, 391, 484 voting processes. Even for k = 3, the number of required vot-
ing processes is so high, that this value might be unfeasible on an average
desktop computer.

Static number of alternative choices per path: Let’s assume we just take the
most voted value and the second most voted value as possible choices.
We can additionally demand, that every computational path is allowed
to take the second value ad most k times. In total, this will result in

k∑
m=0

(
liv
m

)
(7.9)

different keys and

k+1∑
m=1

(
liv
m

)
(7.10)

voting processes during the whole computation. For k = liv, this method
is equivalent to the previous one, with 2 paths to follow.
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This scheme can be extended to taking not just the second candidate, but
other top voted values.

Intelligent choosing of alternate computation paths: Both methods pre-
sented so far just use the order of the possible values for each key byte.
It is possible to use more information from the voting process. Let’s
assume that an attacker has tried a simple attack, but at the end of the
computation path, the resulting key is incorrect. This means that at
least one of the decisions in the path was incorrect. An attacker can
now start looking for a decision where the difference between the chosen
value and the next alternative candidate was relatively low. Naturally
speaking, the attacker is looking for a decision, where he was relatively
uncertain about which value to decide for. At this point, the next best
alternate candidate is chosen and the attack is continued at this point.

This is only the basic idea behind this strategy. Unfortunately, if a de-
cision Rk[l] = c was wrong, all following voting processes will be based
on the assumption that Rk[l] = c, and will perhaps just result in more
or less random values. An attacker would now mostly choose a decision
after Rk[l], because the difference between the number of votes tends to
be small, if the voting process just outputs random votes. So instead of
choosing the decision the attacker was most uncertain about, an attacker
should choose the first decision in the computation path he was somehow
uncertain about.

Aircrack-ng implements such a strategy for the FMS and KoreK attack.
At every decision point in the decision tree, aircrack will try all values
which got at least half of the votes of the most voted value. This behavior
can be controlled by the so called fudge factor. Setting the fudge factor
to k makes aircrack try all values which got at least 1

k of the votes of the
most voted value.

7.2.2 General improvements for key ranking

Additionally, there are some strategies which can be used nearly independently
of the key ranking strategy, to improve the effectiveness of the attack:

Key space restriction: We assume that the attacker has some knowledge of the
key which is being used. For example, some vendors ship access points
with default keys which just consist of ASCII characters representing dec-
imal numbers. This means that every Rk[l] will have a value between 48
and 57 inclusively. At every decision point where a decision would be
made, that would result not in 48 ≤ Rk[l] ≤ 57, we choose the next best
alternative value, which results in a valid value for Rk[l].

Aircrack implements such a mode, by specifying the parameter -h to
aircrack, it will only allow values in the key, which represent numbers in
the ASCII code. By specifying the parameter -c, aircrack will only allow
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alpha-numeric key bytes. By specifying the parameter -t, aircrack will
only allow binary coded decimal key bytes.

Brute forcing the last bytes: Because a voting process is much more expensive
in CPU time than testing a small amount of keys, an attacker can skip
all voting processes for the last one or two bytes, and just try all possible
values for them.

Aircrack does a brute force search for the last key byte by default for the
FMS and KoreK attack. By specifying the parameter -x2, a brute force
search is done on the last two bytes of the key.

Brute forcing the first byte: Most attacks are much better in determine the
correct value for the last key bytes than the first key byte. An attacker
might choose to just try all possible values for the first key byte, instead
of determine it using a voting process. The drawback of such an approach
would be, that it will heavily increase the CPU time by at most factor
256.

7.3 The basic PTW attack

Even if the Klein attack is a very simple and effective attack when compared to
the FMS attack or the KoreK attack, there is still some room for improvements.
Unfortunately, we will have to give up some of the simplicity.

Attack 9 Pyshkin, Tews, Weinmann (2007): An attacker who has access to
an oracle OWEP (3, 13, 15) can recover the secret key of OWEP with a success
probability of 50% with 35,000 queries to OWEP and negligible computational ef-
fort. The same holds if the attacker has access to OWEP CTR or OWEP LINUX .
The attacker can recover the secret key with a success probability of 95% with
55,000 queries to OWEP , OWEP CTR or OWEP LINUX .

7.3.1 Determine sums of key bytes instead of key bytes

The basic idea is simple. If an attacker can determine Rk[0] and Rk[0] +
Rk[1] mod n independently, he can calculate Rk[0] and Rk[1] = (Rk[0]+Rk[1])−
Rk[0] from these values. If the attacker later decides that the decision for Rk[0]
was incorrect, he just has to do a new single subtraction to update the value
for Rk[1]. For the rest of this document, let σi =

∑i
m=0 Rk[m].

In general, a attacker who knows all values σ0 to σlkey−1 can compute Rk[0]
to Rk[lkey − 1] from these values. Only lkey subtractions mod n are needed for
these computations, which is relatively low to the computational effort of an
single RC4-KSA, which usually needs at least 2 · n additions mod n, depend-
ing on the exact implementation. Of course, it is possible to compute Rk[0]
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to Rk[lkey − 1] from σ0 to σlkey−1, using just lkey additions mod n. So an at-
tacker can alternatively try to determine σ0 to σlkey−1, and test these values for
correctness, without any noticeable impact in the performance.

7.3.2 Extending the Klein attack to the sum of the first 2 key bytes

Let’s recall the Klein attack. We assume again that the attacker knows K[0] to
K[l− 1]. Now, the attacker is interested in K[l] + K[l+ 1] mod n instead of K[l].
In step l + 1 of the RC4-KSA, Sl[l] + K[l] is added to jl and Sl[jl+1] = k and
Sl[l] are swapped. In the Klein attack, we used Jenkins’ correlation to guess k
from X[l − 1] and then determined K[l] from k.

Now, we ignore this step and look at step l+ 2 of the RC4-KSA. Here Sl+1[l+
1] + K[l + 1] is added to jl+1 and we got

jl+2 = jl+1 + Sl+1[l + 1] + K[l + 1]
= jl + Sl[l] + K[l] + Sl+1[l + 1] + K[l + 1]

(7.11)

Now Sl+1[l+1] and Sl+1[jl+2] = k′ are swapped. Let’s assume that Sl+1[l+1] =
Sl[l+ 1] and Sl+1[jl+2] = Sl[jl+2] holds. (We will estimate the exact probability
for that later) If the attacker knows

Sl+2[l + 2] = Sl[jl + Sl[l] + K[l] + Sl[l + 1] + K[l + 1]] (7.12)

he can compute K[l]+K[l+1] mod n by solving equation 7.12 for K[l]+K[l+1].
Again, we can use the Jenkins’ correlation to determine Sl+2[l+2] from X[l+1].
In total, that gives us the following function

Fptw2(K[0], . . . ,K[l − 1],X[l]) = S−1
l [l + 1− X[l]]− (jl + Sl[l] + Sl[l + 1])

(7.13)

We will now try to estimate the success probability that Fptw2 takes the correct
value K[l] + K[l + 1] mod n. As in the Klein attack, we have two cases:

• The following conditions are met:

1. Sl+1[l + 1] = Sl[l + 1]
This can be expressed as jl+1 does not take the value l + 1. This
happens with probability n−1

n .
2. Sl+1[jl+2] = Sl[jl+2]

This can be expressed as jl+1 and i do not take the value jl+2. We
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assume that this happens independently of the previous condition
and happens with a probability of

(
n−1

n

)2.

3. Sl+2[l + 2] stays unmodified in the next n− 2 steps.

As in the Klein attack, this happens with probability
(

n−1
n

)n−2.

In total, the probability that Fptw2 takes the value K[l] + K[l + 1] mod n
and these 3 conditions are met is:(

n− 1
n

)3

·
(
n− 1
n

)n−2

· 2
n

(7.14)

The part
(

n−1
n

)3 can be seen as a correction for the original success prob-
ability of FKlein.

• One of these three conditions is not met.

If just condition 3 is not met, Sl+n[l + 1] will definitely not contain k′. If
condition 1 or 2 is not met, Sl+n[l+ 1] might contain k′. But we can say,
that the probability that Fptw2 takes the value of K[l] + K[l+ 1] mod n if
at least one of the three conditions is not met is at least:

(
1−

(
n− 1
n

)3

·
(
n− 1
n

)n−2
)
· n− 2
n(n− 1)

(7.15)

In total, the probability that Fptw2 takes the correct value is at least:

q2 ·
(
n− 1
n

)n−2

· 2
n

+

(
1− q2 ·

(
n− 1
n

)n−2
)
· n− 2
n(n− 1)

(7.16)

with

q2 =
(
n− 1
n

)3

(7.17)

q2 can be seen as a kind of correction factor for the success probability of
the Klein attack which takes into account, that we need certain things not to
happen in the two steps of the RC4-KSA, until k′ is swapped to its location.
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An example

Let’s assume that RC4 is used with K = 110, 106, 205, 97, 83, 37, 81, 179. The
attacker knows the first l = 3 bytes of K and is interested in K[3] + K[4].

K = 110

0

106

1

205

2

97

3

83

4

37

5

i = 0

S0 = 0

0

1

1

2

2

3

3

4

4

5

5

12

12

99

99

110

110

141

141

168

168

217

217

j1 = 110

K = 110 106 205 97 83 37

i = 1

S1 = 110 1 2 3 4 5 12 99 0 141 168 217

j2 = 217

K = 110 106 205 97 83 37

i = 2

S2 = 110 217 2 3 4 5 12 99 0 141 168 1

j3 = 168

K = 110 106 205 97 83 37

i = 3

S3 = 110 217 168 3 4 5 12 99 0 141 2 1

j4 = 12

K = 110 106 205 97 83 37

i = 4

S4 = 110 217 168 12 4 5 3 99 0 141 2 1

j5 = 99

K = 110 106 205 97 83 37

i = 5

S5 = 110 217 168 12 99 5 3 4 0 141 2 1

j6 = 141

Figure 7.5: First 5 steps of RC4-KSA for K = 110, 106, 205, 97, 83, 37, 81, 179

After the first 3 steps of the RC4-KSA,

j4 = j3 + S3[3] + K[3]
= 168 + 3 + 97
= 12

(7.18)
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Now S3[3] = 3 and S3[12] = 12 are swapped. In the next step:

j5 = j4 + S4[4] + K[4]
= 12 + 4 + 83
= 99
= j3 + S3[3] + K[3] + S4[4] + K[4]
= j3 + S3[3] + K[3] + S3[4] + K[4]

(7.19)

and S4[4] = 4 and S4[99] = 99 are swapped. S5[4] = 99 remains unchanged for
the rest of the RC4-KSA and the beginning of the RC4-PRGA. These steps are
illustrated in figure 7.5.

i = 3

S258 = 87

3

99

4

137

5

152

36

243

56

109

74

161

155

j259 = 56

i = 4

S259 = 243 99 137 152 87 109 161

j260 = 155

S259[3] + S259[56] = 74

X[2] = 109

i = 5

S260 = 243 161 137 152 87 109 99

j261 = 36

S260[4] + S260[155] = 4

X[3] = 161

Figure 7.6: Generation of X[2] and X[3] for K = 110, 106, 205, 97, 83, 37, 81, 179

When X[3] is produced, jn+4 = 155 and Sn+3[4] = 99 and Sn+3[155] = 161 are
swapped. The output of the RC4-PRGA is now

Sn+4[Sn+4[4] + Sn+4[155]] = Sn+4[161 + 99]
= Sn+4[4]
= 161

(7.20)
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An attacker who calculates

Fptw2(110, 106, 205, 161)

=S−1
3 [3 + 1− X[2]]− (j3 + S3[3] + S3[3 + 1])

=S−1
3 [4− 161]− (168 + 3 + 4)

=S−1
3 [99]− 175

=99− 175
=180
=97 + 83
=K[3] + K[4]

(7.21)

would have gotten the correct sum K[3]+K[4] = 180. These steps are illustrated
in figure 7.6.

7.3.3 Extending the Klein attack to sums of key bytes

Using the same method, we can find functions, which take the value of∑m
a=l K[a] mod n with a slightly lower probability than FKlein takes the value

of the next key byte K[l].

In general, in the next m steps of the RC4-KSA, the value

l+m−1∑
a=l

(Sa[a] + K[a]) mod n (7.22)

is added to jl. For example, for m = 3, this is

Sl[l] + Sl+1[l + 1] + Sl+2[l + 1] + K[l] + K[l + 1] + K[l + 2] (7.23)

Now, Sl+m−1[jl+m] = k is swapped with Sl+m−1[l+m− 1]. The result is stored
in Sl+m[l+m−1] = k. If the attacker can determine Sl+m[l+m−1] and knows
the location of k in Sl+m−1, he can determine what was added to jl in the next
m steps of the RC4-KSA. If none of the value from Sl+1[l+1] to Sl+m−1[l+m−1]
has been altered, before it was added to j, this will reveal

∑l+m−1
a=l K[a] mod n.

With other words, if we assume that Sl[jl+m] = Sl+m−1[jl+m] = k and jl+m =
jl +

∑l+m−1
a=l (Sl[a] + K[a]) holds, we can solve this for

∑l+m−1
a=l K[a] and get the

following formula:

l+m−1∑
a=l

K[a] = S−1
l [k]− jl −

(
l+m−1∑

a=l

Sl[a]

)
(7.24)

Using the Jenkins’ correlation, we know that l + m − 1X[l + m − 2] tends to
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take the value of k. In total, this gives us the following functions:

Fptwm(K[0], . . . ,K[l − 1],X[l +m− 2])

=S−1
l [l +m− 1− X[l +m− 2]]−

(
l+m−1∑

a=l

Sl[a]

)
(7.25)

An estimation of the success probability

We will now try to get a good lower bound for the probability of Fptwm to take
the correct value. We will extend the special case for two bytes we have seen
before to an arbitrary number m of following key bytes.

We will use a similar approach to the special case with just the sum of two key
bytes. We will try to estimate, with which probability certain events in the
RC4-KSA will occur:

•
∑l+m−1

a=l Sa[a] =
∑l+m−1

a=l Sl[a]

These sums will at least be equal, if all summands are equal. This means
that j is not allowed to modify S[a] after jl and before the value Sa[a] is
added to j in the a+ 1th step. In the l + 1th step, jl+1 is not allowed to
take any value from l + 1 to l + m − 1 inclusively, which happens with
probability

(
n−m+1

n

)
.

In the next step, jl+2 is allowed to take the value l+ 1, because Sl+1[l+ 1]
has already been added to jl+1, but no value from l + 2 to l + m − 1
inclusively. In general, jl+h is not allowed to take exactly m− h different
values. For a single step, this happens with probability n−(m−h)

n . For all
steps from step l + 1 to step l +m, this happens with probability

m−1∏
a=1

(
n− a
n

)
(7.26)

There is still a small chance that multiple summands are unequal, but∑l+m−1
a=l Sa[a] =

∑l+m−1
a=l Sl[a] holds anyway. Because we are just inter-

ested in a good lower bound for the success probability, we ignore this, to
keep our formulas a little bit more simple.

• Sl[k] = Sl+m−1[k]

Now, Sl[k] could be modified by i or j in any of the following m − 1
steps, before S[k] is swapped to Sl+m[l+m− 1]. If j changes randomly, j
will not take the value k with probability

(
n−1

n

)m−1. Because i acts as a
counter, it will take exactly m−1 different values in the next m−1 steps.
The probability that none of these values is k is

(
n−(m−1)

n

)
. In total, the

probability that Sl[k] = Sl+m−1[k] holds is at least:
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(
n− 1
n

)m−1(n− (m− 1)
n

)
(7.27)

This is again a lower bound, because if i and j hit S[k] in the same step,
S[k] will not be modified at all.

If both conditions are holding, the value Sl+m[l+m−1] will not be modified in
the remaining n− 2 steps of the RC4-KSA and RC4-PRGA, until X[l+m− 2]
is produced. With a probability of 2

n , Fptwm will take the correct value of∑l+m−1
a=l K[a]. If one of these conditions is not holding, most probably a wrong

value will be at Sl+m+n−2[l+m− 1] when X[l+m− 2] is produced, and Fptwm

will take the correct value with a probability of just n−2
n(n−1) .

In total, the probability that Fptwm takes the correct value is at least:

qm ·
(
n− 1
n

)n−2

· 2
n

+

(
1− qm ·

(
n− 1
n

)n−2
)
· n− 2
n(n− 1)

(7.28)

with

qm =
(
n− 1
n

)m−1(n− (m− 1)
n

)
·

m−1∏
a=1

(
n− a
n

)
(7.29)

7.3.4 Executing the attack

Executing the PTW attack is a little bit different than the previous at-
tacks. First, as usual, we assume that an attacker has access to an Oracle
OSKIPWEP (OWEP (3, 13, 15), 2) and starts collecting sessions. In all previous
attacks, the attacker tried to determine Rk[0] first, before looking at Rk[1]. In-
stead, the attacker now evaluates all functions Fptw1 to Fptw13 for every session.
The result of each function is called a vote for σm having a specific value. The
votes for each σm are stored in a separate table. We will call this table frequency
table for σm.

Now, the attacker assumes that each top voted entry in each frequency table is
the correct value for σm. These values are now tested for correctness. If they
are, the attacker can simply calculate the key from these values.

Of course, this attack itself is expected to be weaker than the Klein attack,
because every single function, except Fptw1 , which is the same as FKlein, has
a lower success probability than FKlein. The only advantage of this attack
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so far is, that an implementation does not need to hold all sessions in the
main memory, until the attack is finished. Instead, every session is not needed
anymore, after all votes from that session have been added to the frequency
tables.

The main advantage of the PTW attack is, that key ranking is much faster than
in the Klein attack.

7.3.5 Key ranking with the PTW attack

Because all values for σm can be determined independently instead of sequen-
tially than in all previous attacks, the key ranking strategies introduced in
Section 7.2 can be modified to make use of this advantage. Of course, all these
strategies can be used with the PTW attack, just by replacing a voting process
with a lookup in the respective frequency table.

7.3.6 New strategies

The following strategies are now possible with the PTW attack :

Static number of choices for every frequency table This is just the same as
Static number of paths to follow. Because the PTW attack can determine
all values for σm independently of each other, we will describe this method
again, without using the idea of a decision tree.

Let’s assume that the attacker has processed all sessions and now has
lkey frequency tables ti. The attacker now assumes that the correct value
for σm is in the k top voted entries in table tm. The attacker can now
start to test all possible values Rk can take, if the correct value for σm

is in the k top voted entries in the frequency table tm. There are at
most klkey possible values. Enumerating all these values usually takes less
computational effort than testing them all.

Here, k is allowed to have a larger value then for a pre-PTW attack using
the Static number of paths to follow key ranking strategies, because there
are no new voting processes during the key ranking necessary. Addition-
ally, it should be possible to offload this work to a FPGA, because just the
top voted entries in every table tm and a very small number of sessions
(for example 5-10) are necessary to enumerate all possible keys and test
them for correctness. The total size of the data structure can be less than
200 bytes for an efficient implementation.

Dynamic search borders In Section 7.2.1, we had the idea of creating a better
key ranking strategy. A good strategy should try to try alternate decisions
where the algorithm was very unsure about which decisions to take. For
the PTW attack, this could be implemented as follows:
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In the basic attack, the attacker assumes that for every m, the value σm

was the most voted value in the respective voting table tm. If there was a
second value for σm, which had only a few less votes than the top voted
entry in σm, the attacker was much more unsure about the decision for
σm, than for an other value σm′ , where the top voted entry has much
more votes than the second most voted entry.

Let’s call the number of possible values at the top of tm, where possible
values for σm are taken from, the search border for tm. In our previous
strategy, we assume that for every m, the correct value for σm is in the
k top voted entries in tm, and therefore, the search border for every fre-
quency table tm is k. Now we try a more dynamic approach. At the
beginning, the search border for every table is 1, which means that just
the top voted entry in the table is a possible candidate for σm. Now, we
are looking for the table, where the first entry outside the search border
has a minimal distance in number of votes to the top voted entry in the
table. At this table, the search border is increased by one. Naturally
speaking, we try to increase the search borders in tables, where we are
unsure if our decision was correct. For tables where the top voted entry
has much more votes than the next candidates, we where relatively sure
about our decision and the search border is kept small.

This is iterated as long as a a certain value for the total number of keys
is not exceeded. This strategy has additionally the advantage, that the
number of possible keys can be fine controlled, because every increase of
the search border will just increase the number of possible keys by factor
2 at most.

If the limit has been reached, all possible values for Rk are tested for their
correctness. Let bm be the search border for frequency table tm. The
total number of possible values for Rk is:

lkey∏
a=0

ba (7.30)

We will later see that this approach has some additional advantages over
just taking a static number of candidates for every frequency table, we do
not know about yet.
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attack

So far, only the basic version of the PTW has been presented. There are a lot
of possibilities, how the basic version of the attack can be improved. Again,
all additions and subtractions in this Chapter, except for probabilities, are
done mod n.

8.1 Brute forcing arbitrary key bytes

Some implementations of previous attacks do a brute force search on the last
key byte, or even do a brute force search on the two last key bytes. The reason
for this is, that the voting processes which are required to determine the last
key bytes are more expensive in CPU-consumption than just testing all possible
values for correctness.

Some implementations do a brute force search on the first key byte, because
the number of votes for the first key byte is usually very low compared to the
number of votes for other key bytes. This increases the required CPU-time up
to factor 256 for the whole attack. In general, we can say, that a brute force
search for other key bytes than the last ones are very expensive and perhaps
even infeasible, when it comes to brute forcing a lot of key bytes. For every
value tried at a key byte, all the following voting processes have to be repeated.

In the PTW attack, an attacker can do the voting process in the beginning
and then do a brute force search on an arbitrary key byte, without heavily
increasing the CPU-time of the attack. If no other key ranking method is used,
this would only require to test 256 different keys, which would only require an
unnoticeable small amount of CPU-time, compared to the voting process at the
beginning. Even a brute force search on two or three key bytes seems to be
possible without requiring much CPU-time. This can even be combined with
a key ranking strategy, by just setting the search border of the frequency table
tm to the maximum, when Rk[m] should be brute forced.

At this moment, we may not see a reason for a brute force search. We will later
see, that there are some circumstances, where an attacker wants to do a brute
force search on some key bytes.
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8.2 Correcting strong key bytes

In Section 7.3.3, we demanded that Sl[k] = Sl+m−1[k] = Sl+m−1[jl+m−1] and
assumed that this would happen with probability

(
n− 1
n

)m−1(n− (m− 1)
n

)
(8.1)

The left side is the probability that j takes the value k and the right side is
the probability that i takes the value k. This is true for a random value k and
the generalized randomized RC4 stream cipher. Unfortunately, there is a little
problem with certain classes of keys.

The condition that j does not take the value k can be expressed as jl+m does
not take the value of a previous j after jl. For some keys, j does usually take
the value jl+m after jl and before jl+m.

In an early stage of the RC4-KSA, the equation S[a] = a holds with a very high
probability, because S is still very close to the initial permutation. This also
means that most probably, jl+m = jl+m−1 + K[l +m− 1] + (l +m− 1)] holds.
If now K[l+m− 1] = −(l+m− 1) holds, jl+m−1 and jl+m will most probably
have the same value and Fptwm will just vote for a more or less random value.

In general, if a value r exists with l + 1 ≤ r ≤ l +m− 1 so that

l+m−1∑
a=r

(K[a] + a) = 0 (8.2)

holds, the values jr and jl+m will most probably be equal, and the probability
that Fptwm takes the correct value is not higher than 1

n . Unfortunately, this
depends on the value of our root key Rk. If there is a r with 1 ≤ r ≤ m− 1 so
that

m−1∑
a=r

(Rk[a] + a+ liv) = 0 (8.3)

holds, the correct value for σm−1 will just appear at a more or less random
position in the frequency table and will most probably not be one of the top
voted entries in the table. Therefore, the attack will most probably fail.

We call key byte Rk[m] a strong key byte, when it is resistant against the basic
PTW attack. A root key is a strong key, if it has at least one strong key byte.
A key byte which is not a strong key byte is a weak key byte.
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Figure 8.1: Votes for strong and non strong key bytes

Figure 8.1 shows the distribution of votes in the frequency table for σ2 after
5000, 15000, 40000, and 400000 votes. As you can see, even after 400000 pack-
ets, all votes are nearly equally distributed for the strong key byte.

Fortunately, a good key ranking strategy can sometimes automatically fix this
problem. Let’s assume that an attacker has collected a very high number of
sessions compared to the usual amount needed to successfully recover a root key.
In all frequency tables, there will be one value which has received noticeable
more votes than all other votes, which is the correct value, except for frequency
tables for strong key bytes. Here, all values will share nearly a identical amount
of votes as you can see in figure 8.1. An attacker who adjusts his search borders
for key ranking dynamically, will perhaps only increase the border for frequency
tables where the number of votes are nearly equal for all candidates and there-
fore consider all values in these tables as candidates. If the number of strong
key bytes is low (for example 1 to 3), the total number of possible keys will still

Attacks on the WEP protocol 93



8 Advanced versions of the PTW attack

be small, so that they all can be tested using a reasonable amount of CPU-time.
If the number of strong key bytes is higher, this approach will not be feasible
and a better solution will be required.

One possibility would be to use the original Klein attack instead of the PTW
attack, which has no problems with strong key bytes. We will later see in Section
8.4, that there are some scenarios, where the original Klein attack cannot be
applied, but the PTW attack can be. So this is not always an option.

If we look at the condition for a strong key byte again, there are not a lot of
possible values for r, at most 12 for the last key byte of a 13 byte root key Rk.
Let’s assume that an attacker knows the value for r and has already determined
σ0 to σm−2 at this stage of the attack. The attacker can therefore calculate
Rk[0] to Rk[m − 2] from these values. By solving the equation for Rk[m − 1],
the attacker can now easily determine Rk[m−1] from Rk[0] to Rk[m−2] by the
following formula:

Rk[m− 1] = (−m+ 1− liv)−
l+m−2∑

a=r

(Rk[a] + a+ liv) (8.4)

Determing which key bytes are strong key bytes can easily be done by looking
at the distribution of the votes in each frequency table, if a high number of
votes are available, but the attacker usually does not know r and has to try all
possible values.

The attack can now be modified as follows. The attacker tries to identify which
key bytes are strong key bytes using the distribution of votes in the respective
frequency tables. For example the attacker could compute the χ2 distance to a
uniform distribution and the expected distribution for a non strong key byte,
and for example assume that a table contained a strong key byte if the distance
to the uniform distribution was lower than to the expected distribution for a
non strong key byte. Another possibility would be to assume that there is just
a single strong key byte, in the table having the lowest distance to a uniform
distribution.

Let’s assume that the attacker has decided that Rk[m] is a strong key byte. The
attacker uses an arbitrary key ranking strategy and decides on the values for
σ0 to σm−1 first, before trying to determine σm. When it comes to determine
σm, the attacker tries all possible values for r and calculates σm using equation
8.4. Then the attack is continued with the remaining key bytes. Because r
is at most 12 for a 13 byte root key, this approach is even feasible when the
number of strong key bytes is high, because the total number of possible keys
is still kept small, compared to trying all values in the frequency table. Another
but less effective approach would be to do a brute force search on all frequency
tables, whose key bytes are most probably strong. This requires much more
CPU-time, but would be a little bit easier to implement.
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8.2.1 An example

Let’s assume that RC4 is used with the key K = 12, 164, 40, 155, 252, 94, 15, 163.
The attacker knows the first l = 3 bytes of the key and is interested in the sum
K[3] + K[4].

K = 12

0

164

1

40

2

155

3

252

4

94

5

i = 0

S0 = 0

0

1

1

2

2

3

3

4

4

5

5

12

12

121

121

177

177

219

219

220

220

j1 = 12

K = 12 164 40 155 252 94

i = 1

S1 = 12 1 2 3 4 5 0 121 177 219 220

j2 = 177

K = 12 164 40 155 252 94

i = 2

S2 = 12 177 2 3 4 5 0 121 1 219 220

j3 = 219

K = 12 164 40 155 252 94

i = 3

S3 = 12 177 219 3 4 5 0 121 1 2 220

j4 = 121

K = 12 164 40 155 252 94

i = 4

S4 = 12 177 219 121 4 5 0 3 1 2 220

j5 = 121

K = 12 164 40 155 252 94

i = 5

S5 = 12 177 219 121 3 5 0 4 1 2 220

j6 = 220

Figure 8.2: First 5 steps of RC4-KSA for K = 12, 164, 40, 155, 252, 94, 15, 163

In the next step

j4 = j3 + S3[3] + K[3]
= 219 + 3 + 155
= 121

(8.5)
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Now S3[3] = 3 and S3[121] = 121 are swapped. In the next step

j5 = j4 + S4[4] + K[4]
= 121 + 4 + 252
= 121
= j4

(8.6)

and S4[4] = 4 and S4[121] = 3 are swapped. Now, S−1
3 [3] = 3 6= S−1

4 [3] holds.
For the rest of the RC4-KSA and the beginning of the RC4-PRGA, S5[4] remains
unchanged.

i = 3

S258 = 121

3

3

4

78

5

169

24

1

27

150

34

127

105

j259 = 24

i = 4

S259 = 169 3 78 121 1 150 127

j260 = 27

S259[3] + S259[24] = 34

X[2] = 150

i = 5

S260 = 169 1 78 121 3 150 127

j261 = 105

S260[4] + S260[27] = 4

X[3] = 1

Figure 8.3: Generation of X[2] and X[3] for K = 12, 164, 40, 155, 252, 94, 15, 163
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When X[3] is produced, it correctly reveals Sn+3[4] = 3. But an attacker who
calculates:

Fptw2(12, 164, 40, 1)

=S−1
3 [3 + 1− X[2]]− (j3 + S3[3] + S3[3 + 1])

=S−1
3 [4− 1]− (219 + 3 + 4)

=S−1
3 [3]− 226

=3− 226
=33

6=S−1
4 [3]− 226

(8.7)

would not have recovered K[3] + K[4] = 151.

An attacker who has guessed that K[4] is a strong key byte, and knows K[0]
to K[2], knows that the only possible value for K[4] is 252 and would therefore
have correctly recovered K[4].

8.3 Using more bytes of the key stream

If there are some of the following bytes of the key stream available, an attacker
can make use of it. In RC4, the key is used cyclic in the RC4-KSA. Therefore,
K||K will result in the same internal state as K. Let’s have a look at the
function Fptwlkey+1

. This function is supposed [OFO+07, VV07] to take the

value of σlkey
+ IV[0] with a higher probability than 1

n . Because IV[0] is known
by the attacker, he can subtract this value from the output of Fptwlkey+1

and

Fptwlkey+1
− IV[0] (8.8)

get another vote for the sum of all key bytes of the root key σlkey−1.

Because the initialization vector has 3 bytes, the functions

Fptwlkey+2
− IV[0]− IV[1] (8.9)

Fptwlkey+3
− IV[0]− IV[1]− IV[2] (8.10)

can be used too as votes for σlkey−1.

Because an attacker has now 4 times the votes for σlkey−1 than for any other
value σm, he is usually able to determine the correct value for σlkey−1 with a
much higher certainty than all other values σm.
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After an attacker has determined σlkey−1, he can continue to gather additional
votes for σ0 to σlkey−2. The function

Fptwlkey+liv+1+m
− IV[0]− IV[1]− IV[2]− σlkey−1 (8.11)

should take the value of σm with a higher probability than 1
n and the output

can be used as an additional vote for the value of σm. An attacker might even
use votes from the third or fourth repetition of the key in the RC4-KSA, but
the success probability of Fptwm is close to 1

n for root keys with a length of 13
bytes. For 5 bytes long root keys, this approach might be more useful.

All votes for the value of σm are now combined in a single frequency table and
the attacker can start to compute all remaining σm values (the last value σlkey−1

has already been determined) using an arbitrary key ranking strategy, except
that the search border for tlkey−1 is never increased. If the key is not found after
having checked a reasonable amount of keys, the attacker might decide that his
decision for σlkey−1 was incorrect and choose an alternative value for σlkey−1.
The attacker now has to rectify all additional votes he computed under the
assumption, that his first choice for σlkey−1 was correct. Rectification can be
done efficiently by adding the old value for σlkey−1 to the vote and subtracting
the new value for σlkey−1.

This method may be used to correct strong key bytes, because votes from a
later step may still vote for the correct value σm with a higher probability than
1
n , even if Rk[m] is a strong key byte.

8.4 Skipping some bytes of the key stream

Until now, we assumed that an attacker has access to sufficient number of key
stream bytes as needed to perform the attack. For the original FMS attack,
only the first byte of the key stream X[0] was needed. KoreK used the first
two bytes of the key stream X[0] and X[1]. For the Klein attack and the PTW
attack ks[liv − 1] to X[liv + lkey − 2] is needed to perform the attack. For a 13
bytes root key, this is X[2] to X[14] in a WEP scenario.

8.4.1 Key stream recovery

For a moment, we will leave the world of theoretical models and have a look at
how an attacker can recover sessions in a real world scenario.
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Custom packets

One of the easiest ways for an attacker to recover key streams is to use the
chopchop or fragmentation attack to decrypt a single packet. The attacker
can now use the key stream of this packet to generate a packet with arbitrary
payload and inject this packet with a wireless client or the broadcast address
as destination into the network again and again. When the packet is relayed
by the access point, the packet is reencrypted. Because the attacker knows the
plaintext of the packet, he can therefore recover the key stream which was used
to encrypt the packet in full packet length.

This method has the disadvantage that the attacker must spend half of the
bandwidth to inject packets and only the other half of the bandwidth is used
to generate new sessions by the access point. We would like to have a faster
method where a larger part of the bandwidth is used by fresh packets.

ARP injection

Let’s assume that the network which is being attacked runs the IPv4 proto-
col. Today, this might be the case in more than 99% of all networks. I have
personally never seen a wireless network which was not running IPv4 at all.

In IPv4, the ARP protocol [Plu82] is used to resolve IP-addresses to network
addresses. If host A wants to send a packet to host B, but he does not know
the hardware address of host B, he sends out an ARP request to the broadcast
address, asking for the hardware address of host B. Host B will respond with
an ARP respond telling A his hardware address. All hosts participating in IP
communications keep track of the mapping from IP to hardware address in a
so called ARP table.

Because the hardware address of a host might change from time to time (net-
work card replaced, IP address moved to another machine) this is repeated from
time to time. Another interesting feature of some wireless clients is, that they
flush their ARP table, when they join a network. The original intention might
be, that there might have been a different host in the last network the client
was connected to, with the same address as a host in the new network, which is
being joined now. If the client would still use the old hardware address, the host
in the current network would not be reached. Because an attacker can force
an arbitrary host to rejoin a network, this can be used to force an arbitrary
host to flush his ARP table. The next packet send by this host triggers an ARP
request, because the host now does not know the hardware address of any other
host in the network.

Of course, these packets are all transmitted encrypted in a WEP network. To
capture an ARP request, the attacker has to distinguish the encrypted request
from all the other traffic on the network. Fortunately, the ARP protocol is
quite simple. All ARP packets have an encrypted payload length of exactly 36
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bytes, excluding the 4 byte CRC32 checksum. If the request is originating from
a wired station, it is usually padded to the minimum size of an Ethernet frame
and now has 54 bytes of payload length excluding the 4 byte CRC32 checksum.

The destination address of an ARP request is always the broadcast address of
the network. Neither the destination address nor the exact packet length is
hidden by WEP in any way. An attacker who is interested in an ARP request
might just start looking for a packet with payload length 36 or 54 bytes and
destination address broadcast. If all these conditions are met, he can assume
that this packet is an ARP request. For example aircrack-ng uses this method
to detect ARP requests.

Once an attacker captures an ARP request, he may start to reinject this request
back into the network again and again. If both, the original sending station and
the designated receiving station are both wireless clients, the injected request
will generate 3 new packets:

1. The request will be relayed by the access point to the broadcast address of
the network and the designated receiving station will receive the packet.

2. This station will generate an ARP response to that request and send the
response to the access point.

3. The access point will relay that response to the original requesting station.

AP

ClientAttacker

1

2

3

4

request relayed request

response
relayed response

Figure 8.4: ARP injection

This approach has certain advantages:

• A lot of monitoring software like personal firewalls or perhaps IDS systems
will just look for IP traffic and ignore ARP traffic. It is quite unlikely
that such an attack is detected. Even if there is a monitoring system,
these packets are valid packets in the network, just the packet rate will
be higher than normal.

100 Erik Tews



8.4 Skipping some bytes of the key stream

• ARP is usually not subject to rate limiting in most operating systems.
Reaching a rate of more than 800 new packets per second is possible in
an IEEE 802.11g network.

• The station who originated the first request will receive a lot of answers.
All operating systems I have seen so far just drop these packets without
displaying any kind of warning message.

Detecting ARP response packets in the traffic is a little bit harder, but possible
too. An attacker starts again looking for packets with the specific length of 36
or 54 byte, not going to the destination address. Of course these packets could
be any kind of short packets, but because the total fraction of ARP responses is
very high during such an injection attack, the odds are high that these packets
are really ARP responses.

The first 16 bytes of an ARP request or an ARP response are always a constant
value, both type of packets only differ in the ARP opcode which is 00 01 for a
request and 00 02 for a response. The next 6 bytes are the source address of
the request or response. Because the source address is additionally transmitted
in clear in a WEP network, an attacker can guess these values too. Figure 8.5
contains an illustration of the first bytes of an ARP packet. Fields marked with
green have always a constant value or can easily be calculated from an encrypted
packet. Fields marked with orange are sometimes known to an attacker, but
are hard to be guessed by a fire-and-forget tool like aircrack-ng. Fields marked
with red are usually not guessable by an attacker and must be assumed to be
unknown.

In total, the attacker can easily get the first 22 bytes of encrypted payload of
every packet, by just using 1

4 of the bandwidth for injecting packets. 3
4 of the

bandwidth can be used by fresh packets.

Of course, this attack is still an active attack which could be detected by a
careful network operator. But we will see that we can even recover some key
streams just by passively listen to a WEP network.

Passively listen to traffic

Let’s assume that the target network is running the IPv4 protocol as before.
Most of the packets in the network will be IPv4 packets. There might be some
other packets like ARP or Spanning Tree Protocol packets, but these packets
are only send seldom. If a packet has not the characteristics of an ARP or
Spanning Tree Protocol packet, the attacker may assume that this is an IPv4
packet.

For an IPv4 packet, 11 out of the first 15 bytes of the encrypted plaintext can
assumed to be constant values. 2 bytes, the so called Fragmentation identifi-
cation is most times truly random and cannot be guessed by an attacker. One
byte contains some flags and the high order bits of the fragmentation offset. All
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AA
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03
00
00
00
08
06
00
01
08
00
06
04
00
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX

LLC/SNAP header

ARP header

ARP opcode

MAC source address

IP source address

MAC destination address

IP destination address

Figure 8.5: ARP packet header

high order bits of the fragmentation offset can be assumed to be 0, and about
85% of all packets in a usual network have just the don’t fragment flag set. All
other packets have no flags set. The two bytes used to encode the length of the
packet can be calculated, because WEP does not try to hide the exact length
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AA
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03
00
00
00
08
00
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00
XX
XX
XX
XX
40
00
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX

LLC/SNAP header

IP version and header length
Differentiated Services Field

Total length

Identification

Flags, msb. of frag. offset
lsb. of frag. offset

Time to live
Protocol

Header checksum

Source address

Destination address

Figure 8.6: IPv4 packet header

of a data packet. In total, this means that an attacker always knows 13 bytes
of the packet and can guess another byte X[14] correctly with a probability of
about 85%. The two key stream bytes which contain the fragmentation id are
X[12] and X[13]. Figure 8.6 contains an illustration of the first bytes of an IPv4
packet.

8.4.2 A passive PTW attack

An attacker who has mostly collected IPv4 packets will not therefore be able
to find enough votes for the frequency tables t10 and t11. For t12, there are at
least two possible approaches:
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1. The attacker always assumes that the don’t fragment flag was set, calcu-
lates the corresponding key stream and votes for a value σ13.

2. The attacker uses a kind of partial vote. First, the attacker assumes that
just don’t fragment was set, calculates the key stream and calculates a vote
for σ13. Instead of a full vote, just a 85

100 vote is added to the frequency
table.

Now, the attacker assumes that no flag was set, calculates a different key
stream and calculates a different vote for σ13. This vote is counted with
15
100 .

The attacker now sets the search border for t11 and t12 to the maximum and
starts a PTW attack using an arbitrary key ranking method. Depending on the
key ranking method, the attacker may decide to increase the search border for
t13 first, because this frequency table contains the partial votes and the attacker
was most uncertain about what to vote for here.

8.5 Using additional pre-PTW votes

Until now, we did only focus on the Klein attack and its multibyte extension.
Clearly the Klein attack was the most effective attack we have seen so far,
which iteratively computes the key. We will now see that it is possible to do a
multibyte extension [VV07] of the FMS attack, which was the first key recovery
attack against WEP.

The basic idea of the FMS attack can be seen as the following. If an attacker
knows the first l words of a RC4 key, he can simulate the first l steps of the
RC4-KSA. If the following conditions are holding after the first l steps of the
RC4-KSA:

1. Sl[1] < l

2. Sl[1] + Sl[Sl[1]] = l

Then in the next step Sl[jl+1] will be swapped to Sl+1[l]. If none of the three
values participate in any further swaps in the RC4-KSA, then the first word of
output of the RC4-PRGA will be Sl+1[l] and therefore reveal jl+1 and the next
key bytes K[l]. The only exception would be, if the first word of output would
be Sl[1] or Sl[Sl[1]]. This would indicate that Sl[1] or Sl[Sl[1]] did participate in
a further swap.

We can also rewrite these conditions as:

1. Sl[1] < l

2. Sl[1] + Sl[Sl[1]] = k

With k = l, this is the original FMS attack. The first condition ensures that
Sl[1] is not changed by i in the remaining RC4-KSA. If the second condition is
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met, Sl[1] + Sl[Sl[1]] acts as a kind of pointer to S[k] so that hopefully, the first
word of output of the RC4-PRGA will reveal the value of Sn[k]. If Sk+1[k] did
not participate in any further swaps after step k, and Sl[1] and Sl[Sl[1]] did not
participate in any further swaps after step l, this will reveal jk. In total, we
got:

X[0] = Sl[jk] (8.12)

or

S−1
l [X[0]] = jk (8.13)

As in the PTW attack, we assume that

jk = jl +
k∑

a=l

(Sl[a] + K[a]) (8.14)

holds. By solving this equation for
∑k

a=l K[a], we get:

Fptwfmsm(K[0], . . . ,K[l − 1],X[0]) = S−1
l [X[0]]− jl −

l+m−1∑
a=l

Sl[a] (8.15)

with

Prob

(
Fptwfmsm(K[0], . . . ,K[l − 1],X[0]) =

l+m−1∑
a=l

K[a]

)
>

1
n

(8.16)

In general, rewriting correlations used by KoreK to multibyte correlations seems
to be possible, but this is out of scope of this document.

8.5.1 An example

Let’s assume that RC4 with the key K = 4, 255, 36, 127, 39, 185, 33, 206 is used.
The attacker knows the first l = 3 bytes of the key and is interested in K[3]+K[4].
After the first 3 steps of the RC4-KSA, S3[0] = 4 and S3[1] = 0. If S3[0] and
S3[1] remain unchanged for the rest of the RC4-KSA, the first byte of output
X[0] of the RC4-PRGA will be S[4]. In the next step

j4 = j3 + S3[3] + K[3]
= 42 + 3 + 127
= 172

(8.17)

and S3[3] = 3 and S3[172] = 172 are swapped. In the next step
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j5 = j4 + S4[4] + K[4]
= 172 + 1 + 39
= 212
= j3 + S3[3] + K[3] + S4[4] + K[4]
= j3 + S3[3] + K[3] + S3[4] + K[4]

(8.18)

and S4[4] = 1 and S4[212] = 212 are swapped. For the rest of the RC4-KSA
S[0], S[1] and S[4] remain unchanged. This step is illustrated in figure 8.7.

K = 4

0

255

1

36

2

127

3

39

4

185

5

i = 0

S0 = 0

0

1

1

2

2

3

3

4

4

5

5

42

42

146

146

172

172

212

212

j1 = 4

K = 4 255 36 127 39 185

i = 1

S1 = 4 1 2 3 0 5 42 146 172 212

j2 = 4

K = 4 255 36 127 39 185

i = 2

S2 = 4 0 2 3 1 5 42 146 172 212

j3 = 42

K = 4 255 36 127 39 185

i = 3

S3 = 4 0 42 3 1 5 2 146 172 212

j4 = 172

K = 4 255 36 127 39 185

i = 4

S4 = 4 0 42 172 1 5 2 146 3 212

j5 = 212

K = 4 255 36 127 39 185

i = 5

S5 = 4 0 42 172 212 5 2 146 3 1

j6 = 146

Figure 8.7: First 5 steps of RC4-KSA for K = 4, 255, 36, 127, 39, 185, 33, 206
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When the first byte of output by the RC4-PRGA is generated, Sn[0] = 4 and
Sn[1] = 0 are swapped. The first byte of output is then Sn+1[Sn+1[1]+Sn+1[0]] =
Sn+1[4] = 212. These step is illustrated in figure 8.8. An attacker who calculates

Fptwfmsm(4, 255, 36, 212) = S−1
3 [X[0]]− j3 − (S3[3] + S3[4])

= S−1
3 [212]− 42− (3 + 1)

= 212− 46
= 166
= 127 + 39
= K[3] + K[4]

(8.19)

would have correctly recovered K[3] + K[4].

i = 1

S256 = 4

0

0

1

135

2

212

4

42

135

j257 = 0

i = 2

S257 = 0 4 135 212 42

j258 = 135

S257[1] + S257[0] = 4

X[0] = 212

Figure 8.8: First byte of output for K = 4, 255, 36, 127, 39, 185, 33, 206

8.6 Using some alternative correlations in RC4

Beside the KoreK attack and the Klein attack and their respective multibyte
correlations, some other multibyte correlations where found in RC4, which have
not yet been used for a real attack on RC4. For example Subhamoy Maitra and
Goutam Paul found a multibyte correlation [MP07] which seems to be relatively
independent from the Klein or FMS correlation.
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8.7 Implementation

Aircrack-ng contains an implementation of the PTW attack, with some ad-
vanced features:

• It uses dynamic search borders for key ranking as described in section
7.3.6.

• It tries to correct up to two strong key bytes as described in section 8.2. It
might automatically correct more strong key bytes, by using the dynamic
search borders key ranking strategy. Additionally, the Klein attack is
executed too, to recover keys with a very high number of strong key
bytes.

• It can use passively captured IPv4 traffic too, as described in section 8.4.

To execute the PTW attack with all these advanced features on all packets
captured in /tmp/ptwtest.ivs, an attacker has to execute the following com-
mand:

./aircrack-ng -0 /tmp/ptwtest.ivs

It is possible to disable the Klein attack, which is automatically executed to
break keys with a lot of strong key bytes. The only reason to do this is for
benchmarking the PTW attack only without the Klein attack. To execute only
the PTW attack without the Klein attack, the following command has to be
executed:

./aircrack-ng -P 1 -0 /tmp/ptwtest.ivs

If the attack was successful, an output similar to the one in figure 8.9 will be
displayed.

8.8 Success rate

The success rate of the PTW attack as implemented in aircrack-ng is quite
impressive. In total only 35,000 packets are needed to recover a secret root
key with success probability 50% and 85% success probability can be reached
using 45,000 packets. If a high number of packets are available, it is possible to
recover more than 99.9% of all keys. Figure 8.10 contains all details.

If the Klein attack is disabled, the success rate is a little bit lower and just
reaches about 99% for a lot of packets. The missing 1% of all keys are these
keys with a lot of strong key bytes. Figure 8.11 contains the results.
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Figure 8.9: aircrack-ng 1.0 beta 1 PTW results
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Figure 8.10: PTW success rate

Attacks on the WEP protocol 109



8 Advanced versions of the PTW attack

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.5  2  2.5  3  3.5  4  4.5  5  5.5  6  6.5  7  7.5  8

pr
ob

ab
ili

ty
 o

f s
uc

ce
ss

number of sessions collected / 10,000

WEP
WEPCTR

WEPLINUX

Figure 8.11: PTW without Klein success rate
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When it became clear that WEP has some serious design problems, the IEEE
started developing a successor protocol for WEP which was later named Wi-Fi
Protected Access (WPA). WPA allows to modes how packets can be encrypted:

9.1 TKIP

The Temporal Key Integrity Protocol (TKIP) can be seen as a heavily modified
version of WEP. To prevent attacks on the network, the following changes have
been made to WEP:

1. A cryptographic message integrity code (MIC) is added to every packet
before fragmentation. Unlike WEP, which encrypts and adds a CRC32
checksum to every fragment independently of each other, this prevents
attacks like fragmentation or chopchop, where fragments of a packet are
rearranged or packets are modified. It also protects the plaintext of the
fragments to prevent an attacker from modifying the source or destination
address of a packet.

The designers of TKIP did not use an already existing algorithm like
SHA1HMAC or MD5HMAC to calculate the MIC, because these algo-
rithms need a lot of CPU time, and TKIP was designed to be usable on
already existing hardware by installing a new firmware. Instead a new
algorithm called Michael has been invented which is very fast compared
to a SHA1HMAC.

2. To prevent attacks where an attacker tries to guess a checksum or attack
the Michael algorithm with the help of a wireless station, TKIP only
allows a small number of messages where the CRC32 checksum is correct,
but the MIC is incorrect. Because CRC32 is still good in finding random
transmission errors, such messages would indicate an attack. If more
than two such messages are received by a station within a minute, TKIP
is disabled for a minute and a renegotiation of the keys is suggested.

3. A per packet sequence counter (TSC) is used to prevent replay attacks.
If a packet is received out of order, it is dropped by the receiving station.
This prevents all kind of injection attacks, where a packet is replayed, like
the ARP injection attack.
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4. Unlike WEP, which changes only the first 3 bytes of the per packet key,
which are the initialization vector, TKIP exchanges the per packet key
completely after every single packet. The key mixing functions, which are
used to generate the per packet keys, are designed to avoid values, which
can be used for the FMS attack.

All attacks on RC4 in this document are related key attacks, which require
a high amount of related keys. By changing the complete key with a more
or less random value, this seems to prevent all of these attacks.

Of course, TKIP still uses the RC4 stream cipher, but in a much more secure
way than WEP does. The design goal of TKIP was not a protocol as secure
as it could be. Instead a modification of WEP was created which prevents all
known attacks, provides a quite high level of security and can be used on most
existing hardware, just by installing a driver or firmware update.

9.2 AES CCMP

Alternatively, the AES cipher can be used in counter mode (CCMP) to encrypt
the network traffic and to protect its integrity. This completely replaces the
RC4 stream cipher and the Michael algorithm and provides a very high level of
security. At this moment, there are no known realistic weaknesses in AES.

9.3 Key management

Additionally, an enterprise level key management was added to IEEE 802.11,
which allows a lot of modes of authentication. Stations do not need to have
a single secret pre-shared key anymore, instead a username and a password,
smartcards, certificates, hardware security tokes and other authentication pro-
tocols can now be used. Except for broadcast traffic, every station uses in-
dividual keys to communicate with an access point, so that eavesdropping by
another station in the same network is not possible anymore.
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WEP has been known to be insecure before the PTW attack was published
and has never been a real barrier for an attacker who was motivated to hack a
network.

Before the PTW attack was published, an attacker had to collect at least 700,000
packets to execute the KoreK attack with a good success probability. At least
10 minutes where required to collect this amount of packets from a wireless
network, sometimes more, if the signal quality is low. Not all attackers might
be willing to spend this time to attack a network. For example, an attacker
could be waiting in a restaurant, coffee bar or a railway station and be looking
for cheap internet access. With the PTW attack, it is now possible to attack
WEP protected networks in less than 60 seconds, so that an attacker does not
even need a motivation or some free time to attack a network. The PTW
attack can be fully automated so that a PDA with a wireless LAN card could
be modified to automatically attack all networks it finds and recover their secret
keys.

In 2004, Andrea Bittau published [BHL06] a tool called wesside which is a fully
automatic WEP attack tool. wesside automatically scans for WEP protected
networks and recovers a short key stream, by guessing the first bytes of an
encrypted packet. This key stream is used to generate a longer key stream
using the fragmentation attack. wesside trys to build a valid ARP request by
decrypting some header fields from captured packets using the fragmentation
attack or by just capturing an ARP request. This request is now injected into the
network to generate network traffic, until enough packets have been captured
to recover the secret key. This tool combined with a small PDA might be in the
ultimate WEP attacking device, which can automatically collect secret WEP
root keys, without any user interaction. Meanwhile, wesside has been integrated
in the aircrack-ng toolsuite.
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