New Features of Latin Dances: Analysis of Salsa, ChaCha, and Rumba*

Jean-Philippe Aumasson¹, Simon Fischer¹, Shahram Khazaei², Willi Meier¹, and Christian Rechberger³

FHNW, Windisch, Switzerland
 EPFL, Lausanne, Switzerland
 IAIK, Graz, Austria

Abstract. The stream cipher Salsa20 was introduced by Bernstein in 2005 as a candidate in the eSTREAM project, accompanied by the reduced versions Salsa20/8 and Salsa20/12. ChaCha is a variant of Salsa20 aiming at bringing better diffusion for similar performance. Variants of Salsa20 with up to 7 rounds (instead of 20) have been broken by differential cryptanalysis, while ChaCha has not been analyzed yet. In this paper, we introduce a novel method for differential cryptanalysis of Salsa20 and ChaCha, inspired by correlation attacks and related to the notion of neutral bits. This is the first application of neutral bits in stream cipher cryptanalysis, and it allows us to present the first break of Salsa20/8, to bring faster attacks on the 7-round variant, and to break 6- and 7-round ChaCha. In a second part, we analyze the compression function Rumba, constructed as the XOR of four Salsa20 instances, and returning a 512-bit output. We find collision and preimage attacks for two simplified variants, then we discuss differential attacks on the original version, and exploit a high-probability differential to reduce complexity of collision search from 2²⁵⁶ to 2⁷⁹ for 3-round Rumba. We give examples of collisions over three rounds for a version without feedforward, and near-collisions of weight 16 for three rounds of the original compression function, and of weight 129 for four rounds.

1 Introduction

Salsa20 [4] is a stream cipher introduced by Bernstein in 2005 as a candidate in the eSTREAM project [10], that has been selected in April 2007 for the third and ultimate phase of the competition. Three independent cryptanalyses were published [9,11,14], reporting key-recovery attacks for reduced versions with up to 7 rounds, while Salsa20 has a total of 20 rounds. Bernstein also submitted to public evaluation the 8- and 12-round variants Salsa20/8 and Salsa20/12 [5], though they are not formal eSTREAM candidates. More recently, he proposed a change in the core function aiming at bringing faster diffusion without slowing down encryption, calling the variant ChaCha [3]. The compression function Rumba [6] was presented in 2007 in the context of a study of generalized birthday attacks [15] applied to incremental hashing [2], as the component of a hypothetical iterated hashing scheme. Rumba maps a 1536-bit value to a 512-bit (intermediate) digest, and Bernstein only conjectures collision resistance for this function, letting a further convenient operating mode provide extra security properties as pseudo-randomness.

Related Work. Variants of Salsa20 up to 7 rounds have been broken by differential cryptanalysis, exploiting a truncated differential over 3 or 4 rounds. The knowledge of less than 256 key bits can be sufficient for observing a difference in the state after

^{*} This is the extended version of a paper accepted for presentation at FSE 2008.

three or four rounds, given a block of keystream of up to seven rounds of Salsa20. In 2005, Crowley [9] reported a 3-round differential, and built upon this an attack on Salsa20/5 within claimed 2¹⁶⁵ trials. In 2006, Fischer et al. [11] exploited a 4-round differential to attack Salsa20/6 within claimed 2¹⁷⁷ trials. In 2007, Tsunoo et al. [14] attacked Salsa20/7 within about 2¹⁹⁰ trials, still exploiting a 4-round differential, and also claimed a break of Salsa20/8. However, the latter attack is effectively slower than brute force, cf. §3.5. Tsunoo et al. notably improve from previous attacks by reducing the guesses to certain bits—rather than guessing whole key words—using nonlinear approximation of integer addition. Eventually, no attack on ChaCha or Rumba has been published so far.

Contribution. We introduce a novel method for attacking Salsa20 and ChaCha (and potentially other ciphers) inspired from correlation attacks, and from the notion of neutral bit, introduced by Biham and Chen [7] for attacking SHA-0. More precisely, we use an empirical measure of the correlation between certain key bits of the state and the bias observed after working a few rounds backward, in order to split key bits into two subsets: the bits identified by repeated observations of the output-difference, and the bits ultimately determined by exhaustive search. To the best of our knowledge, this is the first time that neutral bits are used for the analysis of stream ciphers. Our results are summarized in Tab. 1. We present the first key-recovery attack for Salsa20/8, and improve the previous attack on 7-round Salsa20 by a factor 2³⁷. In a second part, we first show collision and preimage attacks for simplified versions of Rumba, then we present a differential analysis of the original version using the methods of linearization and neutral bits: our main result is a collision attack for 3-round Rumba running in about 2⁷⁹ trials (compared to 2²⁵⁶ with a birthday attack). We also give examples of near-collisions over three and four rounds.

Table 1. Complexity of the best attacks known, with success probability 1/2.

	Salsa20/7	Salsa20/8	ChaCha6	ChaCha7	Rumba3
Before Now	150	$2^{255} \\ 2^{249}$	$2^{255} \\ 2^{140}$	$2^{255} \\ 2^{231}$	2^{256} 2^{79}

Road Map. We first recall the definitions of Salsa20, ChaCha, and Rumba in §2, then §3 describes our attacks on Salsa20 and ChaCha, and §4 presents our cryptanalysis of Rumba. The appendices give the sets of constant values, and some parameters necessary to reproduce our attacks.

2 Specification of Primitives

In this section, we give a concise description of the stream ciphers Salsa20 and ChaCha, and of the compression function Rumba.

2.1 Salsa20

The stream cipher Salsa20 operates on 32-bit words, takes as input a 256-bit key $k = (k_0, k_1, ..., k_7)$ and a 64-bit nonce $v = (v_0, v_1)$, and produces a sequence of 512-bit keystream blocks. The *i*-th block is the output of the Salsa20 function, that takes as input the key, the nonce, and a 64-bit counter $t = (t_0, t_1)$ corresponding to the integer *i*. This function acts on the 4×4 matrix of 32-bit words written as

$$X = \begin{pmatrix} x_0 & x_1 & x_2 & x_3 \\ x_4 & x_5 & x_6 & x_7 \\ x_8 & x_9 & x_{10} & x_{11} \\ x_{12} & x_{13} & x_{14} & x_{15} \end{pmatrix} = \begin{pmatrix} c_0 & k_0 & k_1 & k_2 \\ k_3 & c_1 & v_0 & v_1 \\ t_0 & t_1 & c_2 & k_4 \\ k_5 & k_6 & k_7 & c_3 \end{pmatrix} . \tag{1}$$

The c_i 's are predefined constants (see Appendix A). A keystream block Z is then defined as

$$Z = X + X^{20} (2)$$

where "+" symbolizes wordwise integer addition, and where $X^r = \mathsf{Round}^r(X)$ with the round function Round of Salsa20, defined as follows: it first rotates the j-th column of its input X of j positions up, $j = 0, \ldots, 3$, then it transforms each column $(x_0, x_1, x_2, x_3)^{\dagger}$ to $(z_0, z_1, z_2, z_3)^{\dagger}$ by sequentially computing

$$z_{1} = x_{1} \oplus [(x_{3} + x_{0}) \ll 7]$$

$$z_{2} = x_{2} \oplus [(x_{0} + z_{1}) \ll 9]$$

$$z_{3} = x_{3} \oplus [(z_{1} + z_{2}) \ll 13]$$

$$z_{0} = x_{0} \oplus [(z_{2} + z_{3}) \ll 18],$$
(3)

and finally Round rotates the j-th column of j positions down, and transposes the matrix. However, for an odd number of rounds, the last transpose of the last round is omitted¹; hence, the r-round inverse $X^{-r} = \mathsf{Round}^{-r}(X)$ is defined differently whether it inverts after an odd or and even number of rounds. We write Salsa20/R for R-round variants, i.e. with $Z = X + X^R$.

2.2 ChaCha

ChaCha [3] is similar to Salsa20 except that the column-transform operation of Round is the sequence

$$b_{0} = x_{0} + x_{3} z_{0} = b_{0} + b_{3}$$

$$b_{1} = (x_{1} \oplus b_{0}) \ll 7 z_{1} = (b_{1} \oplus z_{0}) \ll 13$$

$$b_{2} = x_{2} + b_{1} z_{2} = b_{2} + z_{1}$$

$$b_{3} = (x_{3} \oplus b_{2}) \ll 9 z_{3} = (b_{3} \oplus z_{2}) \ll 18$$

$$(4)$$

¹ The even and odd rounds respectively correspond to the functions called **columnround** and **rowround** in the original specification of Salsa20. Nevertheless, this does not explicitly address the case of variants with an odd number of rounds, so we naturally choose to define them by ending just after the last **colround**, that is, with no additional transposition, unlike suggested in [9].

where the b_i 's are temporary variables². Like for Salsa20, the round function of ChaCha is trivially invertible. R-round variants are denoted ChaChaR. The core function of ChaCha suggests that "the big advantage of ChaCha over Salsa20 is the diffusion, which at least at first glance looks considerably faster" [3].

2.3 Rumba

Rumba is a compression function built on Salsa20, mapping a 1536-bit message to a 512-bit value. The input M is parsed as four 384-bit chunks M_0, \ldots, M_3 , and Rumba's output is

$$\operatorname{Rumba}(M) = F_0(M_0) \oplus F_1(M_1) \oplus F_2(M_2) \oplus F_3(M_3) = (X_0 + X_0^{20}) \oplus (X_1 + X_1^{20}) \oplus (X_2 + X_2^{20}) \oplus (X_3 + X_3^{20}) ,$$
 (5)

where each F_i is an instance of the function Salsa20 with distinct diagonal constants (see Appendix A), and the remaining 384 bits contain the message. Note that the functions F_i include the feedforward operation of Salsa20. A single word j of X_i is denoted $x_{i,j}$. RumbaR stands for R-round variant.

3 Differential Analysis of Salsa20 and ChaCha

This section introduces differential attacks based on a new technique called *probabilistic* neutral bits (shortcut PNB's). To apply it to Salsa20 and ChaCha, we first identify optimal choices of truncated differentials, then we describe a general framework for probabilistic backwards computation, and introduce the notion of PNB's along with a method to find them. Then, we outline the overall attack, and present concrete attacks for Salsa20/7, Salsa20/8, ChaCha6, and ChaCha7. Eventually, we discuss our attack scenarios and possibilities of improvements.

3.1 Choosing a Differential

Let x_i be the *i*-th word of the matrix-state X, and x_i' an associated word with the difference $\Delta_i^0 = x_i \oplus x_i'$. The *j*-th bit of x_i is denoted $[x_i]_j$. We use (truncated) input/output differentials for the input X, with a single-bit input-difference $[\Delta_i^0]_j = 1$ in the nonce, and consider a single-bit output-difference $[\Delta_p^r]_q$ after r rounds in X^r . Such a differential is denoted $([\Delta_p^r]_q \mid [\Delta_i^0]_j)$. The bias ε_d of the output-difference is defined by

$$\Pr_{k,v,t}([\Delta_p^r]_q = 1 \mid [\Delta_i^0]_j) = \frac{1}{2}(1 + \varepsilon_d) , \qquad (6)$$

where the probability holds over all inputs (i.e. keys, nonces and counters). Furthermore, we write ε_d^* the median value over all keys of the random variable $\Pr_{v,t}([\Delta_p^r]_q = 1 \mid [\Delta_i^0]_j)$. Hence, for half of the keys this differential will have a bias of at least ε_d^* . Note that our statistical model considers a (uniformly) random value of the counter. In the following, we use the shortcuts \mathcal{ID} and \mathcal{OD} for input- and output-difference.

² We have been told by the author of ChaCha that the final version of the cipher will have different rotation constants from the ones considered here. Though the differentials we consider for attacking ChaCha will not apply for this modified version, our experiments suggest that differentials of similar probability will exist for this modified version. Hence we can expect the two versions to have a similar security level.

3.2 Probabilistic Backwards Computation

In the following, assume that the differential $([\Delta_p^r]_q \mid [\Delta_i^0]_j)$ of bias ε_d is fixed, and the corresponding outputs Z and Z' (for some nonce, counter and key) are observed. If the full key is known, one can invert the operations in $Z = X + X^R$ and $Z' = X' + (X')^R$ to observe the r-round differential (with R > r) of bias ε_d since $X^r = (Z - X)^{r-R}$ and $(X')^r = (Z' - X')^{r-R}$. However, if a subkey of only m = 256 - n bits is known, we have to approximate the differential $([\Delta_p^r]_q \mid [\Delta_i^0]_j)$ with a suitable function of additional bias ε_a . One method of approximation is to fix the remaining n key bits (e.g. by zero) and invert R - r rounds. The bias ε_a of the approximation then depends on n and on the positions of the unknown bits. More formally, let \bar{X} correspond to the input X with m key bits replaced by fixed bits. We can then define the function $f(X) = ([\Delta_p^r]_q \mid [\Delta_i^0]_j)$ with $\Pr_X[f(X) = 1] = \frac{1}{2}(1 + \varepsilon_d)$, and the function $g(Z, Z', \bar{X})$ which constitutes an approximation of f(X), by returning the differential after computing R - r rounds backwards under some noise of bias ε_a :

$$\Pr_{X}[f(X) = g(Z, Z', \bar{X})] = \frac{1}{2}(1 + \varepsilon_a) . \tag{7}$$

Note that Z, Z', and \bar{X} only depend on X. The overall bias ε of g is defined by the following equation:

$$\Pr_{X}[g(Z, Z', \bar{X}) = 1] = \frac{1}{2}(1 + \varepsilon) .$$
 (8)

Under some reasonable independency assumptions, the equality $\varepsilon = \varepsilon_d \cdot \varepsilon_a$ holds. Again, we denote ε^* the median bias over all keys. Note that deterministic backwards computation is a special case with $\varepsilon_a = \varepsilon$.

3.3 Probabilistic Neutral Bits

The goal of this section is to identify a (large) subset of key bits which can be replaced by fixed bits, such that the bias ε_a of the approximation (and hence ε) is significant. We use a technique related to neutral bits [7]: For a specific differential and a pair of inputs that conforms to this differential, bit number i of the input is called a neutral bit if the pair obtained by complementing the i-th bits of the original pair also conforms to this differential. In our attacks, we identify bits in the key (specific to the differential considered) which are neutral for a subset of inputs (where the inputs are the key, the nonce and the counter). We call them *probabilistic neutral bits* (PNB's), because flipping a PNB in a conforming pair leads to another conforming pair with a certain probability. To find a set of PNB's, we empirically estimate the influence of each bit of the key on a particular differential. Our experiments follow the algorithm below:

- 1. Pick a random input X (with fixed constants) and apply the \mathcal{ID} to get $X' = \Delta \oplus X$.
- 2. Compute $Z = X + X^R$ and $Z' = X' + (X')^R$.
- 3. Compute $(Z-X)^{r-R}$ and $(Z'-X')^{r-R}$ and observe the \mathcal{OD} .
- 4. Flip the *i*-th key bit in X and X'.
- 5. Compute $(Z-X)^{r-R}$ and $(Z'-X')^{r-R}$ and observe the \mathcal{OD} .

By repeating this many times, we can estimate the probability that flipping the *i*-th key bit does not change the \mathcal{OD} after r rounds. We denote this probability $\Pr = \frac{1}{2}(1 + \gamma_i)$ and call γ_i the neutrality measure of this bit. Singular cases are

- $\gamma_i = 1$: Backwards computation does not depend on key bit i (i.e. it is a neutral bit).
- $\gamma_i = 0$: Backwards computation is statistically independent of key bit i (i.e. it is a significant bit).
- $\gamma_i = -1$: Backwards computation linearly depends on key bit i (i.e. it is a neutral bit for the flipped differential).

We will only consider the key bits with positive neutrality measure—bits with negative neutrality measure would be as useful, by considering the flipped differential observed, but we will observe much more bits with $\gamma_i > 0$. Generally, the more key bits with high neutrality measure we get, the faster will be the attack, provided that the median bias ε^* remains non-negligible. In practice, we set a threshold γ and fix all key bits with $\gamma_i > \gamma$. Note that, contrary to the (input-specific) neutral bits of [7], we can here directly combine several PNB's without altering their probabilistic quality.

Remark 1. Tsunoo et al. [14] used nonlinear approximations of integer addition to identify the dependency of key bits, whereas the independent key bits—with respect to nonlinear approximation of some order—are fixed. This can be seen as a special case of our method.

3.4 Complexity Estimation

Here we sketch the full attack described in the previous subsections, then study its computational cost. The attack is split up into a precomputation stage, and a stage of effective attack; note that precomputation is not specific to a key or a counter.

Precomputation

- 1. Find a high-probability differential with \mathcal{ID} in the nonce.
- 2. Identify a subset of n key bits which are PNB's for this differential.
- 3. Determine the bias of the differential with respect to this subset of PNB's, when observed after working R-r rounds backward from a keystream block, a correct key portion, and randomly chosen values for the remaining key bits (the PNB's).

Effective attack

- 4. Collect N pairs of keystream blocks, where each pair is produced by states with random nonce, random counter and relevant \mathcal{ID} .
- 5. For each choice of the m = 256 n remaining key bits (the subkey), use the N keystream blocks to filter the candidate keys with respect to an optimal distinguisher.
- 6. For each filtered keys, check correctness by performing exhaustive search over the *n* remaining bits.

At step 1, we require the difference to be in the nonce because it is the only value which can be controlled by the attacker (a difference in the key would constitute a

related-key attack, but this seems unrealistic). Previous attacks on Salsa20 use the rough estimate of $N = \varepsilon^{-2}$ samples for each subkey, in order to identify the correct one in a large search space. But this estimate is incorrect: this is the number of samples necessary to identify a single random bitstream either uniform or with bias ε , which is a different problem of hypothesis testing. In our case, we have a set of 2^m sequences of random variables with $2^m - 1$ of them verifying the null hypothesis H_0 , and a single one verifying the alternative hypothesis H_1 . For a realization a of the corresponding random variable A, the decision rule $\mathcal{D}(a) = i$ to accept H_i can lead to two types of errors:

- 1. Non-detection: $\mathcal{D}(a) = 0$ and $A \in H_1$. The probability of this event is $p_{\rm nd}$.
- 2. False alarm: $\mathcal{D}(a) = 1$ and $A \in H_0$. The probability of this event is p_{fa} .

The Neyman-Pearson decision theory gives results to estimate the number of samples N required to get some bounds on the probabilities. Calculus details can be found in [13], see also [1] for more general results on distributions' distinguishability. For $p_{\rm nd} = 1.3 \times 10^{-3}$ and $p_{\rm fa} = 2^{-\alpha}$, it is

$$N \approx \left(\frac{\sqrt{\alpha \log 4} + 3\sqrt{1 - \varepsilon^2}}{\varepsilon}\right)^2 . \tag{9}$$

Let us now discuss the complexity of our attack: The cost of precomputation is negligible compared to the effective attack. In the effective attack, steps 4 and 5 have a complexity of 2^mN (ignoring $p_{\rm nd}$), to find a number of $2^mp_{\rm fa}$ subkey candidates. Step 5 has then a complexity of $2^n2^mp_{\rm fa}=2^{256-\alpha}$, as each subkey candidate is checked for correctness together with the remaining n bits. In practice, α should be chosen such that it minimizes $2^mN+2^{256-\alpha}$. Note that the potential improvement from key ranking techniques is not considered here, see e.g. [12]. The data complexity of our attack is N, i.e. the number of keystream blocks required to test a guess. In practice, we can choose N random nonces, and collect the first keystream block produced with each each of those nonces, and the secret key.

3.5 Experimental Results

We present here our attacks on Salsa20/7, Salsa20/8, ChaCha6, and ChaCha7.

Application to Salsa20. We used automatized search to identify differentials such that (1) the \mathcal{ID} and \mathcal{OD} have weight one, (2) the \mathcal{ID} lies in the nonce, (3) the bias of the differential ε_d is large, and (4) such that many PNB's exist. In practice, we will select a subset of the differentials with large ε_d , then for each of them we estimate the number of PNB's for some threshold γ . It appears that the differential with the largest set of PNB's is not necessarily the one with the largest bias. The neutrality measures γ_i are computed with about 2^{26} random inputs. The threshold γ is chosen as small as possible, such that the bias ε is significant, in order to minimize the number of bits guessed. Below we only present the configurations leading to the best attacks, and provide the list of PNB's in Appendix B.

Attack on Salsa20/7. We observe a 4-round \mathcal{OD} after working three rounds backward from a 7-round keystream block. We consider the 4-round differential ($[\Delta_1^4]_{14} \mid [\Delta_7^0]_{31}$), for which $|\varepsilon_d| \approx 0.13$ and $|\varepsilon_d^{\star}| \approx 0.16$. We find n = 125 key bits with neutrality measure $\gamma_i > 0.6$ that we use as PNB's. Thus we only guess m = 256 - 125 = 131 key bits. The corresponding g function has bias $|\varepsilon| \approx |\varepsilon^{\star}| \approx 0.006$. We can then build an attack running in time 2^{153} and data 2^{23} . The previous best attack in [14] required about 2^{190} trials and 2^{12} data.

Attack on Salsa20/8. We observe a 4-round \mathcal{OD} after working four rounds backward from a 8-round keystream block. The 4-round differential ($[\Delta_1^4]_{12} \mid [\Delta_7^0]_{31}$) has bias $|\varepsilon_d| \approx 0.17$, $|\varepsilon_d^{\star}| \approx 0.18$. We identify n=28 key bits with $\gamma_i > 0.2$, so we have to guess m=256-28=228 bits. A bias of $|\varepsilon^{\star}| \approx 0.004$ is observed, leading to an attack in time 2^{249} and data 2^{21} . If we reduce the threshold for neutrality measures, in order to get more than 30 PNB's, then we observe no bias. This suggests that an erroneous guess of key bits just below the threshold will not show a significant deviation from random. Note that our attack reaches the same success probability and supports an identical degree of parallelism as brute force. The previous attack of Tsunoo et al. claims 2^{255} trials with data 2^{10} for success probability 44%, but exhaustive search succeeds with probability 50% within the same number of trials, with much less data and no additional computations. Therefore their attack does not constitute a break of Salsa20/8.

Application to ChaCha. ChaCha is expected to have faster diffusion than Salsa20 (cf. $\S 2$). Our experiments argue in favor of this conjecture, since we found many biased differentials over 3 rounds, but none over 4 rounds. Such differentials of weight one in both \mathcal{ID} and \mathcal{OD} can easily be found by automatized search. The list of the PNB's used is given in Appendix B.

Attack on ChaCha6. We observe a 3-round \mathcal{OD} after working three rounds backward from a 3-round keystream block. The 3-round differential $([\Delta_{10}^3]_0 \mid [\Delta_7^0]_{14})$ has a bias of $|\varepsilon_d| \approx 0.44$ and $|\varepsilon_d^{\star}| \approx 0.50$. To illustrate the role of the threshold γ , we present in Tab. 2 complexity estimates along with the value of $|\varepsilon^{\star}|$ and the number of bits guessed (i.e. the number of key bits with neutrality measure below γ) for several threshold values. The best attack runs in time 2^{140} and data 2^{24} .

Table 2. Different parameters for our attack on ChaCha6.

γ	m	$ \varepsilon^{\star} $	Time	Data
0.50	111	0.000	n.d.	n.d.
0.55	117	0.004	2^{140}	2^{24}
0.60	120	0.010	2^{141}	2^{21}
0.75	138	0.040	2^{155}	2^{17}
0.90	166	0.300	2^{177}	2^{11}
1.00	216	0.440	2^{225}	2^9

Attack on ChaCha7. We observe a 3-round \mathcal{OD} after working four rounds backward from a 7-round keystream block. The 3-round differential ($[\Delta_3^3]_0 \mid [\Delta_7^0]_{30}$) has a bias of $|\varepsilon_d| \approx 0.32$, $|\varepsilon_d^*| \approx 0.34$. We identify n=48 key bits with $\gamma_i > 0.4$, so we have to guess m=256-48=208 key bits. A bias of $|\varepsilon^*| \approx 0.002$ is observed, leading to an attack in time 2^{231} and data 2^{23} .

3.6 Discussion

Our attack on reduced-round Salsa20 exploits a 4-round differential, to break the 8-round cipher by working four rounds backward. For ChaCha, we use a 3-round differential to break 7 rounds. We made intensive experiments for observing a bias after going five rounds backwards from the guess of a subkey, in order to attack Salsa20/9 or ChaCha8, but without success. Four seems to be the highest number of rounds one can invert from a partial key guess, while still observing a non-negligible bias after inversion, and such that the overall cost improves from exhaustive key search. Can one hope to break further rounds by statistical cryptanalysis? We believe that it would require novel techniques and ideas, rather than the relatively simple XOR difference of 1-bit input and 1-bit output. For example, one might combine several biased \mathcal{OD} 's to reduce data requirements, but this requires almost equal subsets of guessed bits; according to our experiments, this seems difficult to achieve. We also found some highly biased multibit differentials such as $([\Delta_1^4]_0 \oplus [\Delta_2^4]_9 \mid [\Delta_7^0]_{26})$ with bias $\varepsilon_d = -0.60$ for four rounds of Salsa20, and $([\Delta_5^3]_{23} \oplus [\Delta_9^3]_4 \mid [\Delta_8^0]_{31})$ with bias $\varepsilon_d = 0.92$ for three rounds of ChaCha, see also Appendix C. However, exploiting multibit differentials, does not improve efficiency either. Note that an alternative approach to attack Salsa20/7 is to consider a 3-round biased differential, and observe it after going four rounds backward. This is however much more expensive than exploiting directly 4-round differentials. Unlike Salsa20, our exhaustive search showed no bias in 4-round ChaCha, be it with one, two, or three target output bits. This argues in favor of the faster diffusion of ChaCha. But surprisingly, when comparing the attacks on Salsa20/8 and ChaCha7, results suggest that after four rounds backward, key bits are more correlated with the target difference in ChaCha than in Salsa20. Nevertheless, ChaCha looks more trustful on the overall, since we could break up to seven ChaCha rounds against eight for Salsa20.

4 Analysis of Rumba

This section describes our results for the compression function Rumba. Our goal is to efficiently find colliding pairs for R-round Rumba, i.e. input pairs (M, M') such that RumbaR $(M) \oplus$ RumbaR(M') = 0. Note that, compared to our attacks on Salsa20 (where a single biased bit could be exploited in an attack), a collision attack targets all 512 bits (or a large subset of them for near-collisions).

4.1 Collisions and Preimages in Simplified Versions

We show here the weakness of two simplified versions of Rumba, respectively an iterated version with 2048-bit-input compression function, and the compression function without the final feedforward.

On the Role of Diagonal Constants. Rumba20 is fed with 1536 bits, copied in a 2048-bit state, whose remaining 512 bits are the diagonal constants. It is tempting to see these values as the IV of a derived iterated hash function, and use diagonal values as chaining variables. However, Bernstein implicitly warned against such a construction, when claiming that "Rumba20 will take about twice as many cycles per eliminated byte as Salsa20 takes per encrypted byte" [6]; indeed, the 1536-bit input should contain both the 512-bit chaining value and the 1024-bit message, and thus for a 1024-bit input the Salsa20 function is called four times (256 bits processed per call), whereas in Salsa20 it is called once for a 512-bit input. In the following, we confirm that diagonal values should not be replaced by the chaining variables, by presenting a method for finding collisions within about $2^{128}/6$ trials, against 2^{256} with a birthday attack. Consider the following algorithm: pick an arbitrary 1536-bit message block M^0 , then compute Rumba $(M^0) = H_0 \|H_1\|H_2\|H_3$, and repeat this until two distinct 128-bit chunks H_i and H_j are equal—say H_0 and H_1 , corresponding to the diagonal constants of F_0 and F_1 in the next round; hence, these functions will be identical in the next round. A collision can then be obtained by choosing two distinct message blocks $M^1 = M_0^1 \| M_1^1 \| M_2^1 \| M_3^1$ and $(M')^1 = M_1^1 \| M_0^1 \| M_2^1 \| M_3^1$, or $M^1 = M_0^1 \| M_0^1 \| M_2^1 \| M_3^1$ and $(M')^1 = (M'_0)^1 \| (M'_0)^1 \| M_2^1 \| M_3^1$. What is the cost of our algorithm? By the birthday paradox, the amount of trials for finding a suitable M^0 is about $2^{128}/6$ (where 6 is the number of distinct pairs), while the construction of M^1 and $(M')^1$ is straightforward. Regarding the price-performance ratio, we do not have to store or sort a table, so the price is $2^{128}/6$ —and this, for any potential filter function—while performance is much larger than one, because there are many collisions (one can choose 3 messages and 1 difference of 348 bits arbitrarily). This contrasts with the cost of 2^{256} for a serial attack on a 512-bit digest hash function.

On the Importance of Feedforward. In Davies-Meyer-based hash functions like MD5 or SHA-1, the final feedforward is an obvious requirement for one-wayness. In Rumba the feedforward is applied in each F_i , before a XOR of the four branches, and omitting this operation does not trivially lead to an inversion of the function, because of the incremental construction. However, as we will demonstrate, preimage resistance is not guaranteed with this setting. Let $F_i(M_i) = X_i^{20}$, i = 0, ..., 3 and assume that we are given a 512-bit value H, and our goal is to find $M = (M_0, M_1, M_2, M_3)$ such that Rumba(M) = H. This can be achieved by choosing random blocks M_0 , M_1 , M_2 , and set

$$Y = F_0(M_0) \oplus F_1(M_1) \oplus F_2(M_2) \oplus H . \tag{10}$$

We can find then the 512-bit state X_3^0 such that $Y = X_3^{20}$. If X_3^0 has the correct diagonal values (the 128-bit constant of F_3), we can extract M_3 from X_0^3 with respect to Rumba's definition. This randomized algorithm succeeds with probability 2^{-128} , since there are 128 constant bits in an initial state. Therefore, a preimage of an arbitrary digest can be found within about 2^{128} trials, against 2^{512} with the naive method.

4.2 The Birthday Attack

One can observe that the constants of F_0 and F_2 are almost similar, as well as the constants of F_1 and F_3 (cf. Appendix A). To improve the generalized birthday attack

suggested in [6], a strategy is to find a pair (M_0, M_2) such that $F_0(M_0) \oplus F_2(M_2)$ is biased in any c bits after R rounds (where $c \approx 114$, see [6]), along with a second pair (M_1, M_3) with $F_1(M_1) \oplus F_3(M_3)$ biased in the same c bits. The sum $F_0(M_0) \oplus F_2(M_2)$ can be seen as the feedforward \mathcal{OD} of two states having an \mathcal{ID} which is nonzero in some diagonal words. However, differences in the diagonal words result in a large diffusion, and this approach seems to be much less efficient than differential attacks for only one function F_i .

4.3 Differential Attack

To obtain a collision for RumbaR, it is sufficient to find two messages M and M' such that

$$F_0(M_0) \oplus F_0(M'_0) = F_2(M_2) \oplus F_2(M'_2)$$
, (11)

with $M_0 \oplus M_0' = M_2 \oplus M_2'$, $M_1 = M_1'$ and $M_3 = M_3'$. The freedom in choosing M_1 and M_3 trivially allows to derive many other collisions (multicollision). We use the following notations for differentials: Let the initial states X_i and X_i' have the \mathcal{ID} $\Delta_i^0 = X_i \oplus X_i'$ for $i = 0, \ldots, 3$. After r rounds, the observed difference is denoted $\Delta_i^r = X_i^r \oplus (X_i')^r$, and the \mathcal{OD} (without feedforward) becomes $\Delta_i^R = X_i^R \oplus (X_i')^R$. If feedforward is included in the \mathcal{OD} , we use the notation $\nabla_i^R = (X_i + X_i^R) \oplus (X_i' + (X_i')^R)$. With this notation, Eq. 11 becomes $\nabla_0^R = \nabla_2^R$, and if the feedforward operation is ignored in the F_i 's, then Eq. 11 simplifies to $\Delta_0^R = \Delta_2^R$. To find messages satisfying Eq. 11, we use an R-round differential path of high-probability, with intermediate target difference δ^r after r rounds, $0 \le r \le R$. Note that the differential is applicable for both F_0 and F_2 , thus we do not have to subscript the target difference. The probability that a random message pair with \mathcal{ID} δ^0 conforms to δ^r is denoted p_r . To satisfy the equation $\Delta_0^R = \Delta_2^R$, it suffices to find message pairs such that the observed differentials equal the target one, that is, $\Delta_0^R = \delta^R$ and $\Delta_2^R = \delta^R$. The naive approach is to try about $1/p_r$ random messages each. This complexity can however be lowered down by:

- Finding constraints on the message pair so that it conforms to the difference δ^1 after one round with certainty (this will be achieved by *linearization*).
- Deriving message pairs conforming to δ^r from a single conforming pair (the message-modification technique used will be *neutral bits*).

Finally, to have $\nabla_0^R = \nabla_2^R$, we need to find message pairs such that $\nabla_0^R = \delta^R \oplus \delta^0$ and $\nabla_2^R = \delta^R \oplus \delta^0$ (i.e. the additions are not producing carry bits). Given a random message pair that conforms to δ^R , this holds with probability about 2^{-v-w} where v and w are the respective weights of the \mathcal{ID} δ^0 and of the target \mathcal{OD} δ^R (excluding the linear MSB's). The three next paragraphs are respectively dedicated to finding an optimal differential, describing the linearization procedure, and describing the neutral bits technique.

Finding a High-Probability Differential. We search for a *linear* differential over several rounds of Rumba, i.e. a differential holding with certainty when additions are replaced by XOR's, see [11]. The differential is independent of the diagonal constants, and it is expected to have high probability for genuine Rumba if the linear differential

has low weight. An exhaustive search for suitable \mathcal{ID} 's is not traceable, so we choose another method: We focus on a *single column* in X_i , and consider the weight of the input (starting with the diagonal element, which must be zero). With a fixed relative position of the non-zero bits in this input, one can obtain an output of low weight after the first linear round of Rumba (i.e. using the linearized Eq. 3). Here is a list of the mappings (showing the weight only) which have at most weight 2 in each word of the input and output:

$$\begin{array}{lll} g_1: (0,0,0,0) \to (0,0,0,0) & g_8: (0,1,2,0) \to (1,1,1,0) \\ g_2: (0,0,1,0) \to (2,0,1,1) & g_9: (0,1,2,2) \to (1,1,1,2) \\ g_3: (0,0,1,1) \to (2,1,0,2) & g_{10}: (0,2,1,1) \to (0,1,0,0) \\ g_4: (0,1,0,1) \to (1,0,0,1) & g_{11}: (0,2,1,2) \to (0,0,1,1) \\ g_5: (0,1,1,0) \to (1,1,0,1) & g_{12}: (0,2,2,1) \to (0,1,1,1) \\ g_6: (0,1,1,1) \to (1,0,1,0) & g_{13}: (0,2,2,1) \to (2,1,1,1) \\ g_7: (0,0,2,1) \to (2,1,1,1) & g_{14}: (0,2,2,2) \to (2,0,2,0) \end{array}$$

The relations above can be used to construct algorithmically a suitable \mathcal{ID} with all 4 columns. Consider the following example, where the state after the first round is again a combination of useful rows: $(g_1, g_{10}, g_1, g_{11}) \rightarrow (g_1, g_2, g_4, g_1)$. After 2 rounds, the difference has weight 6 (with weight 3 in the diagonal words). There is a class of \mathcal{ID} 's with the same structure: $(g_1, g_{10}, g_1, g_{11})$, $(g_1, g_{11}, g_1, g_{10})$, $(g_{10}, g_1, g_{11}, g_1)$, $(g_{11}, g_1, g_{10}, g_1)$. The degree of freedom is large enough to construct these 2-round linear differentials: the positions of the nonzero bits in a single mapping g_i are symmetric with respect to rotation of words (and the required g_i have an additional degree of freedom). Any other linear differential constructed with g_i has larger weight after 2 rounds. Let $\Delta_{i,j}$ denote the difference of word $j = 0, \ldots, 15$ in state $i = 0, \ldots, 3$. For our attacks on Rumba, we will consider the following input difference (with optimal rotation, such that many MSB's are involved):

$$\Delta^0_{i,2} = 00000002$$
 $\Delta^0_{i,8} = 80000000$
 $\Delta^0_{i,4} = 00080040$ $\Delta^0_{i,12} = 80001000$ (13)
 $\Delta^0_{i,6} = 00000020$ $\Delta^0_{i,14} = 01001000$

and $\Delta_{i,j}^0 = 0$ for all other words j. The weight of differences for the first four linearized rounds is as follows (the subscript of the arrows denotes the approximate probability p_r that a random message pair conforms to this differential):

$$\begin{pmatrix} 0 \ 0 \ 1 \ 0 \\ 2 \ 0 \ 1 \ 0 \\ 2 \ 0 \ 2 \ 0 \end{pmatrix} \xrightarrow{\text{Round}} \begin{pmatrix} 0 \ 0 \ 0 \ 0 \\ 0 \ 0 \ 0 \\ 1 \ 0 \ 0 \ 0 \\ 1 \ 0 \ 1 \ 0 \end{pmatrix} \xrightarrow{\text{Round}} \begin{pmatrix} 0 \ 0 \ 0 \ 0 \\ 0 \ 0 \ 0 \\ 1 \ 1 \ 2 \ 0 \\ 0 \ 0 \ 1 \ 1 \end{pmatrix} \xrightarrow{\text{Round}} \begin{pmatrix} 2 \ 2 \ 3 \ 1 \\ 0 \ 3 \ 4 \ 2 \\ 1 \ 1 \ 7 \ 3 \\ 1 \ 1 \ 1 \ 6 \end{pmatrix} \xrightarrow{\text{Round}} \begin{pmatrix} 8 \ 3 \ 2 \ 4 \\ 5 \ 10 \ 3 \ 4 \\ 9 \ 11 \ 13 \ 7 \\ 6 \ 9 \ 10 \ 9 \end{pmatrix}$$

With this \mathcal{ID} , the \mathcal{OD} obtained by genuine Rumba corresponds to the \mathcal{OD} of linear Rumba with (cumulative) probabilities $p_1 = 2^{-4}$, $p_2 = 2^{-7}$, $p_3 = 2^{-41}$, $p_4 = 2^{-194}$. For 3 rounds, we have weights v = 7 and w = 37, thus the overall complexity to find a collision after 3 rounds is about $2^{-41-37-7} = 2^{85}$. For 4 rounds, v = 7 and w = 112, leading to a complexity 2^{-313} . The probability that feedforward behaves linearly can be increased by choosing low-weight inputs.

Linearization. The first round of our differential has probability $p_1 = 2^{-4}$ for a random message. This is roughly confirmed by our experiments, where exact probabilities depend on the diagonal constants (for example, we observed $Pr = 2^{-3.6}$ for F_1 , and $Pr = 2^{-7.9}$ for F_3). We show here how to set constraints on the message so that the first round differential holds with certainty, using methods similar to the ones in [11].

Let us begin with the first column of F_0 , where $c_{0.0} = x_{0.0} = 73726966$. In the first addition $x_{0,0} + x_{0,12}$, we have to address $\Delta_{0,12}^0$, which has a nonzero (and non-MSB) bit on position 12 (counting from 0). The bits of the constant are $[x_{0,0}]_{12-10} = (010)_2$, hence the choice $[x_{0,12}]_{11,10} = (00)_2$ is sufficient for linearization. This corresponds to $x_{0,12} \leftarrow$ $x_{0.12} \wedge \text{FFFF3FFF}$. The subsequent 3 additions of the first column are always linear as only MSB's are involved. Then, we linearize the third column of F_0 , where $c_{0,2}$ $x_{0,10} = 30326162$. In the first addition $x_{0,10} + x_{0,6}$, we have to address $\Delta_{0,6}^0$, which has a nonzero bit on position 5. The relevant bits of the constant are $[x_{0.10}]_{5-1} = (10001)_2$, hence the choice $[x_{0.6}]_{4-1} = (1111)_2$ is sufficient for linearization. This corresponds to $x_{0,6} \leftarrow x_{0,6} \lor 0000001$ E. In the second addition $z_{0,14} + x_{0,10}$, the updated difference $\Delta_{0,14}^1$ has a single bit on position 24. The relevant bits of the constant are $[x_{0,10}]_{24,23} = (00)_2$, hence the choice $[z_{0,14}]_{23} = (0)_2$ is sufficient. Notice that conditions on the updated words must be transformed to the initial state words. As $z_{0,14} = x_{0,14} \oplus (x_{0,10} + x_{0,6}) \ll$ 8, we find the condition $[x_{0,14}]_{23} = [x_{0,10} + x_{0,6}]_{16}$. If we let both sides be zero, we have $[x_{0,14}]_{23} = (0)_2$ or $x_{0,14} \leftarrow x_{0,14} \wedge \text{FF7FFFFF}$, and $[x_{0,10} + x_{0,6}]_{16} = (0)_2$. As $[x_{0,10}]_{16,15} = (00)_2$, we can choose $[x_{0,6}]_{16,15} = (00)_2$ or $x_{0,6} \leftarrow x_{0,6} \land \mathsf{FFFE7FFF}$. Finally, the third addition $z_{0,2} + z_{0,14}$ must be linearized with respect to the single bit in $\Delta_{0.14}^1$ on position 24. A sufficient condition for linearization is $[z_{0,2}]_{24,23}=(00)_2$ and $[z_{0,14}]_{23} = (0)_2$. The second condition is already satisfied, so we can focus on the first condition. The update is defined by $z_{0,2} = x_{0,2} \oplus (z_{0,14} + x_{0,10}) \iff 9$, so we set $[x_{0,2}]_{24,23} = (00)_2 \text{ or } x_{0,2} \leftarrow x_{0,2} \land \text{FE7FFFFF}, \text{ and require } [z_{0,14} + x_{0,10}]_{15,14} = (00)_2.$ As $[x_{0,10}]_{15-13} = (011)_2$, we can set $[z_{0,14}]_{15-13} = (101)_2$. This is satisfied by choosing $[x_{0,14}]_{15-13} = (000)_2$ or $x_{0,14} \leftarrow x_{0,14} \wedge \text{FFFF1FFF}$, and by choosing $[x_{0,10} + x_{0,6}]_{8-6} =$ $(101)_2$. As $[x_{0,10}]_{8-5} = (1011)_2$, we set $[x_{0,6}]_{8-5} = (1111)_2$ or $x_{0,6} \leftarrow x_{0,6} \lor 000001E0$. Altogether, we fixed 18 (distinct) bits of the input, other linearizations are possible.

The first round of F_2 can be linearized with exactly the same conditions. This way, we save an average factor of 2^4 (additive complexities are ignored). This linearization with sufficient conditions does not work well for more than one round because of an avalanche effect of fixed bits. We lose many degrees of freedom, and contradictions are likely to occur.

Neutral Bits. Thanks to linearization, we can find a message pair conforming to δ^2 within about $1/(2^{-7+4}) = 2^3$ trials. Our goal now is to to efficiently derive from such a pair many other pairs that conforming to δ^2 , so that a search for three rounds can start after the second round, by using the notion of neutral bits again (cf. §3.3). Neutral bits can be identified easily for a fixed pair of messages, but if several neutral bits are complemented in parallel, then the resulting message pair may not conform anymore. A heuristic approach was introduced in [7], using a maximal 2-neutral set. A 2-neutral set of bits is a subset of neutral bits, such that the message pair obtained by complementing any two bits of the subset in parallel also conform to the differential.

The size of this set is denoted n. In general, finding a 2-neutral set is an NP-complete problem—the problem is equivalent to the Maximum Clique Problem from graph theory, but good heuristic algorithms for dense graphs exist, see e.g. [8]. In the case of Rumba, we compute the value n for different message pairs that conform to δ^2 and choose the pair with maximum n. We observe that about 1/2 of the 2^n message pairs (derived by flipping some of the n bits of the 2-neutral set) conform to the differential³. This probability p is significantly increased, if we complement at most $\ell \ll n$ bits of the 2-neutral set, which results in a message space (not contradicting with the linearization) of size about $p \cdot \binom{n}{\ell}$. At this point, a full collision for 3 rounds has a reduced theoretical complexity of $2^{85-7}/p = 2^{78}/p$ (of course, p should not be smaller than 2^{-3}). Since we will have $p > \frac{1}{2}$ for a suitable choice of ℓ , the complexity gets reduced from 2^{85} to less than 2^{79} .

4.4 Experimental Results

We choose a random message of low weight, apply the linearization for the first round and repeat this about 2^3 times until the message pairs conforms to δ^2 . We compute then the 2-neutral set of this message pair. This protocol is repeated a few times to identify a message pair with large 2-neutral set:

• For F_0 , we find the pair of states (X_0, X'_0) of low weight, with 251 neutral bits and a 2-neutral set of size 147. If we flip a random subset of the 2-neutral bits, then the resulting message pair conforms to δ^2 with probability Pr = 0.52.

$$X_0 = \begin{pmatrix} 73726966\ 00000400\ 00000080\ 00200001\\ 00002000\ 6d755274\ 000001fe\ 02000008\\ 00000040\ 00000042\ 30326162\ 10002800\\ 00000080\ 00000000\ 01200000\ 636f6c62 \end{pmatrix}$$

• For F_2 , we find the pair of states (X_2, X_2') of low weight, with 252 neutral bits and a 2-neutral set of size 146. If we flip a random subset of the 2-neutral bits, then the resulting message pair conforms to δ^2 with probability $\Pr = 0.41$.

$$X_2 = \begin{pmatrix} 72696874\ 00000000\ 00040040\ 00000400\\ 00008004\ 6d755264\ 000001fe\ 06021184\\ 00000000\ 00800040\ 30326162\ 00000000\\ 00000300\ 00000400\ 04000000\ 636f6c62 \end{pmatrix}$$

Given these pairs for 2 rounds, we perform a search in the 2-neutral set by flipping at most 10 bits (that gives a message space of about 2^{50}), to find pairs that conform to δ^3 . This step has a theoretical complexity of about 2^{34} for each pair (which was verified in practice). For example, in (X_0, X'_0) we can flip the bits $\{59, 141, 150, 154, 269, 280, 294, 425\}$ in order to get a pair of states (\bar{X}_0, \bar{X}'_0) that conforms to δ^3 .

 $^{^3}$ In the case of SHA-0, about 1/8 of the 2^n message pairs (derived from the original message pair by complementing bits from the 2-neutral set) conform to the differential for the next round.

$$\bar{X}_0 = \begin{pmatrix} 73726966 \ 08000400 \ 00000080 \ 00200001 \\ 04400000 \ 6d755274 \ 000001fe \ 02000008 \\ 01002040 \ 00000002 \ 30326162 \ 10002800 \\ 00000080 \ 00000200 \ 01200000 \ 636f6c62 \end{pmatrix}$$

In the case of (X_2, X_2') , we can flip the bits {58, 63, 141, 271, 304, 317, 435, 417, 458, 460} in order to get a pair of states (\bar{X}_2, \bar{X}_2') that conforms to δ^3 .

$$\bar{X}_2 = \begin{pmatrix} 72696874\ 84000000\ 00040040\ 00000400\\ 0000a004\ 6d755264\ 000001fe\ 06021184\\ 00008000\ 20810040\ 30326162\ 00000000\\ 00000300\ 00080402\ 04001400\ 636f6c62 \end{pmatrix}$$

At this point, we have collisions for 3-round Rumba without feedforward, hence $\Delta_0^3 \oplus \Delta_2^3 = 0$. If we include feedforward for the above pairs of states, then $\nabla_0^3 \oplus \nabla_2^3$ has weight 16, which corresponds to a near-collision. Note that a near-collision indicates non-randomness of the reduced-round compression function (we assume a Gaussian distribution centered at 256). This near-collision of low weight was found by using a birthday-based method: we produce a list of pairs for F_0 that conform to δ^3 (using neutral bits as above), together with the corresponding value of ∇_0^3 . The same is done for F_2 . If each list has size N, then we can produce N^2 pairs of $\nabla_0^3 \oplus \nabla_2^3$ in order to identify near-collisions of low weight.

However, there are no neutral bits for the pairs (\bar{X}_0, \bar{X}'_0) and (\bar{X}_2, \bar{X}'_2) with respect to δ^3 . This means that we cannot completely separate the task of finding full collisions with feedforward, from finding collisions without feedforward (and we can not use neutral bits to iteratively find pairs that conform to δ^4). To find a full collision after three rounds, we could perform a search in the 2-neutral set of (X_0, X'_0) and (X_2, X'_2) by flipping at most 20 bits. In this case, the resulting pairs conform to δ^2 with probability at least $\Pr = 0.68$, and the message space has a size of about 2^{80} . The overall complexity becomes $2^{78}/0.68 \approx 2^{79}$ (compared to 2^{85} without linearization and neutral bits). Then, we try to find near-collisions of low weight for 4 rounds, using the birthday method described above. Within less than one minute of computation, we found the pairs (\bar{X}_0, \bar{X}'_0) and (\bar{X}_2, \bar{X}'_2) such that $\nabla_0^4 \oplus \nabla_2^4$ has weight 129. Consequently, the nonrandomness of the differential is propagating up to 4 rounds.

$$\bar{\bar{X}}_0 = \begin{pmatrix} 73726966\ 00020400\ 00000080\ 00200001\\ 00002400\ 6d755274\ 000001fe\ 02000008\\ 00000040\ 00220042\ 30326162\ 10002800\\ 00000080\ 00001004\ 01200000\ 636f6c62 \end{pmatrix}$$

$$\bar{\bar{X}}_2 = \begin{pmatrix} 72696874\ 00001000\ 80040040\ 00000400 \\ 00008804\ 6d755264\ 000001fe\ 06021184 \\ 00000000\ 80800040\ 30326162\ 00000000 \\ 00000300\ 00000450\ 04000000\ 636f6c62 \end{pmatrix}$$

5 Conclusions

We presented a novel method for attacking Salsa20 and ChaCha, inspired by correlation attacks and by the notion of neutral bits. This allows to give the first attack faster than exhaustive search on the stream cipher Salsa20/8. For the compression function Rumba the methods of linearization and neutral bits are applied to a high probability differential to find collisions on 3-round Rumba within 2^{79} trials, and to efficiently find low weight near collisions on 3-round and 4-round Rumba.

Acknowledgments

The authors would like to thank Dan Bernstein for insightful comments on a preliminary draft, and the reviewers of FSE 2008 who helped us to improve the clarity of the paper. J.-Ph. Aumasson is supported by the Swiss National Science Foundation (SNF) under project number 113329. S. Fischer is supported by the National Competence Center in Research on Mobile Information and Communication Systems (NCCR-MICS), a center of the SNF under grant number 5005-67322. W. Meier is supported by Hasler Foundation (http://www.haslerfoundation.ch/) under project number 2005. C. Rechberger is supported by the Austrian Science Fund (FWF), project P19863, and by the European Commission through the IST Programme under Contract IST-2002-507932 ECRYPT.

References

- 1. Thomas Baignères, Pascal Junod, and Serge Vaudenay. How far can we go beyond linear cryptanalysis? In Pil Joong Lee, editor, *ASIACRYPT*, volume 3329 of *LNCS*, pages 432–450. Springer, 2004.
- Mihir Bellare and Daniele Micciancio. A new paradigm for collision-free hashing: Incrementality at reduced cost. In Walter Fumy, editor, EUROCRYPT, volume 1233 of LNCS, pages 163–192. Springer, 1997.
- 3. Daniel J. Bernstein. Salsa20 and ChaCha. eSTREAM discussion forum, May 11, 2007.
- Daniel J. Bernstein. Salsa20. Technical Report 2005/025, eSTREAM, ECRYPT Stream Cipher Project, 2005.
- Daniel J. Bernstein. Salsa20/8 and Salsa20/12. Technical Report 2006/007, eSTREAM, ECRYPT Stream Cipher Project, 2005.
- 6. Daniel J. Bernstein. What output size resists collisions in a XOR of independent expansions? ECRYPT Workshop on Hash Functions, 2007.
- 7. Eli Biham and Rafi Chen. Near-collisions of SHA-0. In Matthew K. Franklin, editor, *CRYPTO*, volume 3152 of *LNCS*, pages 290–305. Springer, 2004.
- 8. Samuel Burer, Renato D.C. Monteiro, and Yin Zhang. Maximum stable set formulations and heuristics based on continuous optimization. *Mathematical Programming*, 64:137–166, 2002.
- 9. Paul Crowley. Truncated differential cryptanalysis of five rounds of Salsa20. In SASC 2006 Stream Ciphers Revisited, 2006.
- 10. ECRYPT. eSTREAM, the ECRYPT Stream Cipher Project. http://www.ecrypt.eu.org/stream/.
- 11. Simon Fischer, Willi Meier, Côme Berbain, Jean-François Biasse, and Matthew J. B. Robshaw. Non-randomness in eSTREAM candidates Salsa20 and TSC-4. In *INDOCRYPT*, pages 2–16, 2006.
- 12. Pascal Junod and Serge Vaudenay. Optimal key ranking procedures in a statistical cryptanalysis. In Thomas Johansson, editor, FSE, volume 2887 of LNCS, pages 235–246. Springer, 2003.
- Thomas Siegenthaler. Decrypting a class of stream ciphers using ciphertext only. IEEE Transactions on Computers, 34(1):81–85, 1985.
- 14. Yukiyasu Tsunoo, Teruo Saito, Hiroyasu Kubo, Tomoyasu Suzaki, and Hiroki Nakashima. Differential cryptanalysis of Salsa20/8. In SASC 2007 The State of the Art of Stream Ciphers, 2007.
- David Wagner. A generalized birthday problem. In Moti Yung, editor, CRYPTO, volume 2442 of LNCS, pages 288–303. Springer, 2002.

A Constants

Here are the constants for Salsa20 and ChaCha (function Round) and for Rumba (functions F_0 to F_3).

Table 3. Constants for Salsa20, ChaCha, and Rumba.

	Round	F_0	F_1	F_2	F_3
c_0	61707865	73726966	6f636573	72696874	72756f66
c_1	3320646E	6d755274	7552646e	6d755264	75526874
c_2	79622D32	30326162	3261626d	30326162	3261626d
c_3	6B206574	636f6c62	6f6c6230	636f6c62	6f6c6230

B Probabilistic Neutral Bits

We present here the sets of probabilistic neutral bits (PNB's) used for our attacks on reduced-round Salsa20 and ChaCha.

PNB's for the attack on Salsa20/7:

```
\begin{array}{c} 0,\ 1,\ 14,\ 15,\ 16,\ 17,\ 18,\ 19,\ 26,\ 27,\ 28,\ 29,\ 30,\ 31,\ 32,\ 33,\ 34,\ 35,\ 36,\ 37,\ 63,\ 65,\ 71,\ 72,\ 73,\ 74,\ 75,\ 76,\ 85,\ 86,\ 87,\ 88,\ 89,\ 90,\ 96,\ 97,\ 98,\ 99,\ 100,\ 101,\ 107,\ 108,\ 109,\ 110,\ 111,\ 112,\ 113,\ 114,\ 115,\ 116,\ 117,\ 118,\ 119,\ 120,\ 121,\ 122,\ 123,\ 124,\ 125,\ 126,\ 127,\ 128,\ 129,\ 134,\ 142,\ 143,\ 148,\ 160,\ 161,\ 162,\ 163,\ 164,\ 165,\ 166,\ 167,\ 168,\ 169,\ 170,\ 171,\ 172,\ 173,\ 174,\ 175,\ 185,\ 186,\ 187,\ 188,\ 189,\ 190,\ 191,\ 205,\ 206,\ 207,\ 208,\ 209,\ 210,\ 211,\ 212,\ 213,\ 214,\ 215,\ 216,\ 217,\ 218,\ 219,\ 220,\ 221,\ 222,\ 223,\ 224,\ 230,\ 242,\ 243,\ 244,\ 245,\ 246,\ 247,\ 248,\ 249,\ 250,\ 251,\ 252,\ 253,\ 254,\ 255. \end{array}
```

PNB's for the attack on Salsa20/8:

```
24, 25, 26, 27, 69, 118, 119, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 208, 209, 240, 241, 242, 243, 244, 254, 255.
```

PNB's for the attack on ChaCha6:

```
1, 2, 3, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 24, 25, 26, 27, 28, 29, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 100, 101, 118, 119, 120, 121, 125, 126, 127, 128, 129, 130, 137, 138, 139, 143, 144, 145, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 168, 169, 170, 171, 172, 173, 178, 179, 180, 181, 182, 191, 192, 193, 194, 195, 196, 197, 201, 202, 203, 204, 205, 206, 210, 211, 212, 213, 214, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 251, 252, 253, 254, 255.
```

PNB's for the attack on ChaCha7:

4, 22, 23, 24, 27, 28, 29, 30, 31, 61, 62, 63, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 91, 98, 127, 132, 133, 134, 135, 136, 137, 141, 142, 143, 144, 164, 168, 169, 182, 189, 190, 191, 252, 253.

C Multibit Differentials

Tables 4 and 5 present the best multibit differentials that we found for Salsa20 and ChaCha.

Table 4. Multibit differentials over four Salsa20 rounds.

ε_d	$\mathcal{I}\mathcal{D}$	OD
-0.21	$[\Delta_7^0]_{31}$	$[\Delta_1^4]_5 \oplus [\Delta_2^4]_{14}$
-0.23	$[\varDelta_7^0]_{28}$	$[\varDelta_1^4]_2 \oplus [\varDelta_2^4]_{11}$
0.25	$[\Delta_{7}^{0}]_{29}$	$[\varDelta_1^4]_0 \oplus [\varDelta_2^4]_9$
0.25	$[\varDelta_7^0]_{28}$	$[\varDelta_1^4]_1 \oplus [\varDelta_2^4]_{10}$
0.33	$[\Delta_{7}^{0}]_{28}$	$[\varDelta_1^4]_0 \oplus [\varDelta_2^4]_9$
-0.33	$[{\it \Delta}_{7}^{0}]_{27}$	$[\Delta_1^4]_1 \oplus [\Delta_2^4]_{10}$
0.50	$[{\it \Delta}_{7}^{0}]_{27}$	$[\varDelta_1^4]_0 \oplus [\varDelta_2^4]_9$
-0.60	$[\Delta_{7}^{0}]_{26}$	$[\varDelta_1^4]_0 \oplus [\varDelta_2^4]_9$

Table 5. Multibit differentials over three ChaCha rounds.

$arepsilon_d$	$\mathcal{I}\mathcal{D}$	$\mathcal{O}\mathcal{D}$
-0.89	$[\Delta_7^0]_{30}$	$[\Delta^3_{10}]_7 \oplus [\Delta^3_{14}]_{20}$
-0.90	$[\Delta_{9}^{0}]_{23}$	$[\Delta_0^3]_7 \oplus [\Delta_4^3]_{20}$
0.90	$[\varDelta_7^0]_{31}$	$[\Delta_0^3]_3 \oplus [\Delta_4^3]_{16}$
0.90	$[\Delta_{8}^{0}]_{31}$	$[\Delta_5^3]_3 \oplus [\Delta_9^3]_{16}$
0.90	$[\varDelta_7^0]_{31}$	$[\Delta^3_{10}]_{28} \oplus [\Delta^3_{14}]_{9}$
0.90	$[{\it \Delta}_{8}^{0}]_{31}$	$[\Delta_3^3]_9 \oplus [\Delta_{15}^3]_{28}$
0.91	$[{\color{blue}\Delta_7^0}]_{31}$	$[\varDelta_0^3]_{23} \oplus [\varDelta_4^3]_4$
0.92	$[{\it \Delta}_{8}^{0}]_{31}$	$[\varDelta_5^3]_{23} \oplus [\varDelta_9^3]_4$
-0.92	$[\Delta_{9}^{0}]_{24}$	$[\varDelta_0^3]_8 \hspace{0.1cm} \oplus \hspace{0.1cm} [\varDelta_1^3]_{21}$
-0.92	$[\Delta_{8}^{0}]_{31}$	$[\Delta_3^3]_{21} \oplus [\Delta_{15}^3]_8$
-0.92	$[\Delta_{7}^{0}]_{31}$	$[\Delta^3_{10}]_8 \ \oplus [\Delta^3_{14}]_{21}$
-0.038	$[\Delta_7^0]_5$	$[\Delta_2^3]_{13} \oplus [\Delta_2^3]_{14} \oplus [\Delta_2^3]_{24}$
-0.032	$[\Delta_7^0]_5$	$[\Delta_2^3]_{14} \oplus [\Delta_2^3]_{23} \oplus [\Delta_2^3]_{24}$
-0.036	$[\Delta_{7}^{0}]_{6}$	$[\Delta_2^3]_0 \oplus [\Delta_2^3]_1 \oplus [\Delta_2^3]_{23}$