
New Features of Latin Dances:

Analysis of Salsa, ChaCha, and Rumba

Jean-Philippe Aumasson1, Simon Fischer1, Shahram Khazaei2,
Willi Meier1, and Christian Rechberger3

1 FHNW, Windisch, Switzerland
2 EPFL, Lausanne, Switzerland

3 IAIK, Graz, Austria

Abstract. The stream cipher Salsa20 was introduced by Bernstein in 2005 as a can-
didate in the eSTREAM project, accompanied by the reduced versions Salsa20/8 and
Salsa20/12. ChaCha is a variant of Salsa20 aiming at bringing better diffusion for sim-
ilar performance. Variants of Salsa20 with up to 7 rounds (instead of 20) have been
broken by differential cryptanalysis, while ChaCha has not been analyzed yet. We in-
troduce a novel method for differential cryptanalysis of Salsa20 and ChaCha, inspired
by correlation attacks and related to the notion of neutral bits. This is the first appli-
cation of neutral bits in stream cipher cryptanalysis. It allows us to break Salsa20/8,
to bring faster attacks on the 7-round variant, and to break 6- and 7-round ChaCha.
In a second part, we analyze the compression function Rumba, built as the XOR of
four Salsa20 instances and returning a 512-bit output. We find collision and preimage
attacks for two simplified variants, then we discuss differential attacks on the origi-
nal version, and exploit a high-probability differential to reduce complexity of collision
search from 2256 to 279 for 3-round Rumba. To prove the correctness of our approach
we provide examples of collisions and near-collisions on simplified versions.

1 Introduction

Salsa20 [5] is a stream cipher introduced by Bernstein in 2005 as a candidate in
the eSTREAM project [12], that has been selected in April 2007 for the third
and ultimate phase of the competition. Three independent cryptanalyses were
published [11, 13, 16], reporting key-recovery attacks for reduced versions with
up to 7 rounds, while Salsa20 has a total of 20 rounds. Bernstein also submitted
to public evaluation the 8- and 12-round variants Salsa20/8 and Salsa20/12 [6],
though they are not formal eSTREAM candidates. In May 2007, he proposed a
change in the core function aiming at bringing faster diffusion without slowing
down encryption, calling the variant ChaCha [4].4

The compression function Rumba [7] was presented in 2007 in the context of
a study of generalized birthday attacks [17] applied to incremental hashing [2],
as the component of a hypothetical iterated hashing scheme. Rumba maps a
1536-bit value to a 512-bit (intermediate) digest, and Bernstein only conjectures
collision resistance for this function, letting a further convenient operating mode
provide extra security properties as pseudo-randomness.

4 In the meantime, Bernstein published the official ChaCha specification [3]; differences from the
early version are (1) the rotation distances, (2) the order of words in the matrix, and (3) the order
of updates in the row rounds. Here we consider the early version of ChaCha [4].

Related Work. Variants of Salsa20 up to 7 rounds have been broken by dif-
ferential cryptanalysis, exploiting a truncated differential over 3 or 4 rounds.
The knowledge of less than 256 key bits can be sufficient for observing a dif-
ference in the state after three or four rounds, given a block of keystream of
up to seven rounds of Salsa20. In 2005, Crowley [11] reported a 3-round differ-
ential, and built upon this an attack on Salsa20/5 within claimed 2165 trials.
In 2006, Fischer et al. [13] exploited a 4-round differential to attack Salsa20/6
within claimed 2177 trials. In 2007, Tsunoo et al. [16] attacked Salsa20/7 within
about 2190 trials, still exploiting a 4-round differential, and also claimed a break
of Salsa20/8. However, the latter attack is effectively slower than brute force,
cf. §3.5. Tsunoo et al. notably improve from previous attacks by reducing the
guesses to certain bits—rather than guessing whole key words—using nonlinear
approximation of integer addition. Eventually, no attack on ChaCha or Rumba
has been published so far.

Contribution. We introduce a novel method for attacking Salsa20 and ChaCha
(and potentially other ciphers) inspired from correlation attacks, and from the
notion of neutral bit, introduced by Biham and Chen [9] for attacking SHA-0.
More precisely, we use an empirical measure of the correlation between certain
key bits of the state and the bias observed after working a few rounds backward,
in order to split key bits into two subsets: the extremely relevant key bits to
be subjected to an exhaustive search and filtered by observations of a biased
output-difference value,and the less significant key bits ultimately determined
by exhaustive search. To the best of our knowledge, this is the first time that
neutral bits are used for the analysis of stream ciphers. Our results are sum-
marized in Tab. 1. We present the first key-recovery attack for Salsa20/8, and
improve the previous attack on 7-round Salsa20 by a factor 237. In a second part,
we first show collision and preimage attacks for simplified versions of Rumba,
then we present a differential analysis of the original version using the methods
of linearization and neutral bits: our main result is a collision attack for 3-round
Rumba running in about 279 trials (compared to 2256 with a birthday attack).
We also give examples of near-collisions over three and four rounds.

Table 1. Complexity of the best attacks known, with success probability 1/2.

Salsa20/7 Salsa20/8 ChaCha6 ChaCha7 Rumba3

Before 2190 2255 2255 2255 2256

Now 2153 2249 2140 2231 279

Road Map. We first recall the definitions of Salsa20, ChaCha, and Rumba in
§2, then §3 describes our attacks on Salsa20 and ChaCha, and §4 presents our
cryptanalysis of Rumba. The appendices give the sets of constant values, and
some parameters necessary to reproduce our attacks.

2 Specification of Primitives

In this section, we give a concise description of the stream ciphers Salsa20 and
ChaCha, and of the compression function Rumba.

2.1 Salsa20

The stream cipher Salsa20 operates on 32-bit words, takes as input a 256-
bit key k = (k0, k1, . . . , k7) and a 64-bit nonce v = (v0, v1), and produces a
sequence of 512-bit keystream blocks. The i-th block is the output of the Salsa20
function, that takes as input the key, the nonce, and a 64-bit counter t = (t0, t1)
corresponding to the integer i. This function acts on the 4× 4 matrix of 32-bit
words written as

X =









x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11

x12 x13 x14 x15









=









c0 k0 k1 k2

k3 c1 v0 v1

t0 t1 c2 k4

k5 k6 k7 c3









. (1)

The ci’s are predefined constants (see Appendix A). A keystream block Z is
then defined as

Z = X + X20 , (2)

where “+” symbolizes wordwise integer addition, and where Xr = Round
r(X)

with the round function Round of Salsa20, defined as follows: it first rotates the
j-th column of its input X of j positions up, j = 0, . . . , 3, then it transforms
each column (x0, x1, x2, x3)

† to (z0, z1, z2, z3)
† by sequentially computing

z1 = x1 ⊕
[

(x3 + x0) ≪ 7
]

z2 = x2 ⊕
[

(x0 + z1) ≪ 9
]

z3 = x3 ⊕
[

(z1 + z2) ≪ 13
]

z0 = x0 ⊕
[

(z2 + z3) ≪ 18
]

,

(3)

and finally Round rotates the j-th column of j positions down, and transposes
the matrix. However, for an odd number of rounds, the last transpose of the last
round is omitted5; hence, the r-round inverse X−r = Round

−r(X) is defined
differently whether it inverts after an odd or and even number of rounds. We
write Salsa20/R for R-round variants, i.e. with Z = X + XR.

5 The even and odd rounds respectively correspond to the functions called columnround and rowround

in the original specification of Salsa20. Nevertheless, this does not explicitly address the case of
variants with an odd number of rounds, so we naturally choose to define them by ending just after
the last colround, that is, with no additional transposition, unlike suggested in [11].

2.2 ChaCha

ChaCha [4] is similar to Salsa20 except that the column-transform operation of
Round is the sequence

b0 = x0 + x3 z0 = b0 + b3

b1 = (x1 ⊕ b0) ≪ 7 z1 = (b1 ⊕ z0) ≪ 13
b2 = x2 + b1 z2 = b2 + z1

b3 = (x3 ⊕ b2) ≪ 9 z3 = (b3 ⊕ z2) ≪ 18

(4)

where the bi’s are temporary variables. Like for Salsa20, the round function of
ChaCha is trivially invertible. R-round variants are denoted ChaChaR. The core
function of ChaCha suggests that “the big advantage of ChaCha over Salsa20
is the diffusion, which at least at first glance looks considerably faster” [4].

2.3 Rumba

Rumba is a compression function built on Salsa20, mapping a 1536-bit message
to a 512-bit value. The input M is parsed as four 384-bit chunks M0,. . . ,M3,
and Rumba’s output is

Rumba(M) = F0(M0)⊕ F1(M1)⊕ F2(M2)⊕ F3(M3)
= (X0 + X20

0)⊕ (X1 + X20
1)⊕ (X2 + X20

2)⊕ (X3 + X20
3) ,

(5)

where each Fi is an instance of the function Salsa20 with distinct diagonal
constants (see Appendix A). The 384-bit input chunk Mi along with the corre-
sponding 128-bit diagonal constants are then used to fill up the corresponding
input matrix Xi. A single word j of Xi is denoted xi,j. Note that the functions
Fi include the feedforward operation of Salsa20. RumbaR stands for R-round
variant.

3 Differential Analysis of Salsa20 and ChaCha

This section introduces differential attacks based on a new technique called
probabilistic neutral bits (shortcut PNB’s). To apply it to Salsa20 and ChaCha,
we first identify optimal choices of truncated differentials, then we describe
a general framework for probabilistic backwards computation, and introduce
the notion of PNB’s along with a method to find them. Then, we outline the
overall attack, and present concrete attacks for Salsa20/7, Salsa20/8, ChaCha6,
and ChaCha7. Eventually, we discuss our attack scenarios and possibilities of
improvements.

3.1 Choosing a Differential

Let xi be the i-th word of the matrix-state X, and x′
i an associated word with the

difference ∆0
i = xi ⊕ x′

i. The j-th bit of xi is denoted [xi]j. We use (truncated)
input/output differentials for the input X, with a single-bit input-difference

[∆0
i]j = 1 in the nonce, and consider a single-bit output-difference [∆r

p]q after r
rounds in Xr. Such a differential is denoted ([∆r

p]q | [∆0
i]j). For a fixed key, the

bias εd of the output-difference is defined by

Pr
v,t
{[∆r

p]q = 1 | [∆0
i]j} =

1

2
(1 + εd) , (6)

where the probability holds over all nonces and counters. Furthermore, consider-
ing key as a random variable, we denote the median value of of εd by ε⋆

d. Hence,
for half of the keys this differential will have a bias of at least ε⋆

d. Note that our
statistical model considers a (uniformly) random value of the counter. In the
following, we use the shortcuts ID and OD for input- and output-difference.

3.2 Probabilistic Backwards Computation

In the following, assume that the differential ([∆r
p]q | [∆0

i]j) of bias εd is fixed,
and the corresponding outputs Z and Z ′ are observed for nonce v, counter t
and key k. Having k, v and t, one can invert the operations in Z = X +XR and
Z ′ = X ′ +(X ′)R in order to access to the r-round forward differential (with r <
R) from the backward direction thanks to the relations Xr = (Z −X)r−R and
(X ′)r = (Z ′ − X ′)r−R. More specifically, define f(k, v, t, Z, Z ′) as the function
which returns the q-th LSB of the word number p of the matrix (Z −X)r−R ⊕
(Z ′ − X ′)r−R, hence f(k, v, t, Z, Z ′) = [∆r

p]q. Given enough output block pairs
with the presumed difference in the input, one can verify the correctness of a
guessed candidate k̂ for the key k by evaluating the bias of the function f . More
precisely, we have Pr{f(k̂, v, t, Z, Z ′) = 1} = 1

2
(1 + εd) conditioned on k̂ = k,

whereas for (almost all) k̂ 6= k we expect f be unbiased i.e. Pr{f(k̂, v, t, Z, Z ′) =
1} = 1

2
. The classical way of finding the correct key requires exhaustive search

over all possible 2256 guesses k̂. However, we can search only over a subkey
of m = 256 − n bits, provided that an approximation g of f which effectively
depends on m key bits is available. More formally, let k̄ correspond to the subkey
of m bits of the key k and let f be correlated to g with bias εa i.e.:

Pr
v,t
{f(k, v, t, Z, Z ′) = g(k̄, v, t, Z, Z ′)} =

1

2
(1 + εa) . (7)

Note that deterministic backwards computation (i.e. k̄ = k with f = g) is a
special case with εa = 1. Denote the bias of g by ε, i.e. Pr{g(k̄, v, t, Z, Z ′) =
1} = 1

2
(1 + ε). Under some reasonable independency assumptions, the equality

ε = εd ·εa holds. Again, we denote ε⋆ the median bias over all keys. Here, one can

verify the correctness of a guessed candidate ˆ̄k for the subkey k̄ by evaluating

the bias of the function g based on the fact that we have Pr{g(ˆ̄k, v, t, Z, Z ′) =

1} = 1
2
(1 + ε) for ˆ̄k = k̄, whereas Pr{g(ˆ̄k, v, t, Z, Z ′) = 1} = 1

2
for ˆ̄k 6= k̄. This

way we are facing an exhaustive search over 2m subkey candidates opposed to
the original 2256 key candidates which can potentially lead to a faster attack.
We stress that the price which we pay is a higher data complexity, see §3.4 for
more details.

3.3 Probabilistic Neutral Bits

Our new view of the problem, described in §3.2, demands efficient ways for
finding suitable approximations g(k̄,W) of a given function f(k,W) where W
is a known parameter; in our case, it is W = (v, t, Z, Z ′). In a probabilistic
model one can consider W as a uniformly distributed random variable. Finding
such approximations in general is an interesting open problem. In this section
we introduce a generalized concept of neutral bits [9] called probabilistic neutral
bits (PNB’s). This will help us to find suitable approximations in the case that
the Boolean function f does not properly mix its input bits. Generally speaking,
PNB’s allows us to divide the key bits into two groups: significant key bits (of
size m) and non-significant key bits (of size n). In order to identify these two
sets we focus on the amount of influence which each bit of the key has on the
output of f . Here is a formal definition of a suitable measure:

Definition 1. The neutrality measure of the key bit ki with respect to the func-
tion f(k,W) is defined as γi, where Pr = 1

2
(1 + γi) is the probability (over

all k and W) that complementing the key bit ki does not change the output of
f(k,W).

Singular cases of the neutrality measure are:

– γi = 1: f(k,W) does not depend on i-th key bit (i.e. it is a neutral bit).
– γi = 0: f(k,W) is statistically independent of the i-th key bit (i.e. it is a

significant bit).
– γi = −1: f(k,W) linearly depends on the i-th key bit.

In practice, we set a threshold γ and put all key bits with |γi| < γ in the
set of significant key bits. The less significant key bits we get, the faster the
attack will be, provided that the bias εa (see Eq. 7) remains non-negligible.
Having found significant and non-significant key bits, we simply let k̄ be the
significant key bits and define g(k̄,W) as f(k,W) with non-significant key bits
being set to a fixed value (e.g. all zero). Note that, contrary to the mutual
interaction between neutral bits in [9], here we have directly combined several
PNB’s without altering their probabilistic quality. This can be justified as the
bias εa smoothly decreases while we increase the threshold γ.

Remark 1. Tsunoo et al. [16] used nonlinear approximations of integer addition
to identify the dependency of key bits, whereas the independent key bits—with
respect to nonlinear approximation of some order—are fixed. This can be seen
as a special case of our method.

3.4 Complexity Estimation

Here we sketch the full attack described in the previous subsections, then study
its computational cost. The attack is split up into a precomputation stage, and
a stage of effective attack; note that precomputation is not specific to a key or
a counter.

Precomputation

1. Find a high-probability r-round differential with ID in the nonce.
2. Choose a threshold γ.
3. Construct the function f defined in §3.2.
4. Empirically estimate the neutrality measure γi of each key bit for f .
5. Put all those key bits with |γi| < γ in the significant key bits set (of size

m = 256− n).
6. Construct the function g using f by assigning a fixed value to the non-

significant key bits, see §3.2 and §3.3.
7. Estimate the median bias ε⋆ by empirically measuring the bias of g using

many randomly chosen keys, see §3.2.
8. Estimate the data and time complexity of the attack, see the following.

The cost of this precomputation phase is negligible compared to the effective
attack (to be explained later). The r-round differential and the threshold γ
should be chosen such that the resulting time complexity is optimal. This will
be addressed later in this section. At step 1, we require the difference to be in the
nonce because it is the most reasonable parameter which can be controlled by
the attacker. A difference in the counter is also imaginable, however, we ignore
this case since it may result in unrealistic amount of required data depending
on the position of the difference. We also exclude a difference in the key in
a related-key attack due to the disputable attack model. Previous attacks on
Salsa20 use the rough estimate of N = ε−2 samples, in order to identify the
correct subkey in a large search space. However this estimate is incorrect: this
is the number of samples necessary to identify a single random unknown bit
from either a uniform source or from a non-uniform source with ε, which is
a different problem of hypothesis testing. In our case, we have a set of 2m

sequences of random variables with 2m−1 of them verifying the null hypothesis
H0, and a single one verifying the alternative hypothesis H1. For a realization
a of the corresponding random variable A, the decision rule D(a) = i to accept
Hi can lead to two types of errors:

1. Non-detection: D(a) = 0 and A ∈ H1. The probability of this event is pnd.
2. False alarm: D(a) = 1 and A ∈ H0. The probability of this event is pfa.

The Neyman-Pearson decision theory gives results to estimate the number of
samples N required to get some bounds on the probabilities. It can be shown
that

N ≈
(√

α log 4 + 3
√

1− ε2

ε

)2

(8)

samples suffices to achieve pnd = 1.3× 10−3 and pfa = 2−α. Calculus details and
the construction of the optimal distinguisher can be found in [15], see also [1] for
more general results on distributions’ distinguishability. In our case the value
of ε (i.e. the bias of g) is key dependent, so we use the median bias ε⋆ in place
of ε in Eq. 8, resulting in a success probability of at least 1

2
(1− pnd) ≈ 1

2
for our

attack. Having determined the required number of samples N and the optimal
distinguisher, we can now present the effective (or online) attack.

Effective attack

1. For an unknown key, collect N pairs of keystream blocks where each pair is
produced by states with a random nonce (satisfying the relevant ID) and
identical, random counter.

2. For each choice of the subkey (i.e. the m significant key bits) do:

(a) Compute the bias of g using the N keystream block pairs.

(b) If the optimal distinguisher legitimates the subkeys candidate as a (pos-
sibly) correct one, perform an additional exhaustive search over the n
non-significant key bits in order to check the correctness of this filtered
subkey and to find the non-significant key bits.

(c) Stop if the right key is found, and output the recovered key.

Let us now discuss the time complexity of our attack. Step 2 is repeated for all
2m subkey candidates. For each subkey, step (a) is always executed which has
complexity6 of N . However, the search part of step (b) is performed only with
probability pfa = 2−α which brings an additional cost of 2n in case a subkey
passes the optimal distinguisher’s filter. Therefore the complexity of step (b)
is 2npfa, showing a total complexity of 2m(N + 2npfa) = 2mN + 2256−α for the
effective attack. In practice, α (and hence N) is chosen such that it minimizes
2mN+2256−α. Note that the potential improvement from key ranking techniques
is not considered here, see e.g. [14]. The data complexity of our attack is N
keystream block pairs. In practice, we can choose N random nonces, and collect
the first keystream block produced with each of those nonces, and the secret
key.

3.5 Experimental Results

We present here our attacks on Salsa20/7, Salsa20/8, ChaCha6, and ChaCha7.

Application to Salsa20. We used automatized search to identify differentials
such that (1) the ID and OD have weight one, (2) the ID lies in the nonce,
(3) the bias of the differential εd is large, and (4) such that many PNB’s exist.
In practice, we will select a subset of the differentials with large εd, then for
each of them we estimate the number of PNB’s for some threshold γ. It appears
that the differential with the largest set of PNB’s is not necessarily the one
with the largest bias. The neutrality measures γi are computed with about 226

random inputs. The threshold γ is chosen as small as possible, such that the
bias ε is significant, in order to minimize the number of bits guessed. Below we
only present the configurations leading to the best attacks, and provide the list
of PNB’s in Appendix B.

6 More precisely the complexity is about 2(R − r)/RN times the required time for producing one
keystream block.

Attack on Salsa20/7. We observe a 4-round OD after working three rounds
backward from a 7-round keystream block. We consider the 4-round differential
([∆4

1]14 | [∆0
7]31), for which |εd| ≈ 0.13 and |ε⋆

d| ≈ 0.16. We find n = 125 key
bits with neutrality measure γi > 0.6 that we use as PNB’s. Thus we only
guess m = 256 − 125 = 131 key bits. The corresponding g function has bias
|ε| ≈ |ε⋆| ≈ 0.006. We can then build an attack running in time 2153 and data
223. The previous best attack in [16] required about 2190 trials and 212 data.

Attack on Salsa20/8. We observe a 4-round OD after working four rounds back-
ward from an 8-round keystream block. The 4-round differential ([∆4

1]12 | [∆0
7]31)

has bias |εd| ≈ 0.17, |ε⋆
d| ≈ 0.18. We identify n = 28 key bits with γi > 0.2, so

we have to guess m = 256 − 28 = 228 bits. A bias of |ε⋆| ≈ 0.004 is observed,
leading to an attack in time 2249 and data 221. If we reduce the threshold for
neutrality measures, in order to get more than 30 PNB’s, then we observe no
bias. This suggests that an erroneous guess of key bits just below the threshold
will not show a significant deviation from random. Note that our attack reaches
the same success probability and supports an identical degree of parallelism as
brute force. The previous attack of Tsunoo et al. claims 2255 trials with data
210 for success probability 44%, but exhaustive search succeeds with probability
50% within the same number of trials, with much less data and no additional
computations. Therefore their attack does not constitute a break of Salsa20/8.

Application to ChaCha. ChaCha is expected to have faster diffusion than
Salsa20 (cf. §2). Our experiments argue in favor of this conjecture, since we
found many biased differentials over 3 rounds, but none over 4 rounds. Such
differentials of weight one in both ID and OD can easily be found by automa-
tized search. The list of the PNB’s used is given in Appendix B.

Attack on ChaCha6. We observe a 3-roundOD after working three rounds back-
ward from a 3-round keystream block. The 3-round differential ([∆3

10]0 | [∆0
7]14)

has a bias of |εd| ≈ 0.44 and |ε⋆
d| ≈ 0.50. To illustrate the role of the threshold

γ, we present in Tab. 2 complexity estimates along with the value of |ε⋆| and
the number of bits guessed (i.e. the number of key bits with neutrality measure
below γ) for several threshold values. The best attack runs in time 2140 and
data 224.

Table 2. Different parameters for our attack on ChaCha6.

γ m |ε⋆| Time Data

0.50 111 0.000 n.d. n.d.
0.55 117 0.004 2140 224

0.60 120 0.010 2141 221

0.75 138 0.040 2155 217

0.90 166 0.300 2177 211

1.00 216 0.440 2225 29

Attack on ChaCha7. We observe a 3-round OD after working four rounds back-
ward from a 7-round keystream block. The 3-round differential ([∆3

3]0 | [∆0
7]30)

has a bias of |εd| ≈ 0.32, |ε⋆
d| ≈ 0.34. We identify n = 48 key bits with γi > 0.4,

so we have to guess m = 256 − 48 = 208 key bits. A bias of |ε⋆| ≈ 0.002 is
observed, leading to an attack in time 2231 and data 223.

3.6 Discussion

Our attack on reduced-round Salsa20 exploits a 4-round differential, to break
the 8-round cipher by working four rounds backward. For ChaCha, we use a
3-round differential to break 7 rounds. We made intensive experiments for ob-
serving a bias after going five rounds backwards from the guess of a subkey, in
order to attack Salsa20/9 or ChaCha8, but without success. Four seems to be
the highest number of rounds one can invert from a partial key guess, while still
observing a non-negligible bias after inversion, and such that the overall cost
improves from exhaustive key search. Can one hope to break further rounds by
statistical cryptanalysis? We believe that it would require novel techniques and
ideas, rather than the relatively simple XOR difference of 1-bit input and 1-bit
output. For example, one might combine several biased OD’s to reduce data
requirements, but this requires almost equal subsets of guessed bits; according
to our experiments, this seems difficult to achieve. We also found some highly
biased multibit differentials such as ([∆4

1]0⊕ [∆4
2]9 | [∆0

7]26) with bias εd = −0.60
for four rounds of Salsa20, and ([∆3

5]23 ⊕ [∆3
9]4 | [∆0

8]31) with bias εd = 0.92 for
three rounds of ChaCha, see also Appendix C. However, exploiting multibit dif-
ferentials, does not improve efficiency either. Note that an alternative approach
to attack Salsa20/7 is to consider a 3-round biased differential, and observe it
after going four rounds backward. This is however much more expensive than
exploiting directly 4-round differentials. Unlike Salsa20, our exhaustive search
showed no bias in 4-round ChaCha, be it with one, two, or three target output
bits. This argues in favor of the faster diffusion of ChaCha. But surprisingly,
when comparing the attacks on Salsa20/8 and ChaCha7, results suggest that
after four rounds backward, key bits are more correlated with the target differ-
ence in ChaCha than in Salsa20. Nevertheless, ChaCha looks more trustful on
the overall, since we could break up to seven ChaCha rounds against eight for
Salsa20.

4 Analysis of Rumba

This section describes our results for the compression function Rumba. Our goal
is to efficiently find colliding pairs for R-round Rumba, i.e. input pairs (M,M ′)
such that RumbaR(M)⊕RumbaR(M ′) = 0. Note that, compared to our attacks
on Salsa20 (where a single biased bit could be exploited in an attack), a collision
attack targets all 512 bits (or a large subset of them for near-collisions).

4.1 Collisions and Preimages in Simplified Versions

We show here the weakness of two simplified versions of Rumba, respectively an
iterated version with 2048-bit-input compression function, and the compression
function without the final feedforward.

On the Role of Diagonal Constants. Rumba20 is fed with 1536 bits, copied
in a 2048-bit state, whose remaining 512 bits are the diagonal constants. It is
tempting to see these values as the IV of a derived iterated hash function,
and use diagonal values as chaining variables. However, Bernstein implicitly
warned against such a construction, when claiming that “Rumba20 will take
about twice as many cycles per eliminated byte as Salsa20 takes per encrypted
byte” [7]; indeed, the 1536-bit input should contain both the 512-bit chaining
value and the 1024-bit message, and thus for a 1024-bit input the Salsa20 func-
tion is called four times (256 bits processed per call), whereas in Salsa20 it is
called once for a 512-bit input. We confirm here that diagonal values should
not be replaced by the chaining variables, by presenting a method for finding
collisions within about 2128/6 trials, against 2256 with a birthday attack: Con-
sider the following algorithm: pick an arbitrary 1536-bit message block M0,
then compute Rumba(M0) = H0‖H1‖H2‖H3, and repeat this until two distinct
128-bit chunks Hi and Hj are equal—say H0 and H1, corresponding to the di-
agonal constants of F0 and F1 in the next round; hence, these functions will be
identical in the next round. A collision can then be obtained by choosing two
distinct message blocks M1 = M1

0‖M1
1‖M1

2‖M1
3 and (M ′)1 = M1

1‖M1
0‖M1

2‖M1
3 ,

or M1 = M1
0‖M1

0‖M1
2‖M1

3 and (M ′)1 = (M ′
0)

1‖(M ′
0)

1‖M1
2‖M1

3 . How fast is this
method? By the birthday paradox, the amount of trials for finding a suitable
M0 is about 2128/6 (here 6 is the number of distinct sets {i, j} ⊂ {0, . . . , 3}),
while the construction of M1 and (M ′)1 is straightforward. Regarding the price-
performance ratio, we do not have to store or sort a table, so the price is
2128/6—and this, for any potential filter function—while performance is much
larger than one, because there are many collisions (one can choose 3 messages
and 1 difference of 348 bits arbitrarily). This contrasts with the cost of 2256 for
a serial attack on a 512-bit digest hash function.

On the Importance of Feedforward. In Davies-Meyer-based hash functions
like MD5 or SHA-1, the final feedforward is an obvious requirement for one-
wayness. In Rumba the feedforward is applied in each Fi, before an XOR of
the four branches, and omitting this operation does not trivially lead to an
inversion of the function, because of the incremental construction. However, as
we will demonstrate, preimage resistance is not guaranteed with this setting.
Let Fi(Mi) = X20

i , i = 0, . . . , 3 and assume that we are given a 512-bit value
H, and our goal is to find M = (M0,M1,M2,M3) such that Rumba(M) = H.
This can be achieved by choosing random blocks M0, M1, M2, and set

Y = F0(M0)⊕ F1(M1)⊕ F2(M2)⊕H . (9)

We can find then the 512-bit state X0
3 such that Y = X20

3 . If X0
3 has the

correct diagonal values (the 128-bit constant of F3), we can extract M3 from X3
0

with respect to Rumba’s definition. This randomized algorithm succeeds with
probability 2−128, since there are 128 constant bits in an initial state. Therefore,
a preimage of an arbitrary digest can be found within about 2128 trials, against
2512/3 (= 2512/(1+log2 4)) with the generalized birthday method.

4.2 Differential Attack

To obtain a collision for RumbaR, it is sufficient to find two messages M and
M ′ such that

F0(M0)⊕ F0(M
′
0) = F2(M2)⊕ F2(M

′
2) , (10)

with M0 ⊕M ′
0 = M2 ⊕M ′

2, M1 = M ′
1 and M3 = M ′

3. The freedom in choosing
M1 and M3 trivially allows to derive many other collisions (multicollision). We
use the following notations for differentials: Let the initial states Xi and X ′

i

have the ID ∆0
i = Xi ⊕ X ′

i for i = 0, . . . , 3. After r rounds, the observed
difference is denoted ∆r

i = Xr
i ⊕ (X ′

i)
r, and the OD (without feedforward)

becomes ∆R
i = XR

i ⊕ (X ′
i)

R. If feedforward is included in the OD, we use the
notation ∇R

i = (Xi + XR
i)⊕ (X ′

i + (X ′
i)

R). With this notation, Eq. 10 becomes
∇R

0 = ∇R
2 , and if the feedforward operation is ignored in the Fi’s, then Eq. 10

simplifies to ∆R
0 = ∆R

2 . To find messages satisfying Eq. 10, we use an R-round
differential path of high-probability, with intermediate target difference δr after
r rounds, 0 ≤ r ≤ R. Note that the differential is applicable for both F0 and
F2, thus we do not have to subscript the target difference. The probability that
a random message pair with ID δ0 conforms to δr is denoted pr. To satisfy
the equation ∆R

0 = ∆R
2 , it suffices to find message pairs such that the observed

differentials equal the target one, that is, ∆R
0 = δR and ∆R

2 = δR. The naive
approach is to try about 1/pr random messages each. This complexity can
however be lowered down by:

– Finding constraints on the message pair so that it conforms to the difference
δ1 after one round with certainty (this will be achieved by linearization).

– Deriving message pairs conforming to δr from a single conforming pair (the
message-modification technique used will be neutral bits).

Finally, to have∇R
0 = ∇R

2 , we need to find message pairs such that∇R
0 = δR⊕δ0

and ∇R
2 = δR ⊕ δ0 (i.e. the additions are not producing carry bits). Given a

random message pair that conforms to δR, this holds with probability about
2−v−w where v and w are the respective weights of the ID δ0 and of the target
OD δR (excluding the linear MSB’s). The three next paragraphs are respec-
tively dedicated to finding an optimal differential, describing the linearization
procedure, and describing the neutral bits technique.

Remark 2. One can observe that the constants of F0 and F2 are almost similar,
as well as the constants of F1 and F3 (cf. Appendix A). To improve the general-
ized birthday attack suggested in [7], a strategy is to find a pair (M0,M2) such

that F0(M0) ⊕ F2(M2) is biased in any c bits after R rounds (where c ≈ 114,
see [7]), along with a second pair (M1,M3) with F1(M1)⊕F3(M3) biased in the
same c bits. The sum F0(M0)⊕ F2(M2) can be seen as the feedforward OD of
two states having an ID which is nonzero in some diagonal words. However,
differences in the diagonal words result in a large diffusion, and this approach
seems to be much less efficient than differential attacks for only one function
Fi.

Finding a High-Probability Differential. We search for a linear differential
over several rounds of Rumba, i.e. a differential holding with certainty when
additions are replaced by XOR’s, see [13]. The differential is independent of
the diagonal constants, and it is expected to have high probability for genuine
Rumba if the linear differential has low weight. An exhaustive search for suitable
ID’s is not traceable, so we choose another method: We focus on a single column
in Xi, and consider the weight of the input (starting with the diagonal element,
which must be zero). With a fixed relative position of the non-zero bits in this
input, one can obtain an output of low weight after the first linear round of
Rumba (i.e. using the linearized Eq. 3). Here is a list of the mappings (showing
the weight only) which have at most weight 2 in each word of the input and
output:

g1 : (0, 0, 0, 0)→ (0, 0, 0, 0) g8 : (0, 1, 2, 0)→ (1, 1, 1, 0)
g2 : (0, 0, 1, 0)→ (2, 0, 1, 1) g9 : (0, 1, 2, 2)→ (1, 1, 1, 2)
g3 : (0, 0, 1, 1)→ (2, 1, 0, 2) g10 : (0, 2, 1, 1)→ (0, 1, 0, 0)
g4 : (0, 1, 0, 1)→ (1, 0, 0, 1) g11 : (0, 2, 1, 2)→ (0, 0, 1, 1)
g5 : (0, 1, 1, 0)→ (1, 1, 0, 1) g12 : (0, 2, 2, 1)→ (0, 1, 1, 1)
g6 : (0, 1, 1, 1)→ (1, 0, 1, 0) g13 : (0, 2, 2, 1)→ (2, 1, 1, 1)
g7 : (0, 0, 2, 1)→ (2, 1, 1, 1) g14 : (0, 2, 2, 2)→ (2, 0, 2, 0)

The relations above can be used to construct algorithmically a suitable ID with
all 4 columns. Consider the following example, where the state after the first
round is again a combination of useful rows: (g1, g10, g1, g11) → (g1, g2, g4, g1).
After 2 rounds, the difference has weight 6 (with weight 3 in the diagonal words).
There is a class of ID’s with the same structure: (g1, g10, g1, g11), (g1, g11, g1, g10),
(g10, g1, g11, g1), (g11, g1, g10, g1). The degree of freedom is large enough to con-
struct these 2-round linear differentials: the positions of the nonzero bits in a
single mapping gi are symmetric with respect to rotation of words (and the
required gi have an additional degree of freedom). Any other linear differential
constructed with gi has larger weight after 2 rounds. Let ∆i,j denote the dif-
ference of word j = 0, . . . , 15 in state i = 0, . . . , 3. For our attacks on Rumba,
we will consider the following input difference (with optimal rotation, such that
many MSB’s are involved):

∆0
i,2 = 00000002 ∆0

i,8 = 80000000

∆0
i,4 = 00080040 ∆0

i,12 = 80001000

∆0
i,6 = 00000020 ∆0

i,14 = 01001000

and ∆0
i,j = 0 for all other words j. The weight of differences for the first four

linearized rounds is as follows (the subscript of the arrows denotes the approx-
imate probability pr that a random message pair conforms to this differential
for a randomly chosen value for diagonal constants):









0 0 1 0
2 0 1 0
1 0 0 0
2 0 2 0









Round−→
2−4









0 0 0 0
0 0 0 0
1 0 0 0
1 0 1 0









Round−→
2−7









0 0 0 0
0 0 0 0
1 1 2 0
0 0 1 1









Round−→
2−41









2 2 3 1
0 3 4 2
1 1 7 3
1 1 1 6









Round−→
2−194









8 3 2 4
5 10 3 4
9 11 13 7
6 9 10 9









With this fixed ID, we can determine the probability that the OD obtained
by genuine Rumba corresponds to the OD of linear Rumba. Note that integer
addition is the only nonlinear operation. Each nonzero bit in the ID of an integer
addition behaves linearly (i.e. it does not create or annihilate a sequence of
carry bits) with probability 1/2, while a difference in the MSB is always linear.
In the first round, there are only four bits with associated probability 1/2,
hence p1 = 2−4 (see also the subsection on linearization). The other cumulative
probabilities are p2 = 2−7, p3 = 2−41, p4 = 2−194. For 3 rounds, we have weights
v = 7 and w = 37, thus the overall complexity to find a collision after 3 rounds is
about 241+37+7 = 285. For 4 rounds, v = 7 and w = 112, leading to a complexity
2313. The probability that feedforward behaves linearly can be increased by
choosing low-weight inputs.

Linearization. The first round of our differential has a theoretical probability
of p1 = 2−4 for a random message. This is roughly confirmed by our experiments,
where exact probabilities depend on the diagonal constants (for example, we
experimentally observed p1 = 2−6.6 for F0, and p1 = 2−6.3 for F2, the other two
probabilities are even closer to 2−4). We show here how to set constraints on the
message so that the first round differential holds with certainty, using methods
similar to the ones in [13].

Let us begin with the first column of F0, where c0,0 = x0,0 = 73726966. In
the first addition x0,0 + x0,12, we have to address ∆0

0,12, which has a nonzero
(and non-MSB) bit on position 12 (counting from 0). The bits of the constant
are [x0,0]12−10 = (010)2, hence the choice [x0,12]11,10 = (00)2 is sufficient for
linearization. This corresponds to x0,12 ← x0,12 ∧ FFFF3FFF. The subsequent
3 additions of the first column are always linear as only MSB’s are involved.
Then, we linearize the third column of F0, where c0,2 = x0,10 = 30326162. In
the first addition x0,10 + x0,6, we have to address ∆0

0,6, which has a nonzero bit
on position 5. The relevant bits of the constant are [x0,10]5−1 = (10001)2, hence
the choice [x0,6]4−1 = (1111)2 is sufficient for linearization. This corresponds
to x0,6 ← x0,6 ∨ 0000001E. In the second addition z0,14 + x0,10, the updated
difference ∆1

0,14 has a single bit on position 24. The relevant bits of the constant
are [x0,10]24,23 = (00)2, hence the choice [z0,14]23 = (0)2 is sufficient. Notice
that conditions on the updated words must be transformed to the initial state
words. As z0,14 = x0,14 ⊕ (x0,10 + x0,6) ≪ 8, we find the condition [x0,14]23 =

[x0,10 + x0,6]16. If we let both sides be zero, we have [x0,14]23 = (0)2 or x0,14 ←
x0,14 ∧ FF7FFFFF, and [x0,10 + x0,6]16 = (0)2. As [x0,10]16,15 = (00)2, we can
choose [x0,6]16,15 = (00)2 or x0,6 ← x0,6 ∧ FFFE7FFF. Finally, the third addition
z0,2 + z0,14 must be linearized with respect to the single bit in ∆1

0,14 on position
24. A sufficient condition for linearization is [z0,2]24,23 = (00)2 and [z0,14]23 =
(0)2. The second condition is already satisfied, so we can focus on the first
condition. The update is defined by z0,2 = x0,2 ⊕ (z0,14 + x0,10) ≪ 9, so we set
[x0,2]24,23 = (00)2 or x0,2 ← x0,2 ∧ FE7FFFFF, and require [z0,14 + x0,10]15,14 =
(00)2. As [x0,10]15−13 = (011)2, we can set [z0,14]15−13 = (101)2. This is satisfied
by choosing [x0,14]15−13 = (000)2 or x0,14 ← x0,14 ∧ FFFF1FFF, and by choosing
[x0,10 + x0,6]8−6 = (101)2. As [x0,10]8−5 = (1011)2, we set [x0,6]8−5 = (1111)2

or x0,6 ← x0,6 ∨ 000001E0. Altogether, we fixed 18 (distinct) bits of the input,
other linearizations are possible.

The first round of F2 can be linearized with exactly the same conditions.
This way, we save an average factor of 24 (additive complexities are ignored).
This linearization with sufficient conditions does not work well for more than
one round because of an avalanche effect of fixed bits. We lose many degrees of
freedom, and contradictions are likely to occur.

Neutral Bits. Thanks to linearization, we can find a message pair conforming
to δ2 within about 1/(2−7+4) = 23 trials. Our goal now is to efficiently derive
from such a pair many other pairs that are conforming to δ2, so that a search
for three rounds can start after the second round, by using the notion of neutral
bits again (cf. §3.3). Neutral bits can be identified easily for a fixed pair of
messages, but if several neutral bits are complemented in parallel, then the
resulting message pair may not conform anymore. A heuristic approach was
introduced in [9], using a maximal 2-neutral set. A 2-neutral set of bits is a subset
of neutral bits, such that the message pair obtained by complementing any two
bits of the subset in parallel also conform to the differential. The size of this set
is denoted n. In general, finding a 2-neutral set is an NP-complete problem—
the problem is equivalent to the Maximum Clique Problem from graph theory,
but good heuristic algorithms for dense graphs exist, see e.g. [10]. In the case
of Rumba, we compute the value n for different message pairs that conform
to δ2 and choose the pair with maximum n. We observe that about 1/2 of
the 2n message pairs (derived by flipping some of the n bits of the 2-neutral
set) conform to the differential7. This probability p is significantly increased,
if we complement at most ℓ ≪ n bits of the 2-neutral set, which results in a
message space (not contradicting with the linearization) of size about p ·

(

n
ℓ

)

.
At this point, a full collision for 3 rounds has a reduced theoretical complexity
of 285−7/p = 278/p (of course, p should not be smaller than 2−3). Since we will
have p > 1

2
for a suitable choice of ℓ, the complexity gets reduced from 285 to

less than 279.

7 In the case of SHA-0, about 1/8 of the 2n message pairs (derived from the original message pair
by complementing bits from the 2-neutral set) conform to the differential for the next round.

4.3 Experimental Results

We choose a random message of low weight, apply the linearization for the first
round and repeat this about 23 times until the message pairs conforms to δ2. We
compute then the 2-neutral set of this message pair. This protocol is repeated
a few times to identify a message pair with large 2-neutral set:

– For F0, we find the pair of states (X0, X
′
0) of low weight, with 251 neutral

bits and a 2-neutral set of size 147. If we flip a random subset of the 2-
neutral bits, then the resulting message pair conforms to δ2 with probability
Pr = 0.52.

X0 =









73726966 00000400 00000080 00200001

00002000 6d755274 000001fe 02000008

00000040 00000042 30326162 10002800

00000080 00000000 01200000 636f6c62









– For F2, we find the pair of states (X2, X
′
2) of low weight, with 252 neutral

bits and a 2-neutral set of size 146. If we flip a random subset of the 2-
neutral bits, then the resulting message pair conforms to δ2 with probability
Pr = 0.41.

X2 =









72696874 00000000 00040040 00000400

00008004 6d755264 000001fe 06021184

00000000 00800040 30326162 00000000

00000300 00000400 04000000 636f6c62









Given these pairs for 2 rounds, we perform a search in the 2-neutral set by
flipping at most 10 bits (that gives a message space of about 250), to find pairs
that conform to δ3. This step has a theoretical complexity of about 234 for
each pair (which was verified in practice). For example, in (X0, X

′
0) we can flip

the bits {59, 141, 150, 154, 269, 280, 294 ,425} in order to get a pair of states
(X̄0, X̄

′
0) that conforms to δ3.In the case of (X2, X

′
2), we can flip the bits {58, 63,

141, 271, 304, 317, 435, 417, 458, 460} in order to get a pair of states (X̄2, X̄
′
2)

that conforms to δ3.

X̄0 =









73726966 08000400 00000080 00200001

04400000 6d755274 000001fe 02000008

01002040 00000002 30326162 10002800

00000080 00000200 01200000 636f6c62









X̄2 =









72696874 84000000 00040040 00000400

0000a004 6d755264 000001fe 06021184

00008000 20810040 30326162 00000000

00000300 00080402 04001400 636f6c62









At this point, we have collisions for 3-round Rumba without feedforward, hence
∆3

0 ⊕ ∆3
2 = 0. If we include feedforward for the above pairs of states, then

∇3
0⊕∇3

2 has weight 16, which corresponds to a near-collision. Note that a near-
collision indicates non-randomness of the reduced-round compression function
(we assume a Gaussian distribution centered at 256). This near-collision of
low weight was found by using a birthday-based method: we produce a list of
pairs for F0 that conform to δ3 (using neutral bits as above), together with the
corresponding value of ∇3

0. The same is done for F2. If each list has size N , then
we can produce N2 pairs of ∇3

0 ⊕∇3
2 in order to identify near-collisions of low

weight.
However, there are no neutral bits for the pairs (X̄0, X̄

′
0) and (X̄2, X̄

′
2) with

respect to δ3. This means that we cannot completely separate the task of finding
full collisions with feedforward, from finding collisions without feedforward (and
we can not use neutral bits to iteratively find pairs that conform to δ4). To find a
full collision after three rounds, we could perform a search in the 2-neutral set of
(X0, X

′
0) and (X2, X

′
2) by flipping at most 20 bits. In this case, the resulting pairs

conform to δ2 with probability at least Pr = 0.68, and the message space has a
size of about 280. The overall complexity becomes 278/0.68 ≈ 279 (compared to
285 without linearization and neutral bits). Then, we try to find near-collisions
of low weight for 4 rounds, using the birthday method described above. Within
less than one minute of computation, we found the pairs (¯̄X0,

¯̄X ′
0) and (¯̄X2,

¯̄X ′
2)

such that ∇4
0 ⊕ ∇4

2 has weight 129. Consequently, the non-randomness of the
differential is propagating up to 4 rounds.

¯̄X0 =









73726966 00020400 00000080 00200001

00002400 6d755274 000001fe 02000008

00000040 00220042 30326162 10002800

00000080 00001004 01200000 636f6c62









¯̄X2 =









72696874 00001000 80040040 00000400

00008804 6d755264 000001fe 06021184

00000000 80800040 30326162 00000000

00000300 00000450 04000000 636f6c62









5 Conclusions

We presented a novel method for attacking Salsa20 and ChaCha, inspired by
correlation attacks and by the notion of neutral bits. This allows to give the
first attack faster than exhaustive search on the stream cipher Salsa20/8. For
the compression function Rumba the methods of linearization and neutral bits
are applied to a high probability differential to find collisions on 3-round Rumba
within 279 trials, and to efficiently find low weight near collisions on 3-round
and 4-round Rumba.

Acknowledgments

The authors would like to thank Dan Bernstein for insightful comments on a
preliminary draft, the reviewers of FSE 2008 who helped us to improve the
clarity of the paper, and Florian Mendel for his proofreading. J.-Ph. Aumasson
is supported by the Swiss National Science Foundation (SNF) under project
number 113329. S. Fischer is supported by the National Competence Center in
Research on Mobile Information and Communication Systems (NCCR-MICS),
a center of the SNF under grant number 5005-67322. W. Meier is supported
by Hasler Foundation (see http://www.haslerfoundation.ch) under project
number 2005. C. Rechberger is supported by the Austrian Science Fund (FWF),
project P19863, and by the European Commission through the IST Programme
under Contract IST-2002-507932 ECRYPT.

References

1. Thomas Baignères, Pascal Junod, and Serge Vaudenay. How far can we go beyond linear crypt-
analysis? In Pil Joong Lee, editor, ASIACRYPT, volume 3329 of LNCS, pages 432–450. Springer,
2004.

2. Mihir Bellare and Daniele Micciancio. A new paradigm for collision-free hashing: Incrementality
at reduced cost. In Walter Fumy, editor, EUROCRYPT, volume 1233 of LNCS, pages 163–192.
Springer, 1997.

3. Daniel J. Bernstein. ChaCha, a variant of Salsa20. http://cr.yp.to/chacha.html. See also [8].

4. Daniel J. Bernstein. Salsa20 and ChaCha. eSTREAM discussion forum, May 11, 2007.
http://www.ecrypt.eu.org/stream/phorum/read.php?1,1085,1101.

5. Daniel J. Bernstein. Salsa20. Technical Report 2005/025, eSTREAM, ECRYPT Stream Cipher
Project, 2005. See also http://cr.yp.to/snuffle.html.

6. Daniel J. Bernstein. Salsa20/8 and Salsa20/12. Technical Report 2006/007, eSTREAM,
ECRYPT Stream Cipher Project, 2005.

7. Daniel J. Bernstein. What output size resists collisions in a XOR of independent expansions?
ECRYPT Workshop on Hash Functions, 2007. See also http://cr.yp.to/rumba20.html.

8. Daniel J. Bernstein. ChaCha, a variant of Salsa20. In SASC 2008 – The State of the Art of

Stream Ciphers. ECRYPT, 2008. http://www.ecrypt.eu.org/stvl/sasc2008.

9. Eli Biham and Rafi Chen. Near-collisions of SHA-0. In Matthew K. Franklin, editor, CRYPTO,
volume 3152 of LNCS, pages 290–305. Springer, 2004.

10. Samuel Burer, Renato D.C. Monteiro, and Yin Zhang. Maximum stable set formulations and
heuristics based on continuous optimization. Mathematical Programming, 64:137–166, 2002.

11. Paul Crowley. Truncated differential cryptanalysis of five rounds of Salsa20. In SASC 2006 –

Stream Ciphers Revisited, 2006.

12. ECRYPT. eSTREAM, the ECRYPT Stream Cipher Project.
http://www.ecrypt.eu.org/stream.

13. Simon Fischer, Willi Meier, Côme Berbain, Jean-François Biasse, and Matthew J. B. Robshaw.
Non-randomness in eSTREAM candidates Salsa20 and TSC-4. In Rana Barua and Tanja Lange,
editors, INDOCRYPT, volume 4329 of LNCS, pages 2–16. Springer, 2006.

14. Pascal Junod and Serge Vaudenay. Optimal key ranking procedures in a statistical cryptanalysis.
In Thomas Johansson, editor, FSE, volume 2887 of LNCS, pages 235–246. Springer, 2003.

15. Thomas Siegenthaler. Decrypting a class of stream ciphers using ciphertext only. IEEE Trans-

actions on Computers, 34(1):81–85, 1985.

16. Yukiyasu Tsunoo, Teruo Saito, Hiroyasu Kubo, Tomoyasu Suzaki, and Hiroki Nakashima. Dif-
ferential cryptanalysis of Salsa20/8. In SASC 2007 – The State of the Art of Stream Ciphers,
2007.

17. David Wagner. A generalized birthday problem. In Moti Yung, editor, CRYPTO, volume 2442
of LNCS, pages 288–303. Springer, 2002.

http://www.haslerfoundation.ch
http://cr.yp.to/chacha.html
http://www.ecrypt.eu.org/stream/phorum/read.php?1,1085,1101
http://cr.yp.to/snuffle.html
http://cr.yp.to/rumba20.html
http://www.ecrypt.eu.org/stvl/sasc2008
http://www.ecrypt.eu.org/stream

A Constants

Here are the diagonal constants for Salsa20 and ChaCha (function Round) and
for Rumba (functions F0 to F3).

Round F0 F1 F2 F3

c0 61707865 73726966 6f636573 72696874 72756f66

c1 3320646E 6d755274 7552646e 6d755264 75526874

c2 79622D32 30326162 3261626d 30326162 3261626d

c3 6B206574 636f6c62 6f6c6230 636f6c62 6f6c6230

B Probabilistic Neutral Bits

We present here the sets of probabilistic neutral bits (PNB’s) used for our
attacks on reduced-round Salsa20 and ChaCha.

PNB’s for the attack on Salsa20/7:

0, 1, 14, 15, 16, 17, 18, 19, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 63, 65, 71, 72, 73, 74, 75, 76, 85, 86, 87, 88, 89, 90, 96,
97, 98, 99, 100, 101, 107, 108, 109, 110, 111, 112, 113, 114, 115,
116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128,
129, 134, 142, 143, 148, 160, 161, 162, 163, 164, 165, 166, 167,
168, 169, 170, 171, 172, 173, 174, 175, 185, 186, 187, 188, 189,
190, 191, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215,
216, 217, 218, 219, 220, 221, 222, 223, 224, 230, 242, 243, 244,
245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255.

PNB’s for the attack on Salsa20/8:

24, 25, 26, 27, 69, 118, 119, 163, 164, 165, 166, 167, 168, 169,
170, 171, 172, 173, 174, 208, 209, 240, 241, 242, 243, 244, 254,
255.

PNB’s for the attack on ChaCha6:

1, 2, 3, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 24, 25, 26, 27, 28,
29, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 68, 69,
70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 100, 101, 118, 119, 120,
121, 125, 126, 127, 128, 129, 130, 137, 138, 139, 143, 144, 145,
150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 168,
169, 170, 171, 172, 173, 178, 179, 180, 181, 182, 191, 192, 193,
194, 195, 196, 197, 201, 202, 203, 204, 205, 206, 210, 211, 212,
213, 214, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229,
230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242,
243, 244, 245, 246, 247, 251, 252, 253, 254, 255.

PNB’s for the attack on ChaCha7:

4, 22, 23, 24, 27, 28, 29, 30, 31, 61, 62, 63, 73, 74, 75, 76, 77,
78, 79, 80, 81, 82, 83, 84, 85, 86, 91, 98, 127, 132, 133, 134, 135,
136, 137, 141, 142, 143, 144, 164, 168, 169, 182, 189, 190, 191,
252, 253.

C Multibit Differentials

Tables 3 and 4 present the best multibit differentials that we found for Salsa20
and ChaCha.

Table 3. Multibit differentials over four Salsa20 rounds.

εd ID OD

-0.21 [∆0

7]31 [∆4

1]5 ⊕ [∆4

2]14
-0.23 [∆0

7]28 [∆4

1]2 ⊕ [∆4

2]11
0.25 [∆0

7]29 [∆4

1]0 ⊕ [∆4

2]9
0.25 [∆0

7]28 [∆4

1]1 ⊕ [∆4

2]10
0.33 [∆0

7]28 [∆4

1]0 ⊕ [∆4

2]9
-0.33 [∆0

7]27 [∆4

1]1 ⊕ [∆4

2]10
0.50 [∆0

7]27 [∆4

1]0 ⊕ [∆4

2]9
-0.60 [∆0

7]26 [∆4

1]0 ⊕ [∆4

2]9

Table 4. Multibit differentials over three ChaCha rounds.

εd ID OD

-0.89 [∆0

7]30 [∆3

10]7 ⊕ [∆3

14]20
-0.90 [∆0

9]23 [∆3

0]7 ⊕ [∆3

4]20
0.90 [∆0

7]31 [∆3

0]3 ⊕ [∆3

4]16
0.90 [∆0

8]31 [∆3

5]3 ⊕ [∆3

9]16
0.90 [∆0

7]31 [∆3

10]28 ⊕ [∆3

14]9
0.90 [∆0

8]31 [∆3

3]9 ⊕ [∆3

15]28
0.91 [∆0

7]31 [∆3

0]23 ⊕ [∆3

4]4
0.92 [∆0

8]31 [∆3

5]23 ⊕ [∆3

9]4
-0.92 [∆0

9]24 [∆3

0]8 ⊕ [∆3

1]21
-0.92 [∆0

8]31 [∆3

3]21 ⊕ [∆3

15]8
-0.92 [∆0

7]31 [∆3

10]8 ⊕ [∆3

14]21
-0.038 [∆0

7]5 [∆3

2]13 ⊕ [∆3

2]14 ⊕ [∆3

2]24
-0.032 [∆0

7]5 [∆3

2]14 ⊕ [∆3

2]23 ⊕ [∆3

2]24
-0.036 [∆0

7]6 [∆3

2]0 ⊕ [∆3

2]1 ⊕ [∆3

2]23

