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Abstract. This papet presents a new paradigm to realize cryptographic primi-
tives such as authenticated key exchange and key encapsulation withdam
oracles under three assumptions: the decisional Diffie-Hellman (DBs{)rap-
tion, target collision resistant (TCR) hash functions and a class of pseumiom
functions (PRFs)xPRFs, PRFs with pairwise-independent random sources. We
propose a (PKI-based) two-pass authenticated key exchange @Kol that

is comparably as efficient as the existing most efficient protocols like MQY
that is secure without random oracles (under these assumptiong)r@ocol is
shown to be secure in the (currently) strongest security definition, tiemedsd
Canetti-Krawczyk (eCK) security definition introduced by LaMacchiautea
and Mityagin. We also show that a variant of the Kurosawa-Desmedekey
capsulation mechanism (KEM) usingrd@RF is CCA-secure. This scheme is
secure in a stronger security notion, the chosen public-key and ciphattack
(CPCA) security, with using generalized TCR (GTCR) hash functions. grb-
posed schemes in this paper are redundancy-free (or validity-dreskand the
implication is that combining them with redundancy-free symmetric encnyptio
(DEM) will yield redundancy-free (e.g., MAC-free) CCA-securgbhid encryp-
tion.

1 Introduction

The most common paradigm to design practical public-keyptosystems secure in
the standard model is to combine a trapdoor function (e.dfieEHellman or RSA
function) and target collision resistance (TCR) hash fiomst, where the security is
proven under a trapdoor function assumption (e.g., DDH d8&SRBssumption) and the
TCR hash function assumption [1, 3, 9].

This paper introduces a paradigm to design practical pieljc cryptosystems,
where a class giseudo-random functiqi®RF),rPRFs, PRFs with pairwise-independent
random sources, is employed in addition to a trapdoor fan¢dH) and target collision
resistant (TCR) hash function.

Authenticated key exchange (AKE) protocols have been sktely studied to en-
hance the security of the Diffie-Hellman (DH) key exchangetqeol, which was pro-
posed in 1976, because the DH protocol is not secure agamshan-in-the-middle
attack [2, 8,10-13, 17].

! This is a revised version of the extended abstract appeared in theeginge of Asiacrypt
2007 [15].



This paper presents a (PKI-based) two-pass AKE protocobffiers the following
properties:

1. its efficiency is comparable to those of MQV [11], HMQV [8]&aCMQV [17] (our
scheme’s message size for one party is that of MQV plus tleeddithree group el-
ements, and the computational complexity for a sessionmgacheme is around 4.3
group exponentiations, while that of MQV is around 2.2 grexponentiations),

. the model for its security proof is not the random oraclelelp

3. its underlying security definition is (currently) themtigest one, the extended Canetti-

Krawczyk (eCK) security definition introduced by LaMacchiauter and Mitya-
gin [10],

4. its security proof reduction efficiency is better thansthof previous protocols in

the random oracle model.

N

This paper also propose&£&LA-securdey encapsulation mechanism (KEM) under
these assumptions, which is a variant of the Kurosawa-DesiteM [9]. This scheme
is also secure in a stronger security notion,¢hesen public-key and ciphertext attack
(CPCA)security, in which an adversary, given a target public k&§ and ciphertext
c*, is allowed to query a pair of public keyt and ciphertext to the decryption oracle,
which answers the adversary with the decrypted resultyfthe secret key gbk.

The proposed schemes in this paper are redundancy-freal{dity-check-free)
and implies redundancy-free (e.g., MAC-free) CCA-secutiarial encryption by com-
bining with redundancy-free CCA-secure symmetric enéoyp{DEM).

2 Preliminaries

2.1 Notations

N is the set of natural numbers aRds the set of real numbers. denotes a null string.
A function f : N — R is negligiblein k, if for every constant: > 0, there exists
integern such thatf (k) < k¢ for all k > n. Hereafter, we often usg(k) < e(k) to
mean thalf is negligible ink.
When A is a probabilistic machine or algorithm,(«) denotes the random variable

of A’s output on inputz. Then,y & A(z) denotes thay is randomly selected from
A(x) according to its distribution. Whedis a value, A(z) — a denotes the event that

A outputsa on inputxz. WhenA is a sety & A denotes thay is uniformly selected
from A. WhenA is a valuey < A denotes thay is set asA.

In this paper, we consider that the underlying machines aif®@mn Turing ma-
chines. But it is easy to extend our results to non-uniformntumachines.

2.2 The DDH Assumption

Let k be a security parameter afidbe a group with security parametierwhere the
order of G is primep and |p| = k. Let {G}; be the set of grous with security
parameter.



For all k£ € N we define the sef® andR as follows:

D(k) — {(G, 91,92, 97,9%) | G < (G}, (g1,92) < G2,z < Z,}
R(k) — {(G7917927y17y2) | G £ {G}kv (9179273/1,92) & G4}-

Let A be a probabilistic polynomial-time machine. For ale N, we define the DDH
advantage ofd as

AdvDDH (k) « | Pr[A(1%,p) — 1 | p < D(k)] — PrfA(",p) — 1 | p < R(K)] .

The DDH assumption fof G } ¢y is: For any probabilistic polynomial-time adversary
A, AdvDDH 4 (k) is negligible ink.

2.3 Pseudo-Random Function (PRF)

The concept of a pseudo-random function (PRF) is defined]iby%soldwasser, Gol-
dreich and Micali.

Let £ € N be a security parameter. A pseudo-random function (PRFjlyfain
associated witfSeedy, } ken, {Domy }reny and{Rng;, } ren Specifies two items:

— A family of random seed$§Seed;; } ;.en.
— A family of pseudo-random functions indexed by X R Seedy, o Y X, D R

Domy,, andR <& Rng,, where each such functidff>~-2-® maps an element of
D to an element oRR. There must exist a deterministic polynomial-time aldorit
that on inputl*, o andp, outputsF®*P:R ().

Let A° be a probabilistic polynomial-time machine with oracleessctoO. For all
k, we define

AdvPRFE 4(k) « | Pr[A" (1%, D, R) — 1] — Pr[ARF (1%, D, R) — 1]],

whereX & Seedy,, o <2 X, D <& Domy, R & Rng,,, F « FE-ZPR andRF : D —

R is a truly random functionp € D RF(p) & R).
F is a pseudo-random function (PRF) family if for any probistit polynomial-
time adversaryd, AdvPRFFr 4(k) is negligible ink.

2.4 Pseudo-Random Function with Pairwise-Independent Ratom Sources
(wPRF)

Here, we introduce a specific class of PRFBRFs.
Letk € N be a security parameter aRthe a PRF family associated wifBeedy, } r.en,

{Domk}keN and{Rngk,}keN.
We then define aPRF family forF.

Let ¥ <& Seedy, D <& Domg, R K Rng,, andRF : D — R is a truly random
function ¥p € D RF(p) Y R).



Let X5 be a set of random variables (distributions) overand /s be a set of
indices regarding”’ such that there exists a deterministic polynomial-timeoatgm,
fx I — X5, thatoninput € I, outputso; € X5.

Let (0iy, iy, - - -, 04, ,,, ) D€ random variables indexed bYs, fx:), wherei; € Iy
(j =0,1,...,t(k)) andt(k) is a polynomial ofk. Let o;, be pairwisely independent
from other variablesy;,, ..., 0y, ,,, and each variable be uniformly distributed over
That is, for any pair of0y,,05,) (j = 1,...,t(k)), for any (z,y) € X2, Pr[o;, —

x A oy, —y| =Prloy, — ] - Prlo;, —y] =1/| 22

Let AM/= be a probabilistic polynomial-time machiné that queries; € D

along withi; € Iy to oracle(F,Ix) and is replied WitrF%E’D’R(qj) for eachj =

0,1,...,t(k), where(@o, . .., 0 x)) & (Tigs - Tiy, ) INOracle(F, Is).

Let ARF:> be the same ad ™! exceptre:™ " (¢o) is replaced byR F (o).
For all k, we define

AdviPRFE 1, a(k) «— |Pr[AP=(1F D, R) — 1] — Pr[ARF=(1% D, R) — 1]].

F is arPRF family with indeX{ (I s, fx)} seseed, ken if for any probabilistic polynomial-
time adversaryd, AdvrPRFF 1,, 4(k) is negligible ink.

Remark: Here, we introduce an example of indéx;, fx) for pairwisely independent
random variables, which is used in the proposed schemes.

Let k& be a security parameter afiibe a group with security parameterwhere
the order ofG is primep and|p| = k. Let ¥ — G. Then(Ig, fg) is specified by

Lo — {(V,W,d) | (V,W,d) € G x Z,},

X — {owway | ovwa — VFI2W A (V,W,d) € G2 X Zy A (r1,7m5) < 72},
f@ g — Xg and fG : (V,I/V,d) = OV, W,d)-

If d # d',V # 1andV’ # 1, then two random variables; v,y € X¢
andov w4y € Xg, are pairwisely independent, and each one is uniformly dis-
tributed overG, whereas three random variablesy w.q) € Xc, o(v w4y € X¢
ando(y» w4y € Xg, are notindependent.

In the experiment of defininddvrPRFE ;. 4(k), A" queriesq; € D along
with (V;,W;,d;) € Ig to oracle(F, Is) and is replied withF2> ™% (q;) for each

. — _ R
] = 0, ].7 - ,t(k), Where(O'(), e 7Ut(k)) — (O-(VmWo,do)’ RN O’(‘/t(k)ﬁwt(k)vdt(k'))) and

the random selection a5, ..., o)) is due to the selection dfry,72) & Zg in
oracle(F, Ig).
Hereafter, thisindexXl;, fc), is shortly expressed b, — {(V, W,d) | (V,W,d) €

G2 x Z,} andfe : (V,W,d) — VI with (ry, o) < 72,

2.5 Target Collision Resistant (TCR) Hash Function

Let £ € N be a security parameter. A target collision resistant (TE&h function
family H associated witf Domy }.eny and{Rng; } .en Specifies two items:



— A family of key spaces indexed by. Each such key space is a probability space
on bit strings denoted biKH,. There must exist a probabilistic polynomial-time
algorithm whose output distribution on inplit is equal tokHj,.

— A family of hash functions indexed by, 1 K KHy, D K Domy, andR & Rng;.,
where each such functiat’"” maps an element @ to an element oR. There
must exist a deterministic polynomial-time algorithm tloat input 1%, 4 and p,
outputsH"P® ().

Let A be a probabilistic polynomial-time machine. For/allwe define

AdVTCRH’A(k’) —
* ,D, ,D, * R *
Pripe DAp# p* AHE TR (p) = HEP R (p%) | p = AQF, p*,h, D, R)],

whereD & Domy, R & Rng, p* I pandh & KHy. H is a target collision resis-
tance (TCR) hash function family if for any probabilisticlpoomial-time adversary,
AdvTCRy_4(k) is negligible ink.

2.6 PKI-Based Authenticated Key Exchange (AKE) and the Extaded
Canetti-Krawczyk (eCK) Security Definition

This section outlines the extended Canetti-Krawczyk (e€dQurity definition for two
pass PKl-based authenticated key exchange (AKE) protdbatswas introduced by
LaMacchia, Lauter and Mityagin [10], and follows the deptidn in [17].

In the eCK definition, we suppose there arparties which are modeled as proba-
bilistic polynomial-time Turing machines. We assume tlwahe agreement on the com-
mon parameters in the AKE protocol has been made among ttiepbefore starting
the protocol. The mechanism by which these parameters @e is out of scope of
the AKE protocol and the (eCK) security model.

Each party has a static public-private key pair togetheh witertificate that binds
the public key to that partyd (B) denotes the static public key (B) of party A (B)
together with a certificate. We do not assume that the carjfguthority (CA) requires
parties to prove possession of their static private keytsybuequire that the CA verifies
that the static public key of a party belongs to the domainutifiip keys.

Here, two parties exchange static public kelys3 and ephemeral public keys, Y;
the session key is obtained by combinidgB, X, Y and possibly session identities.
A party A can be activated to execute an instance of the protocoldcaleession
Activation is made via an incoming message that has one d6togving forms: (A, B)
or (B, A, X). If Awas activated with{ A, B), then A is called the session initiator,
otherwise the session responder. Session initidtareates ephemeral public-private
key pair,(X, z) and send$B, A, X) to session respondé. 3 then creates ephemeral
public-private key pair(Y, y) and send$A, B, X,Y) to A.

The session of initiatad with respondeB is identified via session identifiéjfl, B, X, Y),
whereA is said the owner of the session, afidhe peer of the session. The session of
respondei3 with initiator A is identified as(B, Ay, X), whereB is the owner, and
Alis the peer. SessiqiB3, 4, Y, X) is said a matching session i, B, X,Y). We say
that a session is completed if its owner computes a sessjon ke



The adversaryM is modeled as a probabilistic polynomial-time Turing maehi
and controls all communications. Parties submit outgoimgsages to the adversary,
who makes decisions about their delivery. The adversargnts parties with incoming
messages vidend(message), thereby controlling the activation of sessions. In order t
capture possible leakage of private information, advgrddris allowed the following
queries:

— EphemeralKeyReveal(sid) The adversary obtains the ephemeral private key asso-
ciated with sessiosid.

— SessionKeyReveal(sid)  The adversary obtains the session key for sessiin
provided that the session holds a session key.

— StaticKeyReveal(pid) The adversary learns the static private key of paidy

— EstablishParty(pid) This query allows the adversary to register a static puldic k
on behalf of a party. In this way the adversary totally coisttbat party.

If a party pid is established b¥stablishParty(pid) query issued by adversamt,
then we call the partdishonestlIf a party is not dishonest, we call the pahgnest

The aim of adversaryM is to distinguish a session key from a random key. For-
mally, the adversary is allowed to make a special qUesy(sid*), wheresid* is called
thetarget sessionThe adversary is then given with equal probability eittner session

key, K*, held bysid* or a random keyR* < {0, 1}/"|. The adversary wins the game
if he guesses correctly whether the key is random or not. Tiaeléhe game, we need
the notion offresh sessioas follows:

Definition 1. (fresh session) Laid be the session identifier of a completed session,
owned by an honest partyt with peer3, who is also honest. Leid be the session
identifier of the matching session ©d, if it exists. Define sessiatid to be “fresh” if
none of the following conditions hold:

— M issues &essionKeyReveal(sid) query or aSessionKeyReveal(sid) query (ifsid
exists),

— sid exists andM makes either of the following queries:
both StaticKeyReveal(.A) and EphemeralKeyReveal(sid), or
both StaticKeyReveal() and EphemeralKeyReveal(sid),

— sid does not exist and1 makes either of the following queries:
both StaticKeyReveal(.A) and EphemeralKeyReveal(sid), or
StaticKeyReveal(B).

We are now ready to present the eCK security notion.

Definition 2. (eCK security) LefK* be a session key of the target sessiali that
should be “fresh” R* < {0, 111571, andb* <2 {0, 1}. As a reply toTest(sid*) query by
M, K* is given toM if b* = 0; R* is given otherwise. Finally\ outputsb € {0, 1}.
We define

AdVAKE u((k) « |Pr[b = b*] — 1/2].

A key exchange protocol is secure if the following condgibald:



— If two honest parties complete matching sessions, therbibt&ycompute the same
session key (or both output indication of protocol failure)

— For any probabilistic polynomial-time adversawyt, AdvAKE (k) is negligible
in k.

This security definition is stronger than CK-security [2Hahsimultaneously cap-
tures all the known desirable security properties for autibated key exchange includ-
ing resistance to key-compromise impersonation attackakwerfect forward secrecy,
and resilience to the leakage of ephemeral private keys.

2.7 Key-Encapsulation Mechanism (KEM)

A key encapsulation mechanism (KEM) scheme is the triplégafrithms, > = (K, E, D),
where

1. K, the key generation algorithm, is a probabilistic polynahtime (PPT) algorithm
that takes a security parametee N (provided in unary) and returns a pgir, sk)
of matching public and secret keys.

2. E, the key encryption algorithm, is a PPT algorithm that takesnput public key
pk and outputs a key/ciphertext pak ™, C*).

3. D, the decryption algorithm, is a deterministic polynomialé algorithm that takes
as input secret keyk and ciphertextC*, and outputs key<* or L (L means that
the ciphertext is invalid).

We require that for allpk, sk) output by key generation algorithik and for all
(K*,C*) output by key encryption algorithf®(pk), D(sk, C*) = K* holds. Here, the
length of the key|K*|, is specified by(k), wherek is the security parameter.

Let A be an adversary. The attack game is defined in terms of amatiter com-
putation between adversai and its challengel;. The challenge€ responds to the
oracle queries made hyt. We now describe the attack game (IND-CCA2 game) used
to define security against adaptive chosen ciphertextiatighD-CCA2).

1. The challenge€ generates a pair of key&k, sk) & K(1*) and givespk to ad-
versaryA.

2. Repeat the following procedugg(k) times, fori = 1,...,q1(k), whereg,(-) is a
polynomial..A submits string”; to a decryption oracld)O (in C), andDO returns
Dgk (Cl) to A.

3. A submits the encryption query &b The encryption oracl€/ O, in C selectd* L
{0, 1} and compute$C*, K*) «— E(pk) and return§C*, K*) to A if b* = 0 and
(C*, R*) if b* = 1, whereR* <2 {0, 1}/X"1 (C* is called “target ciphertext’).

4. Repeat the following proceduge(k) times, forj = q1(k) +1,...,q1(k) + q2(k),
wheregs(+) is a polynomial A submits string”; to a decryption oracle)O (in C),
subject only to the restriction that a submitted t€4tis not identical toC*. DO
returnsD,,(C;) to A.

5. A outputsb € {0,1}.



We define the IND-CCA?2 advantage @f AdvVKEM'\PC“A2(k) | Pr[b = b*] —
1/2| in the above attack game.

We say that a KEM scheme is IND-CCA2-secure (secure agailagiti@e chosen
ciphertext attacks) if for any probabilistic polynomi@ie (PPT) adversary,
AdvKEMNPCCA2(L) is negligible ink.

3 The Proposed AKE Protocol

3.1 Protocol

Let £ € N be a security parametef; L {G}\ be a group with security parameter
k, and (g1, g2) Loe2, where the order ofs is primep and|[p| = k. LetH be a
TCR hash function familyF andF be PRF families, ané be axPRF family with
index { (I, f¢)}ce (G}, ken: Wherelg — {(V,W.d) | (V,W,d) € G* x Z,} and
fo 0 (V,W,d) — VIHar W with (ry,ry) < 72,

(G,g1,992), H, F, F andF are the system parameters common among all users of

the proposed AKE protocol (althougfhandf: can be set privately by each party). We
assume that the system parameters are selected by a thistiqobirty.

Party A’s static private key iSag, a1, a2, ag, as) s (Z,)® and A’s static public
keyisA; « ¢7'952, A2 «— ¢7%95*. ha & KH,, indexes a TCR hash functidid 4 +

HyyPuoRi whereDy «— ITj, x G*, Ry « Z, andIT}, denotes the space of possible
certificates for static public keys.

Similarly, Party’s static private key igbo, b1, ba, b3, by) & (Z,)° andB'’s static

public key isB; «— ¢"'g?, By — g?*gbt. hp & KH, indexes a TCR hash function

k,Du,Ru
HB — H}LB .

A andB setrPRF and PRF§" «— FR¥eDeRe | FR25eDPeRe and Fo—
Fk’zﬁ’Dﬁ’R?, whereXr «— G, Df «— (Hk)2 X Glo, Re «— {07 1}k, EIE — Zp, ’Dr: —
{0, l}k, 'R,f: — (Zp)2, E,‘: — {O, 1}k, D,} — {0, 1}k, andRﬁ — (ZP)Q

To establish a session key with paBly party. A performs the following procedure.

1. Select an ephemeral private K&y , #5) < {0, 1}* x {0, 1}*.

2. Computead « 221:0 a; mod p, (z,x3) — Fs (1F) 4+ F3(&2) mod p (as two-
dimensional vectors) and the ephemeral public K&y «— ¢7, X5 «— ¢35, X3 «—
g1?). Note that the value ofz,z3) (anda) is only computed in a computation
process of the ephemeral public key from ephemeral ana gtaviate keys.

3. Erasqz, z3) and the whole computation history of the ephemeral pubfc ke

4, SendB, A, )(17 XQ, X3) to B.

Upon receiving B, A, X1, X, X3), party3 verifies that X, , X», X3) € G3. If so,
perform the following procedure.

1. Select an ephemeral private Ky, 7-) s {0,1}* x {0, 1}*.



2. Computeb « Z?:o bi mod p, (y,y3) — Fy (1%) + F;(§2) mod p (as two-
dimensional vectors) and the ephemeral public Key «— ¢!, Y> « ¢3,Y; «
Y3
91°)-
3. Erasgy,y3) and the whole computation history of the ephemeral publjc ke
4, Sench, B, X1, X5, X3,Y1,Y5, Yg) to A.

Upon receiving A, B, X1, X», X3, Y1, Ys, Y3), party.A checks if he ser(tB, A, X1, X3, X3)
to B. If so, A verifies that(Y3, s, Y3) € G3.

To compute the session kegt,computesr 4 « Y, ey 2 Hesay s pe pde and
B computesr « X7 Hdbs xbatdba xUs gAY AV \herec — H (A, Y;,Ys) andd «—
HB(B,Xl,XQ) If they are correctly computed, < o4(= op). The session key is
K Fg(Sid) wheresid + (A B Xl,XQ,Xg,Yl,YQ,Yg)

3.2 Security

Theorem 1. The proposed AKE protocol is secure (in the sense of Defini)df the
DDH assumption holds fofG}xen, H is @ TCR hash function family; and F are
PRF families, andr is a rPRF family with indeX (I¢, fc) }ce{c},,ken, Wherelg «
{(V,W,d) | (V,W,d) € G* x Z,} and fg : (V,W,d) — V" +4r2 W with (r1,1) <
ZZ
-
Proof. It is obvious that the first condition of Definition 2 holds.
We will prove that the second condition of Definition 2 hold&ler the assumptions.
Letsid* be the target session chosen by advergaryA be the owner of the session
sid* andBB be the peer. Letid* be (4, B Xl,Xz,Xg,Y1 ,Y2 Y5, whereA includes
(Al,AQ) B includes 61,,32) A1 «— 91 g2 ,A2 — gl 92 ,Bl “— 91 92 ,BQ —
b3
91392  X{ =97 7X2 — 93 »X,s <_91 Y~ gi 7Y2 — g5 7Y3 ‘_91 .
We will evaluate the advantagldvAKE x4 (k), in the following two disjoint cases
(which cover the whole):

— Case 1: there exists a matching sessiafi, of target sessiosid*,
— Case 2: there exists no matching session of target sesdion

Case 1:
To evaluateAdvAKE (k) in Case 1, we consider five gam&s{”, G{", G{",
Ggl), Gfll) as follows:

Game Gél). This is the original eCK game with adversayy to defineAdvAKE x4 (k)
in Case 1.

Game Ggl). This is alocal eCK game with an adversayt, that is is reduced from
gameGE,l) with adversaryM. In the local eCK game in Case A{; activates only
two parties (say4d and B) (except dishonest parties) and only two sessions, the
target session and the matching session (say3, X, X3, X5, Y, Yy, Yy) and
(B, A, Y}, Y5, Yy, X5, X5, X%) ) (except sessions with dishonest parties).



A B

U U
(ao, a1, a2, a3, as) — (Zyp)° (bo, b1, ba, b3, by) < (Zp)®
Ay — g1 g5, Ay — gi®g3", By — g}'g%*, By — gy°gb',
ha hp

(F1,22) < {0, 1} x {0,1}F
(z,23) — Fz, (1%)
+Fy (%) mod p
(@ — Z?:o a; mod p)
Xy g1, X2 < g3,
X3« g7°

BANX) Xy, X, Xs) € G

(51, 2) <= {0,1}% x {0,1}*
(ya y3) (i Fﬂl (1k)
) +F5(g2) mod p
(b — Z?:o b; mod p)
Yl — 911}7Y2 — 912}7
V3 g

(Y1, Y, Ys) € G372 (A.B,X1.X2,X35,%1,Y2.Y5)
1,412,143 .

¢ — Ha(A,Y1,Y5) ¢ — Ha(A,Y1,Y)

d(_HB(B7X17X2) dHHB(BaXlw*XZ)

o — Y1a1+ca3}/2a2+ca4_ o — Xi71+db3Xg2+db4.
Y3I3BfBg‘T/ XéjSA%A;y

K «— FU(Sid) K «— Fg(sid)

Here,sid «— (A, B, X1, X5, X5,Y1, Y5, Ys). Note that(Ay, As, By, By) € G* is
confirmed indirectly through the certificates.

Fig. 1. The Proposed AKE

GameG.". We modify gameG " to gameG'" by changing PRFg7-, F;., Fye
anngi« of the target and matching sessions to random functions.

GameG{". We modify gameGS" to gameG." by changing the value af; )= =
(X%)¥ to a random elemendt < G.

GameG.". We modify gameG{" to gameG{" by changing PRF,. to a random
function. Note that the requirement of PRF figy- is sufficient here{PRF is not
necessary).

Let Adv" be the eCK advantage d# in gameG." (i.e., AdvAKE (k) in Case
1). LetAdv” (i = 1,2, 3, 4) be the eCK advantage g#(; in gameG\".
We will then evaluate the relations between pairs of the aidges.

10



Claim 1. For any adversaryM in gameGé” and any (correctly set-up) local eCK

gameGgl), there exists an adversanyt,, for the local eCK game, and a machind,
whose running times are at most that/ef, such that

Adv) < dn(k)s(k) - Advi? + s(k) - AdVPRF . (k)
whereM activates at mosi(k) sessions.

Proof. Let's suppose that activates at mosi(k) honest parties. Given an adversary
Min gameGél) and a (correctly set-up) local eCK game with two partiesa0dB),
we construciM as follows: First,M; randomly establishes.(k) — 2) honest parties
correctly in addition ta4 andB. M, then simulates the eCK game for thé:) honest
parties (including4 and B) with M. M; randomly guesses the target session whose
owner and peer ard andB.

M_’s simulation is executed as follows:

1. M; selectsa — (a1, as) & {0,1}2. Intuitively, a; = ‘0’ means M;’s guess
that M issues no ephemeral key reveal querybfor the guessed target session,
anda; = ‘1’ means the oppositers = ‘0’ meansM;’s guess thatM issues no
ephemeral key reveal query @for the matching session of the guessed target
session, and, = ‘1’ means the opposite. Due to the conditions of a targeticess
(or a fresh session), i issues an ephemeral key reveal query for a target session,
M cannot issue the static key reveal query on the owner of tgettaession.

2. If ais ‘00", M issues static key reveal queries.drandB in the beginning of the
game, and then starts the simulation of the eCK game vith
In the simulation,

(a) M; simulates the sessions of the establisbe@:) — 2) honest parties cor-
rectly.

(b) If asession ofd or B is not the guessed target session nor the matching session,
M correctly simulates the session (i.e. selects an epheipevate key and
computes ephemeral public key correctly by using the staiit ephemeral
private keys).

(c) If a session ofd or 5 is the guessed target session or the matching session,
execute the local eCK game.

If M’s guess is incorrect (i.eAM does not select the guessed target session as the

target session a1 issues an ephemeral key reveal query for the guessed target o

the matching session\1; aborts this game (gan@(ll)).

3. Ifais‘'01’, M, issues a static key reveal query drin the beginning of the game,
and then starts the simulation of the eCK game with
In the simulation,

(a) M; simulates the sessions of the establisbe@:) — 2) honest parties cor-
rectly.

(b) If a session of4 is not the guessed target sessisn; correctly simulates the
session (i.e. selects an ephemeral private key and comgpitesneral public
key correctly by using the static and ephemeral private)keys

11



(c) If a session of5 is not the matching session of the guessed target sesgign,
selectyy, y3) s Z2 and compute$’ — g{,Ys < g5 andYs — g}°.

(d) If a session ofd or B is the guessed target session or the matching session,
execute the local eCK game.

If M;’s guess is incorrect (i.eM does not select the guessed target sessiov or

does not issue an ephemeral key reveal query for the matsbsgjon or issues an

ephemeral key reveal query for the guessed target sesdibongborts this game.
. If ais '10’, M; issues a static key reveal query Biin the beginning of the game,
and then starts the simulation of the eCK game with

In the simulation,

(a) M; simulates the sessions of the establisbe@:) — 2) honest parties cor-
rectly.

(b) If a session ofB is not the matching session of the guessed target session,
M correctly simulates the session (i.e. selects an ephempevate key and
computes ephemeral public key correctly by using the staiit ephemeral
private keys).

(c) If a session ofA is not the guessed target sessigr; selects(z, x3) Y Zf,
and computes(; «— gf, X3 < ¢5 and X3 « g7°.

(d) If a session of4 or B is the guessed target session or the matching session,
execute the local eCK game.

If My’'s guess is incorrect (i.eM does not select the guessed target session or

M does not issue an ephemeral key reveal query for the guemgmd $ession or

issues an ephemeral key reveal query for the matching s@ssid; aborts this

game.
. Ifais ‘11", M, starts the simulation of the eCK game witH.

In the simulation,

(a) M; simulates the sessions of the establisbe@:) — 2) honest parties cor-
rectly.

(b) If a session ofd or B is not the guessed target session nor the matching session,

M, selects(z, z3) Y Zf, and computes(; « g7, Xy < ¢§ and X3 «— g¢7*
(or selectgy, y3) & Zf, and computed; — g}, Y2 < ¢y andY; — ¢{*).

(c) If a session of4 or B is the guessed target session or the matching session,
execute the local eCK game.

6. M, finally outputs the output aM, unlessM; aborts the game.

in this simulation is exactly equivalent tb1y’s advantage in gamé:

If M’s guess (on the target session ar)ds correct andv = 00, M;’s advantage
(1)
o -

If Mj’s guess (on the target session ardis correct andx € {01,10,11}, the

difference between\;’s advantage in this simulation antiy’s advantage in game
Gél) can be evaluated as follows:

We now assume a PRF security test environmentfowhere adversarM, is

allowed to access to two oracles, which &g, , Fs,) ((d1,52) J Zf,) or two random
functions(RFy, RF5).

We then construcM,, as follows: M, simulates the sessions dfand 5 correctly

except the computation df; and FB of A and B, where in place ofM;’s selecting

12



(,23) < 22 andlor (y,ys) & 72 (in cases ofa € {01,10,11}), M, sends the
related queries to the oracles. Finallyfs outputs 1 iff M correctly guesses* (i.e.,
M’s outputb is equivalent td* in (Definition 2 of) gameGE,l)).

If the oracles aréF, , Fy, ), then the simulation with the oracle queries is equivalent

to gameG(()l), since the distribution ai* andb* are independent and uniform ovéy.
Otherwise, it is equivalent td1,'s simulation described above under the condition that
M, ’s guess is correct. The number of calls to the oracles isdedibys(k) in all cases

of a € {01, 10, 11}, So, applying the hybrid argument, (whev& sets up theé-th step

of the hybrid argument for =1, ..., s(k)), we obtain

|Adv” — Adv{! [CorrGuess]| < s(k) - AdvPRF¢ (k).

whereAdv{" [CorrGuess] is the advantagédv|" under the condition that1;'s guess
is correct.

Since the probability thatM;’s guess on the target session is correct is at least
1/(n(k)?s(k)) and the probability that;’s guess is correct on is 1/4,

1/(4n(k)2s(k)) - (AdvS” — s(k) - AdVPRF ,, (k) < Adv{").

O

Claim 2. There exists a probabilistic machinet;, whose running time is at most that
of M, such that

Advi" — Advi)| < 2 max{AdVPRF¢ ,, (k),AdvPRF¢ , (k)}.

Proof. We now assume PRF security test environmentd-fandF, where adversary
Ms is allowed to access to four oracles, which gtg,, Fs,, Fe,, Fe,) (61, 62) < 72,

(£1,8&) & {0,1}%*) or four random function$RF;, RF», RF3, RF}).

We constructM; as follows: M3 sets up the parameters of gar@él) for two
parties,4 andB3, and the target and matching sessions correctly and siasula game
with adversaryM; except the computation &%- (3), F5. (93), Fz: (1%) andFy: (1%),
where M3 accesses to the oracles and sets the returned values asthierfvalues.
Finally M3 outputs 1 iff M correctly guesses® (i.e., M1’s outputd is equivalent to
b* in (Definition 2 of) gameG{").

If the oracle isF andF, the simulation is equivalent to ganﬁégl). Otherwise, the
simulation is equivalent to garr(éél).

Since both the static and ephemeral keys of the target (ingjckession are not
revealed at the same time, we obtain

Advi? — Advi)| < 2 max{AdVPRF¢ ,, (k), AdvPRF¢ , (k)}.

13



Claim 3. There exists a probabilistic machinet,, whose running time is at most that
of M, such that
|Adv{" — Adv"| = AdvDDH , (k).

Proof. Given a DDH problenp — (G,U,V, W, Z), wherep & D(k) or p & R(k),
we construct its adversaryt, using M in gameG(zl) as follows:

M, sets up the parameters of gaﬂél) for two parties,A and B, correctly and
simulates the game with adversam; except the computation af;, X3, Y5 and
(Y3)" (= (X3)¥).

For the computationM, setsg; «— U, X5 «— V, Y «— W, and setsZ as the
specified value ofY;")*3 (= (X4)¥3). (Note that the simulation of the other values can
be perfectly executed with using, X3, Yy and (Y3 (= (X3)¥%).)

Finally M, outputs 1 iff M correctly guessels® (i.e., M1’s outputd is equivalent
to b* in (Definition 2 of) gameG.").

If p & D(k), the advantage o#; in this simulation is equivalent to that in game
GV, Advi). Otherwise, the advantage f(; in this simulation is equivalent to that
in gameG.", Adv{".

ThereforeAdv) — Adv{"| = AdvDDH , (k). O

Claim 4. There exists a probabilistic machinet;, whose running time is at most that
of M, such that
IAdv(Y — Adv("| < AdvPRFf u, (k).

Proof. Given a PRF security test environment #0y where an adversary is allowed to
access an oracléy, (y s G) or a random functioR F', and tries to distinguish them,
we construct its adversayts using M, in gameGél) as follows:

M5 sets up the parameters of galﬁél) for two parties,A and 3, correctly and
simulates the game with adversaky; except the computation & « F,(sid"),
where M5 sendssid™ to the oracle and sets the value returned from the oracl€.as
Finally M5 outputs 1 iff M correctly guesses® (i.e., M1’s outputd is equivalent to

b* in (Definition 2 of) gam@él)).

If the oracle isF,, the returned value from the oracle is perfectly indistisgable
from that of F,,« (sid), since the value of* in gameGgl) is uniform and independent.
Then, the advantage 9f(; in this simulation is equivalent to that in gar@l) , Advgl).
Otherwise, the advantage #ff; in this simulation is equivalent to that in gam'b(l),
Adv!"

e

ThereforeJAdvy" — Adv{"| < AdvPRFf u4, (k). O

Summing up Claims 1 to 4 and from the fact thaltvff) = 0, we obtain the follow-
ing claim,
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Claim 5. Let's suppose Case 1 occurs. For any advers&fyin the eCK game (Def-
inition 2), there exist probabilistic machines/,, M3, M, and M5, whose running
times are at most that o%1, such that

AdvAKE v((k) < 4n(k)?s(k) - (2 - max{AdvPRF¢ . (k), AdvPRF: \ (k)}
+AdvDDH uq, (k) + AdvPRFF A, (k) + s(k) - AdVPf{FlzJ\/l2 (k).

Case 2:

Next, we will evaluateAdvAKE x4 (k) in Case 2. Recall thaid” is the target session
chosen by adversaty1, A is the owner of the sessiaid™ and B is the peer. Letid*
be(A4, B, X7, X5, X3, Y, Y55, Y5,

In Case 23 is a honest party, but does not own a session that is matohisgst
sionsid®. Due to the conditions of a fresh session (i.e., restristiomsid*), M cannot
issue a static key reveal query 8h but M (or a dishonest party) can establish a ses-
sion,sid;, (C, B, x x{" x7 v v{? v{"), with B that is not the matching
session ofid* for i = 1,...,t(k) (i.e., (A, B, X5, X3, X5, Y, Y5, Yy) # (OO,
B®, xW x xO v v y{7)) and can issue a session key reveal query on
the sessiofiC®), B, x\V x{" x{ v? vV v,

We consider seven gam&?, ¥, G{?, G, G, G? andG(?, as follows:

Game GE)Q). This is the original eCK game with adversa¥y to defineAdvAKE » (k)
in Case 2.

Gamer). This is alocal eCK game with adversany,; that is reduced from the
original eCK game with adversamy1. In the local eCK game in Case 2/,
activates only two parties (e.g4 and B) (except dishonest parties) and the tar-
getsession (e.g(A, B, X, X3, X4, Y}, Y5, Y5)) (except sessions with dishonest

parties).
GameG}”. We modify gameG > to gameG}” by changing PRF&%-, F., Fs:
anngm (¢ =1,...,t(k)) to random functions.
1

GameG.”. We modify gameG.? to gameG> by changing the value 8" B§'*"
(in the computation process of « (Y;*)%1+¢ o3 (Y )e2te aa (Y )2 BE B @)
to (X ;)P4 b5 (X5)b2+4°b1 This change is purely conceptual.

Gamerf). We modify gameG§2) to gamerf) by changing DH tupl€G, ¢4, g2,
X7, X3) & D(k) to a random tupléG, g1, g2, X7, X3) & R(k).

GameG?. We modify gameG” to gameG'* by adding a special rejection rule in
gameGéQ), such that gamé}f) aborts if M (dishonest part¢) establishes a ses-
sionwithB, (C®, B, x\V x{V x{ v v vV issues a session key query
on the session, anf 5 (B, X7, X3) = Hp(B, X", x{") and (B, X}, X3) #
(B, x, x5 occur.

GameGéQ). We modify gamer-f) to gameGéz) by changing arPRF of the target
sessionf, -, to a random function.

15



Let Advgf) be the eCK advantage @1 in gameGEf) (i.e.,AdvAKE \((k) in Case
2). LetAdv!? (i = 1,2,3,4,5,6) be the eCK advantage g(,, in gameG.?.

We now proceed to evaluate the differences between paireafdvantages.

Claim 6. For an adversaryM in gameG((f) and a (correctly set-up) local eCK game,
there exists an adversary1,y, for the local eCK game, and a machind > whose
running times are at most that @#1, such that

Adv < 2n(k)?s(k) - Advi? + s(k) - AdVPRF (k)
where M activates at most(k) sessions.

Proof. The proof of this claim is similar to that of Claim 1. The onliffdrence is for
Mi1's (and My's) guess onx. In Case 15 owns the matching session of the target
session, whilés owns no matching session in Case 2, but has a restrictionyorekeals
such that3’s static key cannot be revealed. Therefokd;; only needs to make a one-
bit guess ond’s key reveal (static or ephemeral key reveal) to complegestmulation.
We then obtain

1/(2n(k)?s(k)) - (Adv§? — s(k) - AdvPRF¢ , (k) < Adv{®.

The proof of the following claim is also similar to that of @ta2.
Claim 7. There exists a probabilistic machinet;3, whose running time is at most
that of M, such that

Adv{? — Advs?| < 2s(k) - max{AdvPRFg ,, _(k),AdvPRFg . (k)}.

Claim 8.
Advs? = Adv(

This is clear since the change is purely conceptual.
Claim 9. There exists a probabilistic machin®t,4, whose running time is at most
that of M, such that

IAdV®) — Adv{? | = AdvDDH o4, (k).

Proof. Given a DDH problenp — (G, U, V, W, Z), wherep & D(k) or p & R(k),
we construct its adversaryt,, using My in gameGéQ) as follows:

M4 sets up the parameters of ga@éQ) for two parties,A and B, correctly and
simulates the game with adversa¥y,, except the computation @f, g», X7, X;5.
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For the computationMy4 setsg; «— U, g5 «— V, X7 «— W, andX; — Z.
(Note that the simulation of the other values can be pesfestecuted with using
91,92, X7, X3.)

Finally M4 outputs 1 iff M1, correctly guesses® (i.e., M1’s outputb is equiv-
alent tob* in (Definition 2 of) gameGgQ)).

If p & D(k), the advantage of1;; in this simulation is equivalent to that in game
G§2), Adv§2). Otherwise, the advantage 6fl; in this simulation is equivalent to that
in gameG.?, Adv{?.

Therefore]Adv? — Adv{?| = AdvDDH v, (k). O

Claim 10. There exists a probabilistic machint,5, whose running time is at most
that of M, such that

|AdvS? — Advi?| < s(k) - AdvTCR y, (K).

Proof. Given a TCR hash function probletp*, hp, Dy, Ry ), wherehpg R KHy,
Dy « I}, x G* Ry « Z,, p* « (certp, By, By, Y*, Y5) Y Dy and Il denotes
the space of possible certificates, we construct its adwerst s using.M;; in game
G as follows:

M5 simulates gam(;ff) with adversaryM,; with setting (certg, By, B2) as
the static public key of the peer (s#) of the target session (say for the owner),
and setting X7, X5, X5) as the ephemeral public key @f. Since the distributions of

(certs, B1, B2) and(X7, X;) are equivalent to those of ga@z) (e.g., the ephemeral
public key of the target sessionX;, X3), is uniformly distributed onG? in game

fo)). Therefore simulation of garr@ff) by M5 is perfect.

If My, issues a session key query on ses$iot?, B, X1V, x{V, x{V v? v vy
with Hg(B, X7, X3) = Hp(B,X\", x{") and (B, X7, X3) # (B, X", x{") in
this simulation M5 outputs(B, XV, x{").

Clearly, M5 outputs(B, X, X{") that breaks the TCR hash function, if game

Géz) applies the special rejection rule and aborts.
SinceM ;5 has at most(k) sessions withB, we obtain

AdvE — Advi?| < s(k) - AdVTCR gy, (k).
0

Claim 11. There exists a probabilistic machinet,5, whose running time is at most
that of M, such that

| Adv(? — Advl? | < AdvrPRFE 1, i, (K) + 4/p.
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Proof. Let sid; — (C®, B, X", x{" x{ v v vy (i = 1,... t(k)) be
sessions with3 on which M, issues session key queries, whéfé is a dishonest
party established by11;. Let K; < F,,(sid;), whereo; « (Xl(i))bTeri”; (Xz(i))b?rdibi
(x Py (@D (5o e — HO(CD, YD v) andd; — Hp(B, XV, x{7).

Let the target session of gan@!® besid* — (A, B, X7, X3, X1, Yy, Yy, Yy)
and the session key sitl* be K* «— F,.(sid*), whereo* « (X;)bi+d 05 (Xx)ba+d s
(Y3)™s (Yy)eatetas (Vo) teied, o — Ha(A, Y7, Yy) andd* — Hp(B, X7, X3).

We now consider two cases for each session(: = 1,2, ...,t(k)), Case (i) and
Case (ii).

Case (i): (G, g1,92, X\”, X{) € D(k). That s, there exists € Z, such thatx.” =
g, X5 =g5.

Case (ii): (G, g1, 92, X\, X{") ¢ D(k).
We say(G, g1, g2, X1, X3) € GoodKey, if (G, g1, 92, X7, X3) ¢ D(k) andg; #

1,92 # 1, g1 # g2. Since the parameter is uniformly selected frRk) in gameGéQ),
it occurs with probability at leagt —4/p). Hereafter, we assume th@t, g1, g2, X7, X3) €

GoodKey occurs in gamé}?). Note that all games to be investigated here are modified
from gameGéQ) with preserving the distribution dfG, g1, g2, X7, X3).
(B1, By, 0*,0;) are expressed by the following equations:

log,, B1 = b +nb; (mod p)
log,, B2 = b3 +nby (mod p)
log,, 0" = x7(b] +d*b3) + na3(b; +d*by) +0  (mod p)
log,, o; = x(b] + d;b3) +nx(bs + d;by) +~ (mod p).

whereg, = g7, X = g1, X5 = g5, (V5 )75 ()00 0 (oo = gf X0 =

= i - HIRC i)\ Dvey@®
gt, X3 = gt and (X3 )" (O (C57) v n = g].
If Case (i) occurs, the value af; is (information theoretically) independent from
o* foranyi =1,...,¢(k), since

log,, o7 — v = x(b] + nb3) + zdi(b3 + nby) (mod p)
is linearly dependent tiog,, By andlog,, B2, while log, o* is linearly independent

from log,, B; andlog, Bs. (Actually, givensid;, the value ofo; is uniquely deter-

mined, but, giversid®, the value ofr* is still uniformly distributed inG if (b3, b}) &
72)
p
Hence, hereafter we consider the case that Case (ii) ocouadl§ = 1, ..., ¢(k).
Then, we will show the following proposition:
Proposition 1. Let assume thats, g1, g2, X7, X;) € GoodKey. Then, giverfsid®, sid;,
...,sidy(ry), o* ando; are pairwisely independent for any= 1,...,¢(k), and each

one is uniformly distributed ove®, when(b}, b%) < Z2.
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Proof. First, we consider the relation betwesd* andsid; (i = 1,...,t(k)). So we
investigate the following matrix:

1 n 0 0
0 0 1 n
x] nxy d*xi nd*zy |’ @)
x1 nxe diwy nd;iTa
WhereXfi) =gy andXQ(i) = g7%.
This matrix (1) is regular if and only if
(w3 — 27)(x2 — w1)(d" —di) 0 (mod p). )

n # 0 andz} — x5 # 0, since we assume thék, g1, g2, X7, X5) € GoodKey, i.e.,
(G, 91,92, X[, X3) & D(k) andgy # 1,92 # 1,91 # go. In gameG{®), d* — d; # 0
by the special rejection rule, and — z; # 0 in Case (ii).

Therefore, this matrix (1) is regular. Then, giveid{,sid;), the value of(o;, o*) is

uniformly distributed oveG?2 when (b3, b%) <> Z2. O

We can then construct an adversart s for TPRFF with index{(I¢, fc)}ce(c},, ken
by usingM; in gameGéQ) as follows, wherdg « {(V,W,d) | (V,W,d) € G*xZ,}
andf : (V,W,d) — V"Har W with (e, o) < Z2:

Given therPRF security experiment faf, Ms sets up the parameters of game
Géz) such that

G Y {G}r, Y G, n Y L, G2 <—g§],
(af, a3, a5, a5) < (Z,)", Ar— giigs?, Az — g1 g5,
(61, B2) & (Z,)?, By« glﬁl» By — 9527

(e}, 25, 25) < (Zp)P(a} #23), Xi—gih, X5 g5, X gy

v =gy = g

o
y
gl ’

i 7 U i
WD) < (Z,), V=
¢ — Ha(A YY), d — Hg(B, X5, X3)
ci — Ho(CO Y v, di — Hp(B, X", X"),

Vo X3/ W ()P (g () e (e,
Vi X0 /XY, W ()Pt (e (o) oy
(i=1,...,tk)).
Under this setting of the parametersf; can perfectly simulate the sessiosig,"
andsid;, with M, except the computation of* ando;, fori = 1,... ¢(k).

We now setry, o) «— (b5, b%), and apply the indeX; — {(V,W,d) | (V,W,d) €
G? XZP} andf([;, : (Vv, w, d) — Yritdra gy, Then,O'(V*’W*7d*) =c* andO'(Vi’Wi,di) =
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o;fori =1,...,t(k), because

OV Wedr) = (V*)7'1+d*7'2 W

= X XYM - (X)X )R L (X)L (5 (v o (v b
= (X;‘)bf+d* b3 (X;)bg-ﬁ-d* by . (Yg*);c; (Y1*>a1‘+c*a§ (sz*)a;-t,-c*az

= O' 3
Oy = VW
1)\ b i * i * i b* i 8- i)\ g lH) i)y (P )\es gD

= (5773 (X (X)X s (g (o) (g

= (XD (x Dyt (x Dy (o (o)

= 04,
whereb} = 1 —nb5 (mod p), andby = S2—nb; (mod p). Here note thak v« yy« g+) =
o* ando(y, w, q,) = oi fori =1,...,t(k) hold simultaneously for any selected value
of (b3, bj)-

M executes gam@f) except the computation df, - (sid*) and F,, (sid;) (i =

1,...,t(k)), and Mg gives index(V*, W* d*) and(V;, W;,d;) i = 1,...,t(k)) to
the oracle in the experiment of thePRF security definition (in Section 2.4). If the
oracle is forAf /s, the above-mentioned simulation is the same as g@lﬁé If the
oracle is forARF1=  the simulation is the same as ga@§”.

From Proposition 1, ilGoodCoin occurs,(c*, 0;) are pairwisely independent for
i=1,...,tk).
SincePr[-GoodCoin] < 4/p, we then obtain
| Adv(? — Advl? | < AdvrPRFE 1, a1y, (k) + 4/p. 3)
O

SinceAdv((f) = 0, by summing up Claims 6 to 11, we obtain the following claim,

Claim 12. Let's suppose Case 2 occurs. For any adversayin the eCK game
(Definition 2), there exist probabilistic machines{,, M3, M4, M5 and Mg,
whose running times are at most that/ef, such that

AdVAKE v((k) < 2n(k)?s(k) - (2s(k) -max{AdvPRF¢ ,, (k), AdvPRF: (k)} +

F,Mi3
AdvDDH uq,, (k) + s(k) - AdvTCR w4, (k) + AdvrPRFE 1., (k) + 4/p) +
s(k) - AdvPRFg (k).

4 The Proposed KEM Scheme

4.1 Scheme

In this section, we present a CCA secure KEM scheme.
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Let £ € N be a security parameter, and Bt {G}« be a group with security
parametek;, where the order of is primep and|p| = k.

LetH be a TCR hash function family, afidoe arPRF family with indexX{ (¢, fc)}ce{c},, ken
wherelg «— {(V,W,d) | (V,W,d) € G* x Z,} and fg : (V,W,d) — V71tdr21y
with (r1,72) < Z2.

Secret Key: The secret key isk «— (z1,z2,y1,y2) Y Z;‘;.

Public Key: ¢, Yog, g2 &G e 91t 952, w o — g¥'gy, H — HZ’G4’Z" and
F — Fk:5¢DeRe whereh <X KHy, Sf «— G, Df — {pk} x G? (pk is a possible
public-key value) an®R « {0, 1}*.

The public key ipk — (G, g1, g2, z,w, H, F).

Encryption: Chooser & Z,, and compute

C'1 (_gvl",

CZ <_g§a

d — H(z,w,Cy,C3)
ro.rd

g <« Z W

K Fo—(pk, Cl, 02)

(C1,Cy) is a ciphertext, and( is the secret key to be shared.
Decryption: Given(z,w, C1, Cs), check whether

(z,w,C1,Cy) € G*.
If it holds, compute

d + H(z,w,C1,C2)
o Cfl"!‘dyl C;2+dy2

K — f‘jg(pk/‘7 Cl, CQ)

4.2 CCA Security

Theorem 2. The proposed KEM scheme is IND-CCAZ2 secure, if the DDH astsomp
holds for {G}ren, H is @ TCR hash function family, arfl is a 7PRF family with
index{(Ig, fc)}ee{c}y,ken, Wherelg — {(V,W.d) | (V,W,d) € G* x Z,} and

fo 1 (V,W,d) = VIHar W with (ry, 7o) < 72,

Proof. The proof is similar to the proof of the security of the propd#AKE in Case 2.
First let us review some notation of the IND-CCA2 game of @lresne. LetC;, C3),
pk* — (G, g1,92, 2%, w*, H, F) and (z3, 25, y7, y5) be the target ciphertext, public
key and secret key, anH™* — F,-(pk*,Cy,C3), whered* — H(z*,w*,C},C3)
ando* — (z*)"w*” 4. When adversaryd sends(C\”,C{") to the decryption
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oracle DO ¢ = 1,...,t(k)), the oracle returnd( Fa(pk*,Ofi),Céi)), where
d— H(z*,w*,C{",C{) ando — (C)wi+dvi (C5)watdus,
In this proof, we consider five gamesy, G1, Go, G andG4 as follows:

GameG,. Thisis the original IND-CCA2 game with adversa#yto defineAdvKEM'YPC“A2 (k).

GameG;. We modify gameG, to gameG, by changings* «— (z*)" w*" ¢ (in
the computation process of the target ciphert&Xtin the encryption oracle) to
o* — O+ VI (C5)*2 47 This change is purely conceptual.

Game G,. We modify game&, to gameG-, by changing DH tupléG, g1, g2, C5, C3) Y
D(k) to a random tupléG, g1, g2, C5, C5) & R(k).

Game G3. We modify gameG, to gameGs by adding a special rejection rule to
gameG,, such that, gam&; aborts if A sends(CY),CQ(i)) to the decryption
oracle andH (z*,w*,Ct,C3) = H(z*,w*,C", V) and (2%, w*, CF,C3) #
(z*,w*, Y. c$P) oceur.

Game G,4. We modify gameGjs to gameG, by changingrPRF F,- in the the en-
cryption oracle to a random function.

Let Adv, be the IND-CCA?2 advantage ofin gameG (i.e., AdvKEM'\PCC42(k)),
LetAdv; (i = 1,2, 3,4) be the IND-CCA2 advantage of in gameG;.

We can obtain the following claims, whose proofs are esaliynthe same as those
of Claims 8, 9, 10 and 11. So we omit them here.

Claim 13. Advg = Adv;

Claim 14. There exists a probabilistic machiog , whose running time is at most that
of A, such thaiAdv; — Advy| = AdvDDH 4, (k).

Claim 15. There exists a probabilistic machiog,, whose running time is at most that
of A, such thatAdvy — Advs| < ¢(k) - AdvTCR 4, (k).

Claim 16. There exists a probabilistic machiog;, whose running time is at most that
of A, such thajAdvs — Advy| < AdvrPRFF 1, 4,(k) +4/p.
SinceAdv, = 0, by summing up Claims 13 to 16, we obtain the following claim,

Claim 17. For any adversary4 in the IND-CCA2 game there exist probabilistic ma-
chines, 4, A; and. A3 whose running times are at most that4f such that

AdvKEM'YP €Ak <
AdvDDH 4, (k) + t(k) - AdvTCR 4, (k) + AdvaPRFF 1. 4, (k) + 4/p.

O

4.3 CPCA Security

In this paper, we define a stronger security notion than tha €&zurity on KEM and
PKE.

Here, we consider a trapdoor commitment, where commitegrdsr)S commits to
z by sendingC’ — E,i(z) to receiverR, thenS opensz by sendingsk to R, where
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(pk, sk) is a pair of public key and secret key, amd= D (C). Using a trapdoor
commitment, several committerSy, ..., S,, commits toxy, ..., z, respectively by
sendingCy « Epi(z1), ..., Cn «— Epi(z,) to receiverk. Another party can open
them simultaneously by sending: to receiverR. A possible malleable attack is as
follows: after looking apk andC' — E,(x) sent to receiveR, adversaryd computes
pk’, C’, algorithmConv and non-trivial relatiorRel. A registerspk’ and send€>’ to
R as a commitment te’ such thaRel(z, 2’). Whensk is opened,A computessk’ «—
Conv(sk) and sendsk’ to R such thate’ = D/ (C).

To capture the security against such malleable attacks,omedefine the CPCA
(Chosen Public-key and Ciphertext Attacks) security folMK&hemes.

Definition 3. Let X' = (K, E, D) be a KEM scheme. Lé&t*, pk* and sk* be the tar-
get ciphertext, public key and secret key of KEM schemén the CPCA security,
an adversaryA, givenpk* and C*, is allowed to submit a ciphertext along with
polynomial-time algorithmConv « (Convy, Convy), to the decryption oracldO
(with sk*) under the condition thatConv, (pk*),C) # (pk*,C*), whereConv; and
Convy uniquely compute the public-key «— Convy(pk*) and the corresponding se-
cret keysk «— Conva(sk™, pk*), respectively. Here there exists a polynomial-time al-
gorithm of verifying the validity o€onv such that for all(c, k) < Econy, (i) (1)
k = Dconvs (sk* pi+)(c). If Conv is valid, DO computessk «— Conva(sk*, pk*) and
returnsDg (C) to A.

We can define the advantage.4ffor the IND-CPCA gameAdvKEM'YPCPCAk).
We say that a KEM scheme is IND-CPCA-secure if for any prdissibi polynomial-
time (PPT) adversaryd, AdvKEM'Y>“PCA(%) is negligible ink.

This notion is considered to be closely related to the nptiomplete non-malleability
introduced by Fischlin [4].

We now show that the proposed KEM scheme is CPCA secure. & phe se-
curity, we need a new requirement for a hash function fantfilg, generalized TCR
(GTCR) hash function family.

Definition 4. Let k € N be a security parameter. Lét be a hash function family
associated witfbomyg, Rng;, and KHy.

Let Conv andRel be function and relation families with parameter sp&eam.
Letr € Paramy, then functionConv,. : X} — X mapse; € X toes € Xj. Given

R &R Rng, of hash function familyd, Rel, C R x R is an associated relation d,
where, for anyl; € R, d2 € R is uniquely determined witRel (d;, ds).
Let.4 be a probabilistic polynomial-time machine. For &llwe define

AdVGTCRY R (k) — Pr[ Rel-(HyP % (p, 8), Hy PR (Conv. (p), 8)) |
(1,0') < A%, p,6,h) A (p,8) # (Conv,(p),8) A (p,8) =D A h < KHy],

Hash function famil\H is a generalized target collision resistant (GTCR) hastcfun
tion family associated witiConv, Rel) if for any probabilistic polynomial-time adver-
sary A, AdvGTCRS}" (k) is negligible ink.

If Conv, is a constant function te andRel-(d1,d;) < di = ds, then the GTCR
hash function family associated wifionv, Rel) is a TCR hash function family.
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Theorem 3. The proposed KEM scheme is IND-CPCA secure, if the DDH astiomp
holds for{G};en, H is @ GTCR hash function family associated wi@onv, Rel), and
F is arPRF family with indeX (I¢, fc)}ce(c} . ken, Where

= (z,w) — CONV(y, 101,00 (2%, w*) € G? is defined by — (2*)*(w*)*2 and
w — (Z*)vl (U}*)U2, andReI(ul_’uN,M)[z)(dl, dg) ~ dg(dl’vl —’02)+ (d1U1 —’LLQ) =
0 (mod p), where(uy, uz,v1,v2) € Z,, and

— Ig — {(V,W,d) | (V,W,d) € G®> x Z,} and fg : (V,W,d) — V"1+a21)/ with

(r1,m2) Y Z2.

Proof. We define five games$zo, G1, G2, G5 andG/, that are equivalent to the games
defined in the proof of Theorem 2 except ga@g and gameG).

GameGY%. We modify gameG. to gameGYj by adding a special rejection rule to
gameG,,, such that, gam&, aborts if.A sends((u{”, u$”, v{”, v{?), (CV, C{?)) €
Z;, x G* to the decryption oracle, the relatioh(d*v” — v{") + (@*u{” —ul)) =0
(mod p), holds ford* — H(z*,w*,C;,C3) andd; — H(z,w;,C\”,C{"), and
(2%, w*, CF, C%) # (21, ws, O, CSD), wherez; — (2*)” (w*)"” andw; — (2%)1 (w*)*s
fori =1,...,t(k).

The difference of gam&’ and gameG) is the same as that of gani®; and game
Gy.

Let Adv, be the IND-CPCA advantage gfin gameG, (i.e., AdvKEM'YPCPCA (),
Let Adv (i = 1,2,3,4) be the IND-CPCA advantage of in gameG; (i = 1,2) and
G/ (i = 3,4).

Claims 13 and 14 hold for this proof, and the following claiande proven in a
manner similar to Claim 15 (Claim 10).

Claim 18. |Adv), — Advs| < t(k) 'AdVGTCRﬁOE‘VéREI(k).
In a manner similar to Claim 16 (Claim 11), we can show theofeihg claim:

Claim 19. There exists a probabilistic machio€;, whose running time is at most that
of A, such thaiAdvj — Adv}| < AdvarPRFE 1. 4, (k) + 4/p.

Proof. For any((u!”, u{” (" v{"), (C{?, c{")) queried to the decryption oracle, if
log,, Cf) = log,, CS) (mod p) (i.e, (G, g1, g2, C1,Co) € D(k)), then it is the same
as Case (i) in Claim 11.
So, we now only consider Case (i) in Claim 1dg,, e log,, P (mod p).
Since the values ofzf,z3) and (y7,y3) are information theoretically undeter-
mined, only way forA to specifyConv to generate the secret key;,, z2, 1, y2), Of
(z,w) from (27,23, y7,y5) is to use a linear relation ovésg,, of G. That s, the most
general form of the conversion ¢f, w) from (z*, w*) is z — (z*)“! (w*)“2g7' g5* and
w — (2°) (w*)2 gl gk, and(z1, z0) « (w12 + ugyi 4 s1, w125 + ugys + s2) and
(Y1, y2) « (V127 +v2yi +t1, V125 +v2y3 +12), Where(uy, uz, v, v2, s1, s2,t1,t2) €
VAR
In our security analysis, the part of the conversion regey@s, , s, t1,t2) is inde-
pendent. So, for simplicity of description, we ignore thetjia the following security

proof. Thatisz; «— (z*)"(l) (w*)“é) andw; «— (z*)”p(w*)”é)
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Then(z*, w*,o*, 0;) are expressed by the following equations:

log,, 2* =] +nzy  (mod p)
log,, w* =yi +ny; (mod p)
log,, o =ri(x} +d*y;) +nry(zs +d*ys) (mod p)

log,, 05 = r () + o di)a; + (uf) + ol dy)yp) +

) (0l + 0P dy)ay + (s + o8 d)ys)  (mod p).

(

* * 3 (7/)
wheregz = g7, Cf = g1, C3 = g1*, C{" = g, O3 = g}

1 n 0 0
0 0 1 n

2
O + o) ) @ + 00 10 + 00 Pl + o)
This matrix (4) is regular if and only if

(s — ) (s — e (di( @ ol —of) + (@ ul? —u§?)) 0 (mod p). (5)

n # 0andry — ri # 0, since we assume thét, gl7gg,X1,X2) ¢ D(k) and
a # 1,90 # 1 ,91 # g=. Since we are now considering Case (7r9 ) # 0, and
d;(d*v §’> o8 + (@ ul? —ul?) # 0 (mod p) by the special reJectlon rule in game
Gj.

Hence, this matrix (4) is regular. So, the remaining parhefproof is exactly the
same as that of Claim 16 (Claim 11). O

Summing up Claims 13, 14, 18 and 19, we obtain the followidne)

Claim 20. For any adversaryA in the IND-CPCA game there exist probabilistic
machines A}, A} and.4; whose running times are at most that4fsuch that

AdvKEM'NPCPCAL) <
AdvDDH 4, (k) + t(n) - AdvGTCRﬁ?;Vé’Re' (k) + AdvrPRFE 1. (k) + 4/p.

O

5 Conclusion and Open Problems

This paper presented a paradigm to design cryptographittpyes without random or-
acles under three assumptions: the decisional Diffie-Hall(DDH) assumption, target
collision resistant (TCR) hash function family (or GTCR hdanction family) and a
class of pseudo-random function (PRF) famityRF family.
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The most important open problem in this paradigm is how tetroot arPRF fam-
ily from a fundamental cryptographic primitive like a oneyfunction or (trapdoor)
one-way permutation. Another important open problem idddafy the relationship (or
equivalence) between the CPCA-security and complete ralfeafility [4].
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