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Abstract

Although advances in SHA-1 cryptanalysis have been made since the 2005 announcement of
a 263 attack by Wang et al., the details of the attack have not yet been presented or verified. This
note does just that. Working from Adi Shamir’s 2005 CRYPTO rump session presentation of
Wang et al.’s work, this note verifies and presents the differential path and associated conditions.
Although the error analysis for the advanced condition correction technique is not verified, a
method is presented which yields a two-block collision attack on SHA-1 requiring an estimated
262 SHA-1 computations if the original error analysis by Wang et al. is correct.

The differential path is presented for only the first block of the two-block attack, but the
second block path likely differs from the first in only the first 10 steps and could be derived from
the information presented here.
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1 Introduction

In the rump session at CRYPTO 2005 on behalf of Xiaoyung Wang, Andrew C. Yao and Frances
Yao, Adi Shamir gave a short talk detailing a differential path which could be used to find a
collision in SHA-1 with an expected 263 SHA-1 compression function invocations [30]. Although
some details of their methodology were given, over two years have passed and there seems to be
little comprehension of the result. The aim of this document is to verify both the differential
path and complexity estimation given in [30]. It is not my intention to “steal” any forthcoming
publication by the authors of [30]; I am not planning to publish this note in a peer-reviewed medium
but instead hope that it may aid researchers in the area.1

Main Results. This note contains details for a first block differential path similar (but not
identical) to that given in [30] and a set of sufficient conditions which guarantee the path holds.
An almost identical second block path, giving a full collision attack, could be derived easily from
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the details given here. The results do not correlate exactly with the data summarized in [30],
but the differences are minor and, assuming the original advanced modification error probability
is correct, the main figures and estimations are substantiated. Namely, after all conditions are
enumerated and advanced condition modification methods and early stopping techniques are taken
into account, an expected 262 SHA-1 invocations are needed to find a collision. The apparent
complexity improvement is achieved by using an “early stopping” technique used in the analysis
from [31]. Additionally, to arrive at this figure many paths related to the main differential path
are used which aids the attack complexity by a factor of four. It is possible, although perhaps
not likely, that these differential paths were not considered by the authors of [30] and could be
combined with their methods to yield a faster attack.

The differential path is given in Figures 2 and 3, the sufficient conditions for which are given in
Figures 4, 5 and 6. I also describe an advanced condition modification technique to correct many
conditions past step 16 and try to interpret other statements made in [30] regarding degrees of
message freedom before and after advanced condition modification. I stress that everything here is
a “best guess” at what the authors of [30] intended, but it seems likely that the results are highly
correlated.

Previous Cryptanalysis of SHA-1. Starting in 2004 at the CRYPTO rump session, a series
of breakthrough attacks on hash functions were presented by Wang and company [29, 31–33]. In
the earlier two papers, more efficient attacks were found on MD4, HAVAL, and RIPEMD, among
others, and a collision for the widely used MD5 was given. A summary of the methods used in
these papers can be found in [4, 5].

Biham et al. [3] provided the first collision in SHA-0, stemming from work in [2] and earlier
analysis by Chabaud and Joux [8]. In the same paper they began to chip away at the security
of SHA-1, giving a collision in a reduced 40-step version. Shortly thereafter in 2005 Wang et al.
published a more efficient collision attack [33] on SHA-0 and at the same conference Wang, Lin and
Yu extended the techniques to the full SHA-1 in [31]. In that paper they give a complexity estimate
of 269 expected computations of SHA-1 for their attack, besting the general theoretical attack of
280 computations. At that point many considered SHA-1 to be “broken,” although performing 269

work is arguably not practical in any reasonable time frame. A day after the talk for [31] was given,
Shamir presented the 263 attack, apparently a very recent result at the time, for the figures differed
slightly from a lengthier presentation at the NIST hash function workshop a few days later [25].
All specific figures refer to this later presentation.

More recently at the 2007 CRYPTO conference Joux et al. presented a paper [13] on an
application of Wagner’s boomerang attack [28] to compression functions in general, SHA-1 in
particular. At the rump session of the same conference Christian Rechberger presented [16] work
done with Vincent Rijmen based on earlier work with Christophe De Cannière [7] where he described
the best current known attack, utilizing many different differential paths. The estimate given in
[16] was 260.x expected calls to the SHA-1 compression function. There has also been some work
by Sugita, Kawazoe, Perret and Imai [26] to provide a theoretical foundation for the advanced
condition modification methods of Wang et al.
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2 Background, Notation

For a given binary string S ∈ {0, 1}∗, |S| will denote the length, in bits, of S. For two binary string
S and T , S ‖ T will denote their concatenation. Unless otherwise noted, all variables are 32-bit
integers and all arithmetic is done modulo 232. For two 32-bit variables x and y, x∧ y denotes the
logical bitwise ‘AND’ of x and y, and likewise x∨ y and x⊕ y are used to denote the logical bitwise
‘OR’ and ‘XOR’, respectively, of x and y. The left (right) circular shift of x by n bits is denoted
as x≪ n (x≫ y), and the bitwise complement of x is denoted as x̄. The j-th least significant bit
of a variable Mi is denoted by M j

i .

Foundations. Generally, a cryptographic hash function is a function

H : {0, 1}∗ → {0, 1}n

for some n.
A formal discussion of hash function security notions and the relations between them can be

found in [23], but the following are the three informal properties desired by designers of hash
functions:

• Pre-image Resistance Given y ∈ {0, 1}n, it is “difficult” to find x ∈ {0, 1}∗ such that
H(x) = y.

• Second Pre-image Resistance Given x ∈ {0, 1}∗, it is “difficult” to find x′ ∈ {0, 1}∗,
x′ 6= x, such that H(x) = H(x′).

• Collision Resistance It is “difficult” to find any two x, x′ ∈ {0, 1}∗ such that x 6= x′ and
H(x) = H(x′).

There are some problems encoding these requirements in a complexity-theoretic framework (see [22]
for a thorough discussion). However, some guiding upper bounds for expected attack complexity of
candidate hash functions can be obtained by examining theoretical attacks. A simple probabilistic
attack can be used to obtain chosen pre-images and second pre-images in time O(2n) and O(1)
space, and a general collision attack based on Pollard’s method [21] can be mounted with O(2n/2)
invocations and a constant amount of space. Most designers of hash functions try to achieve the
strongest security property, collision resistance, and thus any proposed hash has its security judged
against the O(2n/2) attack.

Although there are many possible ways to construct a hash function, SHA-1 and most others are
iterated via a compression function, utilizing the well-known result simultaneously discovered by
Merkle [17] and Damg̊ard [10] that a collision-resistant hash function accepting strings of arbitrary
length may be constructed from a collision-resistant compression function which has two inputs of
fixed length.

With the additional structure imposed by the Merkle-Damg̊ard paradigm, improvements to
the above theoretical attacks are possible. Kelsey and Schneier [15] have shown a second pre-
image attack on any Merkle-Damg̊ard hash function that requires about k2n/2+1 + 2n−k+1 hash
function calls to find a second pre-image on a message of block-length 2k. Similarly, because most
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compression functions are based on blockciphers more efficient brute force attacks discussed in [1]
may be employed in pre-image attacks (essentially a key search when the IV is fixed). Various
time-memory tradeoffs and parallel methods for Pollard’s Rho-based collision attacks are discussed
further in [27]. There have been other recent interesting results on Merkle-Damg̊ard hash functions
[12, 14], but they are mostly unrelated to this note.

SHA-1. SHA-1 (Secure Hash Algorithm-1), based on the MD function family due to Ron Rivest
and using the Merkle-Damg̊ard paradigm, was standardized by NIST in 1995 [19]. It replaced a
similar hash, SHA-0, then known simply as “SHA.”

The SHA-1 compression function, denoted as SHAc, takes as input a 160-bit chaining value CV,
broken into five 32-bit values such that CV = CV0 ‖ CV1 ‖ CV2 ‖ CV3 ‖CV4, and a 512-bit message
input M , with M = M0 ‖M1 ‖ . . . ‖M15, |Mi| = 32.

The full SHA-1 on input message M is computed by using Merkle-Damg̊ard strengthening
[10, 17] and padding to obtain a message M ′ such that |M ′| is a multiple of 512. Let M ′ =
M ′

0 ‖M ′
1 ‖ . . . ‖M ′

ℓ, where |M ′
i | = 512, for some ℓ and let

IV0 = 0x67452301 ‖ 0xefcdab89 ‖ 0x98badcfe ‖ 0x10325476 ‖ 0xc3d2e1f0.

Define IVi+1 = SHAc(IVi,M
′
i). Then the SHA-1 output on input M is IVℓ+1.

SHAc. The compression function of SHA-1 consists of 80 steps producing 80 intermediate step

values Ai for 1 ≤ i ≤ 80. Additionally, the values A0, A−1, A−2, A−3, and A−4 are initialized with
CV0,CV1, (CV2 ≪ 2), (CV3 ≪ 2) and (CV4 ≪ 2), respectively.

The 80 step values are computed iteratively by the following recurrence:

Ai+1 ← (Ai ≪ 5) + fi(Ai−1, (Ai−2 ≫ 2), (Ai−3 ≫ 2)) + (Ai−4 ≫ 2) + Wi + Ki

where fi is called the round function, Ki is a step-dependent constant and Wi is a variable computed
from the input message. The message expansion for determining the Wi for 0 ≤ i < 80 is defined
by the following.

Wi =

{

Mi : if i < 16

(Wi−3 ⊕Wi−8 ⊕Wi−14 ⊕Wi−16)≪ 1 : otherwise

The function fi is divided into four rounds (I will sometimes call it a round function) and is
defined as follows:

fi(x, y, z) =























(IF) : (x ∧ y) ∨ (x̄ ∧ z) : if 0 ≤ i < 20

(XOR) : x⊕ y ⊕ z : if 20 ≤ i < 40

(MAJ) : (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z) : if 40 ≤ i < 60

(XOR) : x⊕ y ⊕ z : if 60 ≤ i < 80

The output of SHAc is

A79 + CV0 ‖ A78 + CV1 ‖ (A77 ≫ 2) + CV2 ‖ (A76 ≫ 2) + CV3 ‖ (A75 ≫ 2) + CV4
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XOR Differential vs. Subtraction Differential. The notation in the differential path
uses a combination of the XOR differential and the subtraction differential. That is, for two 32-bit
unsigned integers x, x′, consider the function ∆X(x, x′) = x⊕x′. This defines the XOR differential
for x, x′. Alternatively, define ∆S(x, x′) as x′−x mod 232. This is the subtraction differential. The
value of one differential does not imply the value of the other. For example, let ∆S(x, x′) = 22.
There are many possibilities for ∆X(x, x′):

• ∆X(x, x′) = 0x00000004 (there is only one bit different between x and x′, in index 2)

• ∆X(x, x′) = 0x0000000c (bit 3 is set in x′ but is not set in x, bit 2 is not set in x′ but is set
in x)

• ∆X(x, x′) = 0x0000fffc (bit 15 is set in x′ but is not set in x, bits 2 through 14 are not set
in x′ but are set in x

The differential used here in Figures 2 and 3 (and originally in [29, 32]) resolves this problem with
the following notation. Let x be in [0, 231 − 1]. Then x′ = x[a1, a2, . . . , an,−b1,−b2, . . . ,−bm]
denotes x′ = x + 2a1 + 2a2 + · · ·+ 2an − 2b1 − 2b2 · · · − 2bm mod 232. From this information one can
compute both ∆X(x, x′) and ∆S(x, x′) if and only if for every bit index i for which x and x′ differ
i ∈ {a1, a2, . . . , an, b1, b2, . . . , bm}.

3 Methods

The Wang et al. collision attacks are differential attacks, whereby a pair of messages M,M ′ is
chosen such that ∆(M ′,M) = δ for some prescribed function (or set of functions) ∆ and some
prescribed value (vector) δ. Let Ai, 1 ≤ i ≤ 80 be the step values computed on input M and define
A′

i likewise for M ′. The attacker then tracks the values ∆(A′
i, Ai) throughout the computation of

the compression function, but is mostly uninterested in the values of A′
i and Ai themselves. A

differential path specifies target values ∆tAi for all i and is usually associated with some set of
conditions on the Ai, CV, and M which guarantee that if Ai, CV, and M satisfy those conditions,
then given the message M ′ ←M + δ and the associated values A′

i, ∆tAi = A′
i −Ai for all relevant

i. The recent attacks all use the value of CV which is of interest, the specified initial value, so the
task then becomes efficiently finding a message M such that the sufficient conditions are satisfied.

The Wang et al. attack on SHA-1 described in this note uses a two-block differential path.
I will provide details only for the first block differential path, but the path for the second block
is very similar and likely only differs from the first block path for the first ten steps, in order to
accommodate the differences introduced by the chaining value.

The differential path presented here has 305 total conditions, all but 85 of which are easily sat-
isfied deterministically. Of those remaining conditions, 20 may be satisfied with advanced methods
with probability around 1/2 according to [30], leaving effectively 65 conditions which are satisfied
probabilistically. The heuristic for determining the attack complexity, useful in practice, is to as-
sume that each condition is satisfied with probability 1/2. Typically, the differential path is chosen
so that as many conditions may be satisfied deterministically as possible, which in practice means
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step type constraints

i + 1 no carry W j
i = a, Aj

i+1 = a

i + 2 correction W j+5
i+1 = ā

i + 3 no correction Aj+2
i−1 = Aj+2

i

correction Aj+2
i−1 6= Aj+2

i , W j
i+2 = ā

i + 4 no correction Aj−2
i+2 = 0

correction Aj−2
i+2 = 1, W j−2

i+3 = ā

i + 5 no correction Aj−2
i+3 = 1

correction Aj−2
i+3 = 0, W j−2

i+4 = ā

i + 6 correction W j−2
i+5 = ā

Table 1: A local collision with associated conditions in round 1. A difference is introduced by a change in W j
i ,

and conditions can be chosen to absorb differences in W j
i+2

, W j−2

i+3
, and W j−2

i+4
. Regardless, a change in W j−2

i+5

is required to correct the possible change in step i + 6.

the differential paths have very few conditions in the later rounds. The actual attack complexity
considers several other factors and is discussed later.

Local Collisions. A theme among collision attacks on the SHA family is the idea of ‘local
collisions’ [8]. A local collision specifies how a difference introduced in step i may be absorbed
by other differences introduced in the following five steps. In this way a local collision is self-
contained; the differences do not continue to propagate after those five steps. There are many ways
to construct local collisions, but the one first mentioned in [8] and used in most attacks on SHA-1
was chosen for the relatively few number of conditions required for the local collision to occur.
Table 1, summarizing a first round local condition and its related sufficient conditions, was taken
from [13].

As can be seen from the table, depending on the round and the whether or not corrections are
needed, there are four conditions on Aj

i and up to 5 conditions on M j
i to ensure a local collision

occurs in the first round. In [31] and [30], a specialized differential path is used in the first round
and the local collision differential paths are only employed in later rounds, and the same is true with
the path presented here. Note that the correction for step i + 2, for example, is a condition only
involving the message-dependent values Wi. As such this may be easily deterministically satisfied,
even in later rounds, by computing via the message expansion function the relevant set of linear
equations over GF2 for the target bits (W j+5

i+1 and W j
i in this case), and using Gaussian elimination.

Disturbance Vector. A major component of the Wang et al. SHA-1 attack is their choice of a
disturbance vector, which is simply a choice of where to introduce local collisions. We can think of a
disturbance vector as an 80×32 binary array, indexed by i, j, such that if i, j is 1 in the disturbance
vector, then a local collision is introduced in step i, bit j. By the message expansion function, once
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a disturbance vector has been chosen for 16 consecutive steps, the other 64 steps are determined.
Another handy property is that the corrections needed by differences in message bits for any local
collision (see Table 1) are satisfied by the same recurrence. Thus, from the disturbance vector, the
appropriate message difference may be computed.

The disturbance vector in [30] (and here) is the same as the disturbance vector in [31], but
shifted by 2 steps. In [31], 71 conditions (not including message conditions) occurred in steps
16-79, and in the path presented here there are 85 such conditions (83 if considering the extra
differential paths), but there is also a way to easily correct 20 of them.

Although the disturbance vector provides a map of the differential path in later rounds, a fact
that greatly aided the reconstruction of the path, in the first round the differential path ignores
the disturbance vector. Motivation for why this was done is presented in [31].

A trick to save a few conditions is mentioned in [31], where if within one step there are dis-
turbances in both bits 0 and 1 and the signs of those two differences are opposite, the introduced
difference can be confined to bit zero. The message differences still can be used to form a local
collision, and two fewer conditions are required. In the path presented here, this trick is employed
in steps 22 and 34.

Alternate Differential Paths. The differences introduced in steps 22, 26, 30, 34, 66, 69, 72,
74 and 75 have multiple differential paths associated with them. For instance, in step 26 if the
introduced difference in A0

27 causes a carry, then with only one extra message condition and slight
alterations to existing conditions the same local collision occurs. The net result is an alternate
differential path with one extra message condition and one extra regular condition. All alternate
paths involve this same trick of one carry, and each path has up to four extra conditions. When all
of these alternate paths and their combinations are taken into account, it has the effect of reducing
the complexity by a factor of 4. By my count, there are 85 conditions in steps 16-79, compared
to 83 given by [30]; perhaps these alternate paths are factored into that figure. If there is another
means of reducing the 85 conditions to 83 which does not interfere with the alternate differential
paths, it is possible that a combination of methods can result in an attack with 260 complexity.

Advanced Condition Modification. There are 85 conditions in steps 16-79, which can be
reduced to 83 by the multiple differential paths. In order to obtain an attack complexity of 263, 20
conditions must be satisfied deterministically via a process called advanced condition modification.

There are several key ideas to Wang’s advanced condition modification techniques, perhaps best
explained by the following series of insights.

• The message conditions can be expressed as equations over GF2 with variables in W j
i for

i < 16, 0 ≤ j < 32 by simply expanding the desired bit W j
i via the recurrence formula.

There are 43 such equations, which can be easily solved deterministically before advanced
condition modification.

• There are 50 variables in W j
i for 10 ≤ i < 16, 0 ≤ j < 32 which are involved in not one of

these equations. When changes in W9 are allowed, this number increases to 59.
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• A control path is a possible bit propagation chain from W j
i to some bit Aj′

i′ . It is easy to

generate all possible control paths from the 50 free message bits to conditions on Aj
i for

17 ≤ i < 26. In order to simplify the analysis, I ignored carry effects in finding control paths.
[30] did the analysis with the carry effects intact, which gave a probability of 1/2 that the
methods cause some earlier satisfied condition to be upset by the modifications.

• After generating the above graph, it is possible to find a set of free message bits M which
can be used to flip all desired condition bits through step 23.

• Some message bits will flip multiple bits with associated conditions, so it is necessary to
determine an order for flipping which won’t undo previous corrections. I found that there are
eight sets of flips and associated conditions, explained further in Figure 1.

• Now consider the carry effects and find an order for flipping conditions which minimizes the
probability that a previously fixed condition is undone. I have not done this here, but [30]
claims that this probability is about 1/2 for their “topological order.” Their technique uses
multiple message differences, instead of the single bit flipping presented here. In the example
from [30], three differences are introduced which give a local collision starting at step 11; the
message differences don’t produce uncontrolled differences in the step values until step 19,
which reduces the probability that some earlier difference in a step variable undoes a prior
condition.

• The extra conditions for the advanced condition modification in [30] are derived from round
1 conditions which guarantee a change in the message bit will (or will not) produce a change
in ∆fi in subsequent steps.

The (simplified) corrections presented in Table 1 will satisfy all conditions through step 23, and
five of the conditions in steps 24-26. In addition, if both of the conditions {W 0

24 = A1
25, W 1

25 = A1
26}

are unsatisfied, a change in the bit A3
22 will correct both conditions, effectively eliminating one

condition. Perhaps this is what is meant in [30] by “searching for two conditions in steps 25-26 by
one computation,” although this is only a guess.

With an average of 10 needed condition corrections per iteration, and simple bit-flipping as the
message modification method, an average of less than 40 step computations are needed to correct all
conditions through step 25, thereby canceling the effect of that with probability 1/2 the advanced
modification method undoes itself. This early stopping technique was used for the estimate in [31],
so it seems reasonable to use it here to lower the attack complexity.

Complexity Estimation Justification. The total complexity is calculated as follows. After
all differential paths are considered, there are an equivalent of 83 conditions which need to be
satisfied in steps 16-79, but the carry condition in step 78 can be safely dropped with negligible
error probability (2−25). Advanced condition modification will satisfy an equivalent of 20 conditions
with probability 1/2, which is counted as balancing the dropped condition in step 78. The early
stopping technique then brings the attack complexity to 262.

For the first block, three more conditions in steps 78-79 can be dropped, which has the effect
of changing the values of ∆A79 and ∆A80 from those presented in Figure 3. These differences can
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Group 1 Group 2 Group 3 Group 4

M15,8 → A1
21, M10

13 → A3
19, M10

11 → A3
17, M13

11 → A1
18,

M15,10 → A0
22, M11

14 → A31
19, {M12

10 ,M7
12,M

17
12 , {M7

10,M
7
11} → A3

18

M15,12 → A3
23 {M12

13 ,M7
14,M

17
14 } → A3

22, M7
13,M

10
14 } → A3

20,

M12
14 → A0

23 A31
20

Group 5 Group 6 Group 7 Group 8

{M10
12 ,M15

13 } → A30
17, {M10

10 ,M1
11} → A1

19, {M8
11,M

13
12 } → A1

17, M11
12 → A31

17,

M2
12 → A2

22 M8
10 → A2

21, M16
14 → A31

18, {M14
10 ,M9

11,M
9
13,

{M9
10,M

9
12,M

14
13 , {M13

13 ,M9
15} → A29

20 M14
14 } → A29

18

M9
14,M

14
15 } → A29

21

Figure 1: Restrictions on the ways 22 conditions may be modified by flipping free message bits when carry effects

are ignored. All conditions may be satisfied by processing all the conditions within each group at the same time,

and processing the groups in reverse order.

be easily accommodated via suitable changes in the first 10 steps of the second-block differential
path. Thus, the total attack complexity is 259 + 262 = 1.125 × 262.

Differences from Wang et al. Path. There are some differences from the path presented by
Wang et al. in [30]:

• The differentials for the first 16 steps do not match. However, it is simple to check that the
example 320-bit message prefix given in [30] does not follow their own differential path, but
instead follows the path given here.

• I found 43 message conditions instead of 42, plus one extra condition for use with the asso-
ciated differential paths. This is probably because the classification of one of the message
conditions in step 19 is open to interpretation.

• The set of unrestricted message bits after satisfying message conditions is somewhat different.
I have no plausible explanation.

• [30] claims to have a free message space of size 255 after advanced modifications. I’m not sure
what is meant by this, but calculating a rough estimate of message freedom is straightforward:
there are 20 conditions in steps 10-16, plus 43 message conditions and 22 message bits used for
advanced condition modification. Thus, with 7× 32 = 224 original bits, there is essentially a
message space of about 2139, for which 63 conditions need to be satisfied probabilistically. The
“message space available for direct modification” is probably related to the 59 free message
bits in message words M9 through M15 available to change after all message conditions are
satisfied.
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• I have not investigated the scenario where, once all advanced modifications have been per-
formed and all relevant conditions satisfied, message bits may be flipped with small prob-
ability of disturbing already satisfied conditions (the “neutral bits” of [2]). Perhaps sets of
message bits, giving first-round local collisions, may be a good strategy for finding neutral
modifications.

• I can only speculate if my advanced condition modification techniques are what the original
authors had in mind. My methods seem to provide correction of an equal number of conditions
but, judging by the cleverness inherent in all other aspects of their attack for which they
provided details, I suspect their methods are more efficient or have some other beneficial
properties.

4 The Differential Path

The relevant information for the differential path is contained entirely in Figures 2, 3, 4, 5 and 6.
All conditions listed for a step i are used for some correction or condition needed for that step value
computation. Conditions are color-coded for clarity: blue conditions are conditions on message bits,
red conditions are needed to produce an output difference or some desired property thereof from
the step function fi, green signifies conditions which are needed so that no differences are produced
via fi, and conditions which are not colored are required to satisfy desired carry effects.
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Step ∆xi ∆wi ∆ai ≪ 5 ∆fi ∆ai−4 ≫ 2 ∆ai+1

0 80000001 [0,−1,−29,−31] [−0,29,−30,31]

1 [−4,5,29] [2,−3,4,−5] [−2,29]

2 40000001 [29,30] [2,−7] [2,7,8,...,−22,−30,31]

3 2 [-1,-3,-5,-29,30,-31] [−3,4,7,−12] [−29] [-1,5,-6,7,12,-13,31]

4 2 [−0,1,6,29] [4,-6,10,-11,12,17,-18] [-0,-7,10,-12,17,-22,27,29] [−4,5,7,−8,−22,27]

5 80000002 [−6,28,−29,−31] [0,9,−10,12,−13,−27] [−0,6,9,12,29] [27,−28,29,−30] [−10,11,31]

6 1 [−0,1,−4,6,28,30,31] [4,−15,16] [0,−6,27,29] [−0,27] [0,−15,−16,...,27]

7 [−1,5,28,30,31] [5,20] [3,−5,−20,29] [0,−5,−28,29] [3]

8 80000001 [−29] [8] [−0,3,−5,9] [3,−4,5,10,−11,29,−31] [−0,8,−9,31]

9 2 [−1,4,5,29,−30] [4,−5,13,−14] [13,20,−25,29] [−2,3,5,−6,−20,25] [1]

10 2 [0,−1,−6,29,30] [6] [−0,1,9,−31] [−8,9,29] [8,−9]

11 2 [6,−29] [13,−14] [1,−6,−29] [13,30] [1]

12 [−1,−6,−29,30,31] [6] [−29,31] [1]

13 [1,−29,−30] [−1,6,31] [6,−7,29,−30]

14 1 [0,31] [31] [0]

15 [5] [5] [6,−7]

16 80000002 [±0,±1] [±0] [31] [±1,±31]

17 2 [±1,±4,±6,−30] [±4,±6] [30] [±1]

18 80000002 [±6,30] [±6] [±1,30] [±1,31∗]

19 [±1,±4,±6,±29,−30,31∗ ] [±4,±6] [±1,±29,31∗ ] [30]

20 2 [±29,31∗ ] [±1,±29,31∗ ] [±1]

21 [±6,31∗] [±6] [±29] [±29,31∗]

22 3 [±0,±29] [±1,±29,31∗ ] [31∗ ] [±0]

23 [±5,±6,±29] [±5] [31∗] [±29,31∗]

24 2 [±0,31∗] [±0,31∗ ] [±1]

25 2 [±1,±6,±30] [±6] [±30] [31∗ ] [±1]

26 1 [±0,±1,±6,±30,31∗ ] [±6] [±1,±30] [±0]

27 [±1,±5,±30] [±5] [±1,31∗ ] [±30]

28 2 [±0,±1] [±0] [±1]

29 2 [±1,±6,±30] [±6] [±30,31∗ ] [31∗ ] [±1]

30 1 [±0,±1,±6,±30,31∗ ] [±6] [±1,±30] [31∗ ] [±0]

31 [±1,±5,±30,31∗ ] [±5] [±1,31∗ ] [±30]

32 [±0] [±0]

33 2 [±1,±30] [±30] [31∗ ] [±1]

34 3 [±0,±1,±6,±30,31∗ ] [±6] [±30] [31∗ ] [±0]

35 [±1,±5,±6,±30] [±5] [±1] [±30]

36 2 [±0,31∗] [±0,31∗ ] [±1]

37 2 [±1,±6,±30] [±6] [±30,31∗ ] [±1]

38 [±1,±6,±30] [±6] [±1,±30] [31∗ ]

39 [±1,±30] [±1,31∗ ] [±30]

Figure 2: The differential path. Columns one and two denote the step index and disturbance vector for that

step, respectively. Columns three through six denote the input differences to that step value computation with

column seven indicating the final output value. An asterisk denotes that the sign of the difference is irrelevant. A

plus-minus sign indicates that the difference can be either sign, but may be related to prior or future differences.

11



Step ∆xi ∆wi ∆ai ≪ 5 ∆fi ∆ai−4 ≫ 2 ∆ai+1

40 2 [1] [1]

41 [6] [6] [31] [31]

42 [1,31] [1] [31]

43 [31] [31]

44 2 [1,31] [31] [1]

45 [6,31] [6] [31]

46 2 [1] [1]

47 [6,31] [6] [31]

48 2 [31] [1,31] [1]

49 [6] [6] [31] [31]

50 2 [31] [1,31] [1]

51 [6] [6] [31] [31]

52 [1,31] [1,31]

53 [31] [31]

54 [31] [31]

55 [31] [31]

56

57

58

59

60

61

62

63

64

65

66 4 [2] [2]

67 [7] [7]

68 [2] [2]

69 8 [0,3] [0] [3]

70 [0,8] [8] [0]

71 [0,3] [3] [0]

72 10 [1,4] [1] [4]

73 [1,9] [9] [1]

74 8 [1,3,4] [4] [1] [3]

75 20 [2,5,8] [8] [2] [5]

76 [2,3,10] [10] [2,3]

77 [1,2,5] [1,5] [2]

78 40 [1,3,6] [1,3] [6]

79 [1,3,11] [11] [3] [1]

Figure 3: The second half of the differential path.
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Step Conditions

0 A0
1=1, A29

1 =0, A30
1 =1, A31

1 =0

1 A2
2=1, A29

2 =0

2 A2
3=0, A7:21

3 =0, A22
3 =1, A30

3 =1, A31
3 =0 (IV )

3 A1
4=1, A5

4=0, A6
4=1, A7

4=0, A12
4 =0, A13

4 =1, A31
4 =0, A30

2 =1, (IV )

4 A4
5=1, A5

5=0, A7
5=0, A8

5=1, A22
5 =1, A27

5 =0, A0
3=1, A9

1=1, A9
2=0, A12

1 =0, A12
2 =1, A14

1 =1,

A14
2 =0, A19

1 =1, A19
2 =1, A24

1 =0, A24
2 =1, A29

3 =0, A4
2=A4

1, A10
2 =A10

1 , A11
2 =A11

1 , A15
2 =A15

1 ,

A16
2 =A16

1 , A17
2 =A17

1 , A18
2 =A18

1 , A20
2 =A20

1 , A21
2 =A21

1 , A22
2 =A22

1 , A23
2 =A23

1 , A0
2=A0

1, A1
2=A1

1

5 A10
6 =1, A11

6 =0, A31
6 =0, A0

4=0, A8
2=1, A9

4=1, (A24
2 =0), A29

4 =1,

A3
3=A3

2, A7
3=A7

2, A9
3=A9

2, A14
3 =A14

2 , A1
3=A1

2

6 A0
7=0, A15:26

7 =1, A27
7 =0, A0

5=0, A6
5=0, A7

5=0, A10
4 =1, A9

5=0,

A11
5 =0, (A29

3 =0), (A29
4 =1), A6

4=A6
3, A24

4 =A24
3 , A7

4=A7
3

7 A3
8=0, A6

6=1, A20
6 =1, A29

6 =0, A12
5 =A12

4 , A13
5 =A13

4 , A1
5=A1

4

8 A0
9=1, A8

9=1, A9
9=1, A31

9 =0, A2
5=1, A2

6=0, A3
7=0, A5

7=0, A6
7=0, A9

7=1 A17:29
6 =A17:29

5

9 A,1
1 =0, A5

6=0, (A5
7=0), A13:19

8 =1, A21:24
8 =1, A29

8 =0, A5
7=A5

6

10 A,8
1 =0, A,9

1 =1, A2
8=0, A2

7=1, A1
9=1, A11

8 =0, A11
7 =1, A1

7 6=A1
8, A10

8 =A10
7

11 A,1
1 =0, A3

9=1, (A3
8=0), A,6

1 =1, A9
10=1, A29

10=1, A30
10=1

12 A29
11=0,A30

11=0,A31
11=1, A10

10=A10
9 , A11

10=A11
9

13 A3
10=1, A3

11=0, (A6
12=1), A31

12=0

14 W 0
14=A0

15

15

Figure 4: The set of sufficient conditions for the first 16 steps of the differential path. Conditions to prevent

carry effects are uncolored, message conditions are blue, conditions required to produce or correct a change in

∆fi are colored with red, and conditions required to prevent a change in ∆fi are green. Conditions enclosed in

parentheses are redundant and conditions followed by an ‘(∗)’ can be affected by advanced condition correction.

The notation Aj:k
i is used as shorthand for Aj

i = Aj+1

i = · · · = Ak
i .
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Step Conditions

16 W 1
16=A1

17(∗), A2
14 6=A2

13, W 0
16=A2

14

17 W 4
17 6=A31

17(∗), W 1
17=A1

18(∗), W 30
17 =1, W 6

17 6=W 1
16, A30

16=1

18 A1
19 6=A1

17+A3
16(∗), W 30

18 =0, W 6
18 6=W 1

17, A30
17=0(∗), A3

16 6=A3
15, A1

16=A1
15

19 W 30
19 =A31

18(∗), W 4
19 6=A31

19(∗), W 29
19 =W 4

17, W 6
19=A3

16+W 1
16, A29

18=1(∗), W 1
19=W 1

17+A3
17(∗), A3

17 6=A3
16(∗)

20 A1
21=A1

19+A3
18+A3

17(∗), W 29
20 6=A31

17

21 W 6
21 6=A1

21(∗), A31
17 6=A31

18+A31
19+A29

20(∗)

22 W 0
22 6=A0

23(∗), W 0
22 6=A1

21+A3
20+A3

19(∗), W 29
22 6=A29

21+A31
20+A31

19(∗)

23 W 29
23 =W 4

19, W 5
23=W 0

22, W 5
23 6=W 6

23

24 W 0
24=A1

25(∗), W 0
24=A0

23+A2
22+A2

21(∗)

25 W 1
25=A1

26(∗), W 30
25 =A30

24+A0
23+A0

22(∗), W 6
25=W 0

24

26 W 0
26 6=A0

27(∗), W 1
26 6=A1

25+A3
24+A3

23(∗), W 30
26 =A30

25+A0
24+A0

23(∗), W 6
26 6=W 1

25

27 W 1
27 6=A1

26+A3
25+A3

24, W 5
27 6=W 0

26, W 30
27 6=W 0

22

28 W 0
28 6=A0

27+A2
26+A2

25, W 1
28=A1

29

29 W 1
29 6=A1

28+A3
27+A3

26, W 30
29 =A30

28+A0
27+A0

26, W 6
29 6=W 1

28

30 W 0
30=A0

31, W 1
30 6=A1

29+A3
28+A3

27, W 30
30 6=A30

29+A0
28+A0

27, W 6
30 6=W 1

29

31 W 1
31 6=A1

30+A3
29+A3

28, W 5
31 6=W 0

30, W 30
31 6=W 0

26

32 W 0
32 6=A0

31+A2
30+A2

29

33 W 1
33=A1

34, W 30
35 =A30

32+A0
31+A0

30

34 W 0
34 6=A0

35, W 30
34 6=A30

33+A0
32+A0

31, W 6
34 6=W 1

33, W 1
34 6=W 0

34

35 W 1
35 6=A1

34+A3
33+A3

32, W 6
35 6=W 5

35, W 6
35 6=W 1

34, W 30
35 6=W 0

30

36 W 0
36=A0

35+A2
34+A2

33, W 0
36=A1

37

37 W 1
37=A1

38, W 30
37 =A30

36+A0
35+A0

34, W 6
37 6=W 0

36

38 W 1
38 6=A1

37+A3
36+A3

35, W 30
38 =A30

27+A0
26+A0

25, W 6
38=W 1

37

39 W 1
39 6=A1

38+A3
37+A3

36, W 30
39 6=W 1

34

Figure 5: The set of conditions for steps 16-39.
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Step Conditions

40 W 1
40=A1

41

41 W 6
41 6=W 1

40, A31
40 6=A1

39

42 A3
40 6=A3

39, W 1
42 6=W 1

40

43 A31
42 6=A1

40

44 W 1
44=A1

45 A31
43 6=A1

42

45 W 6
45 6=W 1

44

46 A1
47=W 1

44, A3
44 6=A3

43

47 W 31
46 6=A1

44, W 6
47 6=W 1

44

48 W 1
44=A1

49, A3
46 6=A3

45, A31
47 6=A1

46

49 W 31
48 6=A1

46, W 6
49 6=W 1

44

50 W 1
44=A1

51, A3
48 6=A3

47, A31
49 6=A1

48

51 W 31
50 6=A1

48, W 6
51 6=W 1

44

52 W 1
44=W 1

52, A3
50 6=A3

49, A31
51 6=A1

50

53 A31
52 6=A1

50

54 A31
53 6=A1

52

55−65

66 W 2
66=A2

67

67 W 7
67 6=W 2

66

68 W 2
68 6=A2

67+A4
66+A4

65

69 W 3
69=A3

68, W 2
69 6=A2

68+A4
67+A4

66

70 W 0
70 6=A0

69+A2
68+A2

67, W 8
70 6=W 3

69

71 W 3
71 6=A3

70+A5
69+A5

69, W 0
71 6=W 2

66

72 W 4
72=A4

73, W 1
72 6=A1

71+A3
70+A3

69

73 W 1
73 6=A1

72+A3
71+A3

70, W 9
73 6=W 4

72

74 W 3
74=A3

75, W 4
74 6=A4

73+A6
72+A6

71, W 1
74 6=W 1

69

75 W 5
75=A5

75, W 2
75 6=A2

74+A4
73+A4

72 W 8
75 6=W 3

74

76 W 2
76 6=A2

75+A4
74+A4

73, W 3
76 6=A3

75+A5
74+A5

73, W 10
76 6=W 5

75

77 W 1
77 6=A1

76+A3
75+A3

74, W 5
77 6=A5

76+A7
75+A7

74, W 2
77 6=W 4

72

78 W 6
78=A6

79, W 1
78 6=A1

77+A3
76+A3

75, W 3
78 6=A3

77+A5
76+A5

75

79 W 3
79 6=A3

78+A5
77+A5

76, W 1
79 6=W 3

74, W 11
79 6=W 6

78

Figure 6: The set of conditions for steps 40-79.
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