
Joint State Theorems for Public-Key Encryption and Digital

Signature Functionalities with Local Computation⋆

Ralf Küsters and Max Tuengerthal

University of Trier, Germany
{kuesters,tuengerthal}@uni-trier.de

Abstract. Composition theorems in simulation-based approaches allow to build complex protocols
from sub-protocols in a modular way. However, as first pointed out and studied by Canetti and
Rabin, this modular approach often leads to impractical implementations. For example, when using
a functionality for digital signatures within a more complex protocol, parties have to generate
new verification and signing keys for every session of the protocol. This motivates to generalize
composition theorems to so-called joint state theorems, where different copies of a functionality
may share some state, e.g., the same verification and signing keys.
In this paper, we present a joint state theorem which is more general than the original theorem
of Canetti and Rabin, for which several problems and limitations are pointed out. We apply our
theorem to obtain joint state realizations for three functionalities: public-key encryption, replayable
public-key encryption, and digital signatures. Unlike most other formulations, our functionalities
model that ciphertexts and signatures are computed locally, rather than being provided by the
adversary. To obtain the joint state realizations, the functionalities have to be designed carefully.
Other formulations are shown to be unsuitable. Our work is based on a recently proposed, rigorous
model for simulation-based security by Küsters, called the IITM model. Our definitions and results
demonstrate the expressivity and simplicity of this model. For example, unlike Canetti’s UC model,
in the IITM model no explicit joint state operator needs to be defined and the joint state theorem
follows immediately from the composition theorem in the IITM model.

1 Introduction

In the simulation-based security approach (see, e.g., [3, 5, 7, 15, 17, 21, 22, 23, 27]) the security of protocols
and functionalities is defined w.r.t. ideal protocols/functionalities. Composition theorems proved within
this approach guarantee secure concurrent composition of a protocol with arbitrary other protocols,
including copies of itself. As a result, complex protocols can be built and analyzed in a modular fashion.
However, as first pointed out and studied by Canetti and Rabin [14] (see the related work), this modular
approach often leads to impractical implementations since the composition theorems assume that different
copies of a protocol have disjoint state. In particular, the random coins used in different copies have to
be chosen independently. Consequently, when, for example, using a functionality for digital signatures
within a more complex protocol, e.g., a key exchange protocol, parties have to generate new verification
and signing keys for every copy of the protocol. This is completely impractical and motivates to generalize
composition theorems to so-called joint state theorems, where different copies of a protocol may share
some state, such as the same verification and signing keys.

The main goal of this paper is to obtain a general joint state theorem and to apply it to (novel)
public-key encryption, replayable public-key encryption, and digital signature functionalities with local
computation. In these functionalities, ciphertexts and signatures are computed locally, rather than being
provided by the adversary, a feature often needed in applications.

Contribution of this paper. In a nutshell, our contributions include i) novel and rigorous formulations
of ideal (replayable) public-key encryption and digital signature functionalities with local computation,
along with their implementations (Section 5, 6 and 7), ii) a joint state theorem which is more general
than other formulations and corrects flaws in these formulations (Section 3), and iii) based on this the-
orem, joint state realizations and theorems for (replayable) public-key encryption and digital signatures
(Section 5.3, 6.3 and 7.3). Unfortunately, all other joint state theorems claimed in the literature for such

⋆ Part of this work was carried out while the authors were at ETH Zurich, partially supported by SNF grant
200021-116596/1.

functionalities with local computation can be shown to be flawed. An overall distinguishing feature of our
work is the rigorous treatment, the simplicity of our definitions, and the generality of our results, which
is due to the expressivity and simplicity of the model for simulation-based security that we use, the IITM
model [23]. For example, unlike Canetti’s UC model, in the IITM model no explicit joint state operator
needs to be defined and the joint state theorem follows immediately from the composition theorem of
the IITM model. More precisely, our contributions are as follows.

We formulate three functionalities: public-key encryption, replayable public-key encryption, and dig-
ital signatures. Our formulation of replayable public-key encryption is meant to model in a simulation-
based setting the recently proposed notion of replayable CCA-security (RCCA security) [11]. This relax-
ation of CCA-security permits anyone to generate new ciphertexts that decrypt to the same plaintext as a
given ciphertext. As argued in [11], RCCA-security suffices for most existing applications of CCA-security.
In our formulations of the above mentioned functionalities ciphertexts and signatures are determined by
local computations, and hence, as needed in many applications, a priori do not reveal signed messages
or ciphertexts. In other formulations, e.g., those in [14, 6, 1, 11, 20], signatures and ciphertexts are
determined by interaction with the adversary. This has the disadvantage that the adversary learns all
signed messages and all ciphertexts. Hence, such functionalities cannot be used, for example, in the con-
text of secure message transmissions where a message is first signed and then encrypted, or in protocols
with nested encryptions. Although there exist formulations of non-replayable public-key encryption and
digital signature functionalities with local computation in the literature, these formulations have several
deficiencies, in particular, as mentioned, concerning joint state realizations (see below).

We show that a public-key encryption scheme implements our (replayable) public-key encryption
functionality if and only if it is CCA-secure (RCCA-secure), for a statically corruptible decryptor and
adaptively corruptible encryptors. We also prove equivalence between EU-CMA security of digital sig-
natures schemes and our digital signature functionality, with adaptive corruption of both signer and
verifiers.

In the spirit of Canetti and Rabin [14], we state a general joint state theorem. However, in contrast
to Canetti’s original UC model as employed in [14] and his new UC model [7], within the IITM model we
do not need to explicitly define a specific joint state operator. Also, our joint state theorem, unlike the
one in the UC model, immediately follows from the composition theorem in the IITM model, no extra
proof is needed. In addition to the seamless treatment of the joint state theorem within the IITM model,
which exemplifies the simplicity and expressivity of the IITM model, our theorem is even more general
than the one in [14, 7] (see Section 3). We also note in Section 3 that, due to the kind of ITMs used in
the UC model, the assumptions of the joint state theorems in the UC models can in many interesting
cases not be satisfied and in cases they are satisfied, the theorem does not necessarily hold true.

We apply our general joint state theorem to obtain joint state theorems for our (replayable) public-
key encryption and digital signature functionalities. These joint state theorems are based on our ideal
functionalities alone, and hence, work for all implementations of these functionalities. As mentioned, all
other joint state theorems claimed in the literature for such functionalities with local computation are
flawed.

Related work. As mentioned, Canetti and Rabin [14] were the first to study the problem of joint state
(see also [10, 25, 12]), based on Canetti’s original UC model [5]. They propose a joint state theorem
and apply it to a digital signature functionality with non-local computation (see also [1, 13]), i.e., the
adversary is asked to provide a signature for every message. While the basic ideas in this work are
interesting and useful, their joint state theorem, as mentioned, has several problems and limitations,
which are mainly due to the kind of ITMs used (see Section 3).

In [7], Canetti proposes functionalities for public-key encryption and digital signatures with local
computation. He sketches a functionality for replayable public-key encryption in a few lines. However,
this formulation only makes sense in a setting with non-local computation, as proposed in [11]. As
for joint state, Canetti only points to [14], with the limitations and problems inherited from this work.
Moreover, as further discussed in Section 5.4, 6.4 and 7.4, the joint state theorems claimed for the public-
key encryption and digital signature functionalities in [7] are flawed. The same is true for the work by
Canetti and Herzog in [9], where another public-key encryption functionality with local computation is
proposed and a joint state theorem is claimed.

We note that, despite the problems with the joint state theorem and its application in the UC model
pointed out in this work, the basic ideas and contributions in that model are important and useful.

2

However, we believe that it is crucial to equip that body of work with a more rigorous and elegant
framework. This is one of the (non-trivial) goals of this work.

Backes, Pfitzmann, and Waider [2] consider implementations of digital signatures and public-key
encryptions within their so-called cryptographic library, which requires somewhat non-standard crypto-
graphic constructions and does not provide the user with the actual signatures and ciphertexts. Within
their proofs they use a public-key encryption functionality proposed by Pfitzmann and Waidner [27].
Joint state theorems are not considered in these works. In fact, although joint state theorems talk about
copies of protocols, the results of Backes, Pfitzmann, and Waidner are based on a version of the PIOA
model which does not explicitly handle copies of protocols [27, 3].

Functionalities for digital signatures and public-key encryption with non-local computation, i.e. where
signatures and ciphertexts are provided by the adversary, have been proposed in [6, 1, 5, 20]; however,
joint state theorems have not been proven in these papers.

In [8], Canetti et al. study simulation-based security with global setup. We note that they have to
extend the UC model to allow the environment to access the functionality for the global setup. In the
IITM model, this is not necessary. The global setup can be considered as joint state. But it is joint state
among all entities, unlike the joint state settings considered here, where the joint state is only shared
within copies of functionalities. Therefore the results proved in [8] do not apply to the problem studied
in this paper.

Structure of the paper. In Section 2, we recall the IITM model. The general joint state theorem is
presented in Section 3, along with a discussion of the joint state theorem of Canetti and Rabin [14]. In
Section 4 general conventions for formulating IITMs are presented. In the following three sections we then
present our formulations of functionalities for digital signatures, public-key encryption, and replayable
public-key encryption, respectively, including proofs of equivalence to game-based security notions, joint
state realizations, and comparison with other formulations.

2 The IITM Model

In this section, we briefly recall the IITM model for simulation-based security (see [23] for details). Based
on a relatively simple, but very expressive general computational model in which IITMs and systems of
IITMs are defined, simulation-based security notions are formalized, and a general composition theorem
can be proved in the IITM model.

2.1 The General Computational Model

We first define IITMs and then systems of IITMs. We note that this general computation model is also
useful in contexts other than simulation-based security [16].

Syntax of IITMs. An (inexhaustible) interactive Turing machine (IITM, for short, or simply ITM) M is
a probabilistic Turing machine with input and output tapes. These tapes have names and, in addition,
input tapes have an attribute with values consuming or enriching (see below for an explanation). We
require that different tapes of M have different names. The names of input and output tapes determine
how IITMs are connected in a system of IITMs. If an IITM sends a message on an output tape named
c, then only an IITM with an input tape named c can receive this message. An IITM with a (enriching)
input tape named start, is called a master IITM. It will be triggered if no other IITM was triggered. An
IITM is triggered by another IITM if the latter sends a message to the former. Each IITM comes with
an associated polynomial q which is used to bound the computation time per activation and the length
of the overall output produced by M .

Computation of IITMs. An IITM is activated with one message on one of its input tapes and it writes
at most one output message per activation on one of the output tapes. The runtime of the IITM per
activation is polynomially bounded in the security parameter, the current input, and the size of the
current configuration. This allows the IITM to “scan” the complete incoming message and its complete
current configuration, and to react to all incoming messages, no matter how often the IITM is activated. In
particular, an IITM can not be exhausted (therefore the name inexhaustible interactive Turing machine).
The length of the configuration and the length of the overall output an IITM can produce is polynomially

3

bounded in the security parameter and the length of the overall input received on enriching input
tapes so far, i.e., writing messages on these tapes increases the resources (runtime, potential size of the
configuration, and potential length of the output) of the IITM. An IITM runs in one of two modes,
CheckAddress (deterministic computation) and Compute (probabilistic computation). The CheckAddress

mode will be used to address different copies of IITMs in a system of IITMs (see below). This is a very
generic addressing mechanism: Details of how an IITM is addressed are not fixed up-front, but left to
the specification of the IITM itself.

Systems of IITMs. A system S of IITMs is defined according to the following grammar:

S ::= M | (S ‖ S) | !S.

where M ranges of the set of IITMs. No two input tapes occurring in IITMs in S are allowed to
have the same names, i.e. every input tape name belongs to exactly one IITM in the system. The
system S1 ‖ S2 is the concurrent composition of the two systems S1 and S2 and !S is the concurrent
composition of an unbounded number of copies of (machines in) the system S. Each machine M that
occurs in a subexpression !S′ of S is said to be in the scope of a bang. Below, we define the way a
system runs. From that it will be clear that every system S is equivalent to a system of the shape
M1 ‖ · · · ‖Mk ‖ !M ′

1 ‖ · · · ‖ !M ′
k′ where Mi for all i ∈ {1, . . . , k} and M ′

j for all j ∈ {1, . . . , k′} are IITMs.
In a run of S at every time only one IITM, say a copy of some M in S, is active and all other IITMs

wait for new input; the first IITM to be activated in a run of S will be the master IITM, which may get
some auxiliary input written on tape start. The active machine may write at most one message, say m,
on one of its output tapes, say c. This message is then delivered to an IITM with an input tape named
c. There may be several copies of an IITM M ′ in S with input tape named c. In the order in which these
copies were generated, these copies are run in mode CheckAddress. The first of these copies to accept m
will process m in mode Compute. If no copy accepts m, it is checked whether a newly generated copy of
M ′ (if M ′ is in the scope of a bang) with fresh random coins, would accept m. If yes, this copy gets to
process m. Otherwise, the master IITM in S is activated (by writing ε on tape start). The master IITM
is also activated if the currently active IITM did not produce output. A run stops if the master IITM
does not produce output (and hence, does not trigger another machine) or an IITM outputs a message
on a tape named decision. Such a message is considered to be the overall output of the system.

We will only consider so-called well-formed systems [23], which satisfy a simple syntactic condition
that guarantees polynomial runtime of systems and suffices for applications since it allows to always
provide sufficient resources to IITMs via enriching tapes.

A system is well-formed if the master IITM (if there is any) does not occur in the scope of a bang
and there are no cycles in the connection of the IITMs via their enriching tapes. For example, the system
S = M1 ‖M2 is not well-formed if M1 is a master IITM with an output tape c2 which is an enriching
input tape of M2 and M2 has an output tape c1 which is an enriching input tape of M1. In fact, M1 and
M2 could sent messages back and forth between each other forever as they are connected via enriching
tapes.

Theorem 1 ([23]). (informal) Well-formed systems run in polynomial time.

We write Prob[S(1η, a) 1] to denote the probability that the overall output (the message written on
tape decision, if any) of a run of a (well-formed) system S with security parameter η and auxiliary input
a for the master IITM is 1. Two well-formed systems P and Q are called equivalent or indistinguishable
(P ≡ Q) iff the function f(1η, a) = |Prob[P(1η, a) 1] − Prob[Q(1η, a) 1]| is negligible, i.e., for
all polynomials p and q there exists η0 ∈ N such that for all η > η0 and all bit strings a ∈ {0, 1}∗

with length |a| ≤ q(η) we have that f(1η, a) ≤ 1
p(η) . Analogously, two well-formed systems P and Q

are called equivalent or indistinguishable without auxiliary input (P ≡noaux Q) iff the function f(1η) =
|Prob[P(1η, ε) 1]−Prob[Q(1η, ε) 1]| is negligible, i.e., for all polynomials p there exists η0 ∈ N such
that for all η > η0 we have that f(1η) ≤ 1

p(η) . Clearly, P ≡ Q implies P ≡noaux Q.

Given an IITM M , we will often use its identifier version M to be able to address multiple copies of
M (see [23, 24] for a detailed definition). The identifier version M of M is an IITM which simulates M
within a “wrapper”. The wrapper requires that all messages received have to be prefixed by a particular
identifier, e.g., a session ID (SID) or party ID (PID); other messages will be rejected in the CheckAddress

mode. Before giving a message to M , the wrapper strips off the identifier. Messages sent out by M are

4

prefixed with this identifier by the wrapper. The identifier that M will use is the one with which M
was first activated. We often refer to M by session version or party version of M if the identifier is
meant to be a SID or PID, respectively. For example, if M specifies an ideal functionality, then !M
denotes a system which can have an unbounded number of copies of M , all with different SIDs. If M
specifies the actions performed by a party in a multi-party protocol, then !M specifies the multi-party
protocol where every copy of M has a different PID. Note that one can consider an identifier version
M of M , which effectively means that the identifier is a tuple of two identifiers. Of course, this can
be iterated further. Given a system S, its identifier version S is obtained by replacing all IITMs by
their identifier version. For example, with S = M1 ‖ · · · ‖Mk ‖ !M ′

1 ‖ · · · ‖ !M ′
k′ as above, we obtain

S = M1 ‖ . . . ‖Mk ‖ !M ′
1 ‖ . . . ‖ !M ′

k′ . Note that for all i, all copies of M ′
i in a run of S will have different

identifiers.

2.2 Notions of Simulation-Based Security

In order to define security notions for simulation-based security, we need further notation.
Let us consider a system S and an IITM M . By T (M) (T (S)) we denote the set of (names of) tapes

of the machine M (of the machines in S). The set T (M) is partitioned into the set of input and output
tapes Tin(M) and Tout(M), respectively. A tape c in T (S) is called internal if there exist machines M
and M ′ in S such that c is an input tape of M and an output tape of M ′, i.e. c ∈ Tin(M) ∩ Tout (M

′).
Otherwise, c is called external. The set of external tapes of S is denoted by Text(S) and is partitioned
into the set of (external) input and (external) output tapes of S, Tin(S) and Tout(S), respectively. An
external tape c is an input tape of S, if there exists an IITM M in S with an input tape c. On the other
hand, an external tape c is an output tape of S if there exists an IITM M in S with an output tape c.
The set of external tapes is further partitioned into the set of network and I/O tapes. This partitions
each of the sets Text(S), Tin(S) and Tout (S) into T net

ext (S) and T io
ext(S), T net

in (S) and T io
in (S) and T net

out (S)
and T io

out (S), respectively.
With the composition P |Q of two systems P and Q, we describe the concurrent composition P ′ ‖Q′

where P ′ and Q′ are obtained from P and Q by renaming all internal tapes such that the internal tapes
of P ′ are disjoint from the tapes of Q′ and vice versa. Informally speaking, P and Q communicate only
via their external tapes.

Two systems P and Q are compatible, if they have the same external tapes with the same attributes,
i.e. T net

in (P) = T net
in (Q), T net

out (P) = T net
out (Q), T io

in (P) = T io
in (Q), T io

out (P) = T io
out (Q), and each external

tape c is enriching in P iff it is enriching in Q.
Two systems P and Q are I/O compatible if they do not interfere on network tapes, i.e. T net

ext (P) ∩
T net
ext (Q) = ∅, and have the same set of I/O tapes, i.e. T io

in (P) = T io
in (Q), T io

out (P) = T io
out (Q) and the

attributes are the same.
A system P is connectible for a system Q if each common external tape has the same type in both

systems (network or I/O) and complementary directions (input or output), i.e. for each common external
tape c ∈ Text(P) ∩ Text(Q), it holds that c is a network tape in P iff it is one in Q and c is an input
tape in P iff it is an output tape in Q. For a set B of systems, ConB(Q) denotes the set of systems in
B which are connectible for Q.

A system A is adversarially connectible for a system P if it is connectible for P and A does not
communicate with P via I/O tapes, i.e. Text(A)∩T io

ext (P) = ∅. For a set B of systems, SimP
B(F) denotes

the set of systems S in B which are adversarially connectible for the system F and S |F is compatible
with P .

A system E is environmentally connectible for a system P if it is connectible for P and does not
communicate with P via network tapes, i.e. Text (E) ∩ T net

ext (P) = ∅. For a set B of systems, EnvB(P)
denotes the set of systems in B which are environmentally connectible for P .

We define three different types of well-formed systems (whose composition will again be well-formed):
A system P is called a protocol system if it is well-formed, P has no tape named start or decision, all
network tapes are consuming (I/O tapes may be enriching) and if an IITM M of P occurs not in the
scope of a bang, then M accepts every message in mode CheckAddress. The set of all protocol systems
is denoted by P. Requiring network tapes to be consuming is not a real restriction in applications
since sufficient resources can always be provided by an environment via the I/O tapes, e.g., to forward
messages between the network and I/O interface. A system A is called an adversarial system if it is
well-formed and A has no tape named start or decision. (All external tapes of A may be enriching.) The

5

set of all adversarial systems is denoted by A or S. A system E is called an environmental system if it
is well-formed, tape start may be enriching and all other external tapes are consuming. The set of all
environmental systems is denoted by E.

We are now ready to define the security notion that we will use.

Definition 1 (Strong Simulatability (SS); [23]).
Let P and F be I/O compatible protocol systems, the real and the ideal protocol, respectively. Then,

P SS-realizes F (P ≤SS F) iff there exists an adversarial system S ∈ SimP
S (F) such that for all en-

vironmental systems E ∈ ConE(P) it holds that E | P ≡ E | S | F . Analogously, P SS-realizes F without
auxiliary input (P ≤SS-noaux F) if in the above it holds E | P ≡noaux E | S | F .

In a similar way, other equivalent security notions such as black-box simulatability and (dummy)
UC can be defined [23]. We emphasize that in these and the above definitions, no specific addressing or
corruption mechanism is fixed. This can be defined in a rigorous, convenient, and flexible way as part of
the real/ideal protocol specifications.

We note that the strong simulatability relation is transitive, i.e. if Q1, Q2 and Q3 are pairwise I/O
compatible protocol systems andQ1 ≤SS Q2 andQ2 ≤SS Q3, thenQ1 ≤SS Q3. The strong simulatability
relation is also reflexive, i.e., for all protocol systems P , we have that P ≤SS P .

Note that P ≤SS F implies P ≤SS-noaux F . As above, simulatability without auxiliary is transitive
and reflexive. In fact, all results for strong simulatability used in this paper hold both for strong simu-
latability with and without auxiliary input. We therefore will not distinguish between the two variants.

2.3 Composition Theorems

We restate the composition theorems from [23]. The first composition theorem describes concurrent
composition of a fixed number of protocol systems while the second one the composition of an unbounded
number of copies of a protocol system.

Theorem 2 ([23]). Let P1, . . . ,Pk and F1, . . . ,Fk be protocol systems such that P1 | . . . | Pk and
F1 | . . . | Fk are well-formed and for every j ∈ {1, . . . , k} the following conditions are satisfied:

1. Pj is environmentally connectible for Pj+1 | . . . | Pk,
2. Fj is environmentally connectible for Fj+1 | . . . | Fk,
3. Pj and Fj are I/O compatible and
4. Pj ≤SS Fj.

Then,
P1 | . . . | Pk ≤

SS F1 | . . . | Fk .

Theorem 3 ([23]). Let P and F be protocol systems such that P and F are I/O compatible and P ≤SS

F . Then,
!P ≤SS !F .

As an immediate consequence of the above theorems, we obtain:

Corollary 1. If P1,P2,F1 and F2 are protocol systems such that P1 | !P2 and F1 | !F2 are well-formed,
P1 and F1 are environmentally connectible for P2 and F2 (resp.), P1 and F1 are I/O compatible, P2

and F2 are I/O compatible, P1 ≤SS F1 and P1 ≤SS F1, then

P1 | !P2 ≤
SS F1 | !F2 .

Iterated application of Theorem 2 and 3 allows to construct very complex systems, e.g., protocols
using several levels of an unbounded number of copies of sub-protocols. Unlike the UC model, super-
protocols can directly access sub-protocols across levels, yielding simpler and possibly more efficient
implementations. In the UC model, a protocol has to completely shield its sub-protocol from the envi-
ronment, and hence, from super-protocols on higher levels. In [8], the composition operator therefore had
to be extended to allow access to a globally available functionality. No such extension would have been
necessary in the IITM model to obtain the results proved in this work. We also note that Theorem 3
cannot only be interpreted as yielding multi session realizations from single session realizations, but also
providing multi party realizations from single party realizations (when P and F are considered as multi
party versions).

6

3 The Joint State Theorem

In this section, we present our general joint state theorem along the lines of the theorem by Canetti
and Rabin [14]. However, as we will see, in the IITM model, the theorem can be stated in a much more
elegant and general way, and it follows immediately from the composition theorem. We also point out
problems of the joint state theorem by Canetti and Rabin.

Let us first recall the problem motivating joint state from the introduction, using the notation from
the IITM model. Assume that F is an ideal protocol (formally, a protocol system) that describes an ideal
functionality for one party in one session, e.g., an ideal public-key encryption or signature box. The ideal
protocol for multiple parties is then simply Fmp = !F where F is the party version of F . Assume that
P ≤SS F . Then, by Theorem 3, we have that !P ≤SS !F , i.e., the multi-party version Pmp = !P of P
realizes the multi-party version !F of F . Applying the composition theorem again and interpreting the
next level as multi-sessions, we obtain that !Pmp = !P ≤SS !F = !Fmp (note that ! !Q is equivalent to

!Q), i.e., the multi-party multi-session version of P implements the multi-party multi-session version of
F . Unfortunately, in the realization !P of !F , one new copy of P is created per party per session. This
is impractical. For example, if P/F are functionalities for public-key encryption, then in !P every party
has to create a new key pair for every session.

To allow for more efficient realizations, Canetti and Rabin [14] introduced a new composition opera-
tion, called universal composition with joint state (JUC), which takes two protocols as arguments: First,
a protocol Q, which uses multiple sessions with multiple parties of some ideal functionality F , i.e., Q
works in a F -hybrid model, and second a realization P̂ of F̂ , where F̂ is a single machine which simulates
the multi-session, multi-party version of F . In the IITM model, instead of F̂ , one could simply write
!F = !Fmp, and require that P̂ ≤SS !Fmp. However, this cannot directly be formulated in the UC model.

In the resulting JUC composed protocol Q[bP], calls from Q to F are translated to calls to P̂ where only
one instance of P̂ is generated per party and this instance handles all sessions of this party, i.e., P̂ may
make use of joint state. The general joint state theorem in [14] then states that if P̂ realizes F̂ , then

Q[bP] realizes Q in the F -hybrid model.

An analog of this theorem can elegantly and rigorously be stated in the IITM model as follows:

Theorem 4. Let Q, P̂,Fmp (e.g., Fmp = !F) be protocol systems such that Q | P̂ and Q | !Fmp are well-

formed, Q is environmentally connectible for P̂ and !Fmp, and P̂ ≤SS !Fmp. Then, Q | P̂ ≤SS Q | !Fmp.

Proof. By Theorem 2 and the reflexivity of ≤SS , we conclude from P̂ ≤SS !Fmp that Q | P̂ ≤SS Q | !Fmp.

The fact that Theorem 4 immediately follows from Theorem 2 shows that in the IITM model, there is
no need for an explicit joint state theorem. The reason it is needed in the UC model lies in the restricted
expressivity it provides in certain respects: First, one has to define an ITM F̂ , and cannot simply write
!Fmp, as multi-party, multi-session versions only exist as part of a hybrid model. In particular, P̂ ≤SS !Fmp

cannot be stated directly. Second, the JUC operator has to be defined explicitly since it cannot be directly
stated that only one instance of P̂ is invoked by Q; in the IITM model we can simply write Q | P̂. Also,

a composition theorem corresponding to Theorem 2, which is used to show that P̂ can be replaced by
!Fmp, is not directly available in the UC model, only a composition theorem corresponding to Corollary 1;
to obtain a theorem similar to Theorem 2, in the UC model one has to make sure that only one instance
is invoked by Q. Finally, due to the addressing mechanism employed in the UC model, redirections of
messages have to be made explicit. While all of this makes it necessary to have an explicitly stated joint
state theorem in the UC model, due to the kind of ITMs employed in the UC model, there are also
problems with the joint state theorem itself (see below).

We note that despite the trivial proof of Theorem 4 in the IITM model (given the composition
theorem), the statement that Theorem 4 makes is stronger than that of the joint state theorem in the
UC model [14, 7], even putting aside the problems mentioned below. Unlike the theorem in the UC model,
Theorem 4 does not require that Q completely shields the sub-protocol from the environment, and hence,
from super-protocols on higher levels. Granting access to the sub-protocol across protocol levels can lead
to simpler systems and more efficient implementations, for example in case of global setups [8].

7

Limitations and problems of the joint state theorem in the UC model. The ITMs used in the UC model,
unlike IITMs, cannot block useless messages without consuming resources and their overall runtime is
bounded by a polynomial in the security parameter and, in the UC model as presented in [7], the overall
length of the input on the I/O interface. A consequence of this is that in general a single ITM cannot
simulate a concurrent composition of a fixed finite or an unbounded number of (copies of) ITMs: If one of
the ITMs, say M ′, in the concurrent composition halts, then the ITM, say M , simulating the composition
should block messages to M ′. Otherwise, M has to process messages which are sent to M ′. This consumes
resources of M and can lead to the exhaustion of M . Hence, M is not capable of simulating the other
machines in the composition anymore. In the original model of the UC model [5], this kind of exhaustion
can happen no matter whether messages are sent on the network or the I/O interface. In the new UC
model [7], the exhaustion can happen when messages are sent on the network interface.

Now, this causes problems in the joint state theorem of the UC model: Although the ITM F̂ in this
joint state theorem is intented to simulate the multi-party, multi-session version of F , for the reason
explained above, it cannot do this in general; it can only simulate some approximated version. The same
is true for P̂ . This, as further explained below, has several negative consequences:

A) For many interesting functionalities, including existing versions of digital signatures and public-key

encryption, it is not always possible to find a P̂ that realizes F̂ , and hence, in these cases the
precondition of the joint state theorem cannot be satisfied.

B) In some cases, the joint state theorem in the UC model itself fails.

ad A) We will first illustrate the problem of realizing F̂ in the original UC model, i.e., the one presented
in [5], on which the work in [14] is based. We then explain the corresponding problem for the new version
of the UC model [7].

The ITM F̂ is intended to simulate the multi-party, multi-session version of F , e.g., a digital signature
functionality. The realization P̂ is intended to do the same, but it contains an ITM for every party.
Now, consider an environment that sends many requests to one party, e.g., verification requests such
that the answer to all of them is ok. Eventually, F̂ will be forced to stop, as it runs out of resources.
Consequently, requests to other parties cannot be answered anymore. However, such requests can still be
answered in P̂ , because these requests are handled by other ITMs, which are not exhausted. Consequently,
an environment can easily distinguish between the ideal (F̂) and real world (P̂). This argument works
independently of the simulator. The situation just described is very common. Therefore, strictly speaking,
for many functionalities of interest it is not possible to find a realization of F̂ in the original UC model.

In the new version of the UC model as presented in [7], the problem of realizing F̂ is similar. However,
ITMs cannot be exhausted (forced to stop) via communication over the I/O interface. Nevertheless,

exhaustion is possible via the network interface. Assume that P̂ tries to realize F̂ in an F -hybrid model,
where for every party one instance of P̂ and F is generated, if any.1 The environment (via a dummy
adversary) can access any copy of F in the F -hybrid model directly via the network interface. In this
way, the environment can send many messages to the copy of F , and hence, exhaust this copy, i.e.,
force it to stop, after some time. (Recall that an ITM cannot prevent being exhausted since it cannot
block messages without using resources.) Even when the copy has stopped, the environment can keep
sending messages to this copy, which in the hybrid model does not have any effect. On the ideal side,
the simulator has to know when a copy of F would stop in the hybrid model, because it then must
not forward messages addressed to this copy of F to F̂ . Otherwise, F̂ would get exhausted as well and
the environment could distinguish between the hybrid and the ideal world as above: It simply contacts
another copy of F in the F -hybrid world (via P̂ and the I/O interface or directly via the network

interface). This copy (since it is another ITM and not exhausted) would still be able to react, while F̂ is
not. However, in general S does not necessarily know when an instance in the hybrid model is exhausted,
e.g., because it does not know how much resources have been provided/used by the functionalities upon
receiving input on the I/O interface, to which S does not have access. Hence, in this case S always
has to forward messages, because the functionality might still have enough resources to react. But this
then leads to the exhaustion of F̂ , with the consequence that the environment can distinguish between

1 This is the typical setting for joint state realizations. Our arguments also apply in many cases where bP does
not work in the F-hybrid model, which is however quite uncommon. The whole point of modular protocol
analysis and design is to use the ideal functionalities.

8

the hybrid and the ideal world as described above. It is easy to come up with functionalities where the
problem just described occurs, including reasonable formulations of public-key encryption and digital
signature functionalities. Typically formulations of functionalities in the UC model are not precise about
the runtime of functionalities, e.g., whether a functionality stops as soon as it gets a message of a wrong
format or whether it ignores the messages as long as it gets the expected message, and only stops if it
runs out of runtime. Different interpretations of how the runtime is defined or ill-defined functionalities
can then lead to the mentioned problems. Even if there is a realization of F̂ that would work, proving
this can become quite tricky because of the described exhaustion problem and its consequences.

ad B) Having discussed the problem of meeting the assumptions of the joint state theorem in the UC

model, we now turn to flaws of the joint state theorem itself. For this, assume that P̂ realizes F̂ within
the F -hybrid model, where as usual, at most one copy of P̂ and F per party is created. The following
arguments apply to both the original UC model [5] and the new version [7]. According to the joint state

theorem in the UC model, we should have that Q[bP] (real world) realizes Q in the F -hybrid model (ideal

world), where as mentioned, we assume P̂ to work in the F -hybrid model as well. However, the following
problems occur: An environment can directly access (via a dummy adversary) a copy of F in the real
world. By sending many messages to this copy, this copy will be exhausted. This copy of F , call it
F [pid], which together with a copy of P̂ handles all sessions of a party pid, corresponds to several copies
F [pid, sid] of F , for SIDs sid, in the ideal world. Hence, once F [pid] in the real world is exhausted,
the simulator also has to exhaust all its corresponding copies F [pid, sid] in the ideal world for every
sid, because otherwise an environment could easily distinguish the two worlds. (While F [pid] cannot
respond, some of the copies F [pid, sid] still can.) Consequently, for the simulation to work, F will have
to provide to the simulator a way to be terminated. A feature typically not contained in formulations of
functionalities in the UC model. Hence, for such functionalities the joint state theorem would typically
fail. However, this can be fixed by assuming this feature for functionalities. A more serious problem
is that the simulator might not know whether F [pid] in the real model is exhausted, and hence, the
simulator does not know when to terminate the corresponding copies in the ideal model. So, in these
cases again the joint state theorem fails. In fact, just as in the case of realizing F̂ , it is not hard to come up
with functionalities where the joint state theorem fails, including reasonable formulations of public-key
encryption and digital signature functionalities. So, the joint state theorem cannot simply be applied to
arbitrary functionalities. One has to reprove this theorem on a case by case basis or characterize classes
of functionalities for which the theorem holds true.

We finally note that in the original UC model [5] there is yet another, but smaller problem with the

joint state theorem. Since in the original UC model the number of copies of F that F̂ can simulate is
bounded by a polynomial in the security parameter, this number typically also has to be bounded in
the realization P̂ . However, now the environment can instruct Q to generate many copies of F for one
party. In the real world, after some time no new copies of F for this party can be generated because
P̂ is bounded. However, an unbounded number of copies can be generated in the ideal world, which
allows the environment to distinguish between the real and ideal world. The above argument uses that
the runtime of Q is big enough such that the environment can generate, through Q, more copies than
P̂ can produce. So, this problem can easily be fixed by assuming that the runtime of Q is bounded
appropriately. Conversely, given Q, the runtime of P̂ should be made big enough. This, however, has not
been mentioned in the joint state theorem in [14].

As already mentioned in the introduction, despite of the various problems with the joint state theorem
in the UC model, within that model useful and interesting results have been obtained. However, it is
crucial to equip that body of work with a more rigorous and elegant framework. Coming up with such a
framework and applying it, is one of the main goals of our work.

Applying the Joint State Theorem. Theorem 4, just like the joint state theorem in the UC model, does
not by itself yield practical realizations, as it does not answer the question of how a practical realization
P̂ can be found. A desirable instantiation of P̂ would be of the form !Pjs | !F where !Pjs is a very basic
protocol in which for every party only one copy of Pjs is generated and this copy handles, as a multiplexer,
all sessions of this party via only one copy of F . Hence, the goal is to find a protocol system !Pjs (with

9

one instance per party) such that
!Pjs | !F ≤

SS !F .2 (1)

Note that with P ≤SS F , the composition theorems together with the transitivity of ≤SS imply that
!Pjs | !P ≤SS !F , i.e., !F in the joint state realization of !F can be replaced by its realization !P .

The seamless treatment of joint state in the IITM model allows for iterative applications of the
joint state theorem. Consider a protocol Q, e.g., a key exchange protocol, that uses F , e.g., a public-
key encryption box for one party, in multiple sessions for multiple parties, i.e. we consider the system
Q | !F . Furthermore, assume that multiple sessions of Q are used within a more complex protocol, e.g.,
a protocol for establishing secure channels, i.e., such a protocol uses the system !(Q | !F) = !Q| !F . In

this system, in every session of Q several sub-sessions of !F can be used. Now iterated application of the
composition theorems/the joint state theorem and (1) yields: !Q | !F = !(Q | !F) ≥SS !(Q | (!Pjs | !F)) =

!Q | !Pjs | !F ≥SS !Q | !Pjs | !Pjs | !F , i.e., !Pjs | !Pjs | !F is the joint state realization of !F . Note that in

this realization only one copy of F is generated per party.

4 Notational and Conceptual Conventions for IITMs

In this section we present general conventions for formulating IITMs. These will be used in the subsequent
sections.

4.1 Describing IITMs

We will formulate all IITMs in pseudo code, where the description will be divided into three parts:
Initialization, CheckAddress and Compute. The first part is used to initialize variables while the others
describe the behavior of the IITM in mode CheckAddress and Compute, respectively. The description in
mode Compute, consists of a sequence of blocks where every block is of the form 〈condition〉 〈actions〉.
Upon activation, the conditions of the blocks are checked one after the other. If a condition is satisfied
the corresponding actions are carried out.

A condition is often of the form “receive m on t” for a message m and a tape t. This condition is
satisfied if a message is received on tape t and the message is of the form m.

In the description of actions we often write “output m on t”. This means that the IITM outputs
message m on tape t and stops for this activation. In the next activation the IITM will not proceed at
the point where it stopped, but again go through the list of conditions, starting with the first one, as
explained above. However, if we write “output m on t and wait for receiving m′ on t′”, then the IITM
does the following: It outputs m on tape t and stops for this activation. In the next activation, it will
check whether it received a message on input tape t′ and check whether this message matches with m′.
If it does, the computation continues. Otherwise, the IITM stops for this activation without producing
output. In the next activation, it will again check whether it received a message on input tape t′ and
whether this message matches with m′ and behaves as before, and so on, until it receives the expected
message on t′.

We use the following convention for names of tapes. Let A be a name associated with an IITM M
(or functionality). The names of tapes of this IITM will have a special shape, namely io(A, B), io(B, A),
net(A, B), and net(B, A) where B is another name (that is associated with another IITM or some entity,
such as the environment or the adversary/simulator). The pair (A, B) represents the direction of the
tape and the prefix the type, e.g. io(A, B) is an I/O output tape of M and net(B, A) is a network input
tape of M .

In the description of M , we abbreviate “output m on io(A, B)” by “send m to B” and “receive m on
io(T, M)” by “receive m from T ”. Similarly for network tapes.

4.2 Running External Code

Sometimes, an IITM M obtains the description of an algorithm A as input and has to execute it. We
write y ← simn A(x) to say that the IITM simulates algorithm A on input x for n steps. The random

2 Strictly speaking, one has to rename the network tapes of !F on the left-hand side, to ensure both sides to be
I/O compatible.

10

coins that might be used by A are chosen by M . The variable y is set to the output of A if A terminates
after at most n steps. Otherwise, y is set to the error symbol ⊥. If we want to enforce M to simulate A
in a deterministic way we write y ← sim-detn A(x). If A uses random coins, M can simply use the zero
bit string. If several transitions are possible in one step, M uses the first one in the description of A (or
the smallest one in a lexicographical order).

The executing IITM is only allowed to perform a polynomial number of steps for executing the
algorithm A, i.e., n has to be bounded polynomially in the security parameter plus the length of the
input. Note that at least the degree of the polynomial that bounds n has to be fixed in advance because
it must not depend on the security parameter. This holds true for any definition of polynomial time and
is not a limitation of the definition of polynomial time in the IITM model.

One could generalize the above to algorithms that keep state. However, this is not needed for our
purposes.

4.3 Processing Arbitrary Many Messages of Arbitrary Length

We note that protocol systems can process and forward arbitrary many messages of arbitrary length
received via the I/O interface (and hence, enriching tapes) because of our definition of polynomial time
(see Section 2). In particular, our functionalities for encryption and signing can be used to encrypt/sign
an unbounded number of messages, each of arbitrary length.

Since the network interface of protocol systems uses consuming tapes it is not a priori possible to
process arbitrary many messages of arbitrary length coming from the network interface. However, this
is no loss of expressivity. The following solution is always possible: A functionality can be defined in
such a way that before it accepts (long) input from the network interface, it expects to receive input
(resources) from the environment on the I/O interface, e.g., on a designated “resource tape”. Note that
the environment controls part of the I/O interface, including the resource tape, and the complete network
interface.3 Hence, right before the environment wants to send long messages via the network interface, it
can simply provide enough resources via the I/O interface. The environment does not have to be specified
explicitly, since in the security notions one quantifies over all environments.

This generic mechanism of providing resources via the I/O interface can always be employed to
guarantee enough resources. In complex systems these resources can travel from super-protocols to the
sub-protocol which needs these resources. For example, we employ this mechanism for dealing with
corruption (see below), where arbitrary many and arbitrary long messages have to be forwarded from
the network interface to the I/O interface.

An alternative to declaring network interfaces to consist of consuming tapes, is to use enriching
tapes. However, this leads to more involved security notions and more complex restrictions for composing
protocols (see, e.g., [22, 23]). Whether or not to use this alternative is a matter of taste.

4.4 Corruption

In the UC model [5, 7], corruption of a functionality, such as encryption or digital signatures, is typically
not specified precisely. However, this is important for the joint state theorems (see Section 3). Recall
that in the IITM model corruption is not hard-wired into the model but can be specified in a rigorous
and flexible way as part of the protocols/functionalities.

One possible way of specifying corruption is depicted in Figure 1. This “macro” can be used in the
specification of functionalities. It models that if an IITM is corrupted, i.e., receives a corrupt message
from the adversary/simulator on the network interface, it will expose the information corrMsg to the
adversary and from now on forwards all messages between the network and I/O interface, which is possible
by the mechanism discussed in Section 4.3: Before a message is forwarded from the network interface to
the I/O interface (the user), the environment is supposed to provide resources for this action, i.e., send
a message of the form (Res, r) via the I/O interface.

In (a) and (b) variable initialized is used to make sure that the functionality in which the macro is
used has already been activated. This is important for joint state realizations. The environment can ask

3 In other security notion, e.g., black-box and (dummy) UC, an adversary controls the network interface. How-
ever, adversary and environment can freely communicate, and hence, coordinate their actions, which effectively
gives the environment full access to the network interface.

11

Corr(corrupted ∈ {true, false}, corruptible ∈ {true, false}, initialized ∈ {true, false}, corrMsg , Tadv, Tuser, Tenv)
Local variable: res (initial value: 0)

(a) Corruption Request: If recv (Corrupted?) from Tenv, and initialized do: send (corrupted) to Tenv

(b) Corruption: If recv (Corrupt) from Tadv, corruptible , initialized , and not corrupted do:
corrupted ← true, send (Corrupted, corrMsg) to Tadv

(c) Forward to A: If recv m from T ∈ Tuser, and corrupted do: res ← 0, send (Recv, m, T) to Tadv

(d) Forward to user: If recv (Send, m, T) from Tadv where T ∈ Tuser, corrupted , and 0 < |m| ≤ res do:
res ← 0, send m to T

(e) Resources: If recv (Res, r) from Tenv, and corrupted do: res ← |r|, send (Res, r) to Tadv

Fig. 1. Macro to model adaptive and non-adaptive corruption behavior.

whether the IITM is corrupted; security notions otherwise would not make sense: a simulator S could
corrupt a functionality at the beginning and then mimic the behavior of the real protocol. The variable
corruptible allows to block corruptions. If it is set to true all the time, then our macro models adaptive
corruption. However, a functionality using our macro can set corruptible to false at some point. For
example, corruptible could be set to false by a functionality after some initialization in order to capture
non-adaptive corruption. In this paper, we will use our macro to model both adaptive and non-adaptive
corruption.

We note that other forms of corruption could also be modeled. For example, if the adversary does not
get to know the whole internal state of a functionality, it might make sense to first let the functionality
compute output. However, before sending the output, one could allow the adversary to manipulate this
output. To model passive adversaries, one would only inform the adversary about the output that has
been produced, but would not provide the adversary with means to manipulate the output. While these
forms of corruption can we interesting in some cases, the kinds of corruptions captured by our macro
suffices for our purposes.

5 Digital Signatures

In this section, we present our functionality for digital signatures with local computation as explained in
the introduction, show that a signature scheme realizes this functionality iff it is EU-CMA secure (where
we allow for adaptive corruption of both signers and verifiers), and then provide a joint state realization
of our functionality. In Section 5.4, we will compare our formulation of the digital signature functionality
with other formulations proposed in the literature. To state our functionality, we first introduce some
notational and conceptual conventions, which we will also use for other functionalities and IITMs.

5.1 Ideal Digital Signature Functionality

The basic idea of an ideal functionality for digital signatures is to provide a registration service where
the signer can register message signature pairs and the verifiers can check if a pair is registered [5, 7, 1].

Our ideal signature functionality FSIG is defined as follows

FSIG(Tsig, Tver, p) = Fsig(Tsig, Tver, p) | !Fver(Tver)

where Fsig and Fver are IITMs.
The IITM Fver = Fver(Tver), as defined in Figure 3, represents the verifier’s part and is parameterized

by a set of names of tapes Tver that is used by verifiers to connect to Fver. Note that one tape might be
used by an unbounded number of entities. The party version of Fver is used in FSIG to model that every
verifier has its own local procedure that she can query to verify messages. Upon initialization, i.e. when
the verifier sends an init message, a message is sent to the IITM Fsig to guarantee that an instance of
it is created. This instance will later be used by Fver upon receiving a verification request (see below).
Then, the initialization request is forwarded to the adversary who is supposed to answer it whereon the
control is given back to the verifier.

The actual functionality of Fver, i.e. to verify a message signature pair with respect to a public key,
is left to Fsig. Upon a signature verification request the request is forwarded to Fsig (see Figure 3 (c)).

12

The only purpose of Fver is to handle registration and corruption in a more uniform and simpler way.
One could as well define FSIG in a single IITM.

The IITM Fsig = Fsig(Tsig, Tver, p), as defined in Figure 2, represents the signer’s part of FSIG and is
parameterized by a polynomial p and two disjoint sets of names of tapes Tsig and Tver which are used
by the signer or verifiers (resp.) to connect to Fsig. During the registration, the adversary has to provide
algorithms s and v for generating and verifying signatures and a public key k. The functionality Fsig has
adaptive corruption behavior. The polynomial p is used to bound the size of s, v and k and the runtime
of s and v as described in Section 4. Note that the polynomial does not limit the power of the adversary
since upon corruption, the adversary is not anymore restricted to the polynomial. Also, every potential
signing or verifying algorithm has polynomial runtime. Therefore, it possible to choose a polynomial such
that FSIG executes the algorithms as expected.

Functionality Fsig(Tsig, Tver, p)

I/O-tapes: in: io(T, sig) for each T ∈ Tsig, io(Esig, sig), io(ver, sig) (enriching)
out: io(sig, T) for each T ∈ Tsig ∪ Tver, io(sig, Esig), io(sig, ver)

net-tapes: in: net(Asig, sig) (consuming) out: net(sig, Asig)

Initialization: s, v, k ← ⊥ ; H ← ∅ ; state ← init ; nokey ← true ; corrupted ← false

CheckAddress: Accept all messages on all tapes
Compute: Upon receiving a message check which case matches:

(a) Initialization: If recv (Init) from T ∈ Tsig, and state = init do: state ← (wait, T) ; send (Init) to Asig

(b) Initialization Response: If recv (Inited) from Asig, not nokey , and state = (wait, T) do:
state ← ok ; send (PublicKey, k) to T

(c) Wake up: If recv (pid , WakeUpFromVer) from ver do: send (pid , Ack) to ver
(d) Key Generation: If recv (AlgorithmsAndKey, s′, v′, k′) from Asig, nokey , and |s′|, |v′|, |k′| ≤ p(η) do:

(s, v, k)← (s′, v′, k′) ; nokey ← false ; send (Ack) to Asig

(e) Signature Generation: If recv (Sign, m) from T ∈ Tsig, state = ok, and not corrupted do:
σ ← simp(|m|+η) s(m) ;
b← sim-detp(|m|+|σ|+η) v(m,σ, k) ;
if b 6= 1 then σ ← ⊥ else H ← H ∪ {(m, σ)} end ;
send (Signature, σ) to T

(f) Signature Verification: If recv (pid , Verify, m, σ, k′, T) from ver where T ∈ Tver, and not nokey do:
b← sim-detp(|m|+|σ|+η) v(m,σ, k′) ;
if b /∈ {0, 1} then f ← ⊥ end ;
if k = k′ and not corrupted and b = 1 and not ∃σ′ : (m, σ′) ∈ H then b← ⊥ end ;
send (pid , Verified, b) to T

(g) Corruption: Corr(corrupted , true, state 6= init, ε, Asig, Tsig, Esig) (See Figure 1 for definition of Corr)

If no rule above fires then produce no output.

Fig. 2. Ideal signature functionality FSIG = Fsig | !Fver, the signer’s part Fsig.

At first the owner of Fsig, i.e. the signer, has to initialize the functionality by sending the message
(Init). This message is forwarded to the adversary who is supposed to provide algorithms and a public
key which then is forwarded to the signer. Then, the signer can sign messages by sending (Sign, m) to
Fsig. The signature string σ is generated by running s on m. Then, the pair (m, σ) is recorded and σ
is sent to the signer if (m, σ) verifies according to algorithm v with the proper verification key k, i.e. if
v(m, σ, k) = 1. If the pair (m, σ) does not verify, the error symbol ⊥ is returned to the signer.

Similarly to the signer, each verifier has to initialize its copy of Fver. Then, a message is sent to the
IITM Fenc to guarantee that a copy of it is created. This copy will later be used by Fver to process
verification requests. Then, the initialization request is forwarded to the adversary who is supposed to
answer it whereon the control is given back to the verifier. If a verifier sends a verification request for a
message m and a signature σ with respect to the verification key k′ to Fver then this request is forwarded
to Fsig which outputs the error symbol ⊥ if the input is a forgery, i.e. if k = k′, v(m, σ, k) = 1, the signer
is not corrupted and m was never signed by the signer (there is no σ′ such that (m, σ′) is recorded).
Otherwise, Fsig outputs the result of v(m, σ, k′) to the verifier.

The external tapes of FSIG and the connection between Fsig and Fver are pictured in Figure 4.

13

Functionality Fver(Tver)

I/O-tapes: in: io(T, sig) for each T ∈ Tver, io(Ever, sig) (enriching), io(sig, ver) (consuming)
out: io(sig, T) for each T ∈ Tver, io(sig, Ever), io(ver, sig)

net-tapes: in: net(Aver, sig) (consuming) out: net(sig, Aver)

Initialization: state ← init ; corrupted ← false

CheckAddress: Accept all messages on all tapes
Compute: Upon receiving a message check which case matches:

(a) Initialization: If recv (Init) from T ∈ Tver, and state = init do:
send (WakeUpFromVer) to sig ; wait for recv (Ack) from sig ; state ← (wait, T) ; send (Init) to Aver

(b) Initialization Response: If recv (Inited) from Aver, and state = (wait, T) do: state ← ok; send (Inited) to T
(c) Signature Verification: If recv (Verify, m, σ, k) from T ∈ Tver, state = ok, and not corrupted do:

send (Verify, m, σ, k, T) to sig
(d) Corruption: Corr(corrupted , true, state 6= init, ε, Aver, Tver, Ever) (See Figure 1 for definition of Corr)

If no rule above fires then produce no output.

Fig. 3. Ideal signature functionality FSIG = Fsig | !Fver, the verifier’s part Fver.

sig

EverEsig

sig

sigsigAsig

Aver

TverTsig

sig

Fsig

Fver

ver

enriching
consuming

I/O tape
network tape

Name of A B is io(A, B)
Name of A B is net(A, B)

Legend:

Fig. 4. Graphical representation of the ideal functionality for public-key encryption FSIG = Fsig | !Fver.

14

Next, we summarize some properties of FSIG to show that it models an ideal signature functionality:

– Since the adversary provides the algorithms s and v, no requirements are put on these algorithms.
– Assuming that the signer is not corrupted and a verifier asks to verify (m, σ) with the correct key k

we have that:
FSIG guarantees usability, i.e. if a message was signed, then a verifier can verify: if the signer signed
m before and obtained signature σ then FSIG will return 1 because (m, σ) is recorded, v is simulated
probabilistically and v(m, σ, k) = 1 was checked when the signature was generated.
FSIG guarantees security. If the signer has not signed m before, then FSIG will either return 0 or the
error symbol ⊥. Note that σ could differ from the signature string generated by the signer and FSIG

returns 1. This captures the fact that it is not insecure that given a signature string for the some
message it is possible to produce a different signature string for the same message.

– The verification process is consistent. If a verifier obtained b ∈ {0, 1} from FSIG upon a verification
request with m, σ, k′ then every later verification request (of a not corrupted verifier) with m, σ, k′

will result in the same response b.
– If the signer is corrupted then nothing is guaranteed upon verification, i.e. algorithm v alone de-

termines the result of the verification. This enables the adversary to claim signatures of corrupted
signers.

– If the verifier provides a wrong key k′ 6= k then nothing is guaranteed upon verification as if the
signer is corrupted. This models the fact that in a signature scheme signatures are not bound to a
party but to a verification key. The functionality FSIG does not model a PKI.

5.2 Implementation by an EU-CMA Signature Scheme

In this section it is shown that the ideal signature functionality FSIG can be implemented/realized by a
signature scheme which is existentially unforgeable under adaptive chosen-message attacks (EU-CMA).
Even more, it is proved that if a signature scheme realizes FSIG then it is EU-CMA. We allow signers
and verifiers to be corrupted adaptively. In what follows, we first define signature schemes and EU-CMA
security [19].

A signature scheme Σ = (gen, sig, ver) consists of two probabilistic algorithms gen and sig and a
deterministic algorithm ver. The key generation algorithm gen takes 1η as an input (where η is the
security parameter) and outputs a pair of keys (ks, kv), the secret (or signing) key ks and the public (or
verification) key kv. The signature generation algorithm sig expects a secret key ks and message m as
input and produces a signature σ. The signature verification algorithm ver outputs 0 or 1 upon input
of a message m, a signature σ and a public key kv. It outputs 1 iff the message signature pair verifies
according to the public key. It is required that:

(a) gen(1η) can be computed in polynomial time in η,
(b) sig(ks, m) can be computed in polynomial time in |m|+ η, and
(c) ver(m, σ, kv) can be computed in polynomial time in |m|+ |σ|+ η.

Definition 2. A signature scheme Σ = (gen, sig, ver) is called existentially unforgeable under adaptive
chosen-message attacks (EU-CMA) if the following two properties are satisfied:

(a) Completeness: For each message m,

Prob[(ks, kv)← gen(1η), σ ← sig(ks, m) : 0 = ver(m, σ, kv)]

is negligible (as a function in η).
(b) Unforgeability: For each probabilistic polynomial time Turing machine F that can make use of the

signing oracle sig(ks, ·),

Prob[(ks, kv)← gen(1η), (m, σ)← F (sig(ks, ·), kv, 1η) : 1 = ver(m, σ, kv) and

F never asked sig to sign m]

is negligible (as a function in η).

15

Given a signature scheme Σ = (gen, sig, ver), it is straight-forward to obtain a system of IITMs PSIG

that models the signature scheme as a protocol in the IITM model. Let Tsig and Tver be two disjoint sets
of names of tapes, like in Section 5.1. We define

PSIG(Σ, Tsig, Tver) = Psig(gen, sig, Tsig) | !Pver(ver, Tver)

where Psig and Pver are two IITMs as specified in Figure 5 and 6, respectively. A graphical representation
of PSIG is depicted in Figure 7.

Realization Psig(gen, sig, Tsig)

I/O-tapes: in: io(T, sig) for each T ∈ Tsig, io(Esig, sig) (enriching)
out: io(sig, T) for each T ∈ Tsig, io(sig, Esig)

net-tapes: in: net(A′
sig, sig) (consuming) out: net(sig, A′

sig)

Initialization: state ← init ; ks, kv ← ⊥ ; corrupted ← false

CheckAddress: Accept all messages on all tapes
Compute: Upon receiving a message check which case matches:

(a) Initialization: If recv (Init) from T ∈ Tsig, and state = init do:
(ks, kv)← gen(1η) ; state ← ok ; send (PublicKey, kv) to T

(b) Signature Generation: If recv (Sign, m) from T ∈ Tsig, state = ok, and not corrupted do:
σ ← sig(ks, m) ; send (Signature, σ) to T

(c) Corruption: Corr(corrupted , true, state 6= init, (ks, kv), A′
sig, Tsig, Esig) (See Figure 1 for definition of Corr)

If no rule above fires then produce no output.

Fig. 5. Realization of a digital signature scheme PSIG = Psig | !Pver, the signer’s part Psig.

Realization Pver(ver, Tver)

I/O-tapes: in: io(T, sig) for each T ∈ Tver, io(Ever, sig) (enriching)
out: io(sig, T) for each T ∈ Tver, io(sig, Ever)

net-tapes: in: net(A′
ver, sig) (consuming) out: net(sig, A′

ver)

Initialization: state ← init ; corrupted ← false

CheckAddress: Accept all messages on all tapes
Compute: Upon receiving a message check which case matches:

(a) Initialization: If recv (Init) from T ∈ Tver, and state = init do: state ← ok ; send (Inited) to T
(b) Signature Verification: If recv (Verify, m, σ, k) from T ∈ Tver, state = ok, and not corrupted do:

b← ver(m,σ, k) ; send (Verified, b) to T
(c) Corruption: Corr(corrupted , true, state 6= init, ε, A′

ver, Tver, Ever) (See Figure 1 for the definition of Corr)

If no rule above fires then produce no output.

Fig. 6. Realization of a digital signature scheme PSIG = Psig | !Pver, the verifier’s part Pver.

The IITM Psig = Psig(gen, sig, Tsig) belongs to the signer. Upon receiving an initialization request,
a private and a public key are generated with the key generation algorithm gen and the public key is
returned to the signer. When the signer requests to sign a message m then Psig computes the signature
string σ with the signing algorithm sig(ks, m) where ks is the previously generated private key and
returns σ to the signer. Psig has adaptive corruption behavior, i.e. the signer is adaptive corruptible, as
described in Section 4 and reveals the private and public key upon corruption.

Each copy of Pver = Pver(ver, Tver) belongs to one verifier. We denote the instance of a party with PID
pid by Pver[pid]. Initialization requests are directly answered positively. When the verifier pid requests
to verify (m, σ, k) then Pver[pid] computes b← ver(m, σ, k) and returns the bit b to the verifier pid . Just
as Psig, Pver has adaptive corruption behavior.

16

Pver

sig

EverEsig

Psig

sigA′

sig

A′

ver

sig

TverTsig

sig

Fig. 7. Graphical representation of the implementation of a digital signature scheme PSIG = Psig | !Pver.
See Figure 4 for a legend.

The following theorem shows that an EU-CMA signature scheme realizes/implements the ideal func-
tionality FSIG from Section 5.1 and that if PSIG(Σ) implements FSIG then Σ is EU-CMA. The basic
idea of the proof is similar to Canetti’s proofs [6, 7] and the one by Backes and Hofheinz [1].

Let p be a polynomial. A signature scheme Σ = (gen, sig, ver) is called p-bounded if the runtime of
gen(1η), sig(ks, m) and ver(m, σ, kv) is bounded by p(η), p(|m|+ η) and p(|m|+ |σ|+ η) (resp.) for every
η, m, σ, ks and kv and if the length of the description of gen, sig and ver is bounded by p(η). Note that
for each signature scheme, there is a polynomial p such that it is p-bounded.

The following theorem shows that a signature scheme is EU-CMA iff it realizes FSIG in the context
of environments without auxiliary input. One could alternatively define EU-CMA by allowing auxiliary
input to the forger. Then, a signature would be EU-CMA iff it would realize FSIG in the context of
environments with auxiliary input.

Theorem 5. Let Σ = (gen, sig, ver) be a p-bounded signature scheme. Then, Σ is EU-CMA if and only
if PSIG(Σ, Tsig, Tver) ≤SS-noaux FSIG(Tsig, Tver, p).

Proof. We abbreviate PSIG(Σ, Tsig, Tver) by PSIG and FSIG(Tsig, Tver, p) by FSIG. It is easy to see that
PSIG and FSIG are I/O compatible protocols.

At first we prove that if PSIG ≤SS-noaux FSIG then Σ is EU-CMA by contraposition. Therefore,
we assume that Σ is not EU-CMA and show that for all simulators S ∈ SimPSIG

S
(FSIG) there is an

environment E ∈ ConE(PSIG) such that E | PSIG 6≡
noaux E | S | FSIG, i.e. that there is no negligible

function g with

g(1η) = |Prob[E | PSIG(1η, ε) 1]− Prob[E | S | FSIG(1η, ε) 1]| .

If Σ is not complete, i.e. it violates Definition 2 (a), then

Prob[(ks, kv)← gen(1η), σ0 ← sig(ks, m0), 0 = ver(m0, σ0, kv)]

is not negligible (as a function in η) for some message m0.
The environment E can be defined independently from the simulator S. Let T ∈ Tsig and T ′ ∈ Tver.

We define E to be a master IITM (an IITM with a tape named start) with an output tape named decision

and tapes to connect to PSIG. In mode CheckAddress E accepts every incoming message and in mode
Compute it operates as follows:

(a) Upon first activation (on tape start) output (Init) on tape io(T, sig).
(b) Upon receiving (PublicKey, k) on tape io(sig, T) for some k, store k and output (Sign, m0) on io(T, sig).
(c) Upon receiving (Signature, σ) on io(sig, T) for some σ, store σ and output (pid , Verify, m0, σ, k) on

io(T ′, sig).
(d) Upon receiving (pid , Verified, 0) on io(sig, T ′) do: check if the signer is corrupted or if pid is a corrupted

verifier, i.e.:
• Send (Corrupted?) on io(sig, T).
• Upon receiving (true) on io(T, sig) output 1 on tape decision and halt

else send (pid , Corrupted?) on io(sig, T ′).

17

• Upon receiving (true) io(T ′, sig) output 1 on tape decision and halt
else output 0 on tape decision and halt.

If at some point above E waits for a message to receive and the input is not as expected or on an
unexpected tape then E outputs 1 on tape decision and halts. One easily verifies that E ∈ ConE(PSIG).

In the ideal world (E | S | FSIG)(1η, ε) outputs 1 for each simulator S ∈ SimPSIG

S
(FSIG), security

parameter η and initial input a. Assume that in a run of (E | S | FSIG)(1η, ε) the environment E outputs
0, i.e. E reaches the last line in (d). Then, the signer and verifier with PID pid are both not corrupted,
FSIG sent (Signature, σ) and FSIG sent (pid , Verified, 0). FSIG sent (Signature, σ) implies that (m0, σ) ∈ H
and ver(m0, σ, k) = 1. Thus, FSIG returned (pid , Verified, 1) upon the verification request of E which is
a contradiction.

In the real world E will always receive what it expects, except in (d) where it possibly receives
(pid , Verified, 1) instead of (pid , Verified, 0), because of the definition of PSIG and because E does not
corrupt anyone. Thus, (E | PSIG)(1η, ε) outputs 0 if and only if PSIG returned (pid , Verified, 0), which
occurs with probability

Prob[(ks, kv)← gen(1η), σ ← sig(ks, m0) : 0 = ver(m0, σ, kv)]

(for each η) which is not negligible by assumption. Thus, we have that

|Prob[E | PSIG(1η, ε) 1]− Prob[E | S | FSIG(1η, ε) 1]|

= |1− Prob[(ks, kv)← gen(1η), σ0 ← sig(ks, m0) : 0 = ver(m0, σ0, kv)]− 1|

= Prob[(ks, kv)← gen(1η), σ0 ← sig(ks, m0) : 0 = ver(m0, σ0, kv)]

is not negligible and therefore E | PSIG 6≡noaux E | S | FSIG.
On the other hand, if Σ is forgeable, i.e. it violates Definition 2 (b), then there is a probabilistic

polynomial time Turing machine F that can make use of the signing oracle sig(ks, ·) and

Prob[(ks, kv)← gen(1η), (m, σ)← F (sig(ks, ·), kv, 1η) : 1 = ver(m, σ, kv) and

F never asked sig to sign m]

is not negligible (as a function in η).
The environment E can be defined independently from the simulator S. Let T ∈ Tsig and T ′ ∈ Tver.

We define E to be a master IITM (an IITM with a tape named start) with an output tape named decision

and tapes to connect to PSIG. In mode CheckAddress E accepts every incoming message and in mode
Compute it operates as follows:

(a) Upon first activation (on tape start), output (Init) on tape io(T, sig).
(b) Wait for receiving (PublicKey, k) on tape io(sig, T), store k.
(c) Simulate the forger F with input k as the public key. If F asks its signing oracle to sign a message m

then output (Sign, m) on io(T, sig) and wait for receiving (Signature, σ) on io(sig, T). Then continue
simulating F as if the oracle returned σ. The output of F will be a pair (m0, σ0).

(d) If the message m0 was signed before then halt with output 0 on tape decision else output the message
(pid , Verify, m0, σ0, k) on io(T ′, sig).

(e) Upon receiving (pid , Verified, 1) on io(sig, T ′) do: check if the signer is corrupted or if pid is a corrupted
verifier, i.e.:
• Send (Corrupted?) on io(sig, T).
• Upon receiving (true) on io(T, sig) output 0 on tape decision and halt

else send (pid , Corrupted?) on io(sig, T ′).
• Upon receiving (true) on io(T ′, sig) output 0 on tape decision and halt

else output 1 on tape decision and halt.

If at some point above E waits for a message to receive and the input is not as expected or on an
unexpected tape then E outputs 0 on tape decision and halts. One easily verifies that E ∈ ConE(PSIG).

In the ideal world, (E | S | FSIG)(1η, ε) outputs 0 for each simulator S ∈ SimPSIG

S
(FSIG) and security

parameter η. Assume that in a run of (E | S | FSIG)(1η, ε) the environment E outputs 1, i.e. E reaches
the last line in (e). Then, m0 was never signed before, the signer and verifier with PID pid are both not

18

corrupted and FSIG sent (pid , Verified, 1). Since m0 was not signed before, (m0, σ) /∈ H for all σ. Thus,
FSIG did not send (pid , Verified, 1) by the definition of Fsig (see Figure 2 (f)). Which is a contradiction.

In the real world, E will always receive what it expects, except in (e) where it possibly receives
(pid , Verified, 0) instead of (pid , Verified, 1), because of the definition of PSIG and because E does not
corrupt anyone. Thus, (E | PSIG)(1η, ε) outputs 1 if and only if PSIG returned (pid , Verified, 1) which
occurs with probability

Prob[(ks, kv)← gen(1η), (m, σ)← F (sig(ks, ·), kv, 1η) : 1 = ver(m, σ, kv) and

F never asked sig to sign m]

which is not negligible by assumption. As above, we conclude that E | PSIG 6≡noaux E | S | FSIG.
Now, we prove by contraposition that if Σ is EU-CMA, then

PSIG(Σ, Tsig, Tver) ≤
SS-noaux FSIG(Tsig, Tver, p).

Assume that for all simulators S ∈ SimPSIG

S
(FSIG) there is an environment E ∈ ConE(PSIG) such that

E | PSIG 6≡noaux E | S | FSIG. If Σ is not complete then we are done. Thus, we assume that Σ is com-
plete. For each S ∈ SimPSIG

S
(FSIG) there is an environment E ∈ ConE(PSIG) such that E | PSIG 6≡noaux

E | S | FSIG, especially for the simulator SSIG(Σ) (SSIG for short) as defined in Figure 8. A graphi-
cal representation of SSIG and its connection to FSIG is depicted in Figure 9. One easily verifies that
SSIG ∈ SimPSIG

S
(FSIG). We will show how E can be used to construct a successful forger F .

Simulator SSIG(Σ)

net-tapes: in: net(sig, Asig), net(sig, Aver), net(A′
sig, sig), net(A′

ver, sig) (enriching)
out: net(Asig, sig), net(Aver, sig), net(sig, A′

sig), net(sig, A′
ver)

Initialization: nokey ← true ; (ks, kv)← gen(1η)
CheckAddress: Accept all messages on all tapes
Compute: Upon receiving a message check which case matches:

(a) Initialization (Sig): If recv (Init) on net(sig, Asig) do:
if nokey then

send (AlgorithmsAndKey, sig(ks, ·), ver(·, ·, ·), kv) to net(Asig, sig) ;
wait for recv (Ack) on net(sig, Asig) ; nokey ← false

end ;
send (Inited) to net(Asig, sig)

(b) Forward messages from A (Sig and Ver): If recv m on net(A′
sig, sig) or net(A′

ver, sig) do:
send m to net(Asig, sig) or net(Aver, sig) (resp.)

(c) Forward messages to A (Sig): If recv m on net(sig, Asig) and m 6= (Init) do:
if m = (Corrupted) then send (Corrupted, (ks, kv)) to net(sig, A′

sig) else send m to net(sig, A′
sig) end

(d) Initialization (Ver): If recv (pid , Init) on net(sig, Aver) do:
if nokey then

send (AlgorithmsAndKey, sig(ks, ·), ver(·, ·, ·), kv) to net(Asig, sig) ;
wait for recv (Ack) on net(sig, Asig) ; nokey ← false

end ;
send (pid , Inited) to net(Aver, sig)

(e) Forward messages to A (Ver): If recv m on net(sig, Aver) and m 6= (pid , Init) do: send m to net(sig, A′
ver)

If no rule above fires then produce no output.

Fig. 8. Simulator SSIG for the proof of PSIG SS-realizes FSIG

Because E | PSIG 6≡noaux E | S | FSIG there are polynomials p such that for all η0 ∈ N there is η > η0

such that

|Prob[E | PSIG(1η, ε) 1]− Prob[E | SSIG | FSIG(1η, ε) 1]| >
1

p(η)
. (2)

Let η0 ∈ N and choose η > η0 such that (2) holds. The input of F is a signing oracle S(·), a public key
k, and 1η. F simulates a run of E | PSIG with the security parameter η with the following exceptions:

19

Fver

EverEsig

sig

Fsig

sigAsig

Aver

sig

sig

sig

sig

SSIG

A′

ver

A′

sig

Tsig Tver

sig

FSIG

ver

Fig. 9. Graphical representation of the simulator SSIG for FSIG = Fsig | !Fver. See Figure 4 for a legend.

(a) If Psig wants to simulate gen(1η) (Figure 5 (a)) then continue the simulation as if gen(1η) returned
0 as the signing key and k as the verification key.

(b) If Psig wants to simulate sig(ks, m) (Figure 5 (b)) then F computes σ ← S(m) with its signing oracle
and continues the simulation as if the simulation of sig(ks, m) in Psig returned σ.

(c) If some copy of Pver wants to simulate ver(m, σ, k′) (Figure 6 (b)) then F checks if (m, σ) is a
forgery, i.e. if m was never signed by S before and ver(m, σ, k) = 1. If it is a forgery F outputs (m, σ)
and halts, else F computes b ← ver(m, σ, k′) and continues the simulation as if the simulation of
ver(m, σ, k′) in Pver returned b.

(d) If the signer gets corrupted, i.e. if Psig sets corrupted ← true, then F halts and produces a failure
output.

We now analyze the success probability of F , i.e. the probability that F produces a message signature
pair that constitutes a forgery:

Prob[(ks, kv)← gen(1η), (m, σ)← F (sig(ks, ·), kv, 1η) : 1 = ver(m, σ, kv) and

F never asked sig to sign m] .

In analogy to [7], let B denote the event that in a run of E | PSIG(1η, ε) some copy of Pver wants
to simulate ver(m, σ, k′) where ver(m, σ, k) = 1, the signer is not corrupted and Psig never computed
sig(ks, m).

We will prove that as long as event B does not occur, E can not distinguish the real world from the
ideal world. Note that Σ is p-bounded and therefore FSIG accepts the algorithms received from SSIG and
is always able to simulate them till the end. A careful look at SSIG | FSIG and PSIG shows that the only
two reasons where E can distinguish SSIG | FSIG from PSIG are

(a) upon signature generation, if in Fsig a signature is produced that does not verify, i.e. if v(m, σ, k) = 0,
and

(b) upon signature verification, if the signer is not corrupted, Fsig computes v(m, σ, k′) = 1 and m was
not signed before, i.e. there is no σ′ such that (m, σ′) ∈ H .

If (b) would happen then event B would occur. Since we have assumed that Σ is complete, (a) occurs
only with negligible probability. Also, E can only sign polynomially many messages, so E ’s view differs
only with negligible probability as long as B does not occur.

At next we prove that B will occur in the run of E | PSIG(1η, ε) with non-negligible probability.
Therefore, we assume that it occurs with negligible probability and deduce a contradiction. By the

20

triangle inequality we obtain

|Prob[E | PSIG(1η, ε) 1]− Prob[E | SSIG | FSIG(1η, ε) 1]|

= |Prob[E | PSIG(1η, ε) 1, B] + Prob[E | PSIG(1η, ε) 1, not B]

− Prob[E | SSIG | FSIG(1η, ε) 1]|

≤ |Prob[E | PSIG(1η, ε) 1, B]|

+ |Prob[E | PSIG(1η, ε) 1, not B]− Prob[E | SSIG | FSIG(1η, ε) 1]|

≤ Prob[B] + |Prob[E | PSIG(1η, ε) 1, not B]

− Prob[E | SSIG | FSIG(1η, ε) 1]| .

We assumed that

|Prob[E | PSIG(1η, ε) 1, not B]− Prob[E | SSIG | FSIG(1η, ε) 1]|

and Prob[B] is negligible, thus,

|Prob[E | PSIG(1η, ε) 1]− Prob[E | SSIG | FSIG(1η, ε) 1]|

is negligible, too, which implies that E | PSIG ≡
noaux E | SSIG | FSIG. This contradiction proves that event

B occurs with non-negligible probability in the run of E | PSIG(1η, ε).
The run that F simulates does not differ from a run of E | PSIG(1η, ε) and since B can only occur

before the signer is corrupted it follows that whenever B occurs, F produces a forgery, i.e.,

Prob[B] = Prob[(ks, kv)← gen(1η), (m, σ)← F (sig(ks, ·), kv, 1η) : 1 = ver(m, σ, kv) and

F never asked sig to sign m] .

Since Prob[B] is non-negligible, Σ is not unforgeable, so, not EU-CMA. ⊓⊔

5.3 Joint State for Digital Signatures

We now present a joint state realization of FSIG. In this realization, only one copy of FSIG per party
instead of one copy per session per party is used.

First we specify the joint state realization PJS
SIG, which runs with one copy of FSIG per party. The

joint state theorem for digital signatures then basically says

!PJS
SIG | !F

′
SIG ≤

SS !FSIG

where F ′
SIG is identical to FSIG except that tapes have been renamed because the left side has to be

I/O compatible to the right side. As described Section 3, on the right-hand side we have a multi-session
multi-party version, i.e. the inner part !FSIG is the multi-party version of FSIG where we have one copy
of FSIG per party and the outer part is the multi-session version of the multi-party version of FSIG. So,
altogether !FSIG contains one copy of FSIG per session per party. On the other side, we have only the

multi-party version !F ′
SIG of F ′

SIG and the “multiplexer” !PJS
SIG which in a run will contain one copy of

PJS
SIG for each party and this copy handles all sessions of this party through one copy of F ′

SIG.
The basic idea of PJS

SIG is simple and similar to the so called “concatenate and sign” protocol of
Canetti and Rabin [14]: when a party in session sid requests to sign a message m then PJS

SIG forwards
the requests to sign the message (sid , m) to the same copy of FSIG for all sessions. Similarly, when a
party in session sid requests to verify (m, σ, k) then PJS

SIG forwards the requests to verify ((sid , m), σ, k)
to the same copy of FSIG for all sessions. However, this simple idea only works given an appropriate
formulation of the digital signature functionality (see Section 5.4).

The implementation PJS
SIG is parameterized, as FSIG, by two disjoint sets of names of tapes Tsig and

Tver, two polynomials p and q, and is given by the composition of two IITMs

PJS
SIG(Tsig, Tver, p, q) = P JS

sig(Tsig, p, q) |P JS
ver(Tver, p, q)

as defined in Figure 10 and 11. A graphical representation and its connection to F ′
SIG is pictured in

Figure 12.

21

Realization P JS
sig(Tsig, p, q)

I/O-tapes: in: io(T, sig) for each T ∈ Tsig, io(Esig, sig) (enriching),
io(sig′, T) for each T ∈ Tsig, io(sig′, Esig) (consuming)

out: io(sig, T) for each T ∈ Tsig, io(sig, Esig), io(T, sig′) for each T ∈ Tsig, io(Esig, sig
′)

Initialization: pid ← ⊥ ; Sids ← ∅ ; AllSids ← ∅ ; lastSid ← ⊥ ; res ← 0 ; k← ⊥ ; state ← init

CheckAddress: Upon first activation accept only messages of shape (sid , pid ′, m) on all sig-tapes (i.e. on
io(T, sig), io(Esig, sig)). In mode Compute at first record the PID: pid ← pid ′.
On later activations accept only messages of shape (sid , pid ′, m) on all sig-tapes and of shape (pid ′, m) on
all sig′-tapes where pid ′ = pid .

Compute: Upon receiving a message check which case matches:

(a) Initialization: If recv (sid , pid , Init) on io(T, sig) where T ∈ Tsig, sid /∈ AllSids do:
AllSids ← AllSids ∪ {sid} ;
if state = error or |sid | > q(η) then

produce no output
else if state = wait then

state ← error ; produce no output
else if state = init then

state ← wait ; lastSid ← sid ; send (pid , Init) to io(T, sig′)
else

Sids ← Sids ∪ {sid} ; send (sid , pid , PublicKey, k) to io(sig, T)
end

(b) Initialization Response: If recv (pid , PublicKey, k′) on io(sig′, T) where T ∈ Tsig, and state = wait do:
state ← ok ; k ← k′ ; Sids ← {lastSid} ; send (lastSid , pid , PublicKey, k) to io(sig, T)

(c) Forward to FSIG: If recv (sid , pid , m) on io(Esig, sig) or io(T, sig) where T ∈ Tsig, state = ok, sid ∈ Sids,
and m 6= Corrupted? do:

m′ ←

(
(Sign, (sid , m′′)) if m = (Sign, m′′)

m otherwise ;

res ← res + p(|(sid , pid , m)|+ η) ; lastSid ← sid ; send (pid , m′) to io(Esig, sig
′) or io(T, sig′) (resp.)

(d) Forward from FSIG: If recv (pid , m) on io(sig′, T) where T ∈ Tsig, state = ok, and
|(lastSid , pid , m)| ≤ res do: res ← res − |(lastSid , pid , m)| ; send (lastSid , pid , m) to io(sig, T)

(e) Corruption Request: If recv (sid , pid , Corrupted?) on io(Esig, sig) where sid ∈ AllSids do:
send (pid , Corrupted?) to io(Esig, sig

′) ; wait for recv (pid , b) on io(sig′, Esig) ;
send (sid , pid , b) to io(sig, Esig)

If no rule above fires then produce no output.

Fig. 10. Joint state realization PJS
SIG = P JS

sig |P
JS
ver for digital signature schemes, the signer’s part P JS

sig .

22

Realization P JS
ver(Tver, p, q)

I/O-tapes: in: io(T, sig) for each T ∈ Tver, io(Ever, sig) (enriching),
io(sig′, T) for each T ∈ Tver, io(sig′, Ever) (consuming)

out: io(sig, T) for each T ∈ Tver, io(sig, Ever), io(T, sig′) for each T ∈ Tver, io(Ever, sig
′)

Initialization: pid , pid ′ ← ⊥ ; Sids ← ∅ ; AllSids ← ∅ ; lastSid ← ⊥ ; res ← 0 ; state ← init

CheckAddress: Upon first activation accept msgs of shape (sid , pid1, pid2, m) on all sig-tapes (i.e. on
io(T, sig), io(Ever, sig)). In mode Compute at first record the PIDs: pid ← pid1 and pid ′ ← pid2.
On later activations accept msgs of shape (sid , pid1, pid2, m) on all sig-tapes and of shape (pid1, pid2, m) on
all sig′-tapes where pid1 = pid and pid2 = pid ′.

Compute: Upon receiving a message check which case matches:

(a) Initialization: If recv (sid , pid , pid ′, Init) on io(T, sig) where T ∈ Tver, sid /∈ AllSids do:
AllSids ← AllSids ∪ {sid} ;
if state = error or |sid | > q(η) then

produce no output
else if state = wait then

state ← error ; produce no output
else if state = init then

state ← wait ; lastSid ← sid ; send (pid , pid ′, Init) to io(T, sig′)
else

Sids ← Sids ∪ {sid} ; send (sid , pid , pid ′, Inited) to io(sig, T)
end

(b) Initialization Response: If recv (pid , pid ′, Inited) on io(sig′, T) where T ∈ Tver, state = wait do:
state ← ok ; Sids ← {lastSid} ; send (lastSid , pid , pid ′, Inited) to io(sig, T)

(c) Forward to FSIG: If recv (sid , pid , pid ′, m) on io(Ever, sig) or io(T, sig) where T ∈ Tver, state = ok,
sid ∈ Sids , and m 6= Corrupted? do:
res ← res + p(|(sid , pid , pid ′, m)|+ η) ; lastSid ← sid ;

m′ ←

(
(Verify, (sid , m′′), σ, k) if m = (Verify, m′′, σ, k)

m otherwise ;

send (pid , pid ′, m′) to io(Ever, sig
′) or io(T, sig′) (resp.)

(d) Forward from FSIG: If recv m = (pid , pid ′, m′) on io(sig′, T) where T ∈ Tver, state = ok, and
|(lastSid , m)| ≤ res do: res ← res − |(lastSid , m)| ; send (lastSid , pid , pid ′, m′) to io(sig, T)

(e) Corruption Request: If recv (sid , pid , pid ′, Corrupted?) on io(Ever, sig) where sid ∈ AllSids do:
send (pid , pid ′, Corrupted?) to io(Ever, sig

′) ; wait for recv (pid , pid ′, b) on io(sig′, Ever) ;
send (sid , pid , pid ′, b) to io(sig, Ever)

If no rule above fires then produce no output.

Fig. 11. Joint state realization PJS
SIG = P JS

sig |P
JS
ver for digital signature schemes, the verifier’s part P JS

ver.

23

F ′
ver

sig′

EverEsig

sig′

F ′
sig

sig′Asig

Aver

sig

TverTsig

sig′

sigsig

Esig Tsig Tver Ever

P JS
sig P JS

ver

PJS
SIG

F ′
SIG

ver

Fig. 12. Graphical representation of the joint state implementation PJS
SIG = P JS

sig |P
JS
ver and its connection

to !F ′
SIG. See Figure 4 for a legend.

A problem is that whenever the ideal functionality FSIG(q) has to sign the message m, F ′
SIG(p) is

requested to sign (sid , m). By the definition of FSIG, FSIG(q) simulates s on input m at most q(|m|+ η)

steps while F ′
SIG(p) simulates s′ on input (sid , m) at most p(|(sid , m)|+ η) steps. A successful simulator

has to provide s(·) = s′((sid , ·)). Still, no matter what polynomial q is taken, an environment could
distinguish the ideal world from the joint state world (JS world) by providing very long SIDs and forc-
ing FSIG in the ideal world to abort the computation of s′ while FSIG in the JS world could complete
the computation of s. To overcome this problem, PJS

SIG restricts the length of SIDs to be polynomially
bounded by the security parameter η. We emphasize that this does not restrict the usability and ex-
pressiveness of PJS

SIG since no protocol, environment, or adversary that is polynomially bounded by η
could create exponentially many different sessions. A more complex definition of polynomial time, e.g.,
the formulation of reactive polynomial time [22], might solve the problem of long SIDs. However, as
discussed in Section 4.3, one cannot dispense with parameters altogether.

One technical problem is that of multiple initialization requests where a functionality has to wait for a
response from the environment/adversary. For example, if the environment sent an initialization request
in session sid but has not completed it yet, i.e. the environment/adversary has not yet sent the algorithms
and a public key, then, if the environment sends another initialization request in another session sid ′ for
the same party the question is how to deal with this situation. The joint state realization cannot further
process this request because it already waits for an answer from the functionality in the first request.
(Note that for both requests the same functionality is used in the joint state world). Conversely, the joint
state realization also cannot simply ignore this particular request by the environment because a simulator
could not reproduce this behavior. Therefore, we define the joint state realization PJS

PKE to enter and
stay in an error state in which any further messages (except for (Corrupted?) from the environment) are
ignored. In other words, the joint state realization stops any further activity. This is not a real limitation
as it only forces the environment/adversary to complete initialization requests at once, which in any
realistic implementation of the public-key functionality is done anyway because initialization requests
are answered immediately—a key pair is generated and the public key is returned right away.

A more detailed description of PJS
SIG is given next.

There will be one copy of P JS
sig = P JS

sig(Tsig, p, q) for each signer. We denote the copy of a party (with

PID) pid by P JS
sig [pid]. Additionally, there will be one copy of P JS

ver = P JS
ver(Tver, p, q) for each signer pid

and verifier pid ′ which we denote by P JS
ver[pid , pid ′].

A signer pid in session sid sends messages of shape (sid , pid , m) to the copy P JS
sig [pid]. A verifier pid ′

in session sid sends messages of shape (sid , pid , pid ′, m) to the copy P JS
ver[pid , pid ′] when he wants to

24

verify messages of party pid . No party other than pid will communicate with P JS
sig [pid], so it is like a

local procedure and we call party pid the owner of P JS
sig [pid]. Similarly, no party other than pid ′ will

communicate with P JS
ver[pid , pid ′] and party pid ′ is called the owner of P JS

ver[pid , pid ′].
A signer pid has to register in each session sid with P JS

sig [pid], i.e. send (sid , pid , Init). However, only the

first time P JS
sig [pid] creates a copy of F ′

sig by stripping off the SID and forwarding the message (pid , Init).

To refer to the created copy it is denoted by F ′
sig[pid]. The polynomial q is used to forbid sessions with

long SIDs (sid > q(η)). See Figure 10 (a) and (b). If the same signer pid sends a second initialization
request before the first one has been completed, P JS

sig [pid] will enter an error state and ignore all messages
send from the signer pid or from F ′

sig[pid] (except for (Corrupted?) from the environment).

Analogously, a verifier pid ′ registers with P JS
ver[pid , pid ′]. Here, only one copy of F ′

ver, denoted by

F ′
ver[pid , pid ′], is created. See Figure 11 (a) and (b).

After initialization, every message is forwarded by P JS
sig [pid] and P JS

ver[pid , pid ′] to the instances

F ′
sig[pid] and F ′

ver[pid , pid ′] (respectively) by stripping off the SID. A sign request (sid , pid , Sign, m)

is forwarded as (pid , Sign, (sid , m)). If a verification request (sid , pid , pid ′, Verify, m, σ, k) is received then
the message (pid , pid ′, Verify, (sid , m), σ, k) is forwarded.

Since the system has to be well-formed the tapes from F ′
SIG to PJS

SIG have to be consuming. Hence,

forwarding messages from F ′
SIG to a party can not be done arbitrarily. Therefore, PJS

SIG records the length

of the messages sent to F ′
SIG and only forwards polynomially many input from F ′

SIG. However, note that

by the definition of FSIG(p) every message that is output by FSIG(p) has at most length p(|m|+η) where
m is the input that FSIG(p) received before. Thus, when PJS

SIG(p, q) and F ′
SIG(p) are composed, PJS

SIG(p, q)

will always be able to forward messages from F ′
SIG(p).

Next, we state and prove the joint state theorem for digital signatures. Note that since in this
theorem, we quantify over all polynomials p, the theorem can be applied iteratively as described in
Section 3. Furthermore, the proof reveals that the theorem even holds for unbounded environments and
perfect indistinguishability, i.e., there exists a simulator S such that for all (unbounded) environments
E it holds Prob[E | PJS

SIG | !F
′
SIG(1η, a) 1] = Prob[E | S | !FSIG(1η, a) 1] for all η ∈ N, a ∈ {0, 1}∗.

Theorem 6. For all polynomials p and q and disjoint sets of names of tapes Tsig and Tver there is a
polynomial p′ such that

PJS
SIG(Tsig, Tver, p, q) | !F ′

SIG(Tsig, Tver, p) ≤SS !FSIG(Tsig, Tver, p
′)

where F ′
SIG is obtained from FSIG by renaming all tapes by replacing sig by sig′ in the tape name.

Proof. Below, we define a simulator S such that the joint state world (JS world), i.e. E | PJS
SIG | !F

′
SIG, is

perfectly indistinguishable from the ideal world, i.e. E | S | !FSIG, for every (unbounded) environment E .

When the environment presents algorithms s, v and a key k then the simulator S forwards ssid , vsid and
k. The definition of ssid and vsid (which is given below) will yield the definition of p′.

Let η ∈ N, sid be an SID with |sid | ≤ q(η) and s and v be descriptions of algorithms with |s| ≤ p(η)
and |v| ≤ p(η). Depending on η, sid , s, v and p, we define the algorithms ssid and vsid as follows:

– Algorithm ssid (m) computes σ ← s((sid , m)) and counts the steps needed. If these are at most
p(|(sid , m)|+ η) then return σ else enter an infinite loop.

– Algorithm vsid (m, σ, k) computes b ← v((sid , m), σ, k) and counts the steps needed. If these are at
most p(|(sid , m)|+ |σ|+ η) then return b else enter an infinite loop.

Since the length of the description of s and v and the length of sid is polynomially bounded by η,
the length of the description of ssid and vsid is polynomially bounded by η. Moreover, if the runtime of
s((sid , m)) and v((sid , m), σ, k) is bounded by p(|(sid , m)|+η) and p(|(sid , m)|+ |σ|+η) (resp.) then the
runtime of ssid (m) and vsid (m, σ, k′) (except when they enter an infinite loop) is polynomial in |m|+ η
and |m|+ |σ|+ η, respectively. Thus, we find a polynomial p′ such that

1. for all η ∈ N we have that if |s| ≤ p(η) and |v| ≤ p(η) then |ssid | ≤ p′(η) and |vsid | ≤ p′(η),
2. for all messages m and η ∈ N we have that the computation of s((sid , m)) exceeds p(|(sid , m)|+ η)

steps iff the computation of ssid (m) exceeds p′(|m|+ η) steps, and

25

3. for all messages m, signature strings σ, keys k and η ∈ N we have that the computation of
v((sid , m), σ, k) exceeds p(|(sid , m)| + |σ| + η) steps iff the computation of vsid (m, σ, k) exceeds
p′(|m|+ |σ|+ η) steps.

Let P = PJS
SIG(Tsig, Tver, p, q) | !F ′

SIG(Tsig, Tver, p) and F = !FSIG(Tsig, Tver, p′). We define a simulator

!S ∈ SimP
S

(F) such that P and !S |F are perfectly indistinguishable.
There will be one copy of S – namely S[pid] – for each PID pid of a signer. The copy S[pid] interacts

with copies of Fsig and Fver which are denoted by Fsig[sid , pid] and Fver[sid , pid , pid ′] (resp.) according

to their SID and PIDs.
Because of the initialization messages S[pid] has full information of which copies Fsig[sid , pid] and

Fver[sid , pid , pid ′] have been initialized.
Upon the first initialization message of Fsig[sid , pid] where sid is a short SID (i.e. sid ≤ q(η)), S[pid]

forwards it to the adversary and waits for receiving algorithms s and v and a key k. Then, S[pid]
provides the algorithms ssid and vsid and key k to all copies Fsig[sid , pid] that have been initialized
with a short SID sid . The algorithms ssid and vsid are defined as above. If S[pid] receives another
initialization message from Fsig[sid

′, pid] for some other sid ′ before it received algorithms and completed
initialization for the first SID sid then S[pid] enters the error state, i.e. sets variable state to error. From
then on, no messages are forwarded by S[pid] except for corrupt messages. In particular, if S[pid] is in
the error state then no instance Fsig[sid , pid] completes initialization, i.e. enters the state ok. No instance
Fsig[sid , pid] with a long SID sid (i.e. sid > q(η)) does complete initialization and is therefore “blocked”
throughout the rest of the computation. However, Fsig[sid , pid] will respond to corruption requests of the
environment (message (Corrupted?) from Esig). Since the joint state realization forwards the corruption
requests even for long SIDs, S[pid] needs to corrupt all copies Fsig[sid , pid] even the ones with a long
SID. But, S[pid] will not forward any further messages from the adversary to Fsig[sid , pid] and vice versa
once it is corrupted since this is exactly what happens with the joint state realization.

Upon corruption of the signer pid , S[pid] corrupts all (existing) copies Fsig[sid , pid] and from now
on, if Fsig[sid , pid] is initialized for a new SID sid , that copy is directly corrupted. Similarly, upon
corruption of a verifier pid ′ that verifies messages of a signer pid , S[pid] corrupts all (existing) copies
Fver[sid , pid , pid ′] and from now on, if Fver[sid , pid , pid ′] is initialized for a new SID sid , that copy is
directly corrupted.

Other messages from Fsig[sid , pid] or Fver[sid , pid , pid ′] to the adversary are forwarded by S[pid] by
stripping of the SID. If the message is a forwarded sign or verify request with a message m then it is
forwarded with the message (sid , m) instead of m. There is one difficulty with forwarding the response
of the adversary to a copy of Fsig or Fver. S[pid] has to know the SID. Therefore, S[pid] records the last

SID that was used when sending messages to the adversary.
A formal definition of the simulator

!S = SJS
SIG(p, q) = !SJS

sig(p, q) | !SJS
ver(q)

is given in Figure 13 and 14. A graphical representation of SJS
SIG and its connection to !FSIG is pictured

in Figure 15.
It remains to show that Prob[E | PJS

SIG(p, q) | !F ′
SIG(p)(1η, a) 1] = Prob[E | !S | !FSIG(p′)(1η, a)] for

every (unbounded) environment E .
At first consider the behavior upon initialization in the JS world compared to the ideal world. Note

that P JS
sig [pid] enters the error state, i.e. sets state to the value error, if and only if SJS

sig[pid] enters the

error state. From then on, all messages (except Corrupted? requests) send to P JS
sig [pid] are ignored and

P JS
sig [pid] produces no output. The same happens in the ideal world. No instance Fsig[sid , pid] has set

state to ok and will never do so because SJS
sig[pid] is in the error state and will never send Inited. Hence,

upon all messages Fsig[sid , pid] will either produce no output or send some message to SJS
sig[pid] which

then will produce no output because it is in the error state.
Now, consider Corrupted? requests. At first note that the variable AllSids in P JS

sig [pid] always contains

the same SIDs as the variable AllSids in SJS
sig[pid]. P JS

sig [pid] forwards all (sid , pid , Corrupted?) messages
with sid ∈ AllSids (even in the error state) whereon F ′

sig[pid] will reply with true or false depend-

ing on whether it is corrupted or not. This reply is again forwarded by P JS
sig [pid]. In the ideal world,

26

Simulator SJS
sig(p, q)

net-tapes: in: net(Asig, sig
′), net(sig, Asig), net(ver, sig) (enriching)

out: net(sig′, Asig), net(Asig, sig), net(sig, ver)

Initialization: pid , lastSid , s, v, k ← ⊥ ; state ← init ; nokey ← true ; corrupted ← false ;
Sids,AllSids,KeySids ← ∅

CheckAddress: Upon first activation accept messages of shape (sid , pid ′, m) on net(sig, Asig) and of shape
(pid ′, m) on net(Asig, sig

′). In mode Compute at first record the party : pid ← pid ′.
On later activations accept messages of shape (sid , pid ′, m) on net(sig, Asig) and of shape (pid ′, m) on
net(Asig, sig

′) where pid ′ = pid .
Compute: Upon receiving a message check which case matches:

(a) Initialization: If recv (sid , pid , Init) on net(sig, Asig) do: AllSids ← AllSids ∪ {sid} ;
if corrupted then

send (sid , pid , Corrupt) to net(Asig, sig) ; wait for recv (sid , pid , Corrupted) on net(sig, Asig)
end ;
if state = error or |sid | > q(η) then produce no output
else if state = wait then state ← error ; produce no output
else if state = init then

if nokey then KeySids ← KeySids ∪ {sid}
else send (sid , pid , AlgorithmsAndKey, ssid , vsid , k) to net(Asig, sig) a ;

wait for recv (sid , pid , Ack) on net(sig, Asig)
end ;
state ← wait ; lastSid ← sid ; send (pid , Init) to net(sig′, Asig)

else Sids ← Sids ∪ {sid} ; send (sid , pid , AlgorithmsAndKey, ssid , vsid , k) to net(Asig, sig) ;
wait for recv (sid , pid , Ack) on net(sig, Asig) ; send (sid , pid , Inited) to net(Asig, sig)

end
(b) Initialization Response: If recv (pid , Inited) on net(A′

sig, sig), state = wait, and not nokey do:
state ← ok ; send (lastSid , pid , Inited) to net(Asig, sig)

(c) Key Gen.: If recv (pid , AlgorithmsAndKey, e′, d′, k′) on net(A′
sig, sig), nokey , and |s′|, |v′|, |k′| ≤ p(η) do:

(s, v, k)← (s′, v′, k′) ; nokey ← false ;
for all sid ∈ KeySids do

send (sid , pid , AlgorithmsAndKey, ssid , vsid , k) to net(Asig, sig) ;
wait for recv (sid , pid , Ack) on net(sig, Asig)

end ;
send (pid , Ack) to net(sig′, Asig)

(d) Corruption: If recv (pid , Corrupt) on net(Asig, sig
′), state 6= init, and not corrupted do:

for all sid ∈ AllSids do
send (sid , pid , Corrupt) to net(Asig, sig) ; wait for recv (sid , pid , Corrupted) on net(sig, Asig)

end ;
corrupted ← true ; send (pid , Corrupted) to net(sig′, Asig)

(e) Forward to A: If recv (sid , pid , m) on net(sig, Asig), m 6= Init, state 6= error, and sid ∈ Sids do:

m′ ←

(
(Received, (Sign, (sid , m′′)), T) if m = (Received, (Sign, m′′), T)

m otherwise ;

lastSid ← sid ; send (pid , m′) to net(sig′, Asig)
(f) Forward from A: If recv (pid , Send, m, T) on net(Asig, sig

′), and state 6= error do:
send (lastSid , pid , Send, m, T) to net(Asig, sig)

(g) If recv (pid , pid ′, SendAlgAndKey, sid) on net(ver, sig) do:
if nokey then KeySids ← KeySids ∪ {sid}
else send (sid , pid , AlgorithmsAndKey, ssid , vsid , k) to net(Asig, sig) ;

wait for recv (sid , pid , Ack) on net(sig, Asig)
end ;
send (pid , pid ′, Ack) to net(sig, ver)

If no rule above fires then produce no output.

a where ssid and vsid are basically defined by ssid(m) : return s((sid , m)) and
vsid (m, σ, k′) : return v((sid , m), σ, k′) (see formal definitions in the proof of Theorem 6)

Fig. 13. Simulator SJS
SIG = !SJS

sig | !S
JS
ver for the proof of the joint state theorem for digital signatures, the

signer’s part SJS
sig.

27

Simulator SJS
ver(q)

net-tapes: in: net(Aver, sig
′), net(sig, Aver) (enriching), net(sig, ver) (consuming)

out: net(sig′, Aver), net(Aver, sig), net(ver, sig)

Initialization: pid , pid ′, lastSid ← ⊥ ; state ← init ; corrupted ← false ; Sids ← ∅ ; AllSids ← ∅
CheckAddress: Upon first activation accept messages of shape (sid , pid1, pid2, m) on net(sig, Aver) and of

shape (pid1, pid2, m) on net(Aver, sig
′). In mode Compute at first record PIDs: pid ← pid1, pid ′ ← pid2.

On later activations accept messages of shape (sid , pid1, pid2, m) on net(sig, Aver) and of shape
(pid1, pid2, m) on net(Aver, sig

′) where pid1 = pid , pid2 = pid ′.
Compute: Upon receiving a message check which case matches:

(a) Initialization: If recv (sid , pid , pid ′, Init) on net(sig, Aver) do: AllSids ← AllSids ∪ {sid} ;
if corrupted then

send (sid , pid , pid ′, Corrupt) to net(Aver, sig) ; wait for recv (sid , pid , pid ′, Corrupted) on net(sig, Aver)
end ;
if state = error or |sid | > q(η) then produce no output
else if state = wait then state ← error ; produce no output
else if state = init then

send (pid , pid ′, SendAlgAndKey, sid) to net(ver, sig) ; wait for recv (pid , pid ′, Ack) on net(sig, ver) ;
state ← wait ; lastSid ← sid ; send (pid , Init) to net(sig′, Aver)

else send (pid , pid ′, SendAlgAndKey, sid) to net(ver, sig) ; wait for recv (pid , pid ′, Ack) on net(sig, ver) ;
Sids ← Sids ∪ {sid} ; send (sid , pid , pid ′, Inited) to net(Aver, sig)

end
(b) Initialization Response: If recv (pid , pid ′, Inited) on net(A′

ver, sig), and state = wait do:
state ← ok ; send (lastSid , pid , pid ′, Inited) to net(Aver, sig)

(c) Corruption: If recv (pid , pid ′, Corrupt) on net(Aver, sig
′), state 6= init, and not corrupted do:

for all sid ∈ AllSids do
send (sid , pid , pid ′, Corrupt) to net(Aver, sig) ; wait for recv (sid , pid , pid ′, Corrupted) on net(sig, Aver)

end ;
corrupted ← true ; send (pid , pid ′, Corrupted) to net(sig′, Aver)

(d) Forward to A: If recv (sid , pid , pid ′, m) on net(sig, Aver), m 6= Init, state 6= error, and sid ∈ Sids do:

m′ ←

(
(Received, (Verify, (sid , m′′), σ, k′), T) if m = (Received, (Verify, m′′, σ, k′), T)

m otherwise ;

lastSid ← sid ; send (pid , pid ′, m′) to net(sig′, Aver)
(e) Forward from A: If recv (pid , pid ′, Send, m, T) on net(Aver, sig

′), and state 6= error do:
send (lastSid , pid , pid ′, Send, m, T) to net(Aver, sig)

If no rule above fires then produce no output.

Fig. 14. Simulator SJS
SIG = !SJS

sig | !S
JS
ver for the proof of the joint state theorem for digital signatures, the

verifier’s part SJS
ver.

Fver

sig

EverEsig

sig

Fsig

sigsigAsig

Aver

TverTsig

sig

SJS
sig

SJS
ver

Aver

Asig sig′

sig′

SJS
SIG

FSIG

ver

Fig. 15. Graphical representation of the simulator SJS
SIG = !SJS

sig | !S
JS
ver for !FSIG = !Fsig | !Fver. See Fig-

ure 4 for a legend.

28

(sid , pid , Corrupted?) is ignored by Fsig[sid , pid] if no prior Init message was sent to Fsig[sid , pid] but
this means that sid /∈ AllSids of SJS

sig[pid]. In the JS world F ′
sig[pid] is corrupted iff for all sid ∈ AllSids

Fsig[sid , pid] is corrupted. Thus, the behavior upon corruption and Corrupted? requests is the same in
both worlds.

Similarly, one can show that the behavior of P JS
ver[pid , pid ′] and F ′

ver[pid , pid ′] does not differ from the
behavior of Fver[sid , pid , pid ′] and SJS

ver[pid , pid ′] upon initialization, corruption and Corrupted? requests.
By definition, SJS

sig[pid] accepts s, v, k iff F ′
sig[pid] in the JS world accepts s, v, k. Upon key generation,

in the JS world the F ′
sig[pid] accepts the algorithms s, v and key k if only if |s| ≤ p(η), |v| ≤ p(η)

and |k| ≤ p(η). By the definition of p′ we have that if SJS
sig[pid] accepts s, v, k then Fsig[sid , pid] accepts

ssid , vsid , k. Therefore, upon key generation, there is exactly the same behavior in the JS world and the
ideal world.

We conclude that there is no difference between the JS world and the ideal world according to the
behavior of initialization, corruption and key generation.

Upon signature generation in session sid , in the joint state world F ′
sig[pid] computes σ ← s((sid , m))

with at most p(|(sid , m)|+ η) steps while in the ideal world Fsig[sid , pid] computes σ ← ssid (m) with at
most p′(|m|+ η) steps. By the definition of p′ and ssid , the distribution of the output σ in the JS world
is equal to the distribution of the output σ in the ideal world. The same argumentation holds for the
computation of v and vsid , respectively. Thus, the output upon signature generation in the JS world is
indistinguishable from the one in the ideal world.

The same holds true upon verification of (m, σ, k′) in session sid , because there is a σ such that
((sid , m), σ) ∈ Hpid iff there is a σ such that (m, σ) ∈ Hsid ,pid where Hpid is the H in the copy F ′

sig[pid]
in the JS world and Hsid ,pid is the H in the copy Fsig[sid , pid] in the ideal world. ⊓⊔

5.4 Comparison with other Formulations

We now compare our formulation of the digital signature functionality to other formulations in the
literature.

As mentioned in the introduction, most other formulations of digital signature functionalities are
defined in a non-local way [5, 14, 13, 1], i.e., all signatures are provided by the adversary, with the
mentioned disadvantages. The only formulations with local computation in the literature, besides the
one in the present paper, are the ones in [7] and [2].

The digital signature functionality in [2] is part of a Dolev-Yao style cryptographic library. A user
does not obtain the actual signature but only a handle to this signature within the library. By this, the
use of the signature is restricted for the user to the operations provided in the cryptographic library. The
implementation for the digital signature functionality within the library does not use a standard EU-
CMA secure digital signature scheme, but requires a specific stronger construction. Joint state realizations
have not been considered. In fact, the library is expressed within the BPW model [27, 3] which does not
explicitly talk about copies of protocols/functionalities.

One problem of the formulation in [7] is that it does not seem to have any reasonable joint state
realization, unlike claimed in [7] without providing a joint state realization or a proof: The signature
functionality in [7] uses only the signing and verification algorithms s and v, but no key k. It is argued that
the key is incorporated in the algorithm v. Thus, to verify a message-signature pair (m, σ) a verification
algorithm v′ has to be presented and in the functionality it is then checked if v′ = v. If v′ 6= v, the
algorithm v′ is run on (m, σ), and the result of this algorithm is returned. However, as argued next,
failing to make the distinction between the verification algorithm and the verification key prevents to
obtain joint state realizations following the “concatenate and sign” approach or any approach that
somehow manipulates the signed messages in an observable way.

An environment E that distinguishes a joint state realization from the multi-session, multi-party
version of the digital signature functionality in the ideal world works as follows: It sends an initialization
message to some copy of the digital signature functionality and provides some algorithms s and v. It
then requests to verify the message-signature pair (m, σ), where m is not of the form (sid , m′), with
the verification algorithm v′ where v′ 6= v is defined as follows: v′(m, σ) outputs 1 if the message m is
of shape (sid , m′), it outputs 0 otherwise. If E obtains (Verified, 1), it outputs 1, and 0 otherwise. It is
easy to see that if E communicates with the joint state realization it will always output 1 since this
realization forwards (sid , m) to the digital signature functionality. Since v′ 6= v, the functionality will
call v′((sid , m), σ) and so 1 is returned. On the other hand, in the ideal world where E communicates

29

directly with a copy of the digital signature functionality, E will always output 0 since this copy runs
v′(m, σ).

We note that for non-local formulations of digital signature functionalities, the above problem does
not occur.

Another problem in Canetti’s formulation of the digital signature functionality in [7] is that the signing
algorithm s is allowed to preserve some state, i.e. the signature values may depend on the messages
signed so far, while in our formulation s is stateless. It is easy to prove that with a stateful s, joint state
realizations, such as “concatenate and sign” or similar approaches, fail, depending on the kind of state
that is used. The problem is that the signing algorithms in the real and the ideal world will have different
states, and that this cannot be prevented by the simulator. If states of signing algorithms are predictable
and observable to some extent, then an environment can easily distinguish between the real and the
ideal world. Note that Canetti’s joint state realization is based on his ideal digital signature functionality
and this functionality accepts any signature and verification algorithms from the environment/simulator.
Hence, one in particular has to deal with the described “problematic” algorithms, which, however, is not
possible. An alternative would be to restrict the kind of stateful signing algorithms that may be provided
by the environment/simulator. This class would have to be carefully defined in order to fulfill certain
closure properties to be useful in the context of joint state realizations. In any case, it would have to
exclude several existing stateful signature schemes as they are problematic in the sense described. Also,
the analysis of complex protocols based on functionalities which are parameterized by certain classes of
signing/verification algorithms would be more complex.

Another difference of our formulation of the digital signature functionality compared to other formula-
tions is that in our formulation we model the following realistic scenario: It is possible for a verifier, some
party V , to request the functionality that belongs to some other party, say S, to verify a message-signature
pair although no key generation request by party S has been sent yet. As illustrated in Section 5.2, this
is a natural property that real signature schemes have. (Note that the verifier V has to provide the veri-
fication key when invoking the functionality. In particular, V can invoke this functionality even before S
generated a key.) The realizations presented in [7, 5, 1, 14, 13] are not very precise on that point. They
assume that verification is not possible until the signer has generated its keys.

While we define corruption very thoroughly, other formulations of signature functionalities lack to
do so. But when it comes to joint state realizations, this is crucial. For example, if corruption reveals
the order of the messages that have been signed so far, then the environment is able to distinguish the
joint state world from the ideal world because the simulator has no chance to determine the order in
which messages of different sessions where signed in the ideal world. If the messages are revealed in
random order or in some order that is independent from the moment of activation, e.g. in lexicographical
order, the joint state theorem for digital signatures still holds because the simulator is able to obtain
the messages from each copy of the digital signature functionality and can combine them such that they
respect the expected ordering.

6 Public-Key Encryption

In this section, we present our ideal public-key encryption functionality FPKE with local-computation
(Section 6.1), show equivalence to CCA-security (Section 6.2), and provide a joint state implementation
6.3. A comparison with other formulations of public-key encryption is given in Section 6.4.

6.1 Ideal Public-Key Encryption Functionality

We present our ideal functionality FPKE for public-key encryption with local computation. This func-
tionality is in the spirit of the one proposed by Canetti in [7] in that other than providing an encryption
and decryption algorithm as well as a public-key (Canetti does not distinguish between a public key
and the encryption algorithm), the simulator is not involved in the execution of the functionality. In
particular, all ciphertexts and decryptions are performed locally within the functionality. However, our
formulation differs in essential ways from the one by Canetti, e.g., Canetti’s formulation is not suitable
for joint state realizations (see Section 6.4).

We define the encryption functionality in a general setting that allows the encryption to leak infor-
mation of the plaintext as specified by a leakage algorithm.

30

Definition 3. A family of probabilistic polynomial time (PPT) algorithms (Lη)η∈N which take as input a
bit string and return a bit string or the special error symbol ⊥ is called a family of (probabilistic) leakage
algorithms (or simply leakage). We require that for all η ∈ N if Prob[Lη(x) = ⊥] > 0 then Prob[Lη(x) =
⊥] = 1 for all x ∈ {0, 1}∗. The set of bit strings dom(Lη) = {x ∈ {0, 1}∗ | Prob[Lη(x) = ⊥] = 0} is
called the domain of Lη for security parameter η ∈ N.

Often, it is required or one wants to guarantee that encryption does not leak more than the length of
the plaintext, e.g., [28, 18]. This special case is modeled by an appropriate family of leakage algorithms
which leaks the length of a plaintext, e.g. one of the following four families of leakage algorithms (i)
(L0)η∈N with {L0(x) : return 0|x|}, (ii) (L0

η)η∈N with {L0
η(x) : if |x| < η then return ⊥ else return

0|x|}, (iii) (L|·|)η∈N with {L|·|(x) : return r←R{0, 1}|x|}, or (iv) (L
|·|
η)η∈N with {L

|·|
η (x) : if |x| < η then

return ⊥ else return r←R{0, 1}|x|}. The domain of L0
η and L

|·|
η is

⋃
n≥η{0, 1}n and the domain of L0

and Lη is {0, 1}∗. The amount of information leaked by (L0)η∈N, (L0
η)η∈N, (L|·|)η∈N, and (L

|·|
η)η∈N is the

same, namely the length of the message, but (L
|·|
η)η∈N has another property which we call high entropy

and is defined next. Families of leakage algorithms with high entropy have advantages when the ideal
functionality is used for reasoning about security properties of protocols (see below, where we summarize
properties of FPKE) and are needed for realizing replayable public-key encryption (see Section 7).

Definition 4. A family of leakage algorithms (Lη)η∈N has high entropy if Prob[x′ ← Lη(x), y′ ← Lη(y) :
x′ = y′ 6= ⊥] is negligible (as a function in η) for all x, y ∈ {0, 1}∗.

Most often we consider length preserving families of leakage algorithms which have the property

that Prob[|Lη(x)| = |x|] = 1 for all η ∈ N and all x ∈ dom(Lη). For example, (L
|·|
η)η∈N as defined

above is length preserving and has high-entropy while (L0)η∈N, (L0
η)η∈N, and (L|·|)η∈N are only length

preserving but do not have high-entropy. The leakage (L|·|)η∈N does not have high-entropy because there
are collisions with non-negligible probability for short messages.

Let (Lη)η∈N and (L′
η)η∈N be families of leakage algorithms. We say that (L′

η)η∈N leaks at least as
much as (Lη)η∈N, denoted (Lη)η∈N ≤ (L′

η)η∈N, if they have the same domain, i.e. dom(Lη) = dom(L′
η)

for all η ∈ N, and it is possible to compute (in polynomial time) Lη(x) from L′
η(x), i.e. if there exists

a family of probabilistic polynomial time algorithms (Tη)η∈N such that the distribution of Tη(L′
η(x))

equals the distribution of Lη(x) for all η ∈ N and x ∈ dom(Lη). For example, it is easy to see that

(L0)η∈N ≤ (L|·|)η∈N, (L|·|)η∈N ≤ (L0)η∈N, (L0
η)η∈N ≤ (L

|·|
η)η∈N, and (L

|·|
η)η∈N ≤ (L0

η)η∈N.
In many technical matters the formulation of FPKE is similar to FSIG. We also refer to the conventions

given in Section 4.
The functionality FPKE with leakage (Lη)η∈N is defined by the composition of two IITMs

FPKE((Lη)η∈N, Tdec, Tenc, p) = Fdec((Lη)η∈N, Tdec, Tenc, p) | !Fenc(Tenc)

where Fdec and Fenc represent the decryptor’s and encryptor’s part, respectively.
The IITM Fenc = Fenc(Tenc), as defined in Figure 17, is parameterized by a set of names of tapes Tenc

which specifies the tapes that are used by parties which want to connect to Fenc to encrypt messages.
Note that one tape might be used by an unbounded number of entities. The party version of Fenc is
used in FPKE to model that every encryptor has its own local procedure which she can query to encrypt
messages. Upon initialization, i.e. when the encryptor sends an init message, a message is sent to the
IITM Fdec to guarantee that an instance of it is created. This instance will later be used by Fenc upon
receiving an encryption request (see below). Then, the initialization request is forwarded to the adversary
who is supposed to answer it whereon the control is given back to the encryptor.

The actual functionality of Fenc, i.e. to encrypt a message, is left to Fdec. Upon an encryption request,
the request is forwarded to Fdec (see Figure 17 (c)). The purpose of Fenc is only to handle initialization
and corruption in a more uniform and simpler way.

The IITM Fdec = Fdec((Lη)η∈N, Tdec, Tenc, p), as defined in Figure 16, is parameterized by the family
of leakage functions (Lη)η∈N which defines the leakage and the domain of plaintexts, two disjoint sets of
names of tapes Tdec and Tenc which are used by the decryptor or the encryptors (resp.) to connect to
Fdec and by a polynomial p which is used to bound the simulation time of the algorithms provided by
the environment (see below).

31

Functionality Fdec((Lη)η∈N, Tdec, Tenc, p)

I/O-tapes: in: io(T, pke) for each T ∈ Tdec, io(Edec, pke), io(enc, dec) (enriching)
out: io(pke, T) for each T ∈ Tdec ∪ Tenc, io(pke, Edec), io(dec, enc)

net-tapes: in: net(Adec, pke) (consuming) out: net(pke, Adec)

Initialization: e, d, k ← ⊥ ; H ← ∅ ; state ← init ; nokey ← true ; corrupted ← false

CheckAddress: Accept all messages on all tapes
Compute: Upon receiving a message check which case matches:

(a) Initialization: If recv (Init) from T ∈ Tdec, and state = init do: state ← (wait, T) ; send (Init) to Adec

(b) Initialization Response: If recv (Inited) from Adec, not nokey , and state = (wait, T) do:
state ← ok ; send (PublicKey, k) to T

(c) Wake up: If recv (pid , WakeUpFromEnc) from enc do: send (pid , Ack) to enc
(d) Key Generation: If recv (AlgorithmsAndKey, e′, d′, k′) from Adec, nokey , and |e′|, |d′|, |k′| ≤ p(η) do:

(e, d, k)← (e′, d′, k′) ; nokey ← false ; send (Ack) to Adec

(e) Decryption: If recv (Decrypt, c) from T ∈ Tdec, state = ok, and not corrupted do:

m←

8
><
>:

⊥ if ∃m′, m′′ : m′ 6= m′′, (m′, c) ∈ H, (m′′, c) ∈ H

m′ if ∃!m′ : (m′, c) ∈ H

sim-detp(|c|+η) d(c) otherwise ;

send (Plaintext, m) to T
(f) Encryption: If recv (pid , Encrypt, k′, m, T) from enc where T ∈ Tenc, and not nokey do:

if m /∈ dom(Lη) then c← ⊥
else if k 6= k′ or corrupted then c← simp(|m|+η)e(k

′, m)
else m′ ← Lη(m) ; c← simp(|m′|+η) e(k, m′) ; m′′ ← sim-detp(|c|+η) d(c) ; if m′ 6= m′′ then c← ⊥ end ;

if c 6= ⊥ then H ← H ∪ {(m, c)} end
end ;
send (pid , Ciphertext, c) to T

(g) Corruption: Corr(corrupted , true, state 6= init, ε, Adec, Tdec, Edec) (See Figure 1 for definition of Corr)
If no rule above fires then produce no output.

Fig. 16. Ideal public-key encryption functionality FPKE = Fdec | !Fenc, the decryptor’s part Fdec.

Functionality Fenc(Tenc)

I/O-tapes: in: io(T, pke) for each T ∈ Tenc, io(Eenc, pke) (enriching), io(dec, enc) (consuming)
out: io(pke, T) for each T ∈ Tenc, io(pke, Eenc), io(enc, dec)

net-tapes: in: net(Aenc, pke) (consuming) out: net(pke, Aenc)

Initialization: state ← init ; corrupted ← false

CheckAddress: Accept all messages on all tapes
Compute: Upon receiving a message check which case matches:

(a) Initialization: If recv (Init) from T ∈ Tenc, and state = init do:
send (WakeUpFromEnc) to dec ; wait for recv (Ack) from dec, state ← (wait, T) ; send (Init) to Aenc

(b) Initialization Response: If recv (Inited) from Aenc, and state = (wait, T) do: state ← ok; send (Inited) to T
(c) Encryption: If recv (Encrypt, k′, m) from T ∈ Tenc, state = ok, and not corrupted do:

send (Encrypt, k′, m, T) to dec
(d) Corruption: Corr(corrupted , true, state 6= init, ε, Aenc, Tenc, Eenc) (See Figure 1 for definition of Corr)

If no rule above fires then produce no output.

Fig. 17. Ideal public-key encryption functionality FPKE = Fdec | !Fenc, the encryptor’s part Fenc.

32

The environment provides algorithms e and d for encryption and decryption of messages and a public
key k, see Figure 16 (d). Upon initialization the public key k is sent to the decryptor.

The polynomial p is used to bound the size of d, e and k and the runtime of d and e as described in
Section 4.3. Note that the polynomial does not limit the power of the adversary since upon corruption, the
adversary is not anymore restricted to the polynomial. Also, every potential encryption or decryption
algorithm has polynomial runtime. Therefore, it is possible to choose a polynomial such that FPKE

executes the algorithms as expected.
If a party sends an encryption request of a message m with key k′ to Fenc then this request is

forwarded to Fdec. If m /∈ dom(Lη) then an error is returned. Note that it can be checked in polynomial
time whether m ∈ dom(Lη) because Lη is a polynomial time algorithm. If the decryptor is not corrupted
and the encryptor provides the correct key, i.e. k = k′, then Fdec computes the formal ciphertext string
c by computing e(k, m′) where m′ is computed as Lη(m) and then verifies that it decrypts properly by
checking d(c) = m′. If it does, Fdec records the pair (m, c) and outputs c to the encryptor. Otherwise, the
error symbol ⊥ is sent to the encryptor. The test d(c) = m′ is missing in Canetti’s FPKE [7] but is crucial
for the joint state theorem as we point out in Section 6.3. It captures the fact that the ciphertext c does
not only contain not more than m′ but exactly as much information. Since every encryption scheme has
to guarantee correct decryption, this is an assumption satisfied for all realistic encryption schemes. If the
decryptor is corrupted or the encryptor provides a wrong key, i.e. k 6= k′, Fdec computes c ← e(k′, m)
and sends c to the encryptor. See Figure 16 (f) and Figure 17 (c).

The owner of Fdec, i.e. the decryptor, can decrypt ciphertexts by sending (Decrypt, c) to Fdec as soon
as he has registered and algorithms are provided. If (m, c) and (m′, c) is recorded for plaintexts m 6= m′,
the decryption of c is ambiguous and the error symbol ⊥ is returned to the decryptor. If there is exactly
one recorded pair (m, c) for some plaintext m, Fdec returns the plaintext m to the decryptor. Otherwise,
the decryption algorithm d is executed on c and the result m is sent to the decryptor. See Figure 16 (e).

The external tapes of FPKE and the connection between Fdec and Fenc are pictured in Figure 18.

Fenc

pke

EencEdec

pke

Fdec

decpkeAdec

Aenc

TencTdec

pke
enc

enriching
consuming

I/O tape
network tape

Name of A B is io(A, B)
Name of A B is net(A, B)

Legend:

Fig. 18. Graphical representation of the ideal functionality for public-key encryption FPKE = Fdec | !Fenc.

Next, we summarize some properties of FPKE to show that it specifies an ideal public-key encryption
functionality:

– Since the adversary provides the algorithms d and e, no requirements are imposed on these algo-
rithms. When realizing the functionality by a particular encryption scheme, this mechanism allows
the simulator to choose e, d, and k at its convenience.

– Assuming that the decryptor is not corrupted, and an encryptor encrypts a message m with the
correct encryption key k then:
FPKE guarantees correct decryption, i.e. if a message was encrypted, the decryptor is able to decrypt
the ciphertext c (if it is not ambiguous), because upon encryption the pair (m, c) was recorded.
FPKE guarantees security. Since the generated ciphertext c only depends on Lη(m) and not on m,
the adversary is not able to learn more from c than Lη(m).

– The decryption process is consistent. If a decryptor obtained the plaintext m from FPKE upon a
decryption request of a ciphertext c then every later decryption request of c will result in the same
plaintext m or an error message (as long as the decryptor is not corrupted).

33

– If the decryptor is corrupted then no security is guaranteed because the ciphertext might depend on
the plaintext. For example, the adversary could provide the identity function as algorithms e and d.

– If the encryptor provides a wrong key k′ 6= k then no security is guaranteed as if the decryptor
is corrupted. This models the fact that the public key is a priori not bound to the identity of the
decryptor and no assumptions are made on how the public key is distributed.

– If the functionality is used with a leakage that has high entropy, then it guarantees that unknown
ciphertext cannot be guessed. Let us explain: Assume that, e.g., due to nested encryption, a ciphertext
c was generated by FPKE and that c is not known to the adversary because it was never output to
the adversary. If the leakage has high entropy, the following is easy to see: The adversary has only
negligible guessing probability for all ciphertexts that are stored in H in FPKE and which are formally
unknown to the adversary. The proof idea is to exploit that the ciphertext has to contain as much
information as Lη(m), because of the decryption test during encryption. Since the leakage has high
entropy, Lη(m) is sufficiently random and can be guessed only with negligible probability.

It can be shown that a realization of FPKE is impossible if the decryptor is adaptive corruptible [26].
However, our formulation of FPKE allows for adaptive corruption of the decryptor. This is not a problem
but a generalization, as the simulator is able to block corruption requests and therefore “protects” FPKE

from being corrupted adaptively.
Note that we allow for independent corruption of the decryptor and the encryptors.

6.2 Implementation by a CCA-Secure Encryption Scheme

In this section, it is shown that the ideal public-key encryption functionality FPKE that leaks the length
of a message is realized by a public-key encryption scheme if and only if the encryption scheme is secure
with respect to adaptive chosen-ciphertext attacks (CCA-secure) as defined below.

In terms of [4] a public-key encryption scheme Σ = (gen, enc, dec) consists of two probabilistic poly-
nomial time algorithms gen, enc and a deterministic polynomial time algorithm dec. Where the key
generation algorithm gen takes 1η as an input (where η is the security parameter) and outputs a pair
of keys (kd, ke), the secret (or decryption) key kd and the public (or encryption) key ke. The encryption
algorithm enc expects a public key ke and a message m ∈ {0, 1}∗ as input and produces a ciphertext
c = enc(ke, m). Upon input of a private key kd and a ciphertext c the decryption algorithm dec outputs a
plaintext m ∈ {0, 1}∗ or the special symbol ⊥ to indicate that c was invalid. It is required that decryption
is correct, i.e. dec(kd, enc(ke, m)) = m for all m ∈ {0, 1}∗ and all (kd, ke) generated by gen.

Our notion of CCA-secure is defined as indistinguishability of encryptions with respect to adaptive
chosen-ciphertext attacks (IND-CCA2) as in [4] and is the notion of [28]. IND-CCA2 implies every other
security notion discussed in [4] and is equivalent to non-malleability with respect to adaptive chosen-
ciphertext attacks (NM-CCA2) which is the notion of [18]. Next, the definition of IND-CCA2 is restated.

An adversary A is a pair of probabilistic polynomial time algorithms A = (A1, A2). Algorithm A1

is run on the public key ke and 1η as input (where η is the security parameter) and outputs a triple
(x0, x1, s) where x0 ∈ {0, 1}∗ and x1 ∈ {0, 1}∗ have to be of the same length. The string s ∈ {0, 1}∗

can be used by A1 to pass information to A2. Algorithm A2 is run on input x0 ∈ {0, 1}∗, x1 ∈ {0, 1}∗,

s ∈ {0, 1}∗, c ∈ {0, 1}∗, and 1η and outputs a bit b′ ∈ {0, 1}. By A
O(·)
1 and A

O(·)
2 we denote that A1 and

A2 (resp.) have access to the decryption oracle O(·).
Let A = (A1, A2) be an adversary and b ∈ {0, 1}. The corresponding experiment is an algorithm TA,Σ

that runs on input b ∈ {0, 1} and η ∈ N.

TA,Σ(b, η) : (kd, ke)← gen(1η); (x0, x1, s)← A
dec(kd,·)
1 (ke, 1

η);

c∗ ← enc(ke, xb); b′ ← A
dec(c∗,kd,·)
2 (x0, x1, s, c

∗, 1η); return b′;

where dec is defined as follows:

dec(c∗, kd, c) : if c = c∗ then return test else return dec(kd, c);

where the message test is never returned by dec.
The advantage of an adversary A = (A1, A2) regarding the public-key encryption scheme Σ is defined

by
Adv(A, Σ, η) = |Prob[TA,Σ(1, η) = 1]− Prob[TA,Σ(0, η) = 1]| .

34

Definition 5 (CCA-secure; [4]). A public-key encryption scheme Σ is called secure against adaptive
chosen-ciphertext attacks (CCA-secure) if for all adversaries the advantage Adv(A, Σ, η) is negligible as
a function in η.

Given a public-key encryption scheme Σ = (gen, enc, dec), the protocol system PPKE(Σ) (as defined
below) models the encryption scheme as a protocol system with non-adaptive corruption behavior of the
decryptor and adaptive corruption behavior of the encryptors.

Let Tdec and Tenc be two disjoint sets of names of tapes. Let (Dη)η∈N be a family of domains where
for every x ∈ {0, 1}∗ it is possible to verify in polynomial time (in η) whether x ∈ Dη for all η ∈ N. We
define

PPKE(Σ, (Dη)η∈N, Tdec, Tenc) = Pdec(gen, dec, Tdec) | !Penc(enc, (Dη)η∈N, Tenc)

where Pdec and Penc are specified in Figure 19 and 20. A graphical representation of PPKE and the
connection between Pdec and !Penc is pictured in Figure 21. The communication between Pdec and Penc

via tapes io(dec, enc) and io(enc, dec) is only used to model non-adaptive corruption behavior (see below
for more details).

Realization Pdec(gen, dec, Tdec)

I/O-tapes: in: io(T, pke) for each T ∈ Tdec, io(Edec, pke), io(enc, dec) (enriching)
out: io(pke, T) for each T ∈ Tdec, io(pke, Edec), io(dec, enc)

net-tapes: in: net(A′
dec, pke) (consuming) out: net(pke, A′

dec)

Initialization: state ← init ; kd, ke ← ⊥ ; corrupted ← false ; corruptible ← true

CheckAddress: Accept all messages on all tapes
Compute: Upon receiving a message check which case matches:

(a) Initialization: If recv (Init) from T ∈ Tdec, and state = init do:
(kd, ke)← gen(1η) ; state ← ok ; send (PublicKey, ke) to T

(b) Decryption: If recv (Decrypt, c) from T ∈ Tdec, state = ok, and not corrupted do:
m← dec(kd, c) ; send (Plaintext, m) to T

(c) Block Corruption: If recv (pid , BlockCorruption) from enc do: corruptible ← false ; send (pid , Ack) to enc
(d) Corruption: Corr(corrupted , corruptible , state 6= init, (kd, ke), A

′
dec, Tdec, Edec) (See Figure 1)

If no rule above fires then produce no output.

Fig. 19. Realization of a public-key encryption scheme PPKE = Pdec | !Penc, the decryptor’s part Pdec.

Realization Penc(enc, (Dη)η∈N, Tenc)

I/O-tapes: in: io(T, pke) for each T ∈ Tenc, io(Eenc, pke) (enriching), io(dec, enc) (consuming)
out: io(pke, T) for each T ∈ Tenc, io(pke, Eenc), io(enc, dec)

net-tapes: in: net(A′
enc, pke) (consuming) out: net(pke, A′

enc)

Initialization: state ← init ; corrupted ← false

CheckAddress: Accept all messages on all tapes
Compute: Upon receiving a message check which case matches:

(a) Initialization: If recv (Init) from T ∈ Tenc, and state = init do:
state ← ok ; send (BlockCorruption) to dec ; wait for recv (Ack) from dec ; send (Inited) to T

(b) Encryption: If recv (Encrypt, k, m) from T ∈ Tenc, state = ok, and not corrupted do:
if m ∈ Dη then c← enc(k, m) else c← ⊥ end ; send (Ciphertext, c) to T

(c) Corruption: Corr(corrupted , true, state 6= init, ε, A′
enc, Tenc, Eenc) (See Figure 1 for definition of Corr)

If no rule above fires then produce no output.

Fig. 20. Realization of a public-key encryption scheme PPKE = Pdec | !Penc, the encryptor’s part Penc.

35

Penc

pke

EencEdec

Pdec

decpkeA′

dec

A′

enc

pke

TencTdec

pke
enc

Fig. 21. Graphical representation of the public-key encryption implementation PPKE = Pdec | !Penc. See
Figure 18 for a legend.

The IITM Pdec = Pdec(gen, dec, Tdec) belongs to the decryptor. Upon initialization, a private key
kd and a public key ke are generated with the key generation algorithm gen. The IITM Pdec has non-
adaptive corruption behavior, i.e. the decryptor is non-adaptive corruptible which means in this case
that it accepts corruption requests until an encryptor has initialized its instance of Penc. This is modeled
by setting corruptible to false once Penc received (Init), see Figure 19 (d) and 20 (a). Upon corruption,
Pdec reveals the private key kd and the public key ke to the adversary.

When the decryptor requests to decrypt a ciphertext c, Pdec computes the plaintext m with the
decryption algorithm dec(kd, c) and returns m to the decryptor.

Each instance of Penc = Penc(enc, Tenc) belongs to an encryptor. We denote the instance of party with
party identifier (PID) pid by Penc[pid]. Registration requests are directly answered positively. When the
encryptor pid requests to encrypt a message m with key k, Penc[pid] computes the ciphertext c with the
encryption algorithm c ← enc(k, m) and returns c to the encryptor pid . If m is not in the domain of
plaintexts, i.e. m /∈ Dη (which can be checked in polynomial time by assumption) then an error message
is returned instead. In contrast to Pdec, Penc has adaptive corruption behavior.

Next, we show that a public-key encryption scheme Σ realizes the ideal functionality FPKE((L
|·|
η)η∈N)

which does not leak more than the length of the plaintext if and only if Σ is CCA-secure (see Corollary
2). We split the proposition into two parts, Theorem 7 and Lemma 1, to obtain more general results for

the case where the leakage is not (L
|·|
η)η∈N.

A public-key encryption scheme Σ = (gen, enc, dec) is called p-bounded if the runtime of gen(1η),
dec(kd, c) and enc(ke, m) is bounded by p(η), p(|c|+η) and p(|m|+η) (resp.) for every η, m, c, kd and ke

and if the length of the description of gen, dec and enc is bounded by p(η). Note that for each encryption
scheme, there is a polynomial p such that it is p-bounded.

The following theorem shows that a CCA-secure encryption scheme realizes FPKE in the context of
environments without auxiliary input. One could alternatively define CCA-security by allowing auxiliary
input to the adversary. Then, a CCA-secure encryption scheme would realizes FPKE in the context of
environments with auxiliary input.

Theorem 7. Let Tdec and Tenc be some disjoint sets of names of tapes, Σ a CCA-secure p-bounded
public-key encryption scheme. Then,

PPKE(Σ, (dom(Lη))η∈N, Tdec, Tenc) ≤
SS-noaux FPKE((Lη)η∈N, Tdec, Tenc, p)

for every length preserving leakage (Lη)η∈N (see above for the definition of length preserving).

Proof. We prove the theorem by contradiction. Let Σ be a p-bounded public-key encryption scheme and
assume that PPKE(Σ, (dom(Lη))η∈N) does not SS-realize FPKE((Lη)η∈N, p). We will show that Σ is not
CCA-secure by constructing an adversary A = (A1, A2) with non-negligible advantage from the environ-
ment E that distinguishes PPKE from SPKE | FPKE((Lη)η∈N, p) with the simulator SPKE = SPKE(Σ) given
in Figure 22. A graphical representation of SPKE and its connection to FPKE is pictured in Figure 23.
One easily verifies that SPKE is a simulator as required in Definition 1.

The runtime of E in a run of E | PPKE(1η, ε) is polynomially bounded in η. Therefore, the total number
of messages of type (pid , Encrypt, k′, m) that are send by E is bounded by q(η) for some polynomial q.

36

Simulator SPKE(Σ)

net-tapes: in: net(pke, Adec), net(pke, Aenc), net(A′
dec, pke), net(A′

enc, pke) (enriching)
out: net(Adec, pke), net(Aenc, pke), net(pke, A′

dec), net(pke, A′
enc)

Initialization: corruptible ← true ; state ← init ; nokey ← true ; (kd, ke)← gen(1η)
CheckAddress: Accept all messages on all tapes
Compute: Upon receiving a message check which case matches:

(a) Initialization (Dec): If recv (Init) on net(pke, Adec) do:
if nokey then

send (AlgorithmsAndKey, dec(kd, ·), enc(·, ·), ke) to net(Adec, pke) ;
wait for recv (Ack) on net(pke, Adec) ; nokey ← false

end ;
state ← ok ; send (Inited) to net(Adec, pke)

(b) Corruption (Dec): If recv (Corrupt) on net(A′
dec, pke), state 6= init, and corruptible do:

send (Corrupt) to net(Adec, pke)
(c) Corrupted (Dec): If recv (Corrupted) on net(pke, Adec) do: send (Corrupted, (kd, ke)) to net(pke, A′

dec)
(d) Forward from A (Dec): If recv m = (Send, m′, T) on net(A′

dec, pke) do: send m to net(Adec, pke)
(e) Forward to A (Dec): If recv m = (Received, m′, T) or m = (ReceivedResources, r) on net(pke, Adec) do:

send m to net(pke, A′
dec)

(f) Initialization (Enc): If recv (pid , Init) on net(pke, Aenc) do:
if nokey then

send (AlgorithmsAndKey, dec(kd, ·), enc(·, ·), ke) to net(Adec, pke) ;
wait for recv (Ack) on net(pke, Adec) ; nokey ← false

end ;
corruptible ← false, send (pid , Inited) to net(Aenc, pke)

(g) Forward from A (Enc): If recv m on net(A′
enc, pke) do: send m to net(Aenc, pke)

(h) Forward to A (Enc): If recv m 6= (pid , Init) on net(pke, Aenc) do: send m to net(pke, A′
enc)

If no rule above fires then produce no output.

Fig. 22. Simulator SPKE for the proof of PPKE SS-realizes FPKE.

Fenc

EencEdec

pke

Fdec

decAdec

Aenc

pke

pke

pke

pke

SPKE

A′

enc

A′

dec

Tdec Tenc

pke

FPKE

enc

Fig. 23. Graphical representation of the simulator SPKE for FPKE = Fdec | !Fenc. See Figure 18 for a
legend.

37

The description of algorithm A = (A
O(·)
1 (k, 1η), A

O(·)
2 (x0, x1, s, c, 1

η)) follows. At first algorithm

A
O(·)
1 (k, 1η) initializes a counter i ← 0 that indicates how many messages where already encrypted

by E with key k. Then, A1 chooses h←R{1, . . . , q(η)} (uniformly at random) and simulates the run of
E | PPKE on input ε with the security parameter η as defined how to run a system in Section 2 with the
following exceptions:

(a) When Pdec wants to simulate gen(1η) then continue the simulation as if gen(1η) returned the de-
cryption key 0 and the encryption key k.

(b) When some instance of Penc wants to simulate enc(k′, m) (Figure 20 (b)) then:
• If k = k′ and i + 1 < h then A1 computes i ← i + 1, mi ← m, ci ← enc(k, mi) and continues the

simulation with ci.
• If k = k′ and i + 1 = h then A1 computes mh ← m and stores all information needed for the

simulation of E plus all mj and cj (j ≤ h) plus h plus the key k in the string s. Then A1 halts
with output (mh, Lη(mh), s) (Note that |mh| = |Lη(mh)|).
• If k 6= k′ then A1 continues the simulation normally, i.e. as defined in Penc.

(c) When Pdec wants to simulate dec(kd, c) (Figure 19 (b)) then A1 checks if c = cj = cj′ for some
j, j′ ≤ i with mj 6= mj′ . If it does, A1 continues the simulation as if Pdec send an error message.
Otherwise, A1 checks if c = cj for some j ≤ i. If it does, A1 continues the simulation with mj .
Otherwise, A1 computes m← O(c) with its decryption oracle and continues the simulation with m.

(d) When E outputs f on tape decision then A1 halts with output (1, 1, f).

Algorithm A
O(·)
2 (x0, x1, s, c, 1

η) restores the information encoded in s and sets i ← h and ch ← c. If
x0 = x1 = 1 then A2 halts with output s = f . Otherwise, A2 continues the simulation of E as if the
simulation of enc(k′, m) in Penc returned ch with the following exceptions:

(a) When some instance of Penc wants to simulate enc(k′, m) (Figure 20 (b)) then:
• If k = k′ then A2 computes i← i + 1, mi ← m, ci ← enc(k, Lη(mi)) and continues the simulation

with ci.
• If k 6= k′ then A2 continues the simulation normally.

(b) When Pdec wants to simulate dec(kd, c) (Figure 19 (b)) then A2 checks if c = cj = cj′ for some
j, j′ ≤ i with mj 6= mj′ . If it does, A2 continues the simulation as if Pdec sent an error message.
Otherwise, A2 checks if c = cj for some j ≤ i. If it does, A2 continues the simulation with mj .
Otherwise, A2 computes m← O(c) with its decryption oracle and continues the simulation with m.

(c) When E outputs f on tape decision then A2 halts with output f .

Note that A2 will never ask its oracle O(·) to decrypt the challenge ch, because A2 checks if the
ciphertext c equals ch and does not ask O(·) in that case.

To analyze the advantage of A, as [7], we define a random variable Hj for all j ∈ {0, . . . , q(η)} which
denotes the output of E in an interaction with SPKE | FPKE with security parameter η except that the
first j times where Fdec receives (pid , Encrypt, k′, m, T), k = k′ and the decryptor is not corrupted the
ciphertext c is computed by the encryption of m, i.e. c ← e(k, m), instead of the encryption of Lη(m),
i.e. c ← e(k, Lη(m)), and it is not tested whether d(c) = Lη(m) or not. In other words, “m′ ← Lη(m),
c ← e(k, m′), m′′ ← d(c), if m′ 6= m′′ then c← ⊥, if c 6= ⊥ then H ← H ∪ {(m, c)}” in Figure 16 (e) is
replaced by “c← e(k, m), H ← H ∪ {(m, c)}”.

By the assumption that E distinguishes PPKE from SPKE | FPKE we conclude that E does not corrupt
the decryptor. Otherwise, the view of E in the real world would be the same as in the ideal world.

The view of E as simulated by H0 would only differ from the view in the ideal world if Fdec sends the
error symbol ⊥ because m′ 6= m′′. Since Σ is an encryption scheme, d(enc(k, m′)) = m′ for all m′ which
are generated by L(m), so,

Prob[H0 = 1] = Prob[E | SPKE | FPKE(1η, ε) 1] .

We show that
Prob[Hq(η) = 1] = Prob[E | PPKE(1η, ε) 1] .

The random variable Hq(η) denotes the output of E in an interaction with SPKE | FPKE except that upon
encryption, always e(k, m) is computed instead of e(k, Lη(m)). Thus, the output of E differs from Hq(η)

only upon decryption of a ciphertext c:

38

(a) If c is ambiguous, i.e. if there are two recorded pairs (m, c) and (m′, c) with m 6= m′, because then
in the ideal world an error message is produced, or

(b) If there is a recorded pair (m, c) and dec(kd, c) 6= m.

If case (a) would occur, then enc(k, m) and enc(k, m′) with m 6= m′ produced the same ciphertext
c. This can not happen, because Σ is an encryption scheme and has the property that decryption is
correct, i.e. dec(kd, enc(ke, m)) = m for all m ∈ {0, 1}∗ and all (kd, ke) generated by gen. Since otherwise,
m = dec(kd, enc(k, m)) = dec(kd, c) = dec(kd, enc(k, m′)) = m′. A contradiction to m 6= m′.

If (m, c) was recorded then c was computed by enc(k, m) which implies m = dec(kd, c) because Σ is
an encryption scheme. Thus, case (b) does not occur either.

Because E does not corrupt the decryptor, decryption is correct, and e(k, Lη(m)) = enc(k, Lη(m))
and by the definition of A1’s behavior (c) and A2’s behavior (b) we have for all j ∈ {1, . . . , q′(η)}

Prob[Hj−1 = 1] = Prob[TA,Σ(1, η) = 1 | h = j] and

Prob[Hj = 1] = Prob[TA,Σ(0, η) = 1 | h = j] .

The advantage of A is

Adv(A, Σ, η) = |Prob[TA,Σ(1, η) = 1]− Prob[TA,Σ(0, η) = 1]|

=

∣∣∣∣∣∣

q(η)∑

j=1

Prob[TA,Σ(1, η) = 1, h = j]− Prob[TA,Σ(0, η) = 1, h = j]

∣∣∣∣∣∣

=

∣∣∣∣∣∣

q(η)∑

j=1

1

q(η)
Prob[TA,Σ(1, η) = 1 | h = j]−

1

q(η)
Prob[TA,Σ(0, η) = 1 | h = j]

∣∣∣∣∣∣

=
1

q(η)

∣∣∣∣∣∣

q(η)∑

j=1

Prob[TA,Σ(1, η) = 1 | h = j]− Prob[TA,Σ(0, η) = 1 | h = j]

∣∣∣∣∣∣

=
1

q(η)

∣∣∣∣∣∣

q(η)∑

j=1

Prob[Hj−1 = 1]− Prob[Hj = 1]

∣∣∣∣∣∣

=
1

q(η)
|Prob[H0 = 1]− Prob[Hq(η) = 1]|

=
1

q(η)
|Prob[E | SPKE | FPKE(1η, ε) 1]− Prob[E | PPKE(1η, ε) 1]|

>
1

q(η)
·

1

p(η)

for infinitely many η. Thus, the advantage of A is non-negligible. ⊓⊔

We say that a family of leakage algorithms (Lη)η∈N leaks at most the length of a message if (Lη)η∈N ≤

(L′
η)η∈N where {L′

η(x) : if x ∈ dom(Lη) then return 0|x| else return ⊥}. Note that (L0
η)η∈N and (L

|·|
η)η∈N

both leak at most the length of a message.

Lemma 1. Let Tdec and Tenc be disjoint sets of names of tapes, Σ = (gen, dec, enc) a p-bounded public-
key encryption scheme such that Prob[enc(k, m) = ⊥] = Prob[Lη(m) = ⊥] for all k generated by gen(1η)
and all m ∈ {0, 1}∗ and

PPKE(Σ, (dom(Lη))η∈N, Tdec, Tenc) ≤
SS-noaux FPKE((Lη)η∈N, Tdec, Tenc, p)

where (Lη)η∈N is a leakage which leaks at most the length of a message. Then, Σ is CCA-secure.

Proof. We prove the lemma by contraposition. Assume that Σ is not CCA-secure, i.e. there is an adver-
sary A = (A1, A2) with non-negligible advantage. We will construct an environment E that distinguishes
PPKE(Σ, (dom(Lη))η∈N, Tdec, Tenc) (PPKE for short) from S |FPKE for each simulator S.

Let T ∈ Tdec and T ′ ∈ Tenc. We define E to be a master IITM (an IITM with a tape named start)
with an output tape named decision and tapes to connect to PPKE. In mode CheckAddress E accepts
every incoming message and in mode Compute it operates as follows:

39

(a) Upon first activation (on tape start) output (Init) on tape io(T, pke).
(b) Upon receiving (PublicKey, k) on io(pke, T).
(c) Simulate the adversary A1 with input k as the public key.
• When A1 asks its decryption oracle to decrypt a message c then output (Decrypt, c) on io(T, pke)

and wait for receiving (Plaintext, m) on io(pke, T). Then continue simulating A1 as if the oracle
returned m (note that possibly m = ⊥).
• When A1 terminates and outputs two test messages x0, x1 with |x0| = |x1| and state information

s, then choose b←R{0, 1} (uniformly at random), send message (pid , Encrypt, k, xb) to io(T ′, pke),
and wait for receiving (pid , Ciphertext, c∗) on io(pke, T ′).

(d) Then, start the simulation of A2 with input x0, x1, s and c∗ with the following exceptions:
• When A2 asks its decryption oracle to decrypt a message c then i) if c 6= c∗ output (Decrypt, c) on

io(T, pke) and wait for receiving (Plaintext, m) on io(pke, T). Then continue simulating A2 as if the
oracle returned m ii) otherwise if c = c∗ then continue simulating A2 as if the oracle returned test.
• When A2 terminates and outputs bit b′ ∈ {0, 1} then check if the decryptor is corrupted or if pid

is a corrupted encryptor, i.e.:
– Send (Corrupted?) to io(pke, T)
– Upon receiving (true) on io(T, pke) choose b′′←R{0, 1} and output b′′ on tape decision and halt

else send (pid , Corrupted?) to io(pke, T ′)
– Upon receiving (true) on io(T ′, pke) choose b′′←R{0, 1} and output b′′ on tape decision and halt

else output b⊕ b′ on tape decision and halt.

If at some point above E waits for a message to receive and the input is not as expected or on an
unexpected tape then E chooses b′′←R{0, 1}, outputs b′′ on tape decision, and halts.

One easily verifies that E meets the requirements of environments as stipulated in Definition 1.
In the real world, i.e. in a run of E | PPKE(1η, a), E will always receive what it expects because of

the definition of PPKE and no party gets corrupted. The simulation of A1 and A2 is exactly like in the
experiment TA,Σ of the definition of CCA-security. Thus, we have

Prob[E | PPKE(1η, ε) 0]

=
1

2
Prob[E | PPKE(1η, ε) 0 | b = 0]

+
1

2
Prob[E | PPKE(1η, ε) 0 | b = 1]

=
1

2
Prob[TA,Σ(0, η) 0] +

1

2
Prob[TA,Σ(1, η) 1] .

(3)

On the other hand, in the ideal world, i.e. in a run of E | S | FPKE(1η, ε), E outputs 1 with probability
exactly one half. If E receives some unexpected input or if the decryptor or the encryptor with PID pid
gets corrupted then this is clear by the definition of E . Otherwise, E always receives what it expects and
neither the decryptor nor the encryptor pid are corrupted. Thus, E outputs 1 iff b 6= b′. The ciphertext
c∗ only depends on Lη(xb). To see that it is statistically independent of b, we have to verify that the
distributions of Lη(x0) and Lη(x1) are the same. Because (Lη)η∈N leaks at most the length of a message,
we can conclude that this is the case. Because c∗ is never decrypted by FPKE and c∗ is statistically
independent of b, the probability that b 6= b′ is exactly one half:

Prob[b
R
←{0, 1}, F outputs 1− b]

= Prob[b
R
←{0, 1}, F outputs 1, b = 0] + Prob[b

R
←{0, 1}, F outputs 0, b = 1]

= Prob[b
R
←{0, 1}, b = 0] · Prob[F outputs 1]

+ Prob[b
R
←{0, 1}, b = 1] · Prob[F outputs 0]

=
1

2
(Prob[F outputs 1] + Prob[F outputs 0]) =

1

2
.

Therefore, we have

Prob[E | S | FPKE(1η, ε) 1] =
1

2
. (4)

40

By (3) and (4), we conclude that

|Prob[E | PPKE(1η, ε) 1]− Prob[E | S | FPKE(1η, ε) 1]|

=

∣∣∣∣
1

2
Prob[TA,Σ(0, η) 0] +

1

2
Prob[TA,Σ(1, η) 1]−

1

2

∣∣∣∣

=

∣∣∣∣
1

2
(1− Prob[TA,Σ(0, η) 1]) +

1

2
Prob[TA,Σ(1, η) 1]−

1

2

∣∣∣∣

=
1

2
|Prob[TA,Σ(0, η) 1]− Prob[TA,Σ(1, η) 1]| =

1

2
Adv(A, Σ, η)

which is by assumption non-negligible. This proves E | PPKE 6≡noaux E | S | FPKE. ⊓⊔

Note that the above theorem and lemma hold in particular for (Lη)η∈N = (L
|·|
η)η∈N, so, we obtain the

following corollary.

Corollary 2. Let Tdec and Tenc be disjoint sets of names of tapes and let Σ = (gen, dec, enc) be a p-

bounded public-key encryption scheme with Prob[enc(k, m) = ⊥] = Prob[L
|·|
η (m) = ⊥] for all k generated

by gen(1η) and all m ∈ {0, 1}∗. Then, Σ is CCA-secure if and only if

PPKE(Σ, (dom(L|·|
η))η∈N, Tdec, Tenc) ≤

SS-noaux FPKE((L|·|
η)η∈N, Tdec, Tenc, p)

where (L
|·|
η)η∈N is the above defined leakage. Note that dom(L

|·|
η) =

⋃
n≥η{0, 1}n.

6.3 Joint State for Public-Key Encryption

In this section we present a protocol system PJS
PKE that realizes the multi-session multi-party version of

FPKE by using only one copy of FPKE per party instead of one copy of FPKE per party per session.
The basic idea in realizing joint state for public-key encryption appears in [9] but no details or proof

are given there (see 6.4). It is similar to the one for digital signatures: The session identifier (SID) sid is
used as a prefix to the plaintext m prior to encryption, i.e. instead of encrypting m in session sid with a
separate key for this session, (sid , m) is encrypted with the same key for each session. Upon decryption
of a ciphertext c in session sid one has to check whether c decrypts to (sid , m) with the correct SID
sid . While the main idea is simple, it only works given an appropriate formulation of the public-key
encryption functionality (see also Section 6.4).

Next, we present our joint state realization of FPKE, i.e. the formulation of the protocol system
PJS

PKE. Recall that it uses !FPKE. More precisely, one copy of FPKE per party is generated. The joint
state theorem for public-key encryption is similar to the one for digital signatures, it basically says that
for all leakage (Lη)η∈N

!PJS
PKE | !F

′
PKE((L′

η)η∈N) ≤SS !(!FPKE((Lη)η∈N))

where F ′
PKE is identical to FPKE except that tapes have been renamed and (L′

η)η∈N leaks as much as
(Lη)η∈N but additionally reveals the SID of the session in which the message was encrypted. More formal,
(L′

η)η∈N is defined by {L′
η(x) : if x is of shape (sid , x′) for some SID sid and bit string x and x′ ∈ dom(Lη)

then return (sid , Lη(x′)) else return ⊥}. It is easy to see that dom(L′
η) = {(sid , x) | sid ∈ {0, 1}∗ and x ∈

dom(Lη)}. Note that leakage of the SID is not a security issue as in the ideal world !(!FPKE((Lη)η∈N))

may also reveal the SID in the ciphertexts because the adversary is able to provide different encryption
algorithms for each session. As described in Section 3, on the right-hand side we have a multi-session
multi-party version, i.e. the inner part !FPKE is the multi-party version of FPKE where we have one copy
of FPKE per party and the outer part is the multi-session version of the multi-party version of FPKE.
Thus, we have one copy of FPKE per session per party. Note that !(!FPKE((Lη)η∈N)) behaves exactly

like !FPKE((Lη)η∈N). On the other side, we have only the multi-party version !F ′
PKE and the protocol

PJS
PKE where there will be one copy of PJS

PKE for each party which is the protocol that the party runs and
through which its multi-party version of F ′

PKE is accessible. Note that on the left-hand side, we have one
copy of F ′

PKE per party which is used in every session the party is involved in.

41

The realization PJS
PKE is parameterized, just like FPKE, by two disjoint sets of names of tapes Tdec

and Tenc, and two polynomials p and q and is defined as the composition of two IITMs:

PJS
PKE(Tdec, Tenc, p, q) = P JS

dec(Tdec, p, q) |P JS
enc(Tenc, p, q)

where the IITMs are defined in Figure 24 and 25. A graphical representation and its connection to F ′
PKE

is pictured in Figure 26.

Realization P JS
dec(Tdec, p, q)

I/O-tapes: in: io(T, pke) for each T ∈ Tdec, io(Edec, pke) (enriching),
io(pke′, T) for each T ∈ Tdec, io(pke′, Edec) (consuming)

out: io(pke, T) for each T ∈ Tdec, io(pke, Edec), io(T, pke′) for each T ∈ Tdec, io(Edec, pke′)

Initialization: pid ← ⊥ ; Sids ← ∅ ; AllSids ← ∅ ; lastSid ← ⊥ ; res ← 0 ; k← ⊥ ; state ← init

CheckAddress: Upon first activation accept only messages of shape (sid , pid ′, m) on all pke-tapes (i.e. on
io(T, pke), io(Edec, pke)). In mode Compute at first record the PID: pid ← pid ′.
On later activations accept only messages of shape (sid , pid ′, m) on all pke-tapes and of shape (pid ′, m) on
all pke′-tapes where pid ′ = pid .

Compute: Upon receiving a message check which case matches:

(a) Initialization: If recv (sid , pid , Init) on io(T, pke) where T ∈ Tdec, sid /∈ AllSids do:
AllSids ← AllSids ∪ {sid} ;
if state = error or |sid | > q(η) then

produce no output
else if state = wait then

state ← error ; produce no output
else if state = init then

state ← wait ; lastSid ← sid ; send (pid , Init) to io(T, pke′)
else

Sids ← Sids ∪ {sid} ; send (sid , pid , PublicKey, k) to io(pke, T)
end

(b) Initialization Response: If recv (pid , PublicKey, k′) on io(pke′, T) where T ∈ Tdec, and state = wait do:
state ← ok ; k ← k′ ; Sids ← {lastSid} ; send (lastSid , pid , PublicKey, k) to io(pke, T)

(c) Forward to pke: If recv (sid , pid , m) on io(Edec, pke) or io(T, pke) where T ∈ Tdec, state = ok,
sid ∈ Sids , and m 6= Corrupted? do:
res ← res + p(|(sid , pid , m)|+ η) ; lastSid ← sid ; send (pid , m) to io(Edec, pke′) or io(T, pke′) (resp.)

(d) Forward from pke: If recv (pid , m) on io(pke′, T) where T ∈ Tdec, state = ok, |(lastSid , pid , m)| ≤ res do:

m′ ←

8
><
>:

(Plaintext, m′′) if m = (Plaintext, (lastSid , m′′))

(Plaintext,⊥) if m = (Plaintext, (sid , m′′)) with sid 6= lastSid

m otherwise ;

res ← res − |(lastSid , pid , m)| ; send (lastSid , pid , m′) to io(pke, T)
(e) Corruption Request: If recv (sid , pid , Corrupted?) on io(Edec, pke) where sid ∈ AllSids do:

send (pid , Corrupted?) to io(Edec, pke′) ; wait for recv (pid , b) on io(pke′, Edec) ;
send (sid , pid , b) to io(pke, Edec)

If no rule above fires then produce no output.

Fig. 24. Joint state realization PJS
PKE = P JS

dec |P
JS
enc for public-key encryption, the decryptor’s part P JS

dec.

The problem that occurs with long SIDs in case of digital signatures also occurs here. Thus, as
described in Section 5.3, PJS

PKE restricts SIDs to be not longer than q(η) where η is the security parameter.
As argued, this does not restrict the usability and expressiveness of PJS

PKE since no protocol, environment,
or adversary that is polynomially bounded by η could create exponentially many different sessions. As
already noted for digital signatures (Section 5.3), a more complex definition of polynomial time might
solve this particular inconvenience. However, one cannot dispense with parameters altogether.

Also similar to the case of digital signatures, one technical problem is that of multiple initialization
requests where a functionality has to wait for a response from the environment/adversary. For example,
if the environment sent an initialization request in session sid but has not completed it yet, i.e. the

42

Realization P JS
enc(Tenc, p, q)

I/O-tapes: in: io(T, pke) for each T ∈ Tenc, io(Eenc, pke) (enriching),
io(pke′, T) for each T ∈ Tenc, io(pke′, Eenc) (consuming)

out: io(pke, T) for each T ∈ Tenc, io(pke, Eenc), io(T, pke′) for each T ∈ Tenc, io(Eenc, pke′)

Initialization: pid , pid ′ ← ⊥ ; Sids ← ∅ ; AllSids ← ∅ ; lastSid ← ⊥ ; res ← 0 ; state ← init

CheckAddress: Upon first activation accept msgs of shape (sid , pid1, pid2, m) on all pke-tapes (i.e. on
io(T, pke), io(Eenc, pke)). In mode Compute at first record the PIDs: pid ← pid1 and pid ′ ← pid2.
On later activations accept msgs of shape (sid , pid1, pid2, m) on all pke-tapes and of shape (pid1, pid2, m)
on all pke′-tapes where pid1 = pid and pid2 = pid ′.

Compute: Upon receiving a message check which case matches:

(a) Initialization: If recv (sid , pid , pid ′, Init) on io(T, pke) where T ∈ Tenc, sid /∈ AllSids do:
AllSids ← AllSids ∪ {sid} ;
if state = error or |sid | > q(η) then

produce no output
else if state = wait then

state ← error ; produce no output
else if state = init then

state ← wait ; lastSid ← sid ; send (pid , pid ′, Init) to io(T, pke′)
else

Sids ← Sids ∪ {sid} ; send (sid , pid , pid ′, Inited) to io(pke, T)
end

(b) Initialization Response: If recv (pid , pid ′, Inited) on io(pke′, T) where T ∈ Tenc, and state = wait do:
state ← ok ; Sids ← {lastSid} ; send (lastSid , pid , pid ′, Inited) to io(pke, T)

(c) Forward to pke: If recv (sid , pid , pid ′, m) on io(Eenc, pke) or io(T, pke) where T ∈ Tenc, state = ok,
sid ∈ Sids , and m 6= Corrupted? do:
res ← res + p(|(sid , pid , pid ′, m)|+ η) ; lastSid ← sid ;

m′ ←

(
(Encrypt, k, (sid , m′′)) if m = (Encrypt, k, m′′)

m otherwise ;

send (pid , pid ′, m′) to io(Eenc, pke′) or io(T, pke′) (resp.)
(d) Forward from pke: If recv m = (pid , pid ′, m′) on io(pke′, T) where T ∈ Tenc, state = ok, and
|(lastSid , m)| ≤ res do: res ← res − |(lastSid , m)| ; send (lastSid , pid , pid ′, m′) to io(pke, T)

(e) Corruption Request: If recv (sid , pid , pid ′, Corrupted?) on io(Eenc, pke) where sid ∈ AllSids do:
send (pid , pid ′, Corrupted?) to io(Eenc, pke′) ; wait for recv (pid , pid ′, b) on io(pke′, Eenc) ;
send (sid , pid , pid ′, b) to io(pke, Eenc)

If no rule above fires then produce no output.

Fig. 25. Joint state realization PJS
PKE = P JS

dec |P
JS
enc for public-key encryption, the encryptor’s part P JS

enc.

43

F ′
enc

pke′

EencEdec

pke′

F ′
dec

pke′Adec

Aenc

dec

TencTdec

pke′

pkepke

Edec Tdec Tenc Eenc

P JS
dec P JS

enc

PJS
PKE

F ′
PKE

enc

Fig. 26. Graphical representation of the joint state realization PJS
PKE = P JS

dec |P
JS
enc and its connection to

!F ′
PKE. See Figure 18 for a legend.

environment/adversary has not yet sent the algorithms and a public key, then, if the environment sends
another initialization request in another session sid ′ for the same party the question is how to deal with
this situation. The joint state realization cannot further process this request because it already waits for
an answer from the functionality in the first request. (Note that for both requests the same functionality
is used in the joint state world). Conversely, the joint state realization also cannot simply ignore this par-
ticular request by the environment because a simulator could not reproduce this behavior. Therefore, we
define the joint state realization PJS

PKE to enter and stay in an error state in which any further messages
(except for (Corrupted?) from the environment) are ignored. In other words, the joint state realization
stops any further activity. This is not a real limitation as it only forces the environment/adversary to
complete initialization requests at once, which in any realistic implementation of the public-key function-
ality is done anyway because initialization requests are answered immediately—a key pair is generated
and the public key is returned right away.

A more detailed description of PJS
PKE is given next.

There will be one instance of P JS
dec = P JS

dec(Tdec, p, q) for each decryptor. We denote the instance of a
party (with PID) pid by P JS

dec[pid]. Additionally, there will be one instance of P JS
enc = P JS

enc(Tenc, p, q) for
each encryptor pid ′ who encrypts messages for the decryptor pid which we denote by P JS

enc[pid , pid ′].

A decryptor pid in session sid sends messages of shape (sid , pid , m) to the instance P JS
dec[pid]. An

encryptor pid ′ in session sid sends messages of shape (sid , pid , pid ′, m) to the instance P JS
enc[pid , pid ′]

when he wants to encrypt messages for party pid . No party other than pid will communicate with
P JS

dec[pid], so it is like a local procedure and we call party pid the owner of P JS
dec[pid]. Similarly, no party

other than pid ′ will communicate with P JS
enc[pid , pid ′] and party pid ′ is called the owner of P JS

enc[pid , pid ′].

A decryptor pid has to register in each session sid with P JS
dec[pid], i.e. send (sid , pid , Init). However,

only the first time P JS
dec[pid] creates an instance of F ′

dec by stripping off the SID and forwarding the

message (pid , Init). To refer to the created instance it is denoted by F ′
dec[pid]. The polynomial q is used

to forbid sessions with long SIDs (sid > q(η)). See Figure 24 (a) and (b). If the same decryptor pid
sends a second initialization request before the first one has been completed, P JS

dec[pid] will enter an error
state and ignore all messages send from the signer pid or from F ′

dec[pid] (except for (Corrupted?) from
the environment).

Analogously, an encryptor pid ′ registers with P JS
enc[pid , pid ′]. Here, one instance of F ′

enc, denoted by

F ′
enc[pid , pid ′], is created. See Figure 25 (a) and (b).

After initialization, every message is forwarded by P JS
dec[pid] and P JS

enc[pid , pid ′] to F ′
dec[pid] and

F ′
enc[pid , pid ′] (respectively) by stripping off the SID. An encryption request (sid , pid , pid ′, Encrypt, k, m)

is forwarded as (pid , pid ′, Encrypt, k, (sid , m)). If upon decryption a plaintext is received, i.e. P JS
dec[pid]

44

receives the message (pid , Plaintext, m) on tape io(pke′, T), then the message (sid , pid , Plaintext, m′) is
forwarded if m is of shape (sid , m′) and the message (sid , pid , Plaintext,⊥) is forwarded otherwise where
sid is the recorded SID with that the decryption request was made.

Since the system has to be well-formed the tapes from F ′
PKE to PJS

PKE have to be consuming. Hence,

forwarding messages from F ′
PKE to a party can not be done arbitrarily. Therefore, PJS

PKE records the

length of the messages sent to F ′
PKE and only forwards polynomially many input from F ′

PKE. However,

note that by the definition of FPKE(p) every message that is output by FPKE(p) has at most length
p(|m|+ η) where m is the input that FPKE(p) received before. This holds as well if FPKE(p) is corrupted
because the resources are passed through PJS

PKE. Thus, when PJS
PKE(p, q) and F ′

PKE(p) are composed,

PJS
PKE(p, q) will always be able to forward messages from F ′

PKE(p).
Next, we state and prove the joint state theorem for public-key encryption. Note that FPKE is defined

such that the decryptor is adaptive corruptible, so, the joint state theorem holds as well for adaptively cor-
ruptible decryptors. Furthermore, the proof reveals that the theorem even holds for unbounded environ-
ments and perfect indistinguishability, i.e., there exists a simulator S such that for all (unbounded) envi-
ronments E it holds Prob[E | PJS

PKE | !F
′
PKE((L′

η)η∈N)(1η, a) 1] = Prob[E | S | !FPKE((Lη)η∈N)(1η, a)

1] for all η ∈ N, a ∈ {0, 1}∗.

Theorem 8. For all polynomials p and q and disjoint sets of names of tapes Tdec and Tenc there exists
a polynomial p′ such that for all leakage (Lη)η∈N we have

PJS
PKE(Tdec, Tenc, p, q) | !F ′

PKE((L′
η)η∈N, Tdec, Tenc, p) ≤SS !FPKE((Lη)η∈N, Tdec, Tenc, p

′)

where (L′
η)η∈N is defined by

L′
η(x) : if ∃sid ∈ {0, 1}∗, x′ ∈ dom(Lη) : x is of shape (sid , x′) then return (sid , Lη(x′))

else return ⊥

and F ′
PKE is obtained from FPKE by replacing pke by pke′ in all tape names.

Proof. Below, we define a simulator S such that the joint state world (JS world), i.e., E | PJS
PKE | !F

′
PKE,

is perfectly indistinguishable from the ideal world, i.e. E | S | !FPKE, for every environment E . When the

environment presents algorithms d, e and a key k then the simulator S forwards dsid , esid and k. The
definition of dsid and esid (which is given below) will yield the definition of p′. Note that p′ will be
independent from the leakage (Lη)η∈N.

Let η ∈ N, sid be an SID with |sid | ≤ q(η), and d and e be descriptions of algorithms with |d| ≤ p(η)
and |e| ≤ p(η). Depending on η, sid , d, e and p, we define the algorithms dsid and esid as follows:

– Algorithm dsid (c) computes m← d(c) and counts the steps needed. If these are more than p(|c|+ η)
then enter an infinite loop else if m = (sid , m′) for some m′ ∈ {0, 1}∗ then return m′ else return ⊥.

– Algorithm esid (k, m) computes c ← e(k, (sid , m)) counting the steps needed. If these are at most
p(|(sid , m)|+ η) return c else enter an infinite loop.

Since the length of the description of d and e and the length of sid is polynomially bounded by η,
the length of the description of dsid and esid is polynomially bounded by η. Moreover, if the runtime of
d(c) and e(k, (sid , m)) is bounded by p(|c|+ η) and p(|(sid , m)|+ η) (resp.) then the runtime of dsid (c)
and esid (k, m) (except when they enter an infinite loop) is polynomial in |c|+η and |m|+η, respectively.
Thus, we find a polynomial p′ such that

1. for all η ∈ N we have that if |d| ≤ p(η) and |e| ≤ p(η) then |dsid | ≤ p′(η) and |esid | ≤ p′(η),
2. for all ciphertexts c and η ∈ N we have that the computation of d(c) exceeds p(|c|+ η) steps iff the

computation of dsid (c) exceeds p′(|c|+ η) steps, and
3. for all plaintexts m ∈ {0, 1}∗, keys k and η ∈ N we have that the computation of e(k, (sid , m))

exceeds p(|(sid , m)|+ η) steps iff the computation of esid (k, m) exceeds p′(|m|+ η) steps.

A formal definition of the simulator

!S = SJS
PKE(p, q) = !SJS

dec(p, q) | !SJS
enc(q)

45

is given in Figure 27 and 28. A graphical representation of SJS
PKE and its connection to !FPKE is pictured

in Figure 29. The technical part is similar to the simulator SJS
SIG in the proof of the joint state theorem

for digital signatures (Theorem 6). The only difference is that instead of the algorithms ssid and vsid the
algorithms esid and dsid (as defined above) are used. So, we refer to Section 5.3 for a description of the
simulator.

We abbreviate the systems of IITMs P = PJS
PKE(Tdec, Tenc, p, q) | !F ′

PKE((L′
η)η∈N, Tdec, Tenc, p) and

F = !FPKE((Lη)η∈N, Tdec, Tenc, p
′). It is easy to see that !S is adversarially connectible for F and that P

and !S |F are compatible. It remains to show that E | P and E | !S | !F are perfectly indistinguishable. The
proof shows that the two systems behave exactly the same, in particular no reasoning about probabilities
is involved. The main part is to show that collisions of ciphertexts between different sessions do not occur
in the JS world (see below).

By the same arguments as in the proof of the joint state theorem for digital signatures (Theorem 6) we
conclude that there is no difference between the JS world and the ideal world according to the behavior
of initialization, corruption and key generation.

Consider encryption of m with key k′ for a decryptor pid in session sid . If k′ 6= k then F ′
dec[pid] in the

JS world computes c ← e(k′, (sid , m)) while Fdec[sid , pid] in the ideal world computes c ← esid (k′, m).
By the definition of p′ and esid , the output in the JS world has the same distribution as the output in
the ideal world.

On the other hand if k′ = k, F ′
dec[pid] in the JS world computes m′′ ← L′

η((sid , m)); c ← e(k, m′′)
and tests d(c) = m′′ while Fdec[sid , pid] computes m′ ← Lη(m); c ← esid (k, m′) and tests dsid (c) = m′

in the ideal world. Since the distribution of m′′ equals the one of m′ if we would prefix m′ by sid (by
definition of L′

η), the computed ciphertext c in the JS world has the same distribution as c in the ideal
world. By the definition of dsid , we have d(c) = m′′ if and only if dsid (c) = m′. Thus, the output in the
JS world has the same distribution as the output in the ideal world. Another consequence is that

Prob[((sid , m), c) ∈ Hpid] = Prob[(m, c) ∈ Hsid ,pid] (5)

for all sid , m and c where Hpid is the set H in the copy F ′
PKE[pid] in the JS world and Hsid ,pid is the

set H in the copy FPKE[sid , pid] in the ideal world.

Now, we consider decryption of a ciphertext c by a decryptor pid in session sid .

If d(c) is not of shape (sid ′, m) for all SIDs sid ′ and m then dsid (c) = ⊥ and in the ideal world the
error symbol ⊥ is returned just as in the JS world.

If d(c) = (sid ′, m) for some plaintext m but a different SID sid ′ 6= sid then again dsid (c) = ⊥ and in
the ideal world the error symbol ⊥ is returned. We analyze the behavior in the JS world and show that
here ⊥ is returned as well. Assume that in the JS world ⊥ is not returned. Then, c is not ambiguous in
Hpid and there exists a plaintext m′ such that ((sid , m′), c) ∈ Hpid . Because of the decryption test upon
encryption, d(c) has to be prefixed by sid which contradicts with sid 6= sid ′.

Now consider the last case, i.e. that d(c) = (sid , m) for some plaintext m. We have dsid (c) = m,
so, in the ideal world the error symbol ⊥ is returned iff c is ambiguous in Hsid ,pid . Otherwise, m or
the message recorded in Hsid ,pid is returned. Assume that ((sid ′, m′), c) ∈ Hpid for some plaintext m′

and sid ′ 6= sid . Then, again d(c) has to be prefixed by sid which contradicts with sid 6= sid ′. Therefore
and because d(c) = (sid , m), in the JS world ⊥ is returned iff c is ambiguous in Hpid . Otherwise, if
((sid , m′), c) ∈ Hpid then m′ is returned else m is returned.

Assume that c is ambiguous in the JS world. Then, there are messages m1, m2 and SIDs sid1, sid2 such
that (sid1, m) 6= (sid2, m2) and ((sid1, m1), c), ((sid2, m2), c) ∈ Hpid and upon encryption the decryption
tests where both positive. Thus, d(c) is prefixed by some sid . Since d is deterministic, sid = sid1 = sid2

and m1 6= m2. In other words, ciphertexts recorded in different sessions can not be equal. Therefore, the
probability that c is ambiguous in Hpid is equal to the probability that c is ambiguous in Hsid ′,pid where
sid ′ is the SID that is revealed by d(c).

Because of (5), the output in the JS world has the same distribution as the output in the ideal world.
⊓⊔

Note that because of the quantification over all polynomials p and q and all leakage (Lη)η∈N, the
above theorem can be applied iteratively as described in Section 3. Also, the theorem implies that we
obtain joint state realizations for all realizations of FPKE. In particular, we obtain that the joint state

46

Simulator SJS
dec(p, q)

net-tapes: in: net(Adec, pke′), net(pke, Adec), net(enc, dec) (enriching)
out: net(pke′, Adec), net(Adec, pke), net(dec, enc)

Initialization: pid , lastSid , e, d, k ← ⊥ ; state ← init ; nokey ← true ; corrupted ← false ;
Sids,AllSids,KeySids ← ∅

CheckAddress: Upon first activation accept only messages of shape (sid , pid ′, m) on net(pke, Adec) and of
shape (pid ′, m) on net(Adec, pke′). In mode Compute at first record the PID: pid ← pid ′.
On later activations accept only messages of shape (sid , pid ′, m) on net(pke, Adec) and of shape (pid ′, m) on
net(Adec, pke′) where pid ′ = pid .

Compute: Upon receiving a message check which case matches:

(a) Initialization: If recv (sid , pid , Init) on net(pke, Adec) do: AllSids ← AllSids ∪ {sid} ;
if corrupted then

send (sid , pid , Corrupt) to net(Adec, pke) ; wait for recv (sid , pid , Corrupted) on net(pke, Adec)
end ;
if state = error or |sid | > q(η) then produce no output
else if state = wait then state ← error ; produce no output ;
else if state = init then

if nokey then KeySids ← KeySids ∪ {sid}
else send (sid , pid , AlgorithmsAndKey, esid , dsid , k) to net(Adec, pke) a ;

wait for recv (sid , pid , Ack) on net(pke, Adec)
end ;
state ← wait ; lastSid ← sid ; send (pid , Init) to net(pke′, Adec)

else Sids ← Sids ∪ {sid} ; send (sid , pid , AlgorithmsAndKey, esid , dsid , k) to net(Adec, pke) ;
wait for recv (sid , pid , Ack) on net(pke, Adec) ; send (sid , pid , Inited) to net(Adec, pke)

end
(b) Initialization Response: If recv (pid , Inited) on net(A′

dec, pke), state = wait, and not nokey do:
state ← ok ; send (lastSid , pid , Inited) to net(Adec, pke)

(c) Key Gen.: If recv (pid , AlgorithmsAndKey, e′, d′, k′) on net(A′
dec, pke), nokey , and |e′|, |d′|, |k′| ≤ p(η) do:

(e, d, k)← (e′, d′, k′) ; nokey ← false ;
for all sid ∈ KeySids do

send (sid , pid , AlgorithmsAndKey, esid , dsid , k) to net(Adec, pke) ;
wait for recv (sid , pid , Ack) on net(pke, Adec)

end ;
send (pid , Ack) to net(pke′, Adec)

(d) Corruption: If recv (pid , Corrupt) on net(Adec, pke′), state 6= init, and not corrupted do:
for all sid ∈ AllSids do

send (sid , pid , Corrupt) to net(Adec, pke) ; wait for recv (sid , pid , Corrupted) on net(pke, Adec)
end ;
corrupted ← true ; send (pid , Corrupted) to net(pke′, Adec)

(e) Forward to A: If recv (sid , pid , m) on net(pke, Adec), m 6= Init, state 6= error, and sid ∈ Sids do:
lastSid ← sid ; send (pid , m) to net(pke′, Adec)

(f) Forward from A: If recv (pid , Send, m, T) on net(Adec, pke′), and state 6= error do:

m′ ←

8
><
>:

(Plaintext, m′′) if m = (Plaintext, (lastSid , m′′))

(Plaintext,⊥) if m = (Plaintext, (sid , m′′)) with sid 6= lastSid

m otherwise ;

send (lastSid , pid , Send, m′, T) to net(Adec, pke)
(g) If recv (pid , pid ′, SendAlgAndKey, sid) on net(enc, dec) do:

if nokey then KeySids ← KeySids ∪ {sid}
else send (sid , pid , AlgorithmsAndKey, esid , dsid , k) to net(Adec, pke) ;

wait for recv (sid , pid , Ack) on net(pke, Adec)
end ; send (pid , pid ′, Ack) to net(dec, enc)

If no rule above fires then produce no output.

a where dsid and esid are basically defined by esid (k′, m) : return e(k′, (sid , m)) and
dsid(c) : if d(c) = (sid , m′) then return m′ else return ⊥ (see formal definitions in the proof of Theorem 8)

Fig. 27. Simulator SJS
PKE = !SJS

dec | !S
JS
enc for the proof of the joint state theorem for public-key encryption,

the decryptor’s part SJS
dec.

47

Simulator SJS
enc(q)

net-tapes: in: net(Aenc, pke′), net(pke, Aenc) (enriching), net(dec, enc) (consuming)
out: net(pke′, Aenc), net(Aenc, pke), net(enc, dec)

Initialization: pid , pid ′, lastSid ← ⊥ ; state ← init ; corrupted ← false ; Sids,AllSids ← ∅
CheckAddress: Upon first activation accept msgs of shape (sid , pid1, pid2, m) on net(pke, Aenc) and of

shape (pid1, pid2, m) on net(Aenc, pke′). In mode Compute at first record PIDs: pid ← pid1, pid ′ ← pid2.
On later activations accept msgs of shape (sid , pid1, pid2, m) on net(pke, Aenc) and of shape (pid1, pid2, m)
on net(Aenc, pke′) where pid1 = pid , pid2 = pid ′.

Compute: Upon receiving a message check which case matches:

(a) Initialization: If recv (sid , pid , pid ′, Init) on net(pke, Aenc) do: AllSids ← AllSids ∪ {sid} ;
if corrupted then

send (sid , pid , pid ′, Corrupt) to net(Aenc, pke) ; wait for recv (sid , pid , pid ′, Corrupted) on net(pke, Aenc)
end ;
if state = error or |sid | > q(η) then produce no output
else if state = wait then state ← error ; produce no output
else if state = init then

send (pid , pid ′, SendAlgAndKey, sid) to net(enc, dec) ; wait for recv (pid , pid ′, Ack) on net(dec, enc) ;
state ← wait ; lastSid ← sid ; send (pid , Init) to net(pke′, Aenc)

else send (pid , pid ′, SendAlgAndKey, sid) to net(enc, dec) ; wait for recv (pid , pid ′, Ack) on net(dec, enc) ;
Sids ← Sids ∪ {sid} ; send (sid , pid , pid ′, Inited) to net(Aenc, pke)

end
(b) Initialization Response: If recv (pid , pid ′, Inited) on net(A′

enc, pke), and state = wait do:
state ← ok ; send (lastSid , pid , pid ′, Inited) to net(Aenc, pke)

(c) Corruption: If recv (pid , pid ′, Corrupt) on net(Aenc, pke′), state 6= init, and not corrupted do:
for all sid ∈ AllSids do

send (sid , pid , pid ′, Corrupt) to net(Aenc, pke) ; wait for recv (sid , pid , pid ′, Corrupted) on net(pke, Aenc)
end ;
corrupted ← true ; send (pid , pid ′, Corrupted) to net(pke′, Aenc)

(d) Forward to A: If recv (sid , pid , pid ′, m) on net(pke, Aenc), m 6= Init, state 6= error, and sid ∈ Sids do:

m′ ←

(
(Received, (Encrypt, k′, (sid , m′′)), T) if m = (Received, (Encrypt, k′, m′′), T)

m otherwise ;

lastSid ← sid ; send (pid , pid ′, m′) to net(pke′, Aenc)
(e) Forward from A: If recv (pid , pid ′, Send, m, T) on net(Aenc, pke′), and state 6= error do:

send (lastSid , pid , pid ′, Send, m, T) to net(Aenc, pke)

If no rule above fires then produce no output.

Fig. 28. Simulator SJS
PKE = !SJS

enc | !S
JS
enc for the proof of the joint state theorem for public-key encryption,

the encryptor’s part SJS
enc.

Fenc

pke

EencEdec

pke

Fdec

decpkeAdec

Aenc

TencTdec

pke

SJS
dec

SJS
enc

Aenc

Adec pke′

pke′

SJS
PKE

FPKE

enc

Fig. 29. Graphical representation of the simulator SJS
PKE = !SJS

dec | !S
JS
enc for !FPKE = !Fdec | !Fenc. See

Figure 18 for a legend.

48

realization PJS
PKE | !P

′
PKE(Σ, (dom(Lη))η∈N) of a CCA-secure public-key encryption scheme Σ realizes

the multi-party multi-session version of FPKE((L
|·|
η)η∈N). More general, we obtain the following.

Corollary 3. Let Tdec and Tenc be disjoint sets of names of tapes and Σ a p-bounded CCA-secure
public-key encryption scheme then for all polynomials q there is a polynomial p′ such that for all length
preserving leakage (Lη)η∈N we have

PJS
PKE(Tdec, Tenc, p, q) | !P ′

PKE(Σ, (dom(Lη))η∈N, Tdec, Tenc) ≤
SS-noaux !FPKE((Lη)η∈N, Tdec, Tenc, p

′)

where P ′
PKE is obtained from PPKE by renaming all tapes by replacing pke by pke′ in the tape name.

Proof. Let q be a polynomial and let p′ be the polynomial from the joint state theorem (Theorem 8)
which depends only on p and q. Furthermore, let (Lη)η∈N be a length preserving leakage and define the
leakage function (L′

η)η∈N as in Theorem 8. Then (L′
η)η∈N is length preserving, too.

Theorem 7 implies

P ′
PKE(Σ, (dom(L′

η))η∈N) ≤SS-noaux F ′
PKE((L′

η)η∈N, p) .

By the composition theorems (Theorem 2 and 3) we obtain

PJS
PKE(p, q) | !P ′

PKE(Σ, (dom(L′
η))η∈N) ≤SS-noaux PJS

PKE(p, q) | !F ′
PKE((L′

η)η∈N, p)

and by the joint state theorem (Theorem 8) we obtain

PJS
PKE(p, q) | !F ′

PKE((L′
η)η∈N, p) ≤SS !FPKE((Lη)η∈N, p′) .

Since strong simulatability without auxiliary input (≤SS-noaux) is transitive and is implied by strong
simulatability (≤SS), we conclude

PJS
PKE(p, q) | !P ′

PKE(Σ, (dom(L′
η))η∈N) ≤SS-noaux !FPKE((Lη)η∈N, p′)

which completes the proof. ⊓⊔

We note that one could have tried to prove this corollary which yields a joint state realization
without resorting to the ideal functionality on the left-hand side. However, this would have been much
more complex, because we would have to prove a realization (with joint state) for the multi-party, multi-
session version of FPKE directly. Also, results on the realization of the single-party, single-session version
of FPKE, such as Theorem 7, would then be completely useless. In other words, one would not take
advantage of the main feature of the simulation-based approach: composability. Finally, using the ideal
functionality yields joint state realizations for any realization of the ideal functionality. Altogether, this
is why our and also all other joint state realizations in the literature are based on ideal functionalities.

6.4 Comparison with other Formulations

In the proof of the joint state theorem for public key encryption, several subtleties come up which were
overlooked in other works, in particular [7, 9]. In these works, joint state theorems, similar to the one
above, for public-key encryption functionalities with local computation were mentioned. However, the
joint state realizations were only sketched and no proofs were provided. It, in fact, turns out that the
joint state theorems for these functionalities do not hold true. Let us first explain this for [7] and then
for [9]. These explanations motivate and justify the definition of our functionality and the way our joint
state theorem is stated.

Problems with the joint state realization in [7]. i) The public-key encryption functionality in [7], unlike
our functionality, identifies the encryption algorithm e and the public-key. If the environment wishes to
encrypt a message m, it is supposed to also present an encryption algorithm e′ (not just a key, as in our
functionality). If e 6= e′, i.e., e′ is different from the algorithm associated with the functionality, then the
ciphertext returned is e′(m). Now, assume that the environment asks to encrypt some message m with e′

in session sid , where, say e′ coincides with e except that e′ uses a different public-key. In the joint state

49

world (i.e., in an interaction with PJS
PKE | !F

′
PKE), the ciphertext is computed as e′((sid , m)). In the ideal

world (i.e., in an interaction with the simulator and !FPKE), the ciphertext is computed as e′(m). Since

the two ciphertexts have different lengths, the environment can easily distinguish between the joint state
and ideal world no matter what simulator is chosen.

ii) In [7], the leakage is fixed to be the length of a message, i.e., instead of a message m a fixed message
µ|m| of length |m| is encrypted, e.g. µ|m| = 1|m|. In particular, this is so also in the joint state world.
Hence, the SID is not leaked. This is problematic: The kind of encryption and decryption algorithms
that may be provided by the simulator/environment in the joint state and ideal world to the public-key
encryption functionality are not restricted in any way. In particular, the encryption algorithm that is
provided may be deterministic. But then, if the environment asks to encrypt two different messages of
the same length in two different sessions for the same party, then the resulting ciphertexts will be the
same, since in both cases some fixed message µ is encrypted. In the ideal world, the two ciphertext can
be decrypted, since they are stored in different sessions. In the joint state world, decryption fails: The
decryption box has two entries with the same ciphertext but different plaintexts. (The leakage that we
use prevents this.) Consequently, the environment can easily distinguish between the ideal and joint state
world.

To circumvent this problem, one might think that restricting the environment to only provide encryp-
tion and decryption algorithms that originate from probabilistic encryption schemes where the probability
for clashes between ciphertext are negligible solves the problem. Let us call such an encryption scheme
an allowed encryption scheme. However, this is not so if, as in [7], SIDs are not leaked in the joint state
world; even if the algorithms provided by the environment/simulator are assumed to be CCA-secure.

Upon encryption of some message m0 with the proper key k in some session sid0 in the joint state
world the ciphertext c is computed as e(k, µ|(sid0,m0)|). Depending on µn and how pairings are encoded,
we have that

µ|(sid0,m0)| = (sid1, m1) (6)

for some SID sid1 and some plaintext m1. This is, for example, the case if SIDs are assumed to have
fixed length (e.g., the length of the security parameter) and are simply appended at the beginning of a
message. This is a natural encoding, but our argument also works for other encodings and choices of µ
(see below). Note that the environment can even try to choose m0 and sid0 in order to make (6) true.

When trying to prove the joint state theorem, the obvious candidate for a simulator, subsequently
called the standard simulator, is the following. If the standard simulator receives algorithms e(·, ·), d(·)
and key k from the environment, then it provides the algorithms esid (·, ·) and dsid (·) and the key k to
the instance of FPKE with SID sid where

esid (k′, m) : if k = k′ and not corrupted then return e(k, µ|(sid,m)|) else return e(k′, (sid , m)) 4

and

dsid (c) : m← d(c); if m = (sid ′, m′) for some m′ and sid ′ = sid then return m′ else return ⊥

for all SIDs sid . This is the only reasonable simulator because in the joint state world a ciphertext
for a message m in session sid is computed as e(k, µ(sid ,m)) and the plaintext of a ciphertext c that
was not output by the functionality is computed as m = d(c) and the joint state realization checks if
m = (sid ′, m′) and outputs m′ if sid ′ = sid and ⊥ otherwise. Hence, the algorithms e′sid(·, ·) and d′sid (·)
provided by any successful simulator should have a distribution that is computational indistinguishable
from the algorithms presented above. But in order to be more general, we do not only consider the
standard simulator but a class of simulators, which in particular includes the standard simulator. This
class is defined as follows: We assume that the algorithm d′sid1

(·) does not distinguish between ciphertexts
generated by e′sid0

(k, µ|m0|) and e(k, µ|(sid0,m0)|) (for sid0 and sid1 as in (6)), i.e.,

Prob[c← e′sid0
(k, µ|m0|) : d′sid1

(c) = m] = Prob[c← e(k, µ|(sid0,m0)|) : d′sid1
(c) = m] (7)

for all m ∈ {0, 1}∗ ∪ {⊥}. One could try to construct simulators for which (7) is not satisfied but these
do not seem to be the kind of simulators that one would use to prove the joint state theorem. At least
such simulators have not been considered in the literature so far.
4 Technically, esid cannot know whether the decryptor is corrupted or not but if we assume only static corruption

then the simulator is able to know whether the decryptor is corrupted or not at the moment it is requested to
present the algorithms and can hard-code this into esid .

50

Now, we provide an environment E that distinguishes between the joint state and the ideal world for
any simulator S that satisfies (7) which in particular includes the standard simulator.

In the joint state world E will not corrupt any parties, so, we may assume that the simulator will
not do so either. In the UC model the simulator is prohibited to do so by the control function and in
the IITM model E could check this by requesting the functionality if it is corrupted and then distinguish
between joint state and ideal world.

At first E initializes an encryptor (with PID) pid ′ who encrypts messages for (the party with PID)
pid in session (with SID) sid0 and a decryptor pid in session sid1. Furthermore, E provides algorithms
e(·, ·), d(·) and a public key k where e, d and k originate from an allowed encryption scheme, e.g. e, d, k
could belong to a CCA secure encryption scheme, and chooses a random bit b ∈R {0, 1}.

i) If b = 0, then E (locally) computes c ← e(k, µ|(sid0,m0)|) (note that E knows e and k) and sends a
decryption request of c from party pid in session sid1. Then, E outputs “joint state” (or 0) if the result
is the plaintext m1, and “ideal” (or 1) otherwise.

ii) If b = 1, then E requests to encrypt the plaintext m0 by party pid ′ for party pid in session sid0

and stores the ciphertext c that is returned. If d(c) 6= µ|(sid0,m0)|, E outputs “ideal”. Finally, E sends a
decryption request of c from party pid in session sid1 and outputs “joint state” if the returned plaintext
is ⊥, and “ideal” otherwise.

Let us analyze the advantage of E . When running in the joint state world E will always output “joint
state” because of (6) and e, d, k belong to an encryption scheme and therefore d(e(k, µ|(sid0,m0)|)) =
µ|(sid0,m0)|. On the other hand, in the ideal world as the simulator does not know b and because of (7),
the output of d′sid1

(c) does not depend on b either. But for the simulation to work it has to hold that
d′sid1

(c) = m1 if b = 0 and d′sid1
(c) = ⊥ otherwise. Hence, the simulator can do no better than guessing

b, i.e., E outputs “ideal” with probability at least 1
2 . Which proves that E is a distinguishing environment

for any simulator that fulfills (7).
The above argument is robust in terms of the exact definition of FPKE and the encoding of pairings.

For example if FPKE would ideally not encrypt constant messages but probabilistically chosen ones, e.g.
µ ∈R {0, 1}|m| for plaintext m, this does not help either because E can decrypt the ciphertext c and
check if it is of the form (sid , m) for some SID sid and message m and then proceed as above. For a short
(w.r.t. η) SID sid and a short message m, the probability that d(c) = (sid ′, m′) where c is generated by
e(k, µ) and µ ∈R {0, 1}∗ for some sid ′ and m′ would be non-negligible. For other encodings of pairings
or other choices of µ the argument above may fail (even though it has not been proven). In any case, it
would be at least unsatisfactory if the correctness of the theorem would depend on such details.

Problems with the joint state realization in [9]. In [9], a (certified) public-key encryption functionality with
local computation is proposed which is parameterized by fixed encryption and decryption algorithms;
the keys are embedded in the algorithms, and hence, are also fixed (below we discuss the case that
keys are not fixed). For this functionality, a theorem similar to Theorem 8 is stated only informally and
without proof. One can only hope such a theorem to hold, if one assumes that in the ideal world the ideal
functionality is defined in such a way that its SID is given to the encryption and decryption algorithms
by the functionality, and that the encryption and decryption algorithms make use of the SID in the same
way as prescribed by the simulator in the proof of Theorem 8. So, the ideal functionality has already
to mimic the joint state realization. However, the ideal functionality in the joint state world should be
defined differently: It should ignore SIDs, because on the left-hand side SIDs are handled outside of the
ideal functionality. Hence, the joint state theorem would be defined with different ideal functionalities in
the joint state and ideal world. This has not been mentioned in [9]. But even if this is done, the theorem
would still not hold if in the joint state world SIDs are not leaked. The reasoning is similar to the one
above for the joint state theorem in [7]. Note that since the keys as well as encryption and decryption
algorithms are fixed, the environment can still decrypt messages on its own. To fix this problem, the ideal
functionality in the joint state world would have to be modified to account for the leakage. Altogether,
these modifications would mimic what is happening in Theorem 8 and our proof of this theorem.

Alternatively, instead of parameterizing the functionality with a fixed public-key, encryption and
decryption algorithm, one could have the functionality generate its own keys. In this case in the ideal
world for encryption different public keys would be used in different sessions for the same party while in
the joint state world the same key would be used for all sessions of this party. For the joint state theorem
to hold this would require the encryption scheme to hide the public key, which is not a property CCA
schemes have in general. Putting this aside (even though it is a serious problem), then the environment

51

cannot decrypt ciphertexts a priori. However, if the algorithms are parameterized with the algorithms the
standard simulator provides, the environment can dispense with the decryption because it knows what
the ciphertexts will decrypt to (namely µ|m|: it knows the plaintext if fixed leakage is used as in [9]).
For other parameterizations satisfying (7) or probabilistic leakage one has to argue that the environment
does not gain information about plaintexts (in particular the SIDs in them). Hence, one would have to
assume that the encryption scheme used is secure in some sense. But then there does not seem to be
a point in using the ideal functionality at all in the joint state theorem. Instead one can just as well
try to prove the joint state theorem directly without using an ideal functionality on the left-hand side.
Consequently, realizations shown for the ideal functionality itself would be of no use.

Remarks on other Functionalities in the Literature. As mentioned in the introduction, other formulations
of public-key encryption functionalities, e.g., those in [5, 20], are defined in a non-local way i.e., all
ciphertexts are provided by the adversary, with the mentioned disadvantages. Formulations with local
computation, besides the one discussed above, have been proposed in [27, 2].

The public-key encryption functionality in [2] is part of a Dolev-Yao style cryptographic library. It has
similar restrictions as the digital signatures in this library: A user does not obtain the actual ciphertexts
but only a handle to the ciphertexts within the library. By this, the use of ciphertexts by the user is
restricted to the operations provided in the library. The implementation of the public-key encryption
functionality within the library does not use a standard CCA-secure scheme, but requires a specific
stronger construction.

In [27], formulations of public-key encryption functionalities with local computation are proposed
which are parameterized by specific encryption and decryption algorithms. With the drawbacks (con-
cerning joint state) mentioned for [9].

We note that in [2, 27] joint state realizations of their functionalities have not been considered.

General remarks. One general remark for joint state theorems is that specifying corruption precisely is
vital, as we do in our work, since some forms of corruption do not allow for joint state realizations. For
example, if upon corruption all messages encrypted so far would be given to the adversary in order of
occurrence, the joint state and ideal world could be distinguished because the order in the joint state
world cannot be reconstructed by the simulator in the ideal world. (See also the discussion of corruption
for joint state for digital signatures in Section 5.4)

Furthermore, we note that, analogously to the case of digital signatures (see Section 5.4) and unlike
other formulations, our formulation models the realistic situation that encryptions can be performed even
before the decryption box has been invoked for the first time by the decryptor. Corruptions are specified
rigorously, and encryption and decryption boxes can be corrupted independently. Our functionality FPKE

can be invoked an unbounded number of times, with arbitrarily long messages. We note that FPKE

specifies the public-key encryption functionality for a single party (more precisely, one decryptor, with
an unbounded number of encryptors). If PPKE realizes FPKE, i.e., PPKE ≤SS FPKE, then our composition
theorem immediately implies that the multi-party version !PPKE of PPKE realizes the multi-party version
!FPKE of FPKE, i.e., !PPKE ≤SS !FPKE. Applying the composition theorem again yields that !PPKE ≤SS

!FPKE, i.e., the multi-party, multi-session version of PPKE realizes the multi-party, multi-session version

of FPKE.

7 Replayable Public-Key Encryption

In this section, we propose a public-key encryption functionality with local computation which is de-
signed to capture IND-RCCA-secure, i.e., replayable IND-RCCA-secure, encryption schemes. Recall that
IND-RCCA-security is a relaxed form of CCA-security where modifications of the ciphertext that yield
the same plaintext are permitted (see [11]). As explained in [11], RCCA-security suffices in many ap-
plications where CCA-security is used. The equivalence of IND-RCCA-secure encryption schemes and
our functionality for replayable public-key encryption is established in Section 7.2, with a joint state
realization presented in Section 7.3.

52

7.1 Ideal Replayable Public-Key Encryption Functionality

We now present our ideal functionality FRPKE with local computation for replayable public-key encryp-
tion.

In many technical matters the formulation of FRPKE is similar to FPKE. We also refer to the conven-
tions given in Section 4. Recall the definition of leakage (Definition 3).

The functionality FRPKE with leakage (Lη)η∈N is defined as follows

FRPKE((Lη)η∈N, Tdec, Tenc, p) = Frdec((Lη)η∈N, Tdec, Tenc, p) | !Fenc(Tenc)

where the IITMs Frdec and Fenc represent the decryptor’s and encryptor’s part, respectively. The IITM
Fenc = Fenc(Tenc), is defined as in Section 6.1 in Figure 17. The IITM Frdec = Frdec((Lη)η∈N, Tdec, Tenc, p),
as defined in Figure 30, is parameterized by the leakage (Lη)η∈N, two disjoint sets of names of tapes Tdec

and Tenc which are used by the decryptor or the encryptors (resp.) to connect to Frdec and by a polynomial
p.

Functionality Frdec((Lη)η∈N, Tdec, Tenc, p)

I/O-tapes: in: io(T, pke) for each T ∈ Tdec, io(Edec, pke), io(enc, dec) (enriching)
out: io(pke, T) for each T ∈ Tdec ∪ Tenc, io(pke, Edec), io(dec, enc)

net-tapes: in: net(Adec, pke) (consuming) out: net(pke, Adec)

Initialization: e, d, k ← ⊥ ; H ← ∅ ; state ← init ; nokey ← true ; corrupted ← false

CheckAddress: Accept all messages on all tapes
Compute: Upon receiving a message check which case matches:

(a) Initialization: If recv (Init) from T ∈ Tdec, and state = init do: state ← (wait, T) ; send (Init) to Adec

(b) Initialization Response: If recv (Inited) from Adec, not nokey , and state = (wait, T) do:
state ← ok ; send (PublicKey, k) to T

(c) Wake up: If recv (pid , WakeUpFromEnc) on io(enc, dec) do: send (pid , Ack) to io(dec, enc)
(d) Key Generation: If recv (AlgorithmsAndKey, e′, d′, k′) from Adec, nokey , and |e′|, |d′|, |k′| ≤ p(η) do:

(e, d, k)← (e′, d′, k′) ; nokey ← false ; send (Ack) to Adec

(e) Decryption: If recv (Decrypt, c) from T ∈ Tdec, state = ok, and not corrupted do:
m← sim-detp(|c|+η) d(c) ;

m←

8
><
>:

⊥ if ∃m′, m′′ : m′ 6= m′′, (m′, m) ∈ H, (m′′, m) ∈ H

m′ if ∃!m′ : (m′, m) ∈ H

m otherwise ;

send (Plaintext, m) to T
(f) Encryption: If recv (pid , Encrypt, k′, m, T) from enc where T ∈ Tenc, and not nokey do:

if m /∈ dom(Lη) then c← ⊥
else if k 6= k′ or corrupted then c← simp(|m|+η) e(k′, m)
else m← Lη(m) ; c← simp(|m|+η) e(k, m) ; if c 6= ⊥ then H ← H ∪ {(m, m)} end ;
end ;
send (pid , Ciphertext, c) to T

(g) Corruption: Corr(corrupted , true, state 6= init, ε, Adec, Tdec, Edec) (See Figure 1 for definition of Corr)
If no rule above fires then produce no output.

Fig. 30. Ideal replayable public-key encryption func. FRPKE = Frdec | !Fenc, the decryptor’s part Frdec.

The major difference between FRPKE and FPKE is that upon encryption, the pair (m, m) is stored
instead of (m, c) and that upon decryption it is not looked for the ciphertext c but for the decryption d(c)
of the ciphertext. Hence, it might be possible to produce a ciphertext c′ 6= c such that the decryption
m of c′ is the same as the one of c without knowing m. This models replayable encryption. Another
difference is that the decryption test can be omitted.

7.2 Realization by an RCCA-Secure Encryption Scheme

In this section, it is shown that the ideal replayable public-key encryption functionality FRPKE that leaks
the length of a message is realized by a public-key encryption scheme if and only if the encryption scheme

53

is secure with respect to adaptive replayable chosen-ciphertext attacks (IND-RCCA-secure) as defined
by [11]. We first restate the definition of RCCA.

Let A = (A1, A2) be an adversary, as defined in Section 6.2, and b ∈ {0, 1}. The corresponding
RCCA-experiment is a probabilistic algorithm TA,Σ that runs on input b ∈ {0, 1} and η ∈ N.

TA,Σ(b, η) : (kd, ke)← gen(1η); (x0, x1, s)← A
dec(kd,·)
1 (ke, 1

η);

c∗ ← enc(ke, xb); b′ ← A
dec(x0,x1,kd,·)
2 (x0, x1, s, c

∗, 1η); return b′;

where dec(x0, x1, kd, ·) is defined as follows:

dec(x0, x1, kd, c) : x← dec(kd, c); if x ∈ {x0, x1} then return test else return x;

where test is a special message that is never returned by dec.
The advantage of an adversary A = (A1, A2) regarding the public-key encryption scheme Σ is defined

by
Adv(A, Σ, η) = |Prob[TA,Σ(1, η) = 1]− Prob[TA,Σ(0, η) = 1]| .

Definition 6 ([11]). A public-key encryption scheme Σ is called secure against replayable adaptive
chosen-ciphertext attacks (IND-RCCA-secure) if for all adversaries A the advantage Adv(A, Σ, η) is
negligible as a function in η.

The following theorem shows that an RCCA-secure encryption scheme realizes FRPKE in the context
of environments without auxiliary input. One could alternatively define RCCA-security by allowing
auxiliary input to the adversary. Then, an RCCA-secure encryption scheme would realizes FRPKE in
the context of environments with auxiliary input. Note that length preserving leakage with high entropy
(recall Definition 4) implies that the domain of plaintexts contains only long messages.

Theorem 9. Let Tdec and Tenc be some disjoint sets of names of tapes, Σ an IND-RCCA-secure p-
bounded public-key encryption scheme. Then,

PPKE(Σ, (dom(Lη))η∈N, Tdec, Tenc) ≤
SS-noaux FRPKE((Lη)η∈N, Tdec, Tenc, p)

for every length preserving leakage (Lη)η∈N that has high entropy.

Proof. We prove the theorem by contradiction.
Assuming PPKE(Σ, (dom(Lη))η∈N) 6≤SS-noaux FRPKE((Lη)η∈N, p) we show that Σ is not IND-RCCA-

secure by constructing a successful adversary. Let S = SPKE be the simulator from Section 6.2 and E ∈
ConE(PPKE(Σ, (dom(Lη))η∈N)) such that E | PPKE(Σ, (dom(Lη))η∈N) 6≡noaux E | S | FRPKE((Lη)η∈N, p).

Let B denote the event that in an run of E | S | FRPKE((Lη)η∈N, p)(1η, ε) the environment E asks
for encryption of a plaintext m after m was chosen by Lη in Step (f) of Frdec. We show that if Σ is
IND-RCCA-secure then B occurs only with negligible probability. Intuitively, this is clear because L has
high entropy, so, guessing is only successful with negligible probability and if E could learn m from the
encryption of it then Σ is not IND-RCCA-secure. More formally, assume that Σ is IND-RCCA-secure
and that B occurs with non-negligible probability. We define the adversary A = (A1, A2) as follows. Let
p be a polynomial such that the number of messages that E encrypts is bounded by p(η).

A1(ke, 1
η) chooses h←R{1, . . . , p(η)} and simulates E | S | FRPKE((Lη)η∈N, p)(1η, ε) except that the

public key that S hands to FRPKE is replaced by ke and upon decryption not d(c) is computed but the
decryption oracle dec(kd, c) is called. If E asks FRPKE to encrypt the h-th messages mh with the proper
key ke then A1 computes x0 ← Lη(mh) and x1 ← Lη(mh) and outputs (x0, x1, s) where s contains all
information about the simulation of E | S | FRPKE, the public key ke and the message mh. Note that the
length of s is polynomial in the security parameter.

A2(x0, x1, (ke, mh), c∗, 1η) parses s and continues the simulation of E | S | FRPKE but FRPKE does not
store mh but returns c∗ as the encryption of mh to E . Upon decryption of c not d(c) is computed but
dec(x0, x1, kd, c). If the decryption oracle returns test then FRPKE returns mh to E as the plaintext. If
at some point E asks to encrypt x0 (resp., x1) then A2 outputs 0 (resp., 1). Otherwise, if the run stops
and E has never output x0 or x1 then A2 outputs b←R{0, 1}.

Next, we analyze the advantage of A. Note that the view of E in the simulation of A is identical to
its view in an interaction with S |FRPKE. Hence, if b = 0 then the run is independent of the value of

54

x1. Hence, the probability that E asks for encryption of x1 is at most the probability of guessing x1, i.e.,
Prob[TA,Σ(0, η) = 1] ≤ 1

2 + p(η) · f(η) where f is a negligible function. On the other hand, if b = 1 then
the probability that E asks for encryption of x1 is 1

p(η) ·Prob[B]. Since E might ask for encryption of x0

with small probability, we have that Prob[TA,Σ(1, η) = 1] ≥ 1
2 + 1

p(η) ·Prob[B]− p(η) · f(η). We conclude

Adv(A, Σ, η) ≥
1

p(η)
· Prob[B]− 2 · p(η) · f(η)

which is non-negligible if Prob[B] is non-negligible because p is a polynomial and f is negligible. This
proves that Prob[B] is negligible if Σ is IND-RCCA-secure.

Now, we give a successful adversary A = (A1, A2) on Σ. A is defined as the adversary in the proof
of Theorem 7 except that if the decryption oracle dec(x0, x1, kd, c) returns test then A2 continues as if it
returned mh. (The motivation is that c either decrypts to mh or to Lη(mh), but Lη(mh) was requested
to be encrypted only if event B occurs. However, the probability for B to happen is negligible.)

The proof proceeds via a hybrid argument as the proof of Theorem 7. We conclude that Σ is not
IND-RCCA-secure which proves the theorem. ⊓⊔

Lemma 2. Let Tdec and Tenc be disjoint sets of names of tapes, Σ = (gen, dec, enc) a p-bounded public-

key encryption scheme such that Prob[enc(k, m) = ⊥] = Prob[L
|·|
η (m) = ⊥] for all k generated by gen(1η)

and all m ∈ {0, 1}∗ and

PPKE(Σ, (dom(L|·|
η))η∈N, Tdec, Tenc) ≤

SS-noaux FRPKE((L|·|
η)η∈N, Tdec, Tenc, p) .

Then, Σ is IND-RCCA-secure.

Proof. The proof is similar to the proof of Lemma 1. Assuming Σ is not IND-RCCA-secure, we use a
successful adversary A = (A1, A2) to construct an environment E that distinguishes PPKE from S |FRPKE

for each simulator S. The environment E is defined as in the proof of Lemma 1 except that if A2 asks
its decryption oracle to decrypt a message c then E asks FRPKE to decrypt c. If FRPKE returns one of
the messages x0 or x1 (which A claims to distinguish) as a decryption then E continues the simulation
of A2 as if test is returned.

One can show that if E interacts with the real world, i.e. PPKE, then the simulation of A is exactly

like in the experiment TA,Σ and thus Prob[E | PPKE(Σ, (dom(L
|·|
η))η∈N) 1] is non-negligible less than

one half.

On the other hand, one can prove that if E interacts with the ideal world, i.e. with S |FRPKE, then

b′ is independent of b and thus Prob[E | S | FRPKE((L
|·|
η)η∈N)(1η, ε) 1] is exactly one half.

We conclude that

|Prob[E | PPKE(Σ, (dom(L|·|
η))η∈N)(1η, ε) 1]− Prob[E | S | FRPKE((L|·|

η)η∈N)(1η, ε) 1]|

is non-negligible for each simulator S and thus PPKE(Σ, (dom(L
|·|
η))η∈N) 6≤SS-noaux FRPKE((L

|·|
η)η∈N).

⊓⊔

With (Lη)η∈N = (L
|·|
η)η∈N in Theorem 9, we obtain:

Corollary 4. Let Tdec and Tenc be disjoint sets of names of tapes and let Σ be a p-bounded public-key

encryption scheme where Prob[enc(k, m) = ⊥] = Prob[L
|·|
η (m) = ⊥] for all k generated by gen(1η) and

all m ∈ {0, 1}∗. Then, Σ is IND-RCCA-secure if and only if

PPKE(Σ, (dom(L|·|
η))η∈N, Tdec, Tenc) ≤

SS-noaux FRPKE((L|·|
η)η∈N, Tdec, Tenc, p) .

7.3 Joint State for Replayable Public-Key Encryption

In this section, we show that the protocol system PJS
PKE (see Section 6.3) is not only a joint state realization

of FPKE but also of FRPKE.

55

Theorem 10. For all polynomials p and q and disjoint sets of names of tapes Tdec and Tenc exists a
polynomial p′ such that for every leakage (Lη)η∈N we have

PJS
PKE(Tdec, Tenc, p, q) | !F ′

RPKE((L′
η)η∈N, Tdec, Tenc, p) ≤SS !FRPKE((Lη)η∈N, Tdec, Tenc, p

′)

where (L′
η)η∈N is defined by

L′
η(x) : if ∃sid ∈ {0, 1}∗, x′ ∈ dom(Lη) : x is of shape (sid , x′) then return (sid , Lη(x′))

else return ⊥

and F ′
RPKE is obtained from FRPKE by renaming all tapes by replacing pke by pke′ in the tape name.

Proof. The proof is similar to the proof of the joint state theorem of FPKE, in particular, we use the
same simulator S = SJS

PKE (see Figure 27 and 28) and polynomial p′ to prove

E | PJS
PKE(p, q) | !F ′

RPKE((L′
η)η∈N, p) ≡ E | S | !FRPKE((Lη)η∈N, p′)

for all environments E ∈ ConE(PJS
PKE | !F

′
RPKE((L′

η)η∈N)).

At first note that upon initialization, key generation and corruption the behavior of PJS
PKE | !F

′
RPKE

does not differ from the behavior of !FRPKE.

Let Hpid refer to H in the copy F ′
RPKE((L′

η)η∈N)[pid] in the joint state world (JS world) while
Hsid ,pid refers to H in the copy FRPKE((Lη)η∈N)[sid , pid] in the ideal world. Because of the definition of
the leakage (L′

η)η∈N we have that if ((sid , m), (sid ′, m)) ∈ Hpid then sid = sid ′. We can prove

Prob[((sid , m), (sid , m)) ∈ Hpid] = Prob[(m, m) ∈ Hsid ,pid] (8)

for all SIDs sid and messages m, m ∈ {0, 1}∗.
The output of PJS

PKE | !F
′
RPKE((L′

η)η∈N) upon an encryption request has the same distribution as the

output of !FRPKE((Lη)η∈N) because of the definition of esid and the choice of p′.

Now, consider decryption of a ciphertext c in session sid by a decryptor with PID pid .
First, we show that ⊥ is returned in the JS world if and only if it is returned in the ideal world.
Note that if a collision occurs in the JS world, i.e. there exist (sid , m), (sid ′, m′) and (sid ′′, m′′)

such that ((sid ′, m′), (sid , m)) ∈ Hpid and ((sid ′′, m′′), (sid , m)) ∈ Hpid then sid = sid ′ = sid ′′. Hence,
collisions in the JS world do not occur across different sessions. By the definition of (L′

η)η∈N, for each
ciphertext the probability that a collision occurs in the JS world in session sid is equal to the probability
that a collision occurs in the ideal world in Hsid ,pid .

If no collisions occur, the error symbol ⊥ is returned in the JS world if and only if one of the following
four cases apply:

(a) d(c) = ⊥.
(b) d(c) = x and there is no entry in Hpid with second component x but x is not of shape (sid , m) for

some message m.
(c) d(c) = x and ∃!x′ : (x′, x) ∈ Hpid and x′ is not of shape (sid , m) for some message m.

If (a) then dsid (c) = ⊥, so, ⊥ is returned in the ideal world as well. If (b) then dsid (c) = ⊥, so, ⊥ is
returned in the ideal world. If (c) then x = (sid ′, m) and x′ = (sid ′, m′) for some sid ′, m and m′ but
sid ′ 6= sid . Thus, dsid (c) = ⊥ and ⊥ is returned in the ideal world.

Vice versa, if no collisions occur, ⊥ is returned in the ideal world if and only if dsid (c) = ⊥. Then
x = d(c) is not of shape (sid , m) for some message m. If ((sid ′, m′), x) ∈ Hpid for some sid ′ and m′ then
sid ′ 6= sid . Thus, ⊥ is returned in the JS world.

We conclude that the probability that ⊥ is returned in the JS world is equal to the probability that
⊥ is returned in the ideal world.

Now, assume that decryption of the ciphertext c in session sid returned a plaintext m 6= ⊥ in the JS
world.

Then either i) d(c) = (sid , m) and (sid , m) does not occur in Hpid in the second component, or ii)
d(c) = (sid , m) and ((sid , m), (sid , m)) ∈ Hpid (and no collision occurs). If i) then dsid (c) = m and if ii)
then dsid (c) = m.

56

On the other hand, if the decryption of the ciphertext c in session sid returns a plaintext m 6= ⊥ in
the ideal world then either i) dsid (c) = m and m does not occur in Hsid ,pid in the second component,
or ii) dsid (c) = m and (m, m) ∈ Hpid (and no collision occurs). If i) then d(c) = (sid , m) and if ii) then
d(c) = (sid , m).

Because of (8) the output upon decryption in the JS world does not differ from the output in the
ideal world. ⊓⊔

As in Section 6.3, we can note that because of the quantification over all polynomials p and q and all
leakage (Lη)η∈N, the above theorem can be applied iteratively as described in Section 3. Also, the theorem
implies that we obtain joint state realizations for all realizations of FPKE. In particular, we obtain that the

joint state realization PJS
PKE | !P

′
PKE(Σ, (dom(L

|·|
η))η∈N) of an IND-RCCA-secure public-key encryption

scheme Σ realizes the multi-party multi-session version of FRPKE((L
|·|
η)η∈N). More general, we obtain

the following.

Corollary 5. Let Tdec and Tenc be disjoint sets of names of tapes and Σ a p-bounded IND-RCCA-secure
public-key encryption scheme. Then for all polynomials q there is a polynomial p′ such that for every
length preserving leakage (Lη)η∈N that has high entropy we have

PJS
PKE(Tdec, Tenc, p, q) | !P ′

PKE(Σ, (dom(Lη))η∈N, Tdec, Tenc) ≤
SS-noaux !FRPKE((Lη)η∈N, Tdec, Tenc, p

′)

where P ′
PKE is obtained from PPKE by renaming all tapes by replacing pke by pke′ in the tape name.

As for non-replayable public key encryption (Section 6), we note that one could have tried to prove
this corollary which yields a joint state realization without resorting to the ideal functionality on the
left-hand side. However, this has several disadvantages as discussed in Section 6.3.

7.4 Comparison with other Formulations

In [11], Canetti et al. define and motivate RCCA-secure encryption schemes and propose a public-key
functionality with non-local computation that captures RCCA-security. In [7], Canetti sketches in a few
lines how his public-key encryption functionality with local computation should be modified to obtain a
functionality that mimics RCCA-security. However, the modification that Canetti proposes only makes
sense in a setting with non-local computation of ciphertexts. A proof of equivalence of this functionality
with RCCA-security is not provided. Also, neither in [11] nor in [7] the issue of joint state is touched
in the context of RCCA-security. So, our formulation of replayable public-key encryption with local
computation is the first such formulation. Also, we are the first to propose a joint state realization in the
context of RCCA-security.

The general remarks in Sections 5.4 and 6.4 about the features and advantages of our formulations
of digital signature and public-key encryption functionalities compared to other formulations also apply
to our formulation of the functionality for replayable public-key encryption.

References

[1] M. Backes and D. Hofheinz. How to Break and Repair a Universally Composable Signature Functionality.
In Information Security, 7th International Conference, ISC 2004, Proceedings, volume 3225 of Lecture Notes
in Computer Science, pages 61–72. Springer, 2004.

[2] M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic library with nested operations. In
S. Jajodia, V. Atluri, and T. Jaeger, editors, Proceedings of the 10th ACM Conference on Computer and
Communications Security (CCS 2003), pages 220–230. ACM, 2003.

[3] M. Backes, B. Pfitzmann, and M. Waidner. Secure Asynchronous Reactive Systems. Technical Report 082,
Cryptology ePrint Archive, 2004.

[4] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations Among Notions of Security for Public-Key
Encryption Schemes. In CRYPTO ’98, volume 1462 of Lecture Notes in Computer Science, pages 26–46.
Springer, 1998.

[5] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols. In Proceedings
of the 42nd Annual Symposium on Foundations of Computer Science (FOCS 2001), pages 136–145. IEEE
Computer Society, 2001.

57

[6] R. Canetti. Universally Composable Signature, Certification, and Authentication. In Proceedings of the
17th IEEE Computer Security Foundations Workshop (CSFW-17 2004), pages 219–233. IEEE Computer
Society, 2004.

[7] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Proto-
cols. Technical report, Cryptology ePrint Archive, December 2005. Online available at
http://eprint.iacr.org/2000/067.ps.

[8] R. Canetti, Y. Dodis, R. Pass, and S. Walfish. Universally Composable Security with Global Setup. In
S. P. Vadhan, editor, Theory of Cryptography, Proceedings of TCC 2007, volume 4392 of Lecture Notes in
Computer Science, pages 61–85. Springer, 2007.

[9] R. Canetti and J. Herzog. Universally Composable Symbolic Analysis of Mutual Authentication and Key-
Exchange Protocols. In S. Halevi and T. Rabin, editors, Theory of Cryptography, Third Theory of Cryptog-
raphy Conference, TCC 2006, volume 3876 of Lecture Notes in Computer Science, pages 380–403. Springer,
2006.

[10] R. Canetti and H. Krawczyk. Universally Composable Notions of Key Exchange and Secure Channels. In
Advances in Cryptology - EUROCRYPT 2002, International Conference on the Theory and Applications of
Cryptographic Techniques, Proceedings, volume 2332 of Lecture Notes in Computer Science, pages 337–351.
Springer, 2002.

[11] R. Canetti, H. Krawczyk, and J.B. Nielsen. Relaxing Chosen-Ciphertext Security. In Advances in Cryptol-
ogy, 23rd Annual International Cryptology Conference (CRYPTO 2003), volume 2729 of Lecture Notes in
Computer Science, pages 565–582. Springer, 2003.

[12] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable two-party and multi-party
secure computation. In Proceedings of the 34th Annual ACM Symposium on Theory of Computing (STOC
2002), pages 494–503. ACM Press, 2002.

[13] R. Canetti and T. Rabin. Universal Composition with Joint State. Cryptology ePrint Archive, Report
2002/047, 2002. Version of Nov. 2003. http://eprint.iacr.org/.

[14] R. Canetti and T. Rabin. Universal Composition with Joint State. In Advances in Cryptology, 23rd An-
nual International Cryptology Conference (CRYPTO 2003), Proceedings, volume 2729 of Lecture Notes in
Computer Science, pages 265–281. Springer, 2003.

[15] Ran Canetti, Ling Cheung, Dilsun Kaynar, Moses Liskov, Nancy Lynch, Olivier Pereira, and Roberto Segala.
Time-bounded Task-PIOAs: A Framework for Analyzing Security Protocols. In S. Dolev, editor, 20th
International Symposium on Distributed Computing (DISC 2006), pages 238–253. Springer, 2006.

[16] V. Cortier, R. Küsters, and B. Warinschi. A Cryptographic Model for Branching Time Security Prop-
erties – the Case of Contract Signing Protocol. In Proceedings of the 12th European Symposium on
Research in Computer Security (ESORICS 2007). Springer, 2007. To appear. Full version available at
http://eprint.iacr.org/2007/251.

[17] A. Datta, R. Küsters, J. Mitchell, and A. Ramanathan. On the Relationships Between Notions of Simulation-
Based Security. In J. Kilian, editor, Proceedings of the 2nd Theory of Cryptography Conference (TCC 2005),
volume 3378 of Lecture Notes in Computer Science, pages 476–494. Springer-Verlag, 2005. Full version to
appear in the Journal of Cryptology.

[18] D. Dolev, C. Dwork, and M. Naor. Non-Malleable Cryptography. SIAM Journal on Computing, 30(2):391–
437, 2000.

[19] S. Goldwasser, S. Micali, and R.L. Rivest. A digital signature scheme secure against adaptive chosen-message
attacks. SIAM Journal on Computing, 17(2):281–308, 1988.

[20] D. Hofheinz, J. Mueller-Quade, and R. Steinwandt. On Modeling IND-CCA Security in Cryptographic
Protocols. Cryptology ePrint Archive, Report 2003/024, 2003. Available at http://eprint.iacr.org/.

[21] D. Hofheinz, J. Müller-Quade, and D. Unruh. Polynomial Runtime in Simulatability Definitions. In 18th
IEEE Computer Security Foundations Workshop (CSFW-18 2005), pages 156–169. IEEE Computer Society,
2005.

[22] D. Hofheinz, J. Müller-Quade, and D. Unruh. A simple model of polynomial time uc. One-page abstract of
a talk given at the Workshop on Models for Cryptographic Protocols (MCP 2006), 2006.

[23] R. Küsters. Simulation-Based Security with Inexhaustible Interactive Turing Machines. In Proceedings of
the 19th IEEE Computer Security Foundations Workshop (CSFW-19 2006), pages 309–320. IEEE Computer
Society, 2006.

[24] R. Küsters. Simulation-Based Security with Inexhaustible Interactive Turing Machines. Technical Report
151, Cryptology ePrint Archive, 2006.

[25] Y. Lindell, A. Lysyanskaya, and T. Rabin. On the composition of authenticated byzantine agreement. In
Proceedings of the 34th Annual ACM Symposium on Theory of Computing (STOC 2002), pages 514–523.
ACM Press, 2002.

[26] J. B. Nielsen. Separating Random Oracle Proofs from Complexity Theoretic Proofs: The Non-committing
Encryption Case. In CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science, pages 111–126.
Springer-Verlag, 2002.

58

[27] B. Pfitzmann and M. Waidner. A Model for Asynchronous Reactive Systems and its Application to Secure
Message Transmission. In IEEE Symposium on Security and Privacy, pages 184–201. IEEE Computer
Society Press, 2001.

[28] C. Rackoff and D. Simon. Non-Interactive Zero-Knowledge Proof of Knowledge and Chosen Ciphertext
Attack. In CRYPTO ’91, volume 576 of Lecture Notes in Computer Science. Springer, 1991.

59

	Joint State Theorems for Public-Key Encryption and Digital Signature Functionalities with Local Computation
	Ralf Küsters, Max Tuengerthal

