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Abstract. We consider one-round identity-based key exchange proto-
cols secure in the standard model. The security analysis uses the powerful
security model of Canetti and Krawczyk and a natural extension of it
to the ID-based setting. It is shown how KEMs can be used in a generic
way to obtain two different protocol designs with progressively stronger
security guarantees. A detailed analysis of the performance of the proto-
cols is included; surprisingly, when instantiated with specific KEM con-
structions, the resulting protocols are competitive with the best previous
schemes that have proofs only in the random oracle model.
Keywords: key exchange, standard model.

1 Introduction

There has been a recent rapid growth of interest in efficient cryptographic
primitives of all kinds that carry proofs in the standard model. Avoiding
the random oracle model (ROM) or generic group model is to be preferred,
given the known problems with instantiating these models in practice [9,
13, 4]. However, the usual price to be paid for working in the standard
model is a loss of efficiency.

This paper initiates the systematic study of identity-based key ex-
change protocols whose security can be analyzed in the standard model.
Our focus here is on two-party, one-round protocols — protocols in which
only two message flows are required to securely establish a key between
two parties. We provide two related, yet distinct, approaches to build-
ing such protocols using KEMs [1]. Our security proofs use the Canetti-
Krawczyk model (appropriately adapted for the identity-based case), which
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is sufficiently powerful to allow the capture of a variety of security prop-
erties including basic session key security, key compromise impersonation
resilience, and various types of forward security.

In the identity-based setting, there is no shortage of protocols with
security analysis in the ROM, with Chen, Cheng and Smart [11] providing
a useful survey and comparison of these. Our protocols appear to be the
first explicit constructions that are proven secure in the standard model in
this setting. A recent preprint [28] also considers ID-based key exchange
in the standard model, but the security analysis therein is incomplete
– we comment in more detail on this below. Our focus is on protocols
that can be built upon an ID-based encryption infrastructure. Hence we
exclude existing certificate-based key exchange protocols, even when they
can also be seen as ID-based.

1.1 Contributions

We consider the instantiation of our ID-based protocol designs with a
variety of suitable concrete KEM components. These are derived from
ID-based KEMs of Kiltz [20], Kiltz-Galindo [21] and Gentry [18]. By
modifying these to operate in the setting of asymmetric pairings and or-
dinary elliptic curves, we are able to produce concrete ID-based protocols
with security proven in the standard model that are only 2.5 times slower
than the most efficient protocols with security established in the ROM,
the comparison being made on elliptic curves with a 128-bit security level.

Our first protocol is the most efficient of the two, and provides key-
compromise impersonation (KCI) resistance but not forward secrecy. The
basic idea of Protocol 1 is very simple: the two parties simply send each
other a random secret value using the IB-KEM and then use a randomness
extractor to derive a session key from the combined secrets. Protocol 2
is based on the first protocol, but adds an independent Diffie-Hellman
exchange to achieve forward secrecy. It also achieves KCI resistance.

Our approach can also be quite naturally considered in the normal
public key setting, although for brevity we only deal with the ID-based
setting in this paper. We note, nevertheless, that in the normal public
key setting we obtain efficient, one round, concrete protocol designs in
the standard model, which compare favorably with the protocol of Jeong,
Katz and Lee [19], which is to our knowledge the only other one-round
protocol secure in the standard model. The protocols are reasonably effi-
cient even when compared to the best ROM protocols. For example, they
can be instantiated with standard model KEMs to yield protocols with a
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computational increase of a factor around 3 when compared with HMQV
[24].

In the rest of this introduction we give an overview of related work.
We then establish some essential definitions, and go on to outline the
Canetti-Krawczyk model in which our proofs are presented. Section 4 of
the paper develops Protocols 1 and 2 and proves their security in the
Canetti-Krawczyk model. Section 5 compares the efficiency and security
of the new protocols with the (ROM) ID-based protocol of Boyd, Mao
and Paterson [8], one of the most efficient protocols in the identity-based
literature.

1.2 Related Work

Following the development of practical schemes for identity-based encryp-
tion [27, 7] many other identity-based primitives have been designed; due
to their practical importance, these have included many key exchange
protocols. Chen et al. [11] have provided a useful survey and comparison
of work to date on identity-based key exchange.

Initially all security proofs for identity-based primitives relied on the
random oracle model. More recently there has been a focus on providing
new identity-based encryption (IBE) and identity-based key encapsula-
tion (IB-KEM) schemes with security proofs in the standard model. Re-
cent and quite efficient proposals include those of Waters [29], Kiltz [20],
Gentry [18] and Kiltz–Galindo [21, 22].

Up until now, all proofs for identity-based key exchange protocols have
continued to rely on the ROM, with the exception [28] noted. However,
although Wang et al. [28] propose three protocols, a proof for only one
is provided; the other two proofs supposedly use similar techniques. The
protocol with a claimed proof applies a key derivation function H2 to the
shared secret, exchanged messages and identities. No properties of the
key derivation function are stated or used in the proof; indeed the proof
ignores the presence ofH2 altogether. However, without the key derivation
function, the protocol is completely insecure, because it is based on the
CPA (rather than CCA) version of Gentry’s IB-KEM [18] and so has
malleable messages. This malleability is easily exploited to find attacks
which break the security of the protocol. The problems in the paper of
Wang et al. [28] illustrate that it is not hard to devise ID-based protocols
that look secure in the standard model but making the proofs work is not
always so simple.

We note too that it is relatively straightforward to obtain standard-
model secure key exchange protocols (in both settings) using the authen-
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ticator approach of Canetti-Krawczyk [10] and Bellare-Canetti-Krawczyk
[6], by working with standard-model-secure cryptographic primitives. The
resulting protocols can be quite computationally efficient, but generally
require more than one round of communication. A detailed study of such
protocols is deferred to our future work.

In the normal public key model, Jeong et al. [19], proposed a pro-
tocol, call TS3, which is one-round and proven secure in the standard
model. TS3 is a Diffie-Hellman (DH) key exchanged authenticated using
a MAC keyed under the (static) DH of the long term keys of the two
users. TS3 provides forward secrecy, but fails to achieve KCI resilience –
a consequence of the static key used for authentication being the same
for both parties. Interestingly, the ID-version of TS3, which is essentially
the protocol of Boyd et al., appears to be limited to be only secure in the
ROM. An ID-based version of TS3 secure in the standard model would
imply a non-interactive ID-based key establishment protocol also secure
in the standard model, which to date is not known. Even if we had such
a primitive, the protocol would still not be KCI secure.

2 Preliminaries

In this section we present standard definitions and results needed in the
rest of the paper.

Definition 1 (Min-entropy [17, p.9]). Let X be a probability distri-
bution over A. The min-entropy of X is the value

min- ent(X ) = minx∈A:PrX [x]6=0(−log2(PrX [x])) (1)

(Note that if X has min-entropy t then for all x ∈ A, PrX [x] ≤ 2−t.)

Definition 2 (Strong randomness extractor [16, p.42][26]). A fam-
ily of efficiently computable hash functions H = {hκ : {0, 1}n → {0, 1}k|κ ∈
{0, 1}d} is called a strong (m, ε)-randomness extractor, if for any random
variable X over {0, 1}n that has min-entropy at least m, if κ is chosen
uniformly at random from {0, 1}d and R is chosen uniformly at random
from {0, 1}k, the following two distributions are within statistical distance
ε from each other:

〈κ, hκ(X)〉 ∼=ε 〈κ,R〉

To implement the randomness extraction function, one could apply
the work of Dodis et al. [15] to use CBC-MAC, keyed cascade chaining,
or HMAC as an almost universal hash function, and conclude that the
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function is a good randomness extraction function based on their exten-
sion of the leftover hash lemma.

Definition 3 (Pseudorandom Function Family (PRF) [5]). A func-
tion family F = {fκ}κ∈K is (S, q, ε) pseudorandom-secure if a circuit C of
size S which is given oracle access to either Fκ for κ ∈R K or a truly
random function with the same domain and range as the functions in F ,
and makes at most q queries to this oracle, has advantage at most ε in
distinguishing whether it has access to a random member of F or a truly
random function. That is,

Advp−rand
C (F ) = |Pr[CFκ(·)(F ) = 1]− Pr[CRand(·)(F ) = 1]| ≤ ε

Functions that are proven to be pseudorandom include CBC-MAC [2]
(provided the underlying block cipher is a secure pseudorandom permu-
tation family and the input length is constant) and HMAC [3] (provided
the compression function is a PRF).

Definition 4 ([Target] collision resistant hash function [21, p.5]).
Let F = {Hs}s∈S be a family of hash functions for security parameter k
and with seed s ∈ S = S(k). F is said to be target collision resistant
( collision resistant respectively) if, for a hash function H = Hs (where the
seed is chosen at random from S), given a randomly chosen element x, it
is infeasible for an efficient adversary to find a distinct value y 6= x such
that H(x) = H(y) (respectively, it is infeasible for an efficient adversary
to find two distinct values x 6= y such that H(x) = H(y)). We define
Advtcr

H,A(k) (Advcr
H,A(k) respectively) to be the probability that A finds a

collision in H. The hash function family H is said to be target collision
resistant ( collision resistant respectively) if the advantage function is a
negligible function in k for all polynomial-time adversaries A.

Assumption 1 (Decisional Diffie-Hellman (DDH) [17, p.5]) Let F
be a cyclic group of order p′ generated by an element f . Consider the set
F 3 = F × F × F and the following two probability distributions over it:

RF = {(fa, f b, f c) for a, b, c ∈R Zp′} (2)

and
DHF = {(fa, f b, fab) for a, b ∈R Zp′} (3)

We say the (S, ε) Decisional Diffie-Hellman (DDH) Assumption holds over
F = 〈f〉 (alternatively, that F is a (S, ε) DDH group) if the two distribu-
tions RF and DHF are (S, ε)-indistinguishable.
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Definition 5 (ID-based KEM). An IB-KEM E = (KeyGen,KeyDer,Enc,
Dec) consists of four polynomial-time algorithms:

– (pk , α) ∈R KeyGen(1k), given the security parameter k ∈ N, returns a
master public key, pk, and master secret key α;

– did ∈R KeyDer(pk , α, id) generates a private key corresponding to the
identity id.

– (C,K) ∈R Enc(pk , id) outputs a random key K and an encapsulation
(ciphertext) C of the key under the identity id;

– K = Dec(did , C) outputs key K corresponding to the encapsulation C.

Our definition of security for an identity-based key-encapsulation mech-
anism (IB-KEM) scheme is based upon that of Kiltz and Galindo [21].

Definition 6 (IB-KEM-CCA Security). The security of an IB-KEM
scheme E = (KeyGen,KeyDer,Enc,Dec) is defined using the following ex-
periment.

Experiment Expib−kem−cca
E,A (k)

(pk , α) ∈R KeyGen(1k)
(id∗, state) ∈R AOKeyDer(·),ODec(·,·)(find, pk)
K∗0 ∈R G∗T
(C∗,K∗1 ) ∈R Enc(pk , id∗)
γ ∈R {0, 1}
K∗ = K∗γ
γ′ ∈R AOKeyDer(·),ODec(·,·)(guess,K∗, C∗, state)
If γ 6= γ′ then return 0 else return 1

where the oracles and advantage of A are defined as follows:

OKeyDer(id) = KeyDer(pk , α, id) (where id 6= id∗)
ODec(id , C) = Dec(pk ,KeyDer(pk , α, id), C) (where id 6= id∗ or C 6= C∗)

The advantage of A in the above experiment is:

Advib−kem−cca
E,A (k) =

∣∣∣∣Pr
[
Expib−kem−cca

E,A (k) = 1
]
− 1

2

∣∣∣∣ .
E is secure against adaptively-chosen ciphertext attacks if Advib−kem−cca

E,A (k)
is a negligible function in k for all polynomial-time adversaries A.
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3 Canetti-Krawczyk model

In this section the CK approach is reviewed. Further details of the model
can be found in the original papers [6, 10].

In the CK model a protocol π is modeled as a collection of n pro-
grams running at different parties, P1, . . . , Pn. Each program is an in-
teractive probabilistic polynomial-time (PPT) machine. Each invocation
of π within a party is defined as a session, and each party may have
multiple sessions running concurrently. The communications network is
controlled by an adversary A, also a PPT machine, which schedules and
mediates all sessions between the parties. When first invoked within a
party, a key exchange protocol π calls an initialization function that re-
turns any information needed for the bootstrapping of the cryptographic
authentication functions After this initialization stage, the party waits
for activation. A may activate a party Pi in two ways: by means of an
establish-session(Pi, Pj , s) request, where Pj is another party with whom
the key is to be established, and s is a session-id string which uniquely
identifies a session between the participants.

Upon activation, the parties perform some computations, update their
internal state, and may output messages together with the identities of
the intended receivers. Two sessions (Pi, Pj , s) and (P ′i , P

′
j , s
′) are said

to be matching sessions if Pi = P ′j , Pj = P ′i , and s = s′, i.e. if their
session-ids are identical and they recognised each other as their respective
communicating partner for the session. In addition to the activation of
parties, A can perform the following queries:

1. corrupt(Pi). With this query A learns the long term key of Pi.
2. session-key(Pi, Pj , s). This query returns the session key (if any) ac-

cepted by Pi during a given session s with Pj .
3. session-state(Pi, Pj , s). This query returns all the internal state infor-

mation of party Pi associated to a particular session s with Pj .
4. session-expiration(Pi, Pj , s). This query is used for defining forward

secrecy and erases from memory the session key on completed session.
5. test-session(Pi, Pj , s). To respond to this query, a random bit b is se-

lected. If b = 1 then the session key is output. Otherwise, a random
key is output chosen from the probability distribution of keys gener-
ated by the protocol. This query can only be issued to a session that
has not been exposed. A session is exposed if the adversary performs
any of the following actions:
– a session-state or session-key query to this session or to the match-

ing session, or
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– a corrupt query to either partner before the session expires at that
partner.

Security is defined based on a game played by the adversary. In this
game A interacts with the protocol. In a first phase of the game, A is
allowed to activate sessions and perform corrupt, session-key, session-state
and session-expiration queries as described above. The adversary then per-
forms a test-session query to a party and session of its choice. The adver-
sary is not allowed to expose the test session. A may then continue with
its regular actions with the exception that no more test-session queries
can be issued. Eventually, A outputs a bit b′ as its guess on whether the
returned value to the test-session query was the session key or a random
value, then halts. A wins the game if b = b′. The definition of security
follows.

Definition 7. A key establishment protocol π is called session key (SK-)
secure with perfect forward secrecy (PFS) if the following properties are
satisfied for any adversary A.

1. If two uncorrupted parties complete matching sessions then they both
output the same key;

2. The probability that A guesses correctly the bit b is no more than 1
2

plus a negligible function in the security parameter.

We define the advantage of A to be

Advsk
A =

∣∣2Pr[b = b′]− 1
∣∣ .

Hence the second requirement will be met if the advantage of A is neg-
ligible. Canetti and Krawczyk also provide a definition of SK-security
without PFS. The only difference with respect to the above definition is
that now the adversary is not allowed to expire sessions.

Krawczyk [24] showed that forward secrecy in the usual sense cannot
be achieved in a two-pass protocol such as the ones that we consider.
Therefore we restrict our concern to what Krawczyk calls weak forward
secrecy, in which the adversary is forbidden from taking an active part in
the test session.

The original CK model does not consider key compromise imperson-
ation (KCI) attacks, where the adversary, after compromising the long-
term key of a party A, engages in a successful protocol run with A posing
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as a third party B, i.e. A accepts a session key in the believe that it is
shared with B, when in fact is shared with the adversary. Thus in a KCI
attack there is no matching session to the test session. To model KCI
resilience for our protocols we modify the definition of security to allow
the adversary to corrupt the owner A of the test session (A,B, s).

4 Generic 2×KEM Protocols

In this section, we present Protocols 1 and 2, two generic protocols based
on the use of any CCA-secure IB-KEM. The first, Protocol 1, is the most
efficient of the two, and provides KCI resistance, but does not provide
forward secrecy. The basic idea of Protocol 1 is very simple: the two
parties simply send each other a random secret value using the IB-KEM
and then derive a session key from the combined secrets using a random
extractor Exctκ(·) : K → U1 with key κ and expander {ExpdK (·)}K∈U1

:
{0, 1}σ → U2. Protocol 2, adds an independent Diffie-Hellman exchange
in a group generated by f to achieve forward secrecy. It also achieves KCI
resistance.

The protocol messages and actions are symmetrical for the parties
in our protocols. It is assumed that the IB-KEM is defined to output a
random key if a ciphertext is not valid. Because the protocols complete in
one round, the actual order in which the two parties A and B exchange
their messages is irrelevant. In the descriptions provided we let A be the
one party such that idA < idB, using some agreed order relation, e.g.
lexicographic order.

Use of the collision resistant hash function to find s′ is unnecessary if
the randomness expander is able to accept inputs at least as long as s;
in that case, we could simply set s′ = s. Also note that each party must
check that the identity of the party in its incoming message is actually
the identity of its intended partner. Furthermore, if session-state reveal
queries are to be allowed, then a decapsulated IB-KEM key must be
securely erased in the same activation in which it is decapsulated, as the
decapsulation cannot be simulated in the proof.

We are now in a position to state the security theorems for the two
protocols. For both these theorems we use the following notation:

– Exctκ(·) is a function chosen uniformly at random from a strong ε-
randomness extractor, (as described in Definition 2),
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A B

(CA,K
′
A) ∈R Enc(pk , idB) (CB ,K

′
B) ∈R Enc(pk , idA)

A,CA−−−−−→
B,CB←−−−−−

K′B = Dec(pk , didA , CB) K′A = Dec(pk , didB , CA)
K′′A = Exctκ(K′A);K′′B = Exctκ(K′B) K′′B = Exctκ(K′B);K′′A = Exctκ(K′A)

s = A||CA||B||CB ; s′ = CR(s) s = A||CA||B||CB ; s′ = CR(s)
KA = ExpdK′′

A
(s′)⊕ ExpdK′′

B
(s′) KB = ExpdK′′

B
(s′)⊕ ExpdK′′

A
(s′)

Erase all state except (KA, s
′) Erase all state except (KB , s

′)
‘Established (A,B, s,KA)’ ‘Established (B,A, s,KB)’

Protocol 1: Generic 2×KEM

A B

yA ∈R Z∗p′ ;YA = fyA yB ∈R Z∗p′ ;YB = fyB

(CA,K
′
A) ∈R Enc(pk , idB) (CB ,K

′
B) ∈R Enc(pk , idA)

A,CA, YA−−−−−→
B,CB , YB←−−−−−

K′B = Dec(pk , didA , CB) K′A = Dec(pk , didB , CA)
K′′A = Exctκ(K′A);K′′B = Exctκ(K′B) K′′B = Exctκ(K′B);K′′A = Exctκ(K′A)

K′′AB = Exctκ(Y yAB ) K′′BA = Exctκ(Y yBA )
s = A||CA||B||CB ; s = A||CA||B||CB ;

KA = ExpdK′′
A

(s)⊕ ExpdK′′
B

(s) KB = ExpdK′′
B

(s)⊕ ExpdK′′
A

(s)

⊕ExpdK′′
AB

(s) ⊕ExpdK′′
BA

(s)

Erase all state except (KA, s) Erase all state except (KB , s)

Protocol 2: Generic 2×KEM + Diffie-Hellman

– the function family {ExpdK(·)}K∈{0,1}k′ is a (S, 2norac, ε
′)-pseudorandom

secure function family, (as described in Definition 3),

– norac is the total number of oracles (i.e. sessions) created by B against
the protocol,

– 1
p is the maximum probability that C1 = C2 where (C1,K1) ∈R

Enc(pk , id) and (C2,K2) ∈R Enc(pk , id) for any identity (if C1 = C2

then K1 = K2 also since both ciphertexts decrypt to the same value),

– for Protocol 2, the (S′′, ε′′) DDH assumption (see Assumption 1) holds
over 〈f〉, where S′′ is the circuit size of B (and the circuit size of B
includes the circuit size of parties activated by B).
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We also need to assume that any adversary B may not corrupt the test
session’s intended partner (but may corrupt any other party and perform
session-state reveal queries) in order for the proofs to hold.

Theorem 1. Let B be any adversary against Protocol 1. Then the ad-
vantage of B against the SK-security of Protocol 1 is:

Advsk
B (k) ≤Advcr

CR,A(k) +
n2

orac

p

+2norac

(
2Advib−kem−cca

E,A (k) + ε+ ε′
)

where p, ε, ε′, k and k are all functions of the security parameter k.

Theorem 2. Let B be any adversary against Protocol 2. Then the ad-
vantage of B against the SK-security of Protocol 2 is:

Advsk
B (k) ≤max

(
Advcr

CR,A(k) +
n2

orac

p

+2norac

(
2Advib−kem−cca

E,A (k) + ε+ ε′
)
, 2n2

oracε
′′
)
.

The proofs of Theorems 1 and 2 can be found in Appendix C. We
remark that, despite the simplicity of the protocols, proving their security
seems to be much less simple than may initially be expected.

5 Protocol Comparison

We now compare Protocols 1 and 2 with that of Boyd et al. [8] (BMP)
which is one of the most efficient listed by Chen et al. in their survey of
protocols [11, Table 6].

Table 1 summarises the properties of the protocols under considera-
tion. We note that the BMP protocol does not have a proof of security in
the standard model, unlike Protocols 1 and 2. Protocol 2 is the only one
for which we have been able to prove both weak forward security (FS)
and KCI resilience in the standard model.

To compare the efficiency of the protocols we use the costs per op-
eration provided by Chen et al. [11] for Type 3 pairings with a security
parameter of 128, which are the most efficient type of pairings for secu-
rity levels higher than 80 bits. The values are shown in Table 2, which
also shows the costs of Kiltz, Kiltz-Galindo and Gentry IB-KEMs. These
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weak KCI Standard Cost
FS Model per party

Protocol 1 3 8 3 56
Protocol 2 3 3 3 59
BMP [8] 3 8 8 23

Table 1. Security and efficiency comparison

figures require 256 bits to represent an element of G1, 512 bits to repre-
sent an element of G2, and 3072 bits to represent an element of GT . As
suggested by Chen et al., we assume that all elements of the ciphertext
are checked to determine that they lie in the correct subgroup to avoid
attacks such as the small subgroup attack.

All of these IB-KEMs were originally proposed to use Type 1 pairings,
and so to obtain the costs we have had to convert the three IB-KEMs
to work with type 3 pairings. The modified schemes can be found in
Appendix A together with a discussion on their security and efficiency.

In BMP each party sends only one element of G1 to the other, so the
bandwidth is smaller than using Kiltz’s IB-KEMs with Protocol 1. Each
party computes one pairing and two exponentiations in G1, as well as a
subgroup check of one element in G1. Therefore the total cost per party
is 23 time units, as opposed to the 56 units for the Kiltz IB-KEM with
Protocol 1. This means that we have achieved identity based key exchange
in the standard model in less than 2.5 times the cost in the random
oracle model using the size of curve given above. Given the better security
guarantees of the standard model, this extra cost may be considered quite
reasonable.

Type 3 Kiltz Kiltz-Galindo Gentry
cost Enc Dec KeyDer Enc Dec KeyDer Enc Dec KeyDer

G1 exp, multi-exp. 1, 1.5 -,1 -,1 2,- 1,1 1,1 1,- -,1 -,- -,-
G2 exp, multi-exp. 3, 4.5 1,- 1,- 1,- 1,- 2,- 1,- -,- -,1 -,3
GT exp, multi-exp. 3, 4.5 1,- -,- -,- 1,- -,- -,- 3,1 -,1 -,-

Pairing 20 - 2 - - 3 - - 1 -
G1 subgroup check 1 - 1 - - 2 - - 1 -
G2 subgroup check 3 - 1 - - 1 - - - -
GT subgroup check 4 - - - - - - - 3 -

Total cost 7.5 48.5 5 8.5 73.5 4 15 42 13.5
Total Enc + Dec cost 56 82 57

Table 2. Costs of IB-KEMs using Type 3 pairings
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The efficiency of Protocol 2 will be worse than that of Protocol 1, but
depending on the choice of the group 〈f〉, it may not be much worse. For
example, if the DDH assumption holds in G1 (this will require G1 6= G2

and no efficiently computable homomorphism from G1 to G2), only 3 extra
time units would be required per party (e.g. for party A, one to generate
YA, one to perform a subgroup check on YB, and one to find Y yA

B ). The
increase in message size would be an extra 256 bits per message.

6 Conclusion

We have proven secure two generic protocols that may be used with any
KEM to achieve secure key exchange in the standard model, in either the
ID-based setting or the normal public key setting.

In addition, we provided a detailed analysis of the protocols’ efficiency
on Type 3 curves; this necessitated the extension of the IB-KEMs of Kiltz
[20], Kiltz-Galindo [21] and Gentry [18] to use ordinary elliptic curves.We
found that both our Protocols takes approximately 2.5 times as long as
the protocol of Boyd, Mao, and Paterson [8] (which is only proven secure
in the random oracle model) when both protocols are implemented on
elliptic curves with a 128 bit security level.

Lack of space precluded inclusion of a detailed analysis of our protocols
in the normal public key setting, but it is not hard to see that instantiating
them with, for example, the Cramer-Shoup scheme [12] yields a protocol
with a computational increase of a factor only around 3 when compared
with HMQV [24].
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A Evaluation of IB-KEMs

In this section, we evaluate the efficiency of the IB-KEMs of Kiltz [20],
Gentry [18] and Kiltz–Galindo [21, 22] when implemented using asym-
metric pairings. All of these IB-KEMs have been proposed and proven
secure under the assumption that the scheme uses a bilinear map on a
supersingular elliptic curve which provides a mapping from a pair in the
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same group ê : G1×G1 → GT . Chen et al. [11] identify four different types
of pairing, with the above case corresponding to Type 1, and note that
although it is suitable for 80-bit security levels, its performance degrades
significantly for higher security levels. Here we focus on Type 3 pairing
systems, which are the most efficient for higher security levels. Type 2, 3
and 4 pairing systems all use a bilinear map ê : G1×G2 → GT . We show
how to transform each of the suggested IB-KEMs to use a Type 2 or 3
pairing system, and Appendix B shows how the modified schemes may
still be proven secure in a similar fashion to the original ones. We point
out that one of the main differences between Type 3 and Types 2 and 4 is
that there is no efficiently computable homomorphism ψ from G2 to G1 in
Type 3 pairing systems, and that instead of |G2| = |G1|, Type 4 pairing
systems have |G2| = |G1|2, which does not appear desirable for the sug-
gested schemes. Also, the existence (or not) of ψ affects the assumptions
made in the proofs of security.

We use the following notation. For any i, G∗i = Gi − {1} where 1 is
the neutral element. |G1| = |G2| = p for some prime p; g∗ is a generator
of G1 and g is a generator of G2. In the case of Type 2, g∗ = ψ(g).
ê : G1×G2 → GT is a bilinear map. H : {0, 1}n → G1 is the hash function
originally defined in Waters’ scheme [29] and commonly called simply
Waters’ hash. It is defined as H(id) = h0

∏n
i=1 h

idi
i ∈ G1 where id =

(id1, . . . , idn) ∈ {0, 1}n. HGen(G1, n) generates the hash key by choosing
n + 1 random group elements h0, h1, . . . , hn ∈R G1 and returning them.
TCR(·) is a target collision resistant hash function (see Definition 4).

Figure 1 describes the modified version of each of the three suggested
IB-KEMs: those by Kiltz [20], Kiltz and Galindo [21, 22] and Gentry [18].
Gentry’s IBE, has been modified so that the message of the IBE (chosen
at random) is considered the key of the IB-KEM. We assume it requires
an exponentiation in GT to generate this random message. Calculation of
the key in the decryption algorithm has also been modified to reduce the
number of pairings; this is possible since in the IB-KEM a random key is
returned if the ciphertext is not consistent, and so checking for consistency
can be incorporated into calculation of the key, as in the Kiltz–Galindo
IB-KEMs.

The cost per operation shown in Figure 1 are from Chen et al. [11] for
Type 3 curves with a security parameter of 128 to compare the cost of
each IB-KEM on the same sized group (also shown in Table 2. A security
parameter of 128 bits requires 256 bits to represent an element of G1, 512
bits to represent an element of G2, and 3072 bits to represent an element
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Kiltz

KeyGen(1k) : KeyDer(pk , α, id) :
α, u ∈R G∗1; z = ê(α, g); H = HGen(G1, n) s ∈R Zp
pk = (u,H, g, z) ∈ Gn+2

1 ×G2 ×GT Return (αH(id)s, gs, us)
Return (pk , α)

Enc(pk , id) : Dec(pk , d, C) :
r ∈R Z∗p Parse C as (c1, c2)
c1 = gr ∈ G2; t = TCR(c1) Parse d as (d1, d2, d3)
c2 = (H(id)ut)r ∈ G1 t = TCR(c1)
K = zr ∈ GT v ∈R Z∗p
C = (c1, c2) ∈ G2 ×G1

Return (C,K)
Return

ê(d1dt3(H(id)ut)v, c1)
ê(c2, gvd2)

Kiltz-Galindo

KeyGen(1k) : KeyDer(pk , α, id) :
α, u1, u2 ∈R G∗1; z = ê(α, g); H = HGen(G1, n) s ∈R Zp
pk = (u1, u2,H, g, z) ∈ Gn+3

1 ×G2 ×GT Return (αH(id)s, gs)
Return (pk , α)

Enc(pk , id) : Dec(pk , d, C) :
r ∈R Z∗p Parse C as (c1, c2, c3)
c1 = gr ∈ G2; t = TCR(c1) Parse d as (d1, d2)
c2 = H(id)r ∈ G1 t = TCR(c1)
c3 = (ut1u2)r ∈ G1; K = zr ∈ GT v1, v2 ∈R Z∗p
C = (c1, c2) ∈ G2 ×G2

1

Return (C,K)
Ret.

ê(d1(ut1u2)v1H(id)v2 , c1)
ê(c2, d2g

v2 )·ê(c3, gv1 )

Gentry

KeyGen(1k) : KeyDer(pk , α, id) :
α ∈R Zp; g1 = gα∗ ∈ G1;u ∈R G1; s1, s2, s3 ∈R Zp
h1, h2, h3 ∈R G2; z0 = ê(g∗, g); di =

`
hig
−si

´1/(α−id)

zi = ê(g∗, hi) for 1 ≤ i ≤ 3; for 1 ≤ i ≤ 3
H′ ∈R universal hash fn. family d = {(si, di) : i ∈ (1, 2, 3)}
pk = (g∗, g1, u, g, h1, h2, h3, z0, z1, Return d

z2, z3,H
′) ∈ G3

1 ×G4
2 ×G4

T × {0, 1}k If id = α abort. Always use
Return (pk , α) same si for same identity.

Enc(pk , id) : Dec(pk , d, C) :
r ∈R Zp;K ∈R GT Parse C as (c1, c2, c3, c4)

c1 = gr1g
−rid
∗ ∈ G1; c2 = zr0 ∈ GT Parse d as {(si, di) : i ∈ (1, 2, 3)}

c3 = Kz−r1 ∈ GT ;β = H′(c1, c2, c3) β = H′(c1, c2, c3)

c4 = zr2z
rβ
3 ∈ GT v ∈R Z∗p

C = (c1, c2, c3, c4) ∈ G1 ×G3
T

Return (C,K)
Ret.

ê
“
c1, d1

“
d2d

β
3

”v”
c3c

s1+v(s2+βs3)
2

cv4

Costs
Type 3 Kiltz Kiltz-Galindo Gentry

cost Enc Dec KeyDer Enc Dec KeyDer Enc Dec KeyDer
G1 exp, multi-exp. 1, 1.5 -,1 -,1 2,- 1,1 1,1 1,- -,1 -,- -,-
G2 exp, multi-exp. 3, 4.5 1,- 1,- 1,- 1,- 2,- 1,- -,- -,1 -,3
GT exp, multi-exp. 3, 4.5 1,- -,- -,- 1,- -,- -,- 3,1 -,1 -,-
Pairing 20 - 2 - - 3 - - 1 -
G1 subgroup check 1 - 1 - - 2 - - 1 -
G2 subgroup check 3 - 1 - - 1 - - - -
GT subgroup check 4 - - - - - - - 3 -
Total cost 7.5 48.5 5 8.5 73.5 4 15 42 13.5
Total Enc + Dec cost 56 82 57

Fig. 1. IB-KEMs generalized to use ê : G1 ×G2 → GT
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of GT . The number of operations required by each scheme are similar to
those in Kiltz’s comparison of IBEs, with the exception of the inclusion in
these figures of subgroup membership tests, a more efficient key derivation
for Gentry’s scheme, and a separate listing of exponentiations for each of
the three groups. When two or more pairings are required to calculate a
key, it is possible that the 20 units estimated per pairing is too high, since
a significant portion of the pairing computation involves finding a unique
representation of the output, and this would only be necessary once the
different pairing outputs had been combined.

The fastest IB-KEM proposed so far is that of Kiltz, followed closely
by that of Gentry. Kiltz’s scheme uses a slightly non-standard assump-
tion, namely the mBDDH (modified bilinear decisional Diffie-Hellman)
assumption. The assumption may be modified to allow G1 6= G2 when ψ is
not efficiently computable and stated as follows. Given (g∗, ga∗ , g

b
∗, g

(b2)
∗ , gc∗,

g, ga, gb, gc,W ), it is hard to distinguish whether W = ê(g∗, g)abc or
not. The Kiltz-Galindo scheme is based on the standard BDDH assump-
tion: given (g∗, ga∗ , g

b
∗, g

c
∗, g, g

b, gc,W ), it is hard to distinguish whether
W = ê(g∗, g)abc or not. (When G1 = G2, ψ is efficiently computable, or a
gap assumption is used in the proof, the powers of g∗ may be omitted in
both assumptions, provided every power of g∗ is given as a power of g in-
stead.) Gentry’s scheme is based on a very non-standard assumption, the
truncated decision q-ABDHE (augmented bilinear Diffie-Hellman expo-
nent) assumption, whose hardness in relation to the BDDH assumption is
unknown. The assumption (modified for the case when G1 6= G2) states:
given (g∗, g

(αq+2)
∗ , g, gα, g(α2), g(α3), . . . , g(αq),W ) it is hard to distinguish

whether W = ê
(
g∗, g

(αq+1)
)

or not. However, by using this assumption,
Gentry is able to achieve a tight reduction, whereas the other two schemes
do not, losing a factor of about (n + 1)q where q is the upper bound of
the number of key derivation/decryption queries in the KEM.

One drawback of the Kiltz and Kiltz-Galindo schemes is the use of the
Waters hash, H. If we assume that identities are 30 bits long, this con-
tributes 31 elements of G1 to the system parameters, or 7, 936 bits using
the above figures. If this figure is seen to be too large, Gentry’s scheme
may appear more attractive. However, it requires the use of a universal
hash function, which if implemented using the well-known method of mul-
tiplying a Toeplitz matrix (one with constant diagonals) by the input to
create the output [25], would require a key of 6, 655 bits (256+3072+3072
bits input plus 256 bits output minus 1). Although this may be an im-
provement on the storage requirements for H, it is not a huge one. Unfor-
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tunately, it is unclear exactly what effect the universal hash function has
in Gentry’s proof. In particular, it would be nice to know whether the
universal hash function may be replaced with an almost universal one,
and how close to universal that function must be. If this were the case, it
may be possible to apply the work of Dodis et al. [15] to use CBC-MAC,
keyed cascade chaining, or HMAC instead of the universal hash function,
and so reduce the size of Gentry’s system parameters substantially.

On the other hand, it is possible to make a tradeoff between the size
of the Waters hash and the security of the IB-KEM scheme (see e.g.
Kiltz [20] for details). The tradeoff chooses a parameter l and considers
each identity a sequence of l-bit strings. Then, for identities n bits long,
only (l/n + 1) hi need to be chosen to define the hash function H, and
each hi is raised to the ith l-bit string in the identity to find the hash
of an identity. A multiplicative factor of 2l must then be added to the
security reduction of the IB-KEM scheme.

B Extension of Proofs to Ordinary Curves

Given the modified assumptions provided in Appendix A for the three IB-
KEM schemes, it is not hard to modify the proofs to accommodate the
modified IBKEMs. Each value or calculation defined in the proof must
be examined to see whether it should be in G1, G2 or GT . This is fairly
straightforward given the descriptions of the modified schemes. Then,
wherever necessary, any value gx for any x should be replaced with gx∗ to
put the value or calculation in the correct group. The only exceptions to
this rule are the calculations of the value K in Game 7 of Kiltz’s proof
and Game 8 in Kiltz and Galindo’s proof. As originally written, these
calculations would require the division of elements from two different
groups. However, the calculations can be modified to avoid this problem
but provide the same answer. In the Kiltz proof, the calculation must be
changed to be:

K =

 ê (c2, ga)

ê
(
ga∗ , c

x(id)
1

)
(t−t∗)−1

(4)

and in the Kiltz-Galindo proof, the calculation must be changed to be:

K =

(
ê
(
c3, g

b
)

ê
(
gb∗, c

d
1

))(t−t∗)−1

. (5)
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C Proofs of Protocols

C.1 Analysis Techniques

In each proof, we wish to show that each game cannot be distinguished
from the previous one, without breaking a hard problem. More precisely,
we wish to show that in each game, the probability that B outputs 0 when
b = 0 is (almost) the same as in the previous game and the probability
that B outputs 0 when b = 1 is (almost) the same as in the previous game.
Then, in the final game, we wish to show that from the point of view of
B, the output of the test session is independent of all other values in B’s
view. Therefore, in the last game, B has no advantage in distinguishing
whether b = 0 or b = 1. Since it will be shown that each game cannot be
distinguished from a previous one, this means that in Game 0 B cannot
tell the difference between b = 0 and b = 1 either. This is exactly what is
necessary to show that the protocol is secure.

We use the following notation.

σi = The event that B guesses the value of b correctly in Game i (6)
τi = |2Pr[σi]− 1| = Advantage of B in Game i (7)

We observe that if Games i and i+ 1 are identical when event E does
not occur, and if there is a probability of 1

2 that B is correct in Game i+1
when E does occur, then:

Pr[σi+1] = Pr[σi+1|E]Pr[E] + Pr[σi+1|¬E]Pr[¬E] (8)

=
1
2

Pr[E] + Pr[σi|¬E]Pr[¬E] (9)

Pr[σi]− Pr[σi+1] = Pr[σi|E]Pr[E]− 1
2

Pr[E] (10)

|Pr[σi]− Pr[σi+1]| ≤ 1
2

Pr[E] (11)

We also use the following game hopping technique suggested by Dent [14].
Consider an event E that may occur during B’s execution such that E is
detectable by the simulator, E is independent of σi, Game i and Game
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i+ 1 are identical unless E occurs, and Pr[σi+1|E] = 1
2 . Then we have:

Pr[σi+1] = Pr[σi+1|E]Pr[E] + Pr[σi+1|¬E]Pr[¬E] (12)

=
1
2

Pr[E] + Pr[σi|¬E]Pr[¬E] (13)

=
1
2

(1− Pr[¬E]) + Pr[σi]Pr[¬E] (14)

=
1
2

+ Pr[¬E]
(

Pr[σi]−
1
2

)
(15)

Hence, τi+1 = 2
∣∣∣∣Pr[σi+1]− 1

2

∣∣∣∣ = 2
∣∣∣∣Pr[¬E]

(
Pr[σi]−

1
2

)∣∣∣∣ (16)

= Pr[¬E]τi (17)

C.2 Proof of Theorem 1

Throughout the proof, we call each session to be activated an oracle. We
denote the oracles with which B interacts Π i

X where X is the name of
a party and i is the number of the oracle. We number the oracles such
that Π i

X is the ith oracle created by B out of all oracles created by B
(i.e. if Π i

X and Πj
Y are two oracles, then i = j implies X = Y ). Also, for

any party, X, the identity of that party is denoted eX . We consider the
following series of games with B.

The first part of the proof uses the following games.

Game 0. This game is the same as a real interaction with the protocol. A
random bit b is chosen, and when b = 0, the real key is returned in answer
to the test session query, otherwise a random key from U2 is returned.

Game 1. This game is the same as the previous one, except that if a
collision in the collision resistant hash function CR(·) occurs, the protocol
halts and B returns a random bit.

Game 2. This game is the same as the previous one, except that if two
different sessions output exactly the same message and have the same
intended partner, the protocol halts and B returns a random bit.

Game 3. This game is the same as the previous one, except that before
the adversary begins, a random value m ∈R {1, 2, . . . , norac} is chosen.
We call the mth oracle to be activated the target oracle. If the target
oracle is not the test oracle, the protocol halts and B fails and outputs a
random bit. We denote the output message of the target oracle with C∗,
the target oracle’s owner with T and the target oracle’s intended partner
with T ∗.
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Game 4. In this game, a random value K ′∗ ∈R K is chosen. Whenever
C∗ is used as input to an oracle owned by T ∗, the calculation of the key
is modified so that K ′∗ is used in place of Dec(pk , dT ∗ , C∗); the message
output by this oracle is calculated as usual. When the test session query
is made to the target oracle, if b = 1, a random key from U2 is returned.
Otherwise, K ′∗ is used instead of K ′T in calculation of the key returned.
Apart from the above modifications, this game is the same as the previous
one.

Game 5. This game is the same as the previous one, except that a random
value K ′′∗ ∈R U1 is chosen and the use of Exctκ(K ′∗) is replaced with K ′′∗.

Game 6. This game is the same as the previous one, except that whenever
the value ExpdK′′∗ (s′) for any s′ would be used in generating keys, a
random value from U2 is used instead (the same random value is used for
the same value of s′; a different random value is chosen for different s′).

Analysis of Games 0 to 3: In Game 1, if a collision in the hash
function CR(·) is detected and the protocol halts, then it is possible to
use B to break the target collision resistance of the hash function. Since
Advcr

CR,A(k) is the probability that an adversary A finds a collision, from
(11) we have:

|Pr[σ0]− Pr[σ1]| ≤ 1
2
Advcr

CR,A(k) (18)

and this can be used to bound τ0 as follows:

τ0 = |2Pr[σ0]− 1| ≤ 2
(
|Pr[σ0]− Pr[σ1]|+

∣∣∣∣Pr[σ1]− 1
2

∣∣∣∣) (19)

≤Advcr
CR,A(k) + τ1 (20)

To analyse Game 2, we find the probability of two or more sessions
outputting the same message, which we label psameMsg. We begin with
the Taylor approximation of e−x and then use it in the analysis.

e−x = 1− x+
x2

2!
− . . . (21)

e−x > 1− x when x > 0 (22)

1− x > 1− 2x+
(2x)2

2!
> e−2x when 1

2 > x > 0 (23)

1− psameMsg = 1 ·
(

1− 1
p

)
·
(

1− 2
p

)
· · ·
(

1− norac − 1
p

)
(24)
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> 1 · e−2 1
p · e−2 2

p · · · e−2norac−1
p if 1

2 >
norac−1

p > 0(25)

= e
−norac(norac−1)

p (26)

> 1− norac (norac − 1)
p

> 1− n2
orac

p
(27)

|Pr[σ1]− Pr[σ2]| < n2
orac

2p
when 1

2 >
norac−1

p > 0 from (11) (28)

This can be used to bound τ1 as follows:

τ1 = |2Pr[σ1]− 1| ≤ 2
(
|Pr[σ1]− Pr[σ2]|+

∣∣∣∣Pr[σ2]− 1
2

∣∣∣∣) (29)

≤ n2
orac

p
+ τ2 (30)

In Game 3, the probability of the protocol halting due to an incorrect
choice of m is 1− 1

norac
. Whether or not an abortion would occur in this

game could be detected in the previous game if it also chose m in the
same way. Therefore, we may use equation (17) to find:

τ3 =
1

norac
τ2 ⇒ noracτ3 = τ2 (31)

and (20) and (30) give τ0 ≤Advcr
CR,A(k) +

n2
orac

p
+ noracτ3 (32)

Analysis of Game 4: We now construct adversary A against the secu-
rity of the IB-KEM, using B. A is constructed such that when it receives
the real key for the IB-KEM scheme, the view of B is the same as in
Game 3, but if A receives a random IB-KEM key, the view of B is the
same as in Game 4. Then, by the security of the IB-KEM scheme, we can
claim these games are indistinguishable.

To begin, A is given the master public key pk . A passes this value as
well as the description of the collision resistant hash function CR(·), and
the description of Exctκ(·), its key κ and {ExpdK (·)}K∈U1

to B.
A runs as described in Game 3, except that when the target session is

activated, A outputs eT ∗ as the identity on which it wants to be tested. A
receives a ciphertext C∗ for T ∗ and key K ′∗, which may be the decryption
of C∗ or may be a random IB-KEM key, each with equal probability. A
then uses C∗ as the output of the target session, modifies the calculation
of keys so that K ′∗ is used in place of Dec(pk ,KeyDer(pk , α, eT ∗), C∗),
and uses K ′∗ instead of K ′T to find the answer to the test session query
when b = 0.
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All legitimate queries made by B can still be answered by A using its
oracles as follows. A corrupt query on some identity e may be answered
with OKeyDer(e)(recall that no corrupt query is allowed by B on T ∗ since
this is the partner to the test session). A must maintain the session state
of each oracle so that it may be returned in answer to session state reveal
queries (session state reveal is not allowed on the test session or its match-
ing session). A message M to any party (including T ∗) with identity e
may be decrypted using ODec(e,M) to generate keys for reveal session
key queries and the test query.

When B halts and outputs its bit b′, A halts and outputs 1− b′. The
probability that A is correct is Pr[σ3] when K ′∗ is the real key for the
IB-KEM message, and 1−Pr[σ4] when K ′∗ is not the key for the IB-KEM
message. We can then find that:

Advib−kem−cca
E,A (k) =

∣∣∣∣(1
2

(Pr[σ3] + 1− Pr[σ4])
)
− 1

2

∣∣∣∣ (33)

=
1
2

(Pr[σ3]− Pr[σ4]) (34)

τ3 = |2Pr[σ3]− 1| ≤ |2Pr[σ3]− 2Pr[σ4]|+ |2Pr[σ4]− 1| (35)
τ3 ≤ 4Advib−kem−cca

E,A (k) + τ4 (36)

Analysis of Game 5 We now consider an adversary, D, against the
security of the randomness extraction function. This adversary runs a
copy of B and interacts with B in such a manner that it is the same as
when B interacts with either Game 4 or 5. D receives a key κ for the
randomness extraction function and a value R1 such that either R1 =
Exctκ(X) for some X ∈R K or R1 ∈R U1. D sets κ to be the public
parameter used to key the randomness extraction function, and chooses
the other public parameters according to the protocol.D runs as described
for Game 5, except that D uses R1 in place of K ′′∗. When B outputs it
guess of the bit b, D outputs that R1 = Exctκ(X) for some X if B is
correct, and D outputs that R1 ∈R U1 otherwise. The probability that
D is correct is 1

2 (Pr[σ4] + 1− Pr[σ5]). By the security of the randomness
extraction function, we have:

ε ≥ |2Pr[D correct]− 1| = |Pr[σ4]− Pr[σ5]| (37)
τ4 = |2Pr[σ4]− 1| (38)
≤ |2Pr[σ4]− 2Pr[σ5]|+ |2Pr[σ5]− 1| (39)
≤ 2ε+ τ5 (40)
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Analysis of Game 6 Now, we consider another adversary, D′ , this
time against the randomness expansion (or pseudorandom) function fam-
ily {ExpdK(·)}K∈U1 . We define D′ to run a copy of B, and to interact
with B in such a manner that it is the same as when B interacts with
with either Game 5 or 6. D′ receives the definition of the function family
{ExpdK(·)}K∈U1 , and an oracle O(·) which is either ExpdK(·) for some
value of K unknown to D′ or a truly random function. D′ runs a copy of
the protocol for B in the same way as described for Game 5, except that
whenever the value ExpdK′′∗ (s′) for any s′ would be used in generating
keys, D′ uses the value O(s′) instead. When B outputs it guess of the bit
b, D′ outputs that its oracle is a member of the given function family if
B is correct, and D′ outputs that its oracle is a truly random function
otherwise. The probability that D′ is correct is 1

2 (Pr[σ5] + 1− Pr[σ6]).
By the security of the randomness expansion function we have:

ε′ ≥
∣∣∣2Pr[D′ correct]− 1

∣∣∣ = |Pr[σ5]− Pr[σ6]| (41)

τ5 = |2Pr[σ5]− 1| (42)
≤ |2Pr[σ5]− 2Pr[σ6]|+ |2Pr[σ6]− 1| (43)
≤ 2ε′ + τ6 (44)

Combining Results In Game 6, let us denote the key returned in the
test session query with R1 ⊕ ExpdK′′

T∗
(s′)

[
⊕ExpdK′′

TT∗
(s′)
]

when b = 0,
and R2 when b = 1, where R1 and R2 are chosen uniformly at random
from U2. Now, R2 is chosen independently of all other values in the pro-
tocol, so B can gain no information about R2 directly; B can only gain
information about R2 by determining whether b = 0 or b = 1. Further-
more, when b = 0, unless B can gain some information about R1, the
response to the test session query also looks random and is therefore in-
distinguishable from the case when b = 1. Therefore, we wish to show
that B is unable to find any information about R1 (apart from what it
might gain in the response to the test session query).

To gain information about R1 from a source other than the test session
query response, B must obtain the key of a session that has also used R1 in
the generation of its key. Now, if R1 is used in the generation of a session’s
key, then that session must have had the same session identifier, and hence
exchanged the same messages as the test session. Therefore, the session
is either owned by T ∗ with intended partner T and received C∗ as part of
its input or is owned by T with intended partner T ∗ and had C∗ as part
of its output. However, such a session owned by T ∗ will match the test
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session and so not be subject to reveal key queries, unless there is more
than one such session, in which case none of the sessions would match,
and a reveal key query would be allowed. However, Game 2 causes B to
output a random bit when there is more than one such session. Therefore,
if B is to have any advantage guessing b, there will only be one session
owned by T ∗ with intended partner T that received C∗ as input and has
the same session identifier as the test session, and there will not be any
session at T that outputs C∗ for T ∗, apart from the test session. Hence,
B can gain no information about R1, and so B can gain no information
about b in Game 6.

Therefore, we claim that τ6 = 0 since it is impossible for B to have
any advantage in Game 6, because the answer to the test session query
is always a random value chosen independently of all other values in B’s
view. Hence, we may combine the results in equations (32), (36), (40) and
(44) to conclude:

τ0 ≤Advcr
CR,A(k) +

n2
orac

p
+

2norac

(
2Advib−kem−cca

E,A (k) + ε+ ε′
)

(45)

C.3 Proof of Theorem 2:

The proof can be considered in two parts; the first part proves the security
of Protocol 2 when the test session owner is not corrupted. This part of
the proof is essentially identical to the proof of Theorem 1. The second
part proves the security of Protocol 2 when the test session owner is
corrupted (in this case, we require the test session to have a matching
session by the time B finishes).

The second part of the proof assumes that the test session has a
matching session by the time the adversary, B, outputs its guess of the
bit b. It allows any party to be corrupted. It considers the following games
with B.

Game 0. This game is the same as a real interaction with the protocol. A
random bit b is chosen, and when b = 0, the real key is returned in answer
to the test session query, otherwise a random key from K is returned.

Game 1. This game is the same as the previous one, except that two
parties, T and T ∗ are chosen at random, and if T is not the owner of the
test session or T ∗ is not the test session’s intended partner, the protocol
halts and B fails and outputs a random bit. Before the adversary begins,
random values j, j∗ ∈R {1, 2, . . . , norac} are chosen. Let T and T ∗ be the
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owners of the jth and j∗th sessions respectively. if the jth session at T
is not the test session or if the output of the j∗th session at T ∗ is not
used as input to the test session, then the protocol halts and B fails and
outputs a random bit. Furthermore, the session key of the test session
is set to a random value from K, the keyspace of the KEM. The test
session’s matching session has its key is set to the same random value
(i.e. a random test session key is always returned, no matter what the
value of b).

We now construct adversary A against the DDH problem, using B. A
is constructed such that provided A does not have to abort the protocol
as specified in Game 1 then if A’s input is from DHF , the view of B is
the same as in Game 0, but if A’s input is from RF , the view of B is the
same as in Game 1. Then, by Assumption 1, we can claim these games
are indistinguishable.

To begin, A generates all the protocol parameters and passes the
public parameters to B.

When the jth and the j∗th sessions are activated, A uses its inputs fa

and f b instead of the values XT and XT ∗ when it generates the outputs
of these sessions. Apart from this change, all session inputs and outputs
are generated according to the protocol specification.

When the test session query is made, A uses its third input (which is
either f c or fab) in place of XTT ∗ when calculating the real test session
key.

A is able to answer all other queries correctly since it knows all of the
system parameters and all of the session states.

The probability thatA will not have to abort the protocol as described
in Game 1 is 1

n2
orac

. Furthermore, in Game 1, B is able to gain no advantage
since a random key is always returned in answer to the test session. Hence,
by (17) and using a similar logic to that shown in (41) to (44) we have
that:

σ0 ≤ 2n2
oracε

′′ (46)

Combining Results: Let E be the event that the test session has a
matching session by the time B finishes, and let σ be the event that B
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guesses b correctly in Protocol 2. Then we have:

Advsk
B (k) = |2Pr[σ]− 1|
Pr[σ] = Pr[σ|E]Pr[E] + Pr[σ|¬E]Pr[¬E]

= Pr[σ|¬E] + Pr[E] (Pr[σ|E]− Pr[σ|¬E])
∴ min (Pr[σ|¬E],Pr[σ|E]) ≤ Pr[σ] ≤ max (Pr[σ|¬E],Pr[σ|E])

∴ Advsk
B (k) ≤ max

(
Advsk

B (k) |E, Advsk
B (k) |¬E

)
and so we can combine (45) and (46) to find:

Advsk
B (k) ≤ max

(
Advcr

CR,A(k) +
n2

orac

p

+ 2norac

(
2Advib−kem−cca

E,A (k) + ε+ ε′
)
, 2n2

oracε
′′
)

C.4 On Key Construction and Proof Technicalities

When a particular IB-KEM is used in conjunction with the protocol,
it may be tempting to try to achieve forward security by treating K ′A
and K ′B as Diffie-Hellman values and deriving K ′′A and K ′′B by combining
K ′A and K ′B in the usual Diffie-Hellman manner and then extracting the
randomness from this combined key. However, such a modification inval-
idates the proof, since A against the IB-KEM would no longer be able to
generate the proper test session key when B generates the input to the
test session. The problem could be overcome by adding authentication to
the messages, but this would increase the number of messages and rounds
required by the protocol.

If we try setting K ′′A = Exctκ(K ′A||K ′B), and changing K ′′B similarly,
then the test session key returned to B is ExpdExctκ(K′T ||K

′
B) (s′) where B

may know K ′B. However, if B uses the test session output as input to other
sessions, B may learn values K ′i, ExpdExctκ(K′T ||K

′
i)

(s′i) for many i (since we
allow B to corrupt the owner of the test session). However, providing such
values to B no longer fits with the definition of the randomness extractor,
even if it is extended to allow multiple uses.


