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Abstract. We consider one-round key exchange protocols secure in the standard model.
The security analysis uses the powerful security model of Canetti and Krawczyk and a
natural extension of it to the ID-based setting. It is shown how KEMs can be used in a
generic way to obtain two different protocol designs with progressively stronger security
guarantees. A detailed analysis of the performance of the protocols is included; surprisingly,
when instantiated with specific KEM constructions, the resulting protocols are competitive
with the best previous schemes that have proofs only in the random oracle model.
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1 Introduction

There has been a recent rapid growth of interest in efficient cryptographic primitives of all
kinds that carry proofs in the standard model. Avoiding the random oracle model (ROM)
or generic group model is to be preferred, given the known problems with instantiating
these models in practice [9, 12, 3]. However, the usual price to be paid for working in the
standard model is a loss of efficiency.

This paper initiates the systematic study of key exchange protocols whose security can
be analyzed in the standard model. Our focus here is on two-party, one-round protocols —
protocols in which only two message flows are required to securely establish a key between
two parties. We provide two related, yet distinct, approaches to building such protocols
using KEMs [1], both in the ID-based setting and the traditional PKI-based setting. Our
security proofs use the Canetti-Krawczyk model (appropriately adapted for the identity-
based case), which is sufficiently powerful to allow the capture of a variety of security
properties including basic session key security, key compromise impersonation resistance,
and various types of forward security.

In the identity-based setting, there is no shortage of protocols with security analysis
in the ROM, with Chen, Cheng and Smart [11] providing a useful survey and comparison
of these. Our protocols appear to be the first explicit constructions that are proven secure
in the standard model in this setting. A recent preprint [31] also considers ID-based key
exchange in the standard model, but the security analysis therein is incomplete – we
comment in more detail on this below.

We consider the instantiation of our ID-based protocol designs with a variety of suitable
concrete KEM components. These are derived from ID-based KEMs of Kiltz [19], Kiltz-
Galindo [21] and Gentry [17]. By modifying these to operate in the setting of asymmetric
pairings and ordinary elliptic curves, we are able to produce concrete ID-based protocols
with security proven in the standard model that are only 2.5 times slower than the most



efficient protocols with security established in the ROM, the comparison being made on
elliptic curves with a 128-bit security level.

In the PKI setting we also obtain efficient, one round, concrete protocol designs in the
standard model, which compare favorably with the protocols of Jeong, Katz and Lee [18],
Krawczyk [24] and Okamoto [29] which are to our knowledge the only one-round protocols
secure in the standard model. The protocols are reasonably efficient even when compared
to the best ROM protocols. For example, they can be instantiated with standard model
KEMs to yield protocols with a computational increase of a factor around 3 when compared
with HMQV [25].

Our first protocol design is the most efficient of the two, and provides key-compromise
impersonation (KCI) resistance but not forward secrecy (FS). The basic idea of our first
protocol design is very simple: the two parties simply send each other a random secret
value using the IB-KEM and then use a randomness extractor to derive a session key
from the combined secrets. Our second protocol design is based on the first, but adds
an independent Diffie-Hellman exchange to achieve forward secrecy. It also achieves KCI
resistance.

In the rest of this introduction we give an overview of related work. We then establish
some essential definitions, and go on to outline the Canetti-Krawczyk model in which
our proofs are presented. Section 4 of the paper develops our two protocol designs and
proves their security in the Canetti-Krawczyk model. Section 5 compares the efficiency
and security of the new protocols with the (ROM) ID-based protocol of Boyd, Mao and
Paterson [8], one of the most efficient protocols in the identity-based literature. Section 6
compares the efficiency and security of the PKI-based version of the new protocols with
the protocols of Jeong, Katz and Lee [18], Krawczyk [24] and Okamoto [29].

1.1 Related Work

Following the development of practical schemes for identity-based encryption [30, 7] many
other identity-based primitives have been designed; due to their practical importance,
these have included many key exchange protocols. Chen et al. [11] have provided a useful
survey and comparison of work to date on identity-based key exchange.

Initially all security proofs for identity-based primitives relied on the random oracle
model. More recently there has been a focus on providing new identity-based encryption
(IBE) and identity-based key encapsulation (IB-KEM) schemes with security proofs in
the standard model. Recent and quite efficient proposals include those of Waters [32],
Kiltz [19], Gentry [17] and Kiltz–Galindo [21, 22].

Up until now, all proofs for identity-based key exchange protocols have continued to
rely on the ROM, with the exception [31] noted. However, although Wang et al. [31]
propose three protocols, a proof for only one is provided; the other two proofs supposedly
use similar techniques. The protocol with a claimed proof applies a key derivation function
H2 to the shared secret, exchanged messages and identities. No properties of the key
derivation function are stated or used in the proof; indeed the proof ignores the presence
of H2 altogether. However, without the key derivation function, the protocol is completely
insecure, because it is based on the CPA (rather than CCA) version of Gentry’s IB-KEM
[17] and so has malleable messages. This malleability is easily exploited to find attacks
which break the security of the protocol. The problems in the paper of Wang et al. [31]
illustrate that it is not hard to devise ID-based protocols that look secure in the standard
model but making the proofs work is not always so simple.

We note too that it is relatively straightforward to obtain standard-model secure
key exchange protocols (in both settings) using the authenticator approach of Canetti-



Krawczyk [10] and Bellare-Canetti-Krawczyk [4], by working with standard-model-secure
cryptographic primitives. The resulting protocols can be quite computationally efficient,
but generally require more than one round of communication. A detailed study of such
protocols is deferred to our future work.

In the normal public key model, Jeong et al. [18], proposed a protocol, call TS3, which
is one-round and proven secure in the standard model3. TS3 is a Diffie-Hellman (DH) key
exchanged authenticated using a MAC keyed under the (static) DH of the long term keys
of the two users. TS3 provides (weak) forward secrecy, but fails to achieve KCI resistance
– a consequence of the static key used for authentication being the same for both parties.
Interestingly, the ID-version of TS3, which is essentially the protocol of Boyd et al., appears
to be limited to be only secure in the ROM. An ID-based version of TS3 secure in the
standard model would imply a non-interactive ID-based key establishment protocol also
secure in the standard model, which to date is not known. Even if we had such a primitive,
the protocol would still not be KCI resistant.

More recently and closely related to our work, Okamoto [29] has proposed a one-round
PKI-based protocol also secure in the standard model, which provides both (weak) forward
secrecy and KCI resistance. The main advantage of our protocols over Okamoto’s is that
ours are generic. They can be instantiated using any combination of KEMs as long as
they are CCA secure. Okamoto’s protocol is highly specialised and the proof does not
seem to generalise easily. Additionally Okamoto’s key derivation function needs a non-
standard notion of pseudo-random function security. Okamoto’s proof is in the extended
Canetti-Krawczyk (eCK) security model proposed by [26], while our proofs are on the
Canetti-Krawczyk (CK) model, with the modifications by Krawcyzk [25] to capture KCI
security and weak FS. The difference between the two models is rather subtle and will be
discussed in Section 3.1. However, we remark now that contrary to Okamoto’s statement
in his paper, the eCK model is not stronger than the CK model, i.e. security in the eCK
model does not imply security in the CK model. Furthermore it is arguable whether the
eCK adversarial model is more realistic than the CK one.

2 Preliminaries

In this section we present standard definitions and results needed in the rest of the paper.

Definition 1 (Min-entropy [16, p.9]). Let X be a probability distribution over A. The
min-entropy of X is the value

min- ent(X ) = minx∈A:PrX [x]6=0(−log2(PrX [x])) (1)

(Note that if X has min-entropy t then for all x ∈ A, PrX [x] ≤ 2−t.)

Definition 2 (Strong randomness extractor [14, p.42][28]). A family of efficiently
computable hash functions H = {hκ : {0, 1}n → {0, 1}k|κ ∈ {0, 1}d} is called a strong
(m, ε)-randomness extractor, if for any random variable X over {0, 1}n that has min-
entropy at least m, if κ is chosen uniformly at random from {0, 1}d and R is chosen
uniformly at random from {0, 1}k, the two distributions 〈κ, hκ(X)〉 and 〈κ,R〉 have statis-
tical distance ε, that is

3 Interestingly, several errors in the proofs of Jeong, Katz and Lee have recently been corrected by the
authors. Unlike in Wang et al.’s [31], there is no attack on their protocol, but still, it shows that getting
the proofs right is non-trivial.
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∑
x∈{0,1}k

|Pr[hκ(X) = x]− Pr[R = x]| = ε

To implement the randomness extraction function, one could apply the work of Dodis
et al. [15] to use CBC-MAC, keyed cascade chaining, or HMAC as an almost universal
hash function, and conclude that the function is a good randomness extraction function
based on their extension of the leftover hash lemma.

Definition 3 (Pseudorandom Function Family (PRF)). Let F = {fs}s∈S be a fam-
ily of functions for security parameter k ∈ N and with seed s ∈ S = S(k). Let C be an
adversary that is given oracle access to either Fs for s ∈R K or a truly random function
with the same domain and range as the functions in F . F is said to be pseudorandom if
C’s advantage in distinguishing whether it has access to a random member of F or a truly
random function is negligible in k, for all polynomial-time adversaries C. That is,

Advp−rand
F ,C (k) = |Pr[CFs(·)(1k) = 1]− Pr[CRand(·)(1k) = 1]|

is negligible in k.

Functions that are proven to be pseudorandom include CBC-MAC [5] (provided the
underlying block cipher is a secure pseudorandom permutation family and the input length
is constant) and HMAC [2] (provided the compression function is a PRF).

Assumption 1 (Decisional Diffie-Hellman (DDH)) Let F be a cyclic group of order
p′ generated by an element f . Consider the set F 3 = F × F × F and the following two
probability distributions over it:

RF = {(fa, f b, f c) for a, b, c ∈R Zp′} (2)

and
DHF = {(fa, f b, fab) for a, b ∈R Zp′} (3)

We say the Decisional Diffie-Hellman (DDH) Assumption holds over F = 〈f〉 if the two
distributions RF and DHF are indistinguishable by all polynomial-time adversaries D.
More precisely, for k = |p′|

Advddh
F,D(k) = |Pr[D(1k, ρ) = 1|ρ ∈R DHF ]− Pr[D(1k, ρ) = 1|ρ ∈R RF ]|

is negligible in k.

Definition 4 (ID-based KEM). An IB-KEM E = (KeyGen,KeyDer,Enc, Dec) consists
of four polynomial-time algorithms:

– (pk , α) ∈R KeyGen(1k), given the security parameter k ∈ N, returns a master public
key, pk, and master secret key α;

– did ∈R KeyDer(pk , α, id) generates a private key corresponding to the identity id.
– (C,K) ∈R Enc(pk , id) outputs a key K ∈R K (the key space) and an encapsulation

(ciphertext) C of the key under the identity id;
– K = Dec(did , C) outputs key K corresponding to the encapsulation C.

Our definition of security for an identity-based key-encapsulation mechanism (IB-
KEM) scheme is based upon that of Kiltz and Galindo [21].



Definition 5 (IB-KEM-CCA Security). The security of an IB-KEM scheme E =
(KeyGen, KeyDer, Enc,Dec) is defined using the following experiment.

Experiment Expib−kem−cca
E,A (k)

(pk , α) ∈R KeyGen(1k)
(id∗, state) ∈R AOKeyDer(·),ODec(·,·)(find, pk)
K∗0 ∈R K
(C∗,K∗1 ) ∈R Enc(pk , id∗)
γ ∈R {0, 1}
K∗ = K∗γ
γ′ ∈R AOKeyDer(·),ODec(·,·)(guess,K∗, C∗, state)
If γ 6= γ′ then return 0 else return 1

where the oracles and advantage of A are defined as follows:

OKeyDer(id) = KeyDer(pk , α, id) (where id 6= id∗)
ODec(id , C) = Dec(pk ,KeyDer(pk , α, id), C) (where id 6= id∗ or C 6= C∗)

The advantage of A in the above experiment is:

Advib−kem−cca
E,A (k) =

∣∣∣2Pr
[
Expib−kem−cca

E,A (k) = 1
]
− 1
∣∣∣ .

E is secure against adaptively-chosen ciphertext attacks if Advib−kem−cca
E,A (k) is a negligible

function in k for all polynomial-time adversaries A.

3 Canetti-Krawczyk model

In this section the CK approach is reviewed. Further details of the model can be found in
the original papers [4, 10].

In the CK model a protocol π is modeled as a collection of n programs running at
different parties, P1, . . . , Pn. Each program is an interactive probabilistic polynomial-time
(PPT) machine. Each invocation of π within a party is defined as a session, and each
party may have multiple sessions running concurrently. The communications network is
controlled by an adversary A, also a PPT machine, which schedules and mediates all
sessions between the parties. When first invoked within a party, a key exchange protocol π
calls an initialization function that returns any information needed for the bootstrapping of
the cryptographic authentication functions After this initialization stage, the party waits
for activation. A may activate a party Pi in two ways:

1. by means of an establish-session(Pi, Pj , s) request, where Pj is another party with whom
the key is to be established, and s is a session-id string which uniquely identifies a
session between the participants.

2. by means of an incoming message m with a specified sender Pj .

Upon activation, the parties perform some computations, update their internal state,
and may output messages together with the identities of the intended receivers. Two
sessions (Pi, Pj , s) and (P ′i , P

′
j , s
′) are said to be matching sessions if Pi = P ′j , Pj = P ′i ,

and s = s′, i.e. if their session-ids are identical and they recognised each other as their
respective communicating partner for the session. In the analysis of the protocols in this
paper, we define the session-id as the concatenation of the messages sent and received by
the party. In addition to the activation of parties, A can perform the following queries:



1. corrupt(Pi). With this query A learns the long term key of Pi.
2. session-key(Pi, Pj , s). This query returns the session key (if any) accepted by Pi during

a given session s with Pj .
3. session-state(Pi, Pj , s). This query returns all the internal state information of party Pi

associated to a particular session s with Pj , but does not include the long term key Pi.
4. session-expiration(Pi, Pj , s). This query is used for defining forward secrecy and erases

from memory the session key on a completed session. The session is thereafter said to
be expired.

5. test-session(Pi, Pj , s). To respond to this query, a random bit b is selected. If b = 1
then the session key is output. Otherwise, a random key is output chosen from the
probability distribution of keys generated by the protocol. This query can only be
issued to a session that has not been exposed. A session is exposed if the adversary
performs any of the following actions:
– a session-state or session-key query to this session or to the matching session, or
– a corrupt query to either partner before the session expires at that partner.

Security is defined based on a game played by the adversary. In this game A interacts
with the protocol. In a first phase of the game, A is allowed to activate sessions and
perform corrupt, session-key, session-state and session-expiration queries as described above.
The adversary then performs a test-session query to a party and session of its choice. The
adversary is not allowed to expose the test session. A may then continue with its regular
actions with the exception that no more test-session queries can be issued. Eventually, A
outputs a bit b′ as its guess on whether the returned value to the test-session query was
the session key or a random value, then halts. A wins the game if b = b′. The definition of
security follows.

Definition 6. A key establishment protocol π is called session key (SK-) secure with per-
fect forward secrecy (PFS) if the following properties are satisfied for any adversary A.

1. If two uncorrupted parties complete matching sessions then they both output the same
key;

2. The probability that A guesses correctly the bit b is no more than 1
2 plus a negligible

function in the security parameter.

We define the advantage of A to be

Advsk
A =

∣∣2Pr[b = b′]− 1
∣∣ .

Hence the second requirement will be met if the advantage of A is negligible. Canetti and
Krawczyk also provide a definition of SK-security without PFS. The only difference with
respect to the above definition is that now the adversary is not allowed to expire sessions.

Krawczyk [25] showed that forward secrecy in the usual sense cannot be achieved in
a two-pass protocol such as the ones that we consider. Therefore we restrict our concern
to what Krawczyk calls weak forward secrecy (WFS), in which the adversary is forbidden
from taking an active part in the test session. We will also consider partial WFS, where
we further restrict the adversary to corrupt at most one party to the test session. In the
ID-based setting, WFS implies key escrow freeness, i.e. it protects against attacks in which
the Key Generation Centre, who knows all the long term keys of all the parties, tries to
(passively) eavesdrop in the communications of any two parties.



The original CK model does not consider key compromise impersonation (KCI) attacks,
where the adversary, after compromising the long-term key of a party A, engages in a
successful protocol run with A posing as a third party B, i.e. A accepts a session key in
the believe that it is shared with B, when in fact is shared with the adversary. Thus in a
KCI attack there is no matching session to the test session. To model KCI resistance for
our protocols we modify the definition of security to allow the adversary to corrupt the
owner A of the test session (A,B, s).

3.1 Difference between the eCK and CK models

The essential difference between the eCK as defined in [26] and the CK model is that
the eCK model substitutes the session-state query by a new ephemeral-key reveal query,
which reveals the randomness used in the specified session. In addition, a new definition
of freshness is formulated in the eCK model that permits ephemeral-key reveal queries on
the test session. The important point to note is that the ephemeral-key does not include
session state that has been computed using the long-term secret of the party. This is
not the case in the CK model where, in principle, the adversary is allowed access to all
the inputs (including the randomness, but excluding the long-term secret itself) and the
results of all the computations done by a party as part of a session. In other words, there
is information that is available to the adversary in the eCK model that is not available in
the CK model, but the same is true in the opposite direction. Thus, strictly speaking, the
security afforded by the two models cannot be compared.

Furthermore, it is arguable whether the differences between the two models are mean-
ingful in reality. An attack where the adversary can obtain the randomness but not the
rest of the session state seems rather special. In any case, we can generically defend against
that type of attack by “pseudo-randomising” the random input using the long term secret,
which is what protocols such as Okamoto’s [29] and NAXOS [26] that have considered the
eCK model do. That is, if r is the random input used by a session and s is the long term
key of the party, the protocol first computes uses a pseudo-random function f to compute
r′ = fs(r), and uses r′ instead of r. This way, even though r is available to the adversary
through ephemeral-key reveal, r′ remains protected.

4 Generic 2×KEM Protocols

In this section, we present Protocols 1 and 2, two generic protocols based on the use of any
CCA-secure IB-KEM. The first, Protocol 1, is the most efficient of the two, and provides
KCI resistance, but does not provide forward secrecy. The basic idea of Protocol 1 is very
simple: the two parties simply send each other a random secret value using the IB-KEM
and then derive a session key from the combined secrets using a random extractor and
expander. Protocol 2 adds an independent Diffie-Hellman exchange in a group generated
by f to achieve (weak) forward secrecy. It also achieves KCI resistance. The description
of both protocols for the PKI-based setting is the same except that the identities are
substituted by the public keys of the parties.

The protocol messages and actions are symmetrical for the parties in our protocols. It
is assumed that the IB-KEM is defined to output a random key if a ciphertext is not valid.
Because the protocols complete in one round, the actual order in which the two parties A
and B exchange their messages is irrelevant. In the descriptions provided we let A be the
one party such that idA < idB, using some agreed order relation, e.g. lexicographic order.

Note that each party must check that the identity of the party in its incoming message
is actually the identity of its intended partner. Furthermore, the decapsulated IB-KEM



A B

(CA,K
′
A) ∈R Enc(pk , idB) (CB ,K

′
B) ∈R Enc(pk , idA)

A,CA−−−−−−−→
B,CB←−−−−−−−

K′B = Dec(pk , didA , CB) K′A = Dec(pk , didB , CA)
K′′A = Exctκ(K′A);K′′B = Exctκ(K′B) K′′B = Exctκ(K′B);K′′A = Exctκ(K′A)

s = A||CA||B||CB s = A||CA||B||CB
KA = ExpdK′′

A
(s)⊕ ExpdK′′

B
(s) KB = ExpdK′′

B
(s)⊕ ExpdK′′

A
(s)

Erase all state except (KA, s) Erase all state except (KB , s)
‘Established (A,B, s,KA)’ ‘Established (B,A, s,KB)’

Protocol 1: Generic 2×KEM

A B

yA ∈R Z∗p′ ;YA = fyA yB ∈R Z∗p′ ;YB = fyB

(CA,K
′
A) ∈R Enc(pk , idB) (CB ,K

′
B) ∈R Enc(pk , idA)

A,CA, YA−−−−−−−→
B,CB , YB←−−−−−−−

K′B = Dec(pk , didA , CB) K′A = Dec(pk , didB , CA)
K′′A = Exctκ(K′A);K′′B = Exctκ(K′B) K′′B = Exctκ(K′B);K′′A = Exctκ(K′A)

K′′AB = Exctκ(Y yAB ) K′′BA = Exctκ(Y yBA )
s = A||CA||B||CB ; s = A||CA||B||CB ;

KA = ExpdK′′
A

(s)⊕ ExpdK′′
B

(s) KB = ExpdK′′
B

(s)⊕ ExpdK′′
A

(s)

⊕ExpdK′′
AB

(s) ⊕ExpdK′′
BA

(s)

Erase all state except (KA, s) Erase all state except (KB , s)

Protocol 2: Generic 2×KEM + Diffie-Hellman

key must be securely erased in the same activation in which it is decapsulated. Thus we
are making the restriction that session-state reveal queries do not return decapsulated keys.
Note however that once the key is decapsulated it can be inmediately used to compute the
session key, so there is no need to store decapsulated keys. This restriction is critical, oth-
erwise the protocol can be trivially broken by the adversary, as follows. Let (A,C∗A, B,C

∗
B)

be the transcript of an observed protocol run that the adversary A seeks to compromise.
A initiates a new session with B by sending D,C∗A to B, i.e. A pretends to be D and
replays the target ciphertext C∗A. The adversary could then issue a session-state reveal for
the new session to B, thus obtaining the decryption C∗A. Using the same strategy with A,
the adversary could find out the decryption of C∗B, which would then allow the adversary
to compute the session key corresponding to the session (A,C∗A, B,C

∗
B). We emphasize

that all other session state can be revealed as part of a session-state query, in particular,
encapsulated keys (at the party that generated them) and DH exponentials.

Interestingly, Protocol 2 does not require that the parties check group membership of
the Diffie-Hellman exponentials YA and YB. This is because the security of the protocol
does not depend on them except for proving weak forward secrecy, where the adversary is
passive, in which case these values are assumed to be correctly generated.

In the description of both protocols we have assumed that the same public parameters
are used by both parties. This is however not necessary. Each party could be using different



public parameters, IB-KEMs, or even one party could be using a IB-KEM and the other
a PKI-based KEM.

We are now in a position to state the security theorems for the two protocols. For both
these theorems we use the following notation:

– {ExpdK (·)}K∈U1
: {0, 1}σ → U2 is a pseudorandom function family, (as described in

Definition 3),
– Exctκ(·) : K→ U1 is chosen uniformly at random from a strong (m, ε)-strong random-

ness extractor for appropriate m and ε (as described in Definition 2),
– norac is the total number of oracles (i.e. sessions) created by B against the protocol,

and
– 1

p is the maximum probability that C1 = C2 where (C1,K1) ∈R Enc(pk , id) and
(C2,K2) ∈R Enc(pk , id) for any identity (if C1 = C2 then K1 = K2 also since both
ciphertexts decrypt to the same value).

Theorem 1. Let B be any adversary against Protocol 1. Then the advantage of B against
the SK-security (with partial WFS and KCI resistance) of Protocol 1 is:

Advsk
B (k) ≤ n2

orac

p
+ 2norac

(
Advib−kem−cca

E,A (k) + ε+ Advp−rand
F ,C (k)

)
Theorem 2. Let B be any adversary against Protocol 2. Then the advantage of B against
the SK-security (with WFS and KCI resistance) of Protocol 2 is:

Advsk
B (k) ≤max

(
2n2

oracAdvddh
F,D(k) ,

n2
orac

p
+ 2norac

(
Advib−kem−cca

E,A (k) + ε+ Advp−rand
F ,C (k)

)
.

The proofs of Theorems 1 and 2 can be found in Appendix C. We remark that, despite
the simplicity of the protocols, proving their security turns out to be less simple than one
might expect.

4.1 On Alternative Session Key Derivation

When a particular KEM such as those of Kiltz [19] and Kiltz-Galindo [21] (shown in
Appendix A) is used in conjunction with the protocol, it may be tempting to try to achieve
forward secrecy by treating K ′A and K ′B as Diffie-Hellman values and deriving K ′′A and
K ′′B by combining K ′A and K ′B in the usual Diffie-Hellman manner and then extracting the
randomness from this combined key. However, such a modification invalidates the proof,
since the adversary A against the KEM would no longer be able to generate the proper
test session key when B, the adversary against the protocol, generates the input to the
test session. The problem could be overcome by adding authentication to the messages,
but this would increase the number of messages and rounds required by the protocol.

Similarly, when K ′A, K ′B and Y yA
B are all elements of the same algebraic group, it

may be tempting to set K ′′A = Exctκ(K ′AK
′
BY

yA
B ), and changing K ′′B similarly. This way,

depending in the actual KEM used, it may be possible to optimize the computation of the
product K ′AK

′
BY

yA
B , using multi-exponentiation algorithms [6]. Again, such a modification

will invalidate the proof. Assuming the test session owner is A and the intended partner
B, then the test session key returned to B would be ExpdExctκ(K′AK

′
BY

yA
B ) (s′) where B may

know K ′BY
yA
B . However, if B uses the test session output CA as input to other sessions with



B, B may learn values of the form αi, ExpdExctκ(K′Aαi)
(s′i) for many i (B can find out αi if it

controls the the other party involved in the protocol run with B). Unfortunately, providing
such values to B no longer fits with the definition of the randomness extractor, even if it
is extended to allow multiple uses. To overcome this we need a different key derivation
function. In particular we could use the key derivation function defined by Okamoto in his
recent protocol [29], which requires a pseudo-random function with pair-wise independent
random sources. This is however a non-standard assumption, stronger than the pseudo-
randomenss of Definition 3. In any case, such key derivation function is only useful for
some KEMs (when K ′A, K ′B and Y yA

B are all in the same group and the product K ′AK
′
BY

yA
B

can be optimised).

5 Protocol Comparison: ID-based case

We now compare Protocols 1 and 2 with that of Boyd et al. [8] (BMP) which is one of the
most efficient listed by Chen et al. in their survey of protocols [11, Table 6].

Table 1 summarises the properties of the protocols under consideration. The costs per
party given in the table for Protocols 1 and 2 assume the use of Kiltz’s IB-KEM. We note
that the BMP protocol does not have a proof of security in the standard model, unlike
Protocols 1 and 2. Protocol 2 is the only one for which we have been able to prove both
weak forward security (FS) and KCI resistance in the standard model.

weak KCI Standard Cost
FS Model per party

Protocol 1 3 8 3 56
Protocol 2 3 3 3 59
BMP [8] 3 8 8 23

Table 1. Security and efficiency comparison

To compare the efficiency of the protocols we use the costs per operation provided by
Chen et al. [11] for Type 3 pairings with a security parameter of 128, which are the most
efficient type of pairings for security levels higher than 80 bits. The values are shown in
Table 2, which also shows the costs of Kiltz, Kiltz-Galindo and Gentry IB-KEMs. These
figures require 256 bits to represent an element of G1, 512 bits to represent an element of
G2, and 3072 bits to represent an element of GT . As suggested by Chen et al., we assume
that all elements of the ciphertext are checked to determine that they lie in the correct
subgroup to avoid attacks such as the small subgroup attack.

All of these IB-KEMs were originally proposed to use Type 1 pairings, and so to obtain
the costs we have had to convert the three IB-KEMs to work with type 3 pairings. The
modified schemes can be found in Appendix A together with a discussion on their security
and efficiency.

In BMP each party sends only one element of G1 to the other, so the bandwidth is
smaller than using Kiltz’s IB-KEMs with Protocol 1. Each party computes one pairing and
two exponentiations in G1, as well as a subgroup check of one element in G1. Therefore
the total cost per party is 23 time units, as opposed to the 56 units for the Kiltz IB-KEM
with Protocol 1. This means that we have achieved identity based key exchange in the
standard model in less than 2.5 times the cost in the random oracle model using the size of



curve given above. Given the better security guarantees of the standard model, this extra
cost may be considered quite reasonable.

Type 3 Kiltz Kiltz-Galindo Gentry
cost Enc Dec KeyDer Enc Dec KeyDer Enc Dec KeyDer

G1 exp, multi-exp. 1, 1.5 -,1 -,1 2,- 1,1 1,1 1,- -,1 -,- -,-
G2 exp, multi-exp. 3, 4.5 1,- 1,- 1,- 1,- 2,- 1,- -,- -,1 -,3
GT exp, multi-exp. 3, 4.5 1,- -,- -,- 1,- -,- -,- 3,1 -,1 -,-

Pairing 20 - 2 - - 3 - - 1 -
G1 subgroup check 1 - 1 - - 2 - - 1 -
G2 subgroup check 3 - 1 - - 1 - - - -
GT subgroup check 4 - - - - - - - 3 -

Total cost 7.5 48.5 5 8.5 73.5 4 15 42 13.5
Total Enc + Dec cost 56 82 57

Table 2. Costs of IB-KEMs using Type 3 pairings

The efficiency of Protocol 2 will be worse than that of Protocol 1, but depending on the
choice of the group 〈f〉, it may not be much worse. For example, if the DDH assumption
holds in G1 (this will require G1 6= G2 and no efficiently computable homomorphism from
G1 to G2), only 3 extra time units would be required per party (e.g. for party A, one to
generate YA, one to perform a subgroup check on YB, and one to find Y yA

B ). The increase
in message size would be an extra 256 bits per message.

6 Protocol Comparison: PKI-based case

We now consider our two generic protocols in the traditional PKI-based setting and com-
pare them with existing protocols. Table 3 shows the computational cost of Protocol 1 and
2 when instantiated with the recently proposed KEMs of Kiltz [20] and Okamoto [29]. The
efficiency of these two KEMs is shown in Table 4. The computational cost figures of both
Table 3 and 4 include the cost of performing group membership tests (1 exponentiation
per test) and distinguishes regular exponentiations from multi-exponentiations. However
we ignore “half-exponentiations” that maybe possible when exponents are the outputs of
hash functions. We stress that the shown computational costs are only rough indicative
figures. The exact computational costs depend on actual choices of groups. We see that
Kiltz’s KEM is more efficient than Okamoto’s by one regular exponentiation in the de-
capsulation algorithm. Kiltz’s KEM security is based on the Gap Hashed Diffie-Hellman
(GHDH) problem, while Okamoto’s is based on the DDH problem and the existence of
pseudo-random functions with pair-wise independent random sources (πPRF).

Table 3 also shows the costs of the protocols due to Jeong et al . [18] and Okamoto [29],
which to our knowledge are the only one-round protocols whose security has been proven
in the standard model. HMQV [25], whose security has only been shown in the random
oracle model, is also included.

Jeong et al .’s protocol is the most efficient of all of the compared protocols, but does not
provide KCI resistance. Protocol 1 instantiated with Kiltz’s KEM results in the cheapest
protocol with KCI resistance but only provide partial FS. Of the protocols providing both
weak FS and KCI resistance in the standard model, Okamoto’s protocol is the cheapest
by one regular exponentiation. As discussed in Section 4.1, Okamoto’s protocol can be
seen as an instantiation of Protocol 2 with Okamoto’s KEM but using a different key



derivation function. We note that even Okamoto’s protocol is slightly more efficient than
Protocol 2 instantiated with currently most efficient KEM (Kiltz’s KEM), Protocol 2 has
the advantage of being generic. It is also possible that if a more efficient KEM is devised,
then the generic Protocol 2 would be more efficient that Okamoto’s. Note that Okamoto’s
key derivation function poses constraints on the KEM key space and hence cannot be
applied generally to all KEMs.

Finally, we note that Protocol 2 is reasonably efficient when compared with HMQV.
In its most optimised form (where there is no subgroup membership checking and con-
sidering short-exponents) HMQV requires around 2.2 exponentiations. We can roughly
approximate 1 multi-exponentiation to 1.2 regular exponentiation [6], which makes the
cost of Protocol 2-Kiltz 7.4 regular exponentiations.

weak KCI Standard Cost
FS Model (exp, multi-exp)

Protocol 1 - Kiltz 8 3 3 3,2
Protocol 1 - Okamoto 8 3 3 4,2
Protocol 2 - Kiltz 3 3 3 5,2
Protocol 2 - Okamoto 3 3 3 6,2
Okamoto 3 3 3 4,2
Jeong-Katz-Lee 3 8 3 3,-
HMQV 3 3 8 4,-

Table 3. Security and efficiency comparison

Enc Dec Security Ciphertext
(exp, multi-exp) (exp, multi-exp) Assumption (#group elements)

Kiltz 2,1 1,1 GHDH 2
Okamoto 2,1 2,1 DDH+πPRF 2

Table 4. Costs of KEMs

7 Conclusion

We have proven secure two generic protocols that may be used with any KEM to achieve
secure key exchange in the standard model, in either the ID-based setting or the normal
public key setting.

In addition, we provided a detailed analysis of the protocols’ efficiency on Type 3
curves; this necessitated the extension of the IB-KEMs of Kiltz [19], Kiltz-Galindo [21]
and Gentry [17] to use ordinary elliptic curves. We found that both our Protocols takes
approximately 2.5 times as long as the protocol of Boyd, Mao, and Paterson [8] (which is
only proven secure in the random oracle model) when both protocols are implemented on
elliptic curves with a 128 bit security level.

The PKI-version of our protocols also compare favourably with the existing ones of
Jeong et al . [18] and Okamoto [29]. Protocol 2 provides more security than Jeong’s protocol
and the same as Okamoto’s. When instantiated with Kiltz’ PKI-based KEM [20] Protocol



2 is slightly less efficient than Okamoto’s. However, Protocol 2 has the advantage of being
generic, i.e. it can be used together with any KEM which is CCA secure and our security
analysis still applies.
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A Evaluation of IB-KEMs

In this section, we evaluate the efficiency of the IB-KEMs of Kiltz [19], Gentry [17] and
Kiltz–Galindo [21, 22] when implemented using asymmetric pairings. All of these IB-KEMs
have been proposed and proven secure under the assumption that the scheme uses a bilinear
map on a supersingular elliptic curve which provides a mapping from a pair in the same
group ê : G1 × G1 → GT . Chen et al. [11] identify four different types of pairing, with
the above case corresponding to Type 1, and note that although it is suitable for 80-bit
security levels, its performance degrades significantly for higher security levels. Here we
focus on Type 3 pairing systems, which are the most efficient for higher security levels.
Type 2, 3 and 4 pairing systems all use a bilinear map ê : G1 × G2 → GT . We show
how to transform each of the suggested IB-KEMs to use a Type 2 or 3 pairing system,
and Appendix B shows how the modified schemes may still be proven secure in a similar
fashion to the original ones. We point out that one of the main differences between Type 3
and Types 2 and 4 is that there is no efficiently computable homomorphism ψ from G2

to G1 in Type 3 pairing systems, and that instead of |G2| = |G1|, Type 4 pairing systems



have |G2| = |G1|2, which does not appear desirable for the suggested schemes. Also, the
existence (or not) of ψ affects the assumptions made in the proofs of security.

We use the following notation. For any i, G∗i = Gi − {1} where 1 is the neutral
element. |G1| = |G2| = p for some prime p; g∗ is a generator of G1 and g is a gener-
ator of G2. In the case of Type 2, g∗ = ψ(g). ê : G1 × G2 → GT is a bilinear map.
H : {0, 1}n → G1 is the hash function originally defined in Waters’ scheme [32] and
commonly called simply Waters’ hash. It is defined as H(id) = h0

∏n
i=1 h

idi
i ∈ G1 where

id = (id1, . . . , idn) ∈ {0, 1}n. HGen(G1, n) generates the hash key by choosing n + 1 ran-
dom group elements h0, h1, . . . , hn ∈R G1 and returning them. TCR(·) is a target collision
resistant hash function (see Definition ??).

Figure 1 describes the modified version of each of the three suggested IB-KEMs: those
by Kiltz [19], Kiltz and Galindo [21, 22] and Gentry [17]. Gentry’s IBE, has been modified
so that the message of the IBE (chosen at random) is considered the key of the IB-KEM. We
assume it requires an exponentiation in GT to generate this random message. Calculation
of the key in the decryption algorithm has also been modified to reduce the number of
pairings; this is possible since in the IB-KEM a random key is returned if the ciphertext
is not consistent, and so checking for consistency can be incorporated into calculation of
the key, as in the Kiltz–Galindo IB-KEMs.

The cost per operation shown in Figure 1 are from Chen et al. [11] for Type 3 curves
with a security parameter of 128 to compare the cost of each IB-KEM on the same sized
group (also shown in Table 2. A security parameter of 128 bits requires 256 bits to represent
an element of G1, 512 bits to represent an element of G2, and 3072 bits to represent an
element of GT . The number of operations required by each scheme are similar to those
in Kiltz’s comparison of IBEs, with the exception of the inclusion in these figures of
subgroup membership tests, a more efficient key derivation for Gentry’s scheme, and a
separate listing of exponentiations for each of the three groups. When two or more pairings
are required to calculate a key, it is possible that the 20 units estimated per pairing is
too high, since a significant portion of the pairing computation involves finding a unique
representation of the output, and this would only be necessary once the different pairing
outputs had been combined.

The fastest IB-KEM proposed so far is that of Kiltz, followed closely by that of Gen-
try. Kiltz’s scheme uses a slightly non-standard assumption, namely the mBDDH (mod-
ified bilinear decisional Diffie-Hellman) assumption. The assumption may be modified
to allow G1 6= G2 when ψ is not efficiently computable and stated as follows. Given
(g∗, ga∗ , g

b
∗, g

(b2)
∗ , gc∗, g, g

a, gb, gc,W ), it is hard to distinguish whether W = ê(g∗, g)abc

or not. The Kiltz-Galindo scheme is based on the standard BDDH assumption: given
(g∗, ga∗ , g

b
∗, g

c
∗, g, g

b, gc,W ), it is hard to distinguish whether W = ê(g∗, g)abc or not. (When
G1 = G2, ψ is efficiently computable, or a gap assumption is used in the proof, the pow-
ers of g∗ may be omitted in both assumptions, provided every power of g∗ is given as a
power of g instead.) Gentry’s scheme is based on a very non-standard assumption, the
truncated decision q-ABDHE (augmented bilinear Diffie-Hellman exponent) assumption,
whose hardness in relation to the BDDH assumption is unknown. The assumption (mod-
ified for the case when G1 6= G2) states: given (g∗, g

(αq+2)
∗ , g, gα, g(α2), g(α3), . . . , g(αq),W )

it is hard to distinguish whether W = ê
(
g∗, g

(αq+1)
)

or not. However, by using this as-
sumption, Gentry is able to achieve a tight reduction, whereas the other two schemes do
not, losing a factor of about (n + 1)q where q is the upper bound of the number of key
derivation/decryption queries in the KEM.



Kiltz

KeyGen(1k) : KeyDer(pk , α, id) :
α, u ∈R G∗1; z = ê(α, g); H = HGen(G1, n) s ∈R Zp
pk = (u,H, g, z) ∈ Gn+2

1 ×G2 ×GT Return (αH(id)s, gs, us)
Return (pk , α)

Enc(pk , id) : Dec(pk , d, C) :
r ∈R Z∗p Parse C as (c1, c2)
c1 = gr ∈ G2; t = TCR(c1) Parse d as (d1, d2, d3)
c2 = (H(id)ut)r ∈ G1 t = TCR(c1)
K = zr ∈ GT v ∈R Z∗p
C = (c1, c2) ∈ G2 ×G1

Return (C,K)
Return

ê(d1dt3(H(id)ut)v, c1)
ê(c2, gvd2)

Kiltz-Galindo

KeyGen(1k) : KeyDer(pk , α, id) :
α, u1, u2 ∈R G∗1; z = ê(α, g); H = HGen(G1, n) s ∈R Zp
pk = (u1, u2,H, g, z) ∈ Gn+3

1 ×G2 ×GT Return (αH(id)s, gs)
Return (pk , α)

Enc(pk , id) : Dec(pk , d, C) :
r ∈R Z∗p Parse C as (c1, c2, c3)
c1 = gr ∈ G2; t = TCR(c1) Parse d as (d1, d2)
c2 = H(id)r ∈ G1 t = TCR(c1)
c3 = (ut1u2)r ∈ G1; K = zr ∈ GT v1, v2 ∈R Z∗p
C = (c1, c2) ∈ G2 ×G2

1

Return (C,K)
Ret.

ê(d1(ut1u2)v1H(id)v2 , c1)
ê(c2, d2g

v2 )·ê(c3, gv1 )

Gentry

KeyGen(1k) : KeyDer(pk , α, id) :
α ∈R Zp; g1 = gα∗ ∈ G1;u ∈R G1; s1, s2, s3 ∈R Zp
h1, h2, h3 ∈R G2; z0 = ê(g∗, g); di =

`
hig
−si

´1/(α−id)

zi = ê(g∗, hi) for 1 ≤ i ≤ 3; for 1 ≤ i ≤ 3
H′ ∈R universal hash fn. family d = {(si, di) : i ∈ (1, 2, 3)}
pk = (g∗, g1, u, g, h1, h2, h3, z0, z1, Return d

z2, z3,H
′) ∈ G3

1 ×G4
2 ×G4

T × {0, 1}k If id = α abort. Always use
Return (pk , α) same si for same identity.

Enc(pk , id) : Dec(pk , d, C) :
r ∈R Zp;K ∈R GT Parse C as (c1, c2, c3, c4)

c1 = gr1g
−rid
∗ ∈ G1; c2 = zr0 ∈ GT Parse d as {(si, di) : i ∈ (1, 2, 3)}

c3 = Kz−r1 ∈ GT ;β = H′(c1, c2, c3) β = H′(c1, c2, c3)

c4 = zr2z
rβ
3 ∈ GT v ∈R Z∗p

C = (c1, c2, c3, c4) ∈ G1 ×G3
T

Return (C,K)
Ret.

ê
“
c1, d1

“
d2d

β
3

”v”
c3c

s1+v(s2+βs3)
2

cv4

Costs
Type 3 Kiltz Kiltz-Galindo Gentry

cost Enc Dec KeyDer Enc Dec KeyDer Enc Dec KeyDer
G1 exp, multi-exp. 1, 1.5 -,1 -,1 2,- 1,1 1,1 1,- -,1 -,- -,-
G2 exp, multi-exp. 3, 4.5 1,- 1,- 1,- 1,- 2,- 1,- -,- -,1 -,3
GT exp, multi-exp. 3, 4.5 1,- -,- -,- 1,- -,- -,- 3,1 -,1 -,-
Pairing 20 - 2 - - 3 - - 1 -
G1 subgroup check 1 - 1 - - 2 - - 1 -
G2 subgroup check 3 - 1 - - 1 - - - -
GT subgroup check 4 - - - - - - - 3 -
Total cost 7.5 48.5 5 8.5 73.5 4 15 42 13.5
Total Enc + Dec cost 56 82 57

Fig. 1. IB-KEMs generalized to use ê : G1 ×G2 → GT



One drawback of the Kiltz and Kiltz-Galindo schemes is the use of the Waters hash,
H. If we assume that identities are 30 bits long, this contributes 31 elements of G1 to
the system parameters, or 7, 936 bits using the above figures. If this figure is seen to be
too large, Gentry’s scheme may appear more attractive. However, it requires the use of a
universal hash function, which if implemented using the well-known method of multiplying
a Toeplitz matrix (one with constant diagonals) by the input to create the output [27],
would require a key of 6, 655 bits (256 + 3072 + 3072 bits input plus 256 bits output minus
1). Although this may be an improvement on the storage requirements for H, it is not
a huge one. Unfortunately, it is unclear exactly what effect the universal hash function
has in Gentry’s proof. In particular, it would be nice to know whether the universal hash
function may be replaced with an almost universal one, and how close to universal that
function must be. If this were the case, it may be possible to apply the work of Dodis et
al. [15] to use CBC-MAC, keyed cascade chaining, or HMAC instead of the universal hash
function, and so reduce the size of Gentry’s system parameters substantially.

On the other hand, it is possible to make a tradeoff between the size of the Waters
hash and the security of the IB-KEM scheme (see e.g. Kiltz [19] for details). The tradeoff
chooses a parameter l and considers each identity a sequence of l-bit strings. Then, for
identities n bits long, only (l/n + 1) hi need to be chosen to define the hash function H,
and each hi is raised to the ith l-bit string in the identity to find the hash of an identity.
A multiplicative factor of 2l must then be added to the security reduction of the IB-KEM
scheme.

B Extension of Proofs to Ordinary Curves

Given the modified assumptions provided in Appendix A for the three IB-KEM schemes,
it is not hard to modify the proofs to accommodate the modified IBKEMs. Each value or
calculation defined in the proof must be examined to see whether it should be in G1, G2

or GT . This is fairly straightforward given the descriptions of the modified schemes. Then,
wherever necessary, any value gx for any x should be replaced with gx∗ to put the value
or calculation in the correct group. The only exceptions to this rule are the calculations
of the value K in Game 7 of Kiltz’s proof and Game 8 in Kiltz and Galindo’s proof.
As originally written, these calculations would require the division of elements from two
different groups. However, the calculations can be modified to avoid this problem but
provide the same answer. In the Kiltz proof, the calculation must be changed to be:

K =

 ê (c2, ga)

ê
(
ga∗ , c

x(id)
1

)
(t−t∗)−1

(4)

and in the Kiltz-Galindo proof, the calculation must be changed to be:

K =

(
ê
(
c3, g

b
)

ê
(
gb∗, c

d
1

))(t−t∗)−1

. (5)

C Security proofs

C.1 Analysis Techniques

In each proof, we wish to show that each game cannot be distinguished from the previous
one, without breaking a hard problem. More precisely, we wish to show that in each game,



the probability that B outputs 0 when b = 0 is (almost) the same as in the previous game
and the probability that B outputs 0 when b = 1 is (almost) the same as in the previous
game. Then, in the final game, we wish to show that from the point of view of B, the
output of the test session is independent of all other values in B’s view. Therefore, in the
last game, B has no advantage in distinguishing whether b = 0 or b = 1. Since it will be
shown that each game cannot be distinguished from a previous one, this means that in
Game 0 B cannot tell the difference between b = 0 and b = 1 either. This is exactly what
is necessary to show that the protocol is secure.

We use the following notation.

σi = The event that B guesses the value of b correctly in Game i (6)
τi = |2Pr[σi]− 1| = Advantage of B in Game i (7)

We observe that if Games i and i+ 1 are identical when event E does not occur, and
if there is a probability of 1

2 that B is correct in Game i+ 1 when E does occur, then:

Pr[σi+1] = Pr[σi+1|E]Pr[E] + Pr[σi+1|¬E]Pr[¬E] (8)

=
1
2

Pr[E] + Pr[σi|¬E]Pr[¬E] (9)

Pr[σi]− Pr[σi+1] = Pr[σi|E]Pr[E]− 1
2

Pr[E] (10)

|Pr[σi]− Pr[σi+1]| ≤ 1
2

Pr[E] (11)

We also use the following game hopping technique suggested by Dent [13]. Consider an
event E that may occur during B’s execution such that E is detectable by the simulator, E
is independent of σi, Game i and Game i+1 are identical unless E occurs, and Pr[σi+1|E] =
1
2 . Then we have:

Pr[σi+1] = Pr[σi+1|E]Pr[E] + Pr[σi+1|¬E]Pr[¬E] (12)

=
1
2

Pr[E] + Pr[σi|¬E]Pr[¬E] (13)

=
1
2

(1− Pr[¬E]) + Pr[σi]Pr[¬E] (14)

=
1
2

+ Pr[¬E]
(

Pr[σi]−
1
2

)
(15)

Hence, τi+1 = 2
∣∣∣∣Pr[σi+1]− 1

2

∣∣∣∣ = 2
∣∣∣∣Pr[¬E]

(
Pr[σi]−

1
2

)∣∣∣∣ (16)

= Pr[¬E]τi (17)

C.2 Proof of Theorem 1

We now proceed to prove Theorem 1. The proof has two parts; the first part proves the
security of Protocol 1 when the partner to test session is not corrupted. The second part
proves the security of Protocol 1 when the partner to the test session is corrupted (in
this case, we require the test session to have a matching session by the time B finishes).
Remember that we are only considering partial forward secrecy, and therefore B does not
corrupt both the owner of the test session and the corresponding partner.

Throughout the proof, we call each session to be activated at party an oracle. We
denote the oracles with which B interacts Π i

X where X is the name of a party and i is
the number of the oracle. We number the oracles such that Π i

X is the ith oracle created



by B out of all oracles created by B (i.e. if Π i
X and Πj

Y are two oracles, then i = j implies
X = Y ). Also, for any party, X, the identity of that party is denoted eX . We consider the
following series of games with B.

Case 1: Partner to the test-session is not corrupted In this case, the partner to
the test session is not corrupted, but the owner of the test session may be, either prior
to the session (as in a KCI attack), or after the session expires (as in a forward secrecy
attack). This part of the proof uses the following series of games with B.

Game 0. This game is the same as a real interaction with the protocol. A random bit b
is chosen, and when b = 0, the real key is returned in answer to the test session query,
otherwise a random key from U2 is returned.

Game 1. This game is the same as the previous one, except that if two different sessions
output exactly the same message and have the same intended partner, the protocol halts.

Game 2. This game is the same as the previous one, except that before the adversary
begins, a random value m ∈R {1, 2, . . . , norac} is chosen. We call the mth oracle to be
activated the target oracle. If the target oracle is not the test oracle, the protocol halts
and B fails and outputs a random bit. We denote the input message to the target oracle
with C, the corresponding output message with C∗, the target oracle’s owner with T and
the target oracle’s intended partner with T ∗. Note that there may not be a matching test
session activated at T ∗.

Game 3. In this game, a random value K ′∗ is chosen. Whenever C∗ is used as input to an
oracle owned by T ∗, the calculation of the key is modified so that K ′∗ is used in place of
Dec(pk , dT ∗ , C∗); the message output by this oracle is calculated as usual. Similarly, K ′∗

is used instead of K ′T in the calculation of the session key by T .
The rest of the Game 3 is the same as Game 2. if b = 1, a random key from U2 is returned.
Otherwise, K ′∗ is used in the computation of the test session as described above.

Game 4. This game is the same as the previous one, except that a random value K ′′∗ ∈R

U1 is chosen and the use of Exctκ(K ′∗) is replaced with K ′′∗.
Game 5. This game is the same as the previous one, except that whenever the value
ExpdK′′∗ (s′) for any s′ would be used in generating keys, a random value from U2 is used
instead (the same random value is used for the same value of s′; a different random value
is chosen for different s′).

Analysis of Games 0 to 2: Let psameMsg be the probability of two or more sessions
outputting the same message. We have

1− psameMsg > 1− n2
orac

p.

Then, from (11)

|Pr[σ0]− Pr[σ1]| < n2
orac

2p
when 1

2 >
norac−1

p > 0 (18)

This can be used to bound τ0 as follows:

τ0 = |2Pr[σ0]− 1| ≤ 2
(
|Pr[σ0]− Pr[σ1]|+

∣∣∣∣Pr[σ1]− 1
2

∣∣∣∣) (19)

≤ n2
orac

p
+ τ1 (20)



In Game 2, the probability of the protocol halting due to an incorrect choice of m is
1− 1

norac
. Whether or not an abortion would occur in this game could be detected in the

previous game if it also chose m in the same way. Therefore, we may use equation (17) to
find:

τ2 =
1

norac
τ1 ⇒ noracτ2 = τ1 (21)

and (20) gives

τ0 ≤
n2

orac

p
+ noracτ2 (22)

Analysis of Game 3: We now construct adversary A against the security of the IB-
KEM, using B. A is constructed such that when it receives the real key for the IB-KEM
scheme, the view of B is the same as in Game 2, but if A receives a random IB-KEM key,
the view of B is the same as in Game 3. Then, by the security of the IB-KEM scheme, we
can claim these games are indistinguishable.

To begin, A is given the master public key pk . A passes this value as well as the
description of Exctκ(·), its key κ and {ExpdK (·)}K∈U1

to B. Recall that A has access to
the corresponding oracles OKeyDer(·) and ODec(·, ·).
A runs as described in Game 2, except that when the target session is activated, A

outputs eT ∗ as the identity on which it wants to be tested. A receives a ciphertext C∗ for
T ∗ and key K ′∗, which may be the decryption of C∗ or may be a random IB-KEM key,
each with equal probability. A then uses C∗ as the output of the target session, modifies
the calculation of keys so that K ′∗ is used in place of Dec(pk ,KeyDer(pk , α, eT ∗), C∗), and
uses K ′∗ instead of K ′T to find the answer to the test session query when b = 0.

All legitimate queries made by B can still be answered by A using its oracles in as
follows.

– A corrupt query on some identity eX may be answered with OKeyDer(eX)(recall that
no corrupt query is made by B on the partner to the test session, T ).

– A must maintain the session state of each oracle so that it may be returned in answer
to session state reveal queries (session state reveal is not allowed on the test session or
its matching session).

– Any message CX to any party (including T ∗) with identity eX may be decrypted using
ODec(eX , CX) to generate keys for reveal session key queries and the test query.

When B halts and outputs its bit b′, A halts and outputs 1− b′. The probability that A is
correct is Pr[σ2] when K ′∗ is the real key for the IB-KEM message, and 1− Pr[σ3] when
K ′∗ is not the key for the IB-KEM message. We can then find that:

Advib−kem−cca
E,A (k) =

∣∣∣∣2(1
2

(Pr[σ2] + 1− Pr[σ3])
)
− 1
∣∣∣∣ (23)

= Pr[σ2]− Pr[σ3] (24)

τ2 = |2Pr[σ2]− 1| ≤ |2Pr[σ2]− 2Pr[σ3]|+ |2Pr[σ3]− 1| (25)
τ2 ≤ 2Advib−kem−cca

E,A (k) + τ3 (26)



Analysis of Game 4 We now consider an adversary, D, against the security of the
randomness extraction function. This adversary runs a copy of B and interacts with B
in such a manner that it is the same as when B interacts with either Game 3 or 4. D
receives a key κ for the randomness extraction function and a value R1 such that either
R1 = Exctκ(X) for some X ∈R K or R1 ∈R U1. D sets κ to be the public parameter
used to key the randomness extraction function, and chooses the other public parameters
according to the protocol. D runs as described for Game 4, except that D uses R1 in place
of K ′′∗. When B outputs it guess of the bit b, D outputs that R1 = Exctκ(X) for some X
if B is correct, and D outputs that R1 ∈R U1 otherwise. The probability that D is correct
is 1

2 (Pr[σ3] + 1− Pr[σ4]). By the security of the randomness extraction function, we have:

ε ≥ |2Pr[D correct]− 1| = |Pr[σ3]− Pr[σ4]| (27)
τ3 = |2Pr[σ3]− 1| (28)
≤ |2Pr[σ3]− 2Pr[σ4]|+ |2Pr[σ4]− 1| (29)
≤ 2ε+ τ4 (30)

Analysis of Game 5 Now, we consider another adversary, D′ , this time against the
randomness expansion (or pseudorandom) function family {ExpdK(·)}K∈U1 . We define D′

to run a copy of B, and to interact with B in such a manner that it is the same as when
B interacts with with either Game 4 or 5. D′ receives the definition of the function family
{ExpdK(·)}K∈U1 , and an oracle O(·) which is either ExpdK(·) for some value of K unknown
to D′ or a truly random function. D′ runs a copy of the protocol for B in the same way
as described for Game 4, except that whenever the value ExpdK′′∗ (s′) for any s′ would be
used in generating keys, D′ uses the value O(s′) instead. When B outputs it guess of the
bit b, D′ outputs that its oracle is a member of the given function family if B is correct, and
D′ outputs that its oracle is a truly random function otherwise. The probability that D′

is correct is 1
2 (Pr[σ4] + 1− Pr[σ5]). By the security of the randomness expansion function

we have:

Advp−rand
F ,C (k) ≥

∣∣∣2Pr[D′ correct]− 1
∣∣∣ = |Pr[σ4]− Pr[σ5]| (31)

τ4 = |2Pr[σ4]− 1| (32)
≤ |2Pr[σ4]− 2Pr[σ5]|+ |2Pr[σ5]− 1| (33)

≤ 2Advp−rand
F ,C (k) + τ5 (34)

In Game 5, let us denote the key returned in the test session query with R1 ⊕
ExpdK′′

T∗
(s′) when b = 0, and R2 when b = 1, where R1 and R2 are chosen uniformly

at random from U2. Now, R2 is chosen independently of all other values in the protocol,
so B can gain no information about R2 directly; B can only gain information about R2 by
determining whether b = 0 or b = 1. Furthermore, when b = 0, unless B can gain some
information about R1, the response to the test session query also looks random and is
therefore indistinguishable from the case when b = 1.

To gain information about R1 from a source other than the test session query response,
B must obtain the key of a session that has also used R1 in the generation of its key. Now,
if R1 is used in the generation of a session’s key, then that session must have had the same
session identifier, and hence exchanged the same messages as the test session. Therefore,
the session is either owned by T ∗ with intended partner T and received C∗ as part of
its input or is owned by T with intended partner T ∗ and had C∗ as part of its output.
However, such a session owned by T ∗ will match the test session and so not be subject



to reveal key queries.Hence, B can gain no information about R1, and so B can gain no
information about b in Game 5, and therefore

τ5 = 0

Combining the results in equations (22), (26), (30) and (34) we conclude:

τ0 ≤
n2

orac

p
+ 2norac

(
Advib−kem−cca

E,A (k) + ε+ Advp−rand
F ,C (k)

)
(35)

Case 2: Partner to the test session is corrupted Recall that we only consider partial
weak forward secrecy for Protocol 1. Consequently we require that

1. the owner of the test session be not corrupted by the adversary,
2. the adversary be passive in the protocol corresponding to the test session; that is there

exists a matching session to the test session at the intended partner by the time that
the test session query is issued by the adversary; and

3. the partner to the test session be corrupted only after the matching session expires.

For this part of the proof we set up the following series of 6 games with B. Game 0 and 1
are the same as in Case 1. Game 2 and 3 are analogous to Game 2 and 3 in Case 1 except
that now our target oracle is the partner to the test session, and it is its input to the session
key that is substituted by a random value. Game 4 and 5, which are used to prove the
security of the session key derivation mechanism via randomness extraction and expansion
also remain essentially the same.

Game 0. This game is the same as a real interaction with the protocol. A random bit b
is chosen, and when b = 0, the real key is returned in answer to the test session query,
otherwise a random key from U2 is returned.

Game 1. This game is the same as the previous one, except that if two different sessions
output exactly the same message and have the same intended partner, the protocol halts.

Game 2. This game is the same as the previous one, except that before the adversary
begins, a random value m ∈R {1, 2, . . . , norac} is chosen. We call the mth oracle to be
activated the target oracle. If the target oracle is not the partner to the test oracle, the
protocol halts and B fails and outputs a random bit. We denote the input message to the
target oracle with C∗, the corresponding output message with C, the target oracle’s owner
with T ∗ and the target oracle’s intended partner with T .

Game 3. In this game, a random value K ′ ∈R K is chosen. Further a bit c ∈R {0, 1} is
chosen as a guess as to whether B corrupts T or T ∗. Whenever C is used as input to an
oracle owned by T , the calculation of the key is modified so that K ′ is used in place of
Dec(pk , dT , C); the message output by this oracle is calculated as usual. Similarly, K ′ is
used instead of K ′T in the calculation of the session key by T ∗.
The rest of the Game 3 is the same as Game 2. if b = 1, a random key from U2 is returned.
Otherwise, K ′ is used in the computation of the test session as described above.

Game 4. This game is the same as the previous one, except that a random value K ′′ ∈R U1

is chosen and the use of Exctκ(K ′) is replaced with K ′′.
Game 5. This game is the same as the previous one, except that whenever the value
ExpdK′′ (s′) for any s′ would be used in generating keys, a random value from U2 is used
instead (the same random value is used for the same value of s′; a different random value
is chosen for different s′).

In the analysis that follows, we denote with σ′i the event that the adversary is successful
in Game i and with τ ′i the corresponding advantage.



Analysis of Games 0 to 2: This analysis is the same as the that of Games 0 to 2 in
Case 1. Thus,

τ ′0 ≤
n2

orac

p
+ noracτ

′
2 (36)

Analysis of Game 3: This analysis is very similar to that of Game 3 in Case 1. We
construct adversary A against the security of the IB-KEM, using B. A is given the master
public key pk and passes this value as well as the description of Exctκ(·), its key κ and
{ExpdK (·)}K∈U1

to B. A runs as described in Game 2, except that when the target oracle
is activated, A outputs eT as the identity on which it wants to be tested. A receives a
ciphertext C for T and key K ′, which may be the decryption of C or may be a random
IB-KEM key, each with equal probability. A then uses C as the output of the target oracle
(and hence input to the test session). A modifies the calculation of keys so that K ′ is used
in place of Dec(pk ,KeyDer(pk , α, eT ), C), and uses K ′ instead of K ′T to find the answer to
the test session query when b = 0.

All legitimate queries made by B can still be answered by A using its oracles as follows.

– A corrupt query on some identity eX may be answered with OKeyDer(eX)(recall that
no corrupt query is made by B on the owner of the test session, T ).

– A must maintain the session state of each oracle so that it may be returned in answer
to session state reveal queries (session state reveal is not allowed on the test session or
its matching session).

– Any message CX to any party (including T ) with identity eX may be decrypted using
ODec(eX , CX) to generate keys for reveal session key queries and the test query.

When B halts and outputs its bit b′, A halts and outputs 1 − b′. As in Case 1, the
probability that A is correct is Pr[σ′2] when K ′ is the real key for the IB-KEM message,
and 1− Pr[σ′3] when K ′ is not the key for the IB-KEM message. Hence,

τ ′2 ≤ 2Advib−kem−cca
E,A (k) + τ ′3 (37)

Analysis of Game 4 This is the same as in Case 1. Thus,

τ ′3 ≤ 2ε+ τ ′4 (38)

Analysis of Game 5 This is the same as in Case 1. Thus,

τ ′4 ≤ 2Advp−rand
F ,C (k) + τ ′5 (39)

Combining Results Again using the same reasoning as in Case 1, we conclude that
τ ′5 = 0, and therefore combining equations (36), (37), (38) and (39) we have:

τ ′0 ≤
n2

orac

p
+ 2norac

(
Advib−kem−cca

E,A (k) + ε+ Advp−rand
F ,C (k)

)
(40)

This is the same advantage as in Case 1 and hence Therorem 1 follows.



C.3 Proof of Theorem 2:

The security difference between Protocol 1 and 2 is that the latter provides full WFS,
i.e. in addition to the adversarial capabilities considered in the proof of Theorem 1, we
now allow the adversary to corrupt both parties to the test session. It is natural then two
consider the proof of Theorem 2 in two parts: the first part where the adversary does not
corrupt both parties to the test session, and the second part where it does. Then, the first
part is essentially identical to the proof of Theorem 1. The only difference is that in the
analysis of Game 3 (in both Case 1 and 2) A needs to simulate the extra Diffie-Hellman
values, which A can easily do for all sessions, including the test session.

We deal now with the second part of the proof, where the adversary corrupts the two
partners to the test session. Note however that the adversary is restricted to being passive
during the protocol run corresponding to the test session – a consequent of only being
able to achieve weak forward secrecy in one round. As we will see below this allows us to
inject a challenge Decisional Diffie-Hellman triplet into the test session.

The second part of the proof allows any party to be corrupted. It considers the following
two games with B.

Game 0. This game is the same as a real interaction with the protocol. A random bit b
is chosen, and when b = 0, the real key is returned in answer to the test session query,
otherwise a random key from K is returned.

Game 1. This game is the same as the previous one, except that before the adversary
begins, random values j, j∗ ∈R {1, 2, . . . , norac} are chosen. Let T and T ∗ be the owners
of the jth and j∗th sessions respectively. if the jth session at T is not the test session or
if the output of the j∗th session at T ∗ is not used as input to the test session, then the
protocol halts and B fails and outputs a random bit. Furthermore, the session key of the
test session is set to a random value from K, the keyspace of the KEM. The test session’s
matching session has its key is set to the same random value (i.e. a random test session
key is always returned, no matter what the value of b).

We now construct adversary A against the DDH problem, using B. A is constructed
such that provided A does not have to abort the protocol as specified in Game 1 then if
A’s input is from DHF , the view of B is the same as in Game 0, but if A’s input is from
RF , the view of B is the same as in Game 1. Then, by Assumption 1, we can claim these
games are indistinguishable.

To begin, A generates all the protocol parameters and passes the public parameters to
B.

Let (fa, f b, h) be A challenge DDH inputs (with h either f c or fab) When the jth and
the j∗th sessions are activated, A uses its inputs fa and f b instead of the values YT and
YT ∗ when it generates the outputs of these sessions. Apart from this change, all session
inputs and outputs are generated according to the protocol specification.

When the test session query is made,A uses Exctκ(h) in place of K ′′TT ∗ when calculating
the real test session key.
A is able to answer all other queries correctly since it knows all of the system parameters

and all of the session states.
The probability that A will not have to abort the protocol as described in Game 1

is 1
n2

orac
. Furthermore, in Game 1, B is able to gain no advantage since a random key is

always returned in answer to the test session. Hence, by (17) and using a similar logic to
that shown in (31) to (34) we have that:

σ0 ≤ 2n2
oracε

′′ (41)



Combining Results: Let E be the event that the test session has a matching session by
the time B finishes, and let σ be the event that B guesses b correctly in Protocol 2. Then
we have:

Advsk
B (k) = |2Pr[σ]− 1|
Pr[σ] = Pr[σ|E]Pr[E] + Pr[σ|¬E]Pr[¬E]

= Pr[σ|¬E] + Pr[E] (Pr[σ|E]− Pr[σ|¬E]) .

Therefore,

min (Pr[σ|¬E],Pr[σ|E]) ≤ Pr[σ] ≤ max (Pr[σ|¬E],Pr[σ|E])

and

Advsk
B (k) ≤ max

(
Advsk

B (k) |E, Advsk
B (k) |¬E

)
and so we can combine (35), (40) and (41) to find:

Advsk
B (k) ≤max

(
2n2

oracAdvddh
F,D(k) ,

n2
orac

p
+ 2norac

(
Advib−kem−cca

E,A (k) + ε+ Advp−rand
F ,C (k)

)
.


