
A Proof of Security in O(2n) for the Xor of Two

Random Permutations

Jacques Patarin
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Abstract

Xoring two permutations is a very simple way to construct pseudorandom functions from
pseudorandom permutations. The aim of this paper is to get precise security results for this
construction. Since such construction has many applications in cryptography (see [2, 3, 4, 6] for
example), this problem is interesting both from a theoretical and from a practical point of view.
In [6], it was proved that Xoring two random permutations gives a secure pseudorandom function
if m � 2

2n
3 . By “secure” we mean here that the scheme will resist all adaptive chosen plaintext

attacks limited to m queries (even with unlimited computing power). More generally in [6] it is
also proved that with k Xor, instead of 2, we have security when m � 2

kn
k+1 . In this paper we

will prove that for k = 2, we have in fact already security when m � O(2n). Therefore we will
obtain a proof of a similar result claimed in [2] (security when m � O(2n/n2/3)). Moreover our
proof is very different from the proof strategy suggested in [2] (we do not use Azuma inequality
and Chernoff bounds for example), and we will get precise and explicit O functions. Another
interesting point of our proof is that we will show that this (cryptographic) problem of security
is directly related to a very simple to describe and purely combinatorial problem.

Key words: Pseudorandom functions, pseudorandom permutations, security beyond the birth-
day bound, Luby-Rackoff backwards

1 Introduction

The problem of converting pseudorandom permutations (PRP) into pseudorandom functions (PRF)
named “Luby-Rackoff backwards” was first considered in [3]. This problem is obvious if we are
interested in an asymptotical polynomial versus non polynomial security model (since a PRP is
then a PRF), but not if we are interested in achieving more optimal and concrete security bounds.
More precisely, the loss of security when regarding a PRP as a PRF comes from the “birthday
attack” which can distinguish a random permutation from a random function of n bits to n bits,
in 2

n
2 operations and 2

n
2 queries. Therefore different ways to build PRF from PRP with a security

above 2
n
2 and by performing very few computations have been suggested (see [2, 3, 4, 6]). One

of the simplest way (and the way that gives so far our best security result) is simply to Xor k
independent pseudorandom permutations, for example with k = 2. In [6] (Theorem 2 p.474), it has
been proved, with a simple proof, that the Xor of k independent PRP gives a PRF with security
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at least in O(2
k

k+1
n). (For k = 2 this gives O(2

2
3
n)). In [2], a much more complex strategy (based

on Azuma inequality and Chernoff bounds) is presented. It is claimed that with this strategy we
may prove that the Xor of two PRP gives a PRF with security at least in O(2n/n

2
3 ) and at most

in O(2n), which is much better than the birthday bound in O(2
n
2 ). However the authors of [2]

present a very general framework of proof and they do not give every details for this result. For
example, page 9 they wrote “we give only a very brief summary of how this works”, and page 10
they introduce O functions that are not easy to express explicitly. In this paper we will use a
completely different proof strategy, based on the “coefficient H technique” (see Section 3 below),
simple counting arguments and induction. We will need a few pages, but we will get like this a
self contained proof of security in O(2n) for the Xor of two permutations with a very precise O
function. Since building PRF from PRP has many applications (see [2, 3, 4]), we think that these
results are really interesting both from theoretical and from practical point of view. It may be
also interesting to notice that there are many similarities between this problem and the security
of Feistel schemes built with random round functions (also called Luby-Rackoff constructions). In
[7], it was proved that for L-R constructions with k rounds functions we have security that tends
to O(2n) when the number k of rounds tends to infinity. Then in [11], it was proved that security
in O(2n) was obtained not only for k → +∞, but already for k = 7. Similarly, we have seen that
in [6] it was proved that for the Xor of k PRP we have security that tends O(2n) when k → +∞.
In this paper, we show that security in O(2n) is not only for k → +∞, but already for k = 2.

2 Notation and Aim of this paper

In all this paper we will denote In = {0, 1}n. Fn will be the set of all applications from In to In,
and Bn will be the set of all permutations from In to In. Therefore |In| = 2n, |Fn| = 2n·2n

and
|Bn| = (2n)!. x ∈R A means that x is randomly chosen in A with a uniform distribution.

The aim of this paper is to prove the theorem below, with an explicit O function (to be deter-
mined).

Theorem 1 For all CPA-2 (Adaptive chosen plaintext attack) φ on a function G of Fn with m
chosen plaintext, we have: AdvPRF

φ ≤ O( m
2n ) where AdvPRF

φ denotes the probability to distinguish
f ⊕ g, with f, g ∈R Bn from h ∈R Fn.

This theorem says that there is no way (with an adaptive chosen plaintext attack) to distinguish
with a good probability f ⊕ g when f, g ∈R Bn from h ∈R Fn when m � 2n. Therefore, it implies
that the number λ of computations to distinguish f ⊕ g with f, g ∈R Bn from h ∈R Fn satisfies:
λ ≥ O(2n). We say also that there is no generic CPA-2 attack with less than O(2n) computations
for this problem, or that the security obtained is greater than or equal to O(2n). Since we know
(for example from [2]) that there is an attack in O(2n), Theorem 1 also says that O(2n) is the exact
security bound for this problem.

3 The general Proof Strategy

We will use this general Theorem:

Theorem 2 Let α and β be real numbers, α > 0 and β > 0. Let E be a subset of In
n such that

|E| ≥ (1− β) · 2nm. If:
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1. For all sequences ai, 1 ≤ i ≤ m, of pairwise distinct elements of In and for all sequences bi,
1 ≤ i ≤ m, of E we have:

H ≥ |Bn|2

2nm
(1− α)

where H denotes the number of (f, g) ∈ B2
n such that ∀i, 1 ≤ i ≤ m, (f ⊕ g)(ai) = bi.

Then

2. For every CPA-2 with m chosen plaintexts we have: p ≤ α + β where p = AdvPRF
φ denotes

the probability to distinguish f ⊕ g when (f, g) ∈R B2
n from a function h ∈R Fn.

Proof of Theorem 2
It is not very difficult to prove Theorem 2 with classical counting arguments. This proof technique

is sometimes called the “Coefficient H technique”. A complete proof of Theorem 2 can also be found
in [10] page 27 and a similar Theorem was used in [11] p.517. In order to have all the proofs in this
paper, Theorem 2 is also proved in Appendix F.

How to get Theorem 1 from Theorem 2
In order to get Theorem 1 from Theorem 2, a sufficient condition is to prove that for “ most”

(most since we need β small) sequences of values bi, 1 ≤ i ≤ m, bi ∈ In, we have: the number H of

(f, g) ∈ B2
n such that ∀i, 1 ≤ i ≤ m, f(ai)⊕ g(ai) = bi satisfies: H ≥ |Bn|2

2nm
(1−α) for a small value

α (more precisely with α � O( m
2n )). For this, we will evaluate E(H) the mean value of H when the

bi values are randomly chosen in Im
n , and σ(H) the standard deviation of H when the bi values are

randomly chosen in Im
n . (Therefore we can call our general proof strategy the “Hσ technique”, since

we use the coefficient H technique plus the evaluation of σ(H)). We will prove that E(H) = |Bn|2
2nm

and that σ(H) = |Bn|2
2nm O( m

2n )
3
2 , with an explicit O function, i.e. that σ(H) � E(H) when m � 2n.

From Bienayme-Tchebichev Theorem, we have

Pr(|H − E(H)| ≤ αE(H)) ≥ 1− σ2(H)
α2E2(H)

So

Pr[H ≥ E(H)(1− α)] ≥ 1− σ2(H)
α2E2(H)

Therefore from Theorem 2 we will have for all α > 0:

AdvPRF
φ ≤ α +

σ2(H)
α2E2(H)

With α = ( σ(H)
E(H))

2/3, this gives

AdvPRF
φ ≤ 2(

σ(H)
E(H)

)2/3 = 2(
V (H)
E2(H)

)1/3

So if σ(H)
E(H) = O( m

2n )3/2, and E(H) = |Bn|2
2nm , Theorem 1 comes from Theorem 2.

Introducing N instead of H
H is (by definition) the number of (f, g) ∈ B2

n such that ∀i, 1 ≤ i ≤ m, f(ai) ⊕ g(ai) = bi.
∀i, 1 ≤ i ≤ m, let xi = f(ai). Let N be the number of sequences xi, 1 ≤ i ≤ m, xi ∈ In, such that:
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1. The xi are pairwise distinct, 1 ≤ i ≤ m.

2. The xi⊕bi are pairwise distinct, 1 ≤ i ≤ m. We see that H = N · |Bn|2

(2n(2n−1)...(2n−m+1)) . (Since

when xi is fixed, f and g are fixed on exactly m pairwise distinct points by ∀i, 1 ≤ i ≤ m,
f(ai) = xi and g(ai) = bi ⊕ xi).

Thus we have
AdvPRF

φ ≤ 2(
σ(H)
E(H)

)2/3 = 2(
σ(N)
E(N)

)2/3 (3.1)

Therefore, instead of evaluating E(H) and σ(H), we can evaluate E(N) and σ(N), and our aim is
to prove that

E(N) =
(2n(2n − 1) . . . (2n −m + 1))2

2nm
and that σ(N) � E(N) when m � 2n.

As we will see, the most difficult part will be the evaluation of σ(N). (We will see in Section 5 that
this evaluation of σ(N) leads us to a purely combinatorial problem: the evaluation of values that
we will call λα).

Remark: We will not do it, nor need it, in this paper, but it is possible to improve slightly the
bounds by using a more precise evaluation than the Bienayme-Tchebichev Theorem: instead of

Pr(|N − E(N)| ≥ tσ(N)) ≤ 1
t2

,

it is possible to prove that for our variables N , and for t >> 1, we have something like this:

Pr(|N − E(N)| ≥ tσ(N)) ≤ 1
et

(For this we would have to analyze more precisely the law of distribution of N : it follows almost a
Gaussian and this gives a better evaluation than just the general 1

t2
).

4 Computation of E(N)

Let b = (b1, . . . , bn), and x = (x1, . . . , xn). For x ∈ Im
n , let

δx = 1 ⇔
{

The xi are pairwise distinct, 1 ≤ i ≤ m
The xi ⊕ bi are pairwise distinct, 1 ≤ i ≤ m

and δx = 0 ⇔ δx 6= 1. Let Jm
n be the set of all sequences xi such that all the xi are pairwise

distinct, 1 ≤ i ≤ m. Then |Jm
n | = 2n(2n − 1) . . . (2n − m + 1) and N =

∑
x∈Jm

n
δx. So we have

E(N) =
∑

x∈Jm
n

E(δx). For x ∈ Jm
n ,

E(δx) = Prb∈RIm
n

(All the xi ⊕ bi are pairwise distinct) =
2n(2n − 1) . . . (2n −m + 1)

2nm

Therefore

E(N) = |Jm
n | ·

2n(2n − 1) . . . (2n −m + 1)
2nm

=
(2n(2n − 1) . . . (2n −m + 1))2

2nm

as expected.
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5 First results on V (N)

We denote by V (N) the variance of N when b ∈R Im
n . We have seen that our aim (cf(3.1)) is to

prove that V (N) � E2(N) when m � 2n (with E2(N) = (2n(2n−1)...(2n−m+1))4

22nm ). With the same
notations as in Section 4 above, N =

∑
x∈Jm

n
δx. Since the variance of a sum is the sum of the

variances plus the sum of all covariances we have:

V (N) =
∑

x∈Jm
n

V (δx) +
∑

x,x′∈Jm
n

x6=x′

[E(δx δx′)− E(δx) E(δx′)] (5.1)

We will now study the 3 terms in (5.1), i.e. the terms in V (δx), the terms in E(δx δx′) and the
terms in E(δx) E(δx′).

Terms in V (δx)
V (δx) = E(δ2

x)− (E(δx))2 = E(δx)− (E(δx))2

V (δx) =
2n(2n − 1) . . . (2n −m + 1)

2nm
− (2n(2n − 1) . . . (2n −m + 1))2

22nm

So
∑

x∈Jm
n

V (δx) =
(2n(2n − 1) . . . (2n −m + 1))2

2nm
− (2n(2n − 1) . . . (2n −m + 1))3

22nm

This term is less than E(N) and therefore is much less than E2(N). (5.2)
Terms in E(δx) E(δx′)

E(δx) E(δx′) =
(2n(2n − 1) . . . (2n −m + 1))2

22nm

So
∑

x,x′∈Jm
n

x6=x′

E(δx)E(δx′) =
[2n(2n − 1) . . . (2n −m + 1)− 1][2n(2n − 1) . . . (2n −m + 1)]3

22nm

' (2n(2n − 1) . . . (2n −m + 1))4

22nm
= E2(N) (5.3)

Terms in E(δx δx′)
Therefore the last term Am that we have to evaluate in (5.1) is

Am =def

∑
x,x′∈Jm

n x6=x′

E(δx δx′) =

∑
x,x′∈Jm

n
x6=x′

Prb∈Im
n

({
The xi are pairwise distinct, 1 ≤ i ≤ m
The xi ⊕ bi are pairwise distinct, 1 ≤ i ≤ m

)

Let λm =def the number of sequences (xi, x
′
i, bi), 1 ≤ i ≤ m such that

1. The xi are pairwise distinct, 1 ≤ i ≤ m.

2. The x′
i are pairwise distinct, 1 ≤ i ≤ m.

3. The xi ⊕ bi are pairwise distinct, 1 ≤ i ≤ m.
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4. The x′
i ⊕ bi are pairwise distinct, 1 ≤ i ≤ m.

We have Am = λm
2nm (5.4). Therefore from (5.1), (5.2), (5.3), (5.4), we have obtained:

V (N) ≤ E(N) + E2(N)− λm

2nm
(5.5)

We want to prove that V (N) � E2(N). Therefore, our aim is to prove that

λm ' 2nm · E2(N) =
(2n(2n − 1) . . . (2n −m + 1))4

2nm
(5.6)

Change of variables
Let fi = xi and gi = x′

i, hi = xi⊕ bi. We see that λm is also the number of sequences (fi, gi, hi),
1 ≤ i ≤ m, fi ∈ In, gi ∈ In, hi ∈ In, such that

1. The fi are pairwise distinct, 1 ≤ i ≤ m.

2. The gi are pairwise distinct, 1 ≤ i ≤ m.

3. The hi are pairwise distinct, 1 ≤ i ≤ m.

4. The fi ⊕ gi ⊕ hi are pairwise distinct, 1 ≤ i ≤ m.

We will call these conditions 1.2.3.4. the “conditions λα”. (Examples of λm values are given in
Appendix A). In order to get (5.6), we see that a sufficient condition is finally to prove that

λm =
(2n(2n − 1) . . . (2n −m + 1))4

2nm
(1 + O(

m

2n
)) (5.7)

with an explicit O function. So we have transformed our security proof against all CPA-2 for f ⊕g,
f, g ∈R Bn, to this purely combinatorial problem (5.7) on the λm values. (We can notice that in
E(N) and σ(N) we evaluate the values when the bi values are randomly chosen, while here, on the
λm values, we do not have such bi values anymore). The proof of this combinatorial property is
given below and in the Appendices. (Unfortunately the proof of this combinatorial property (5.7)
is not obvious: we will need a few pages. However, fortunately, the mathematics that we will use
are simple).

6 First results in λα

The values λα have been introduced in Section 5. Our aim is to prove (5.7), (or something similar,
for example with O(mk+1

2nk ) for any integer k) with explicit O functions. For this, we will proceed
like this: in this Section 6 we will give a first evaluation of the values λα. Then, in Section 7, we
will prove an induction formula (7.2) on λα. Finally, in the Appendices, we will use this induction
formula (7.2) to get our property on λα.

Let Uα =
[2n(2n − 1) . . . (2n − α + 1)]4

2nα
. We have Uα+1 = (2n−α)4

2n Uα.

Uα+1 = 23n(1− 4α

2n
+

6α2

22n
− 4α3

23n
+

α4

24n
)Uα (6.1)
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Similarly, we want to obtain an induction formula on λα, i.e. we want to evaluate λα+1

λα
. More

precisely our aim is to prove something like this:

λα+1

λα
=

Uα+1

Uα
(1 + O(

1
2n

) + O(
α

22n
)) (6.2)

Notice that here we have O( α
22n ) and not O( α

2n ). Therefore we want something like this:

λα+1

23n · λα
= (1− 4α

2n
+

6α2

22n
− 4α3

23n
+

α4

24n
)(1 + O(

1
2n

) + O(
α

22n
)) (6.3)

(with some specific O functions)
Then, from (6.2) used for all 1 ≤ i ≤ α and since λ1 = U1 = 23n, we will get

λα = (
λα

λα−1
)(

λα−1

λα−2
) . . . (

λ2

λ1
)λ1 = Uα(1 + O(

1
2n

) + O(
α

22n
))α

and therefore we will get property (5.4):

λα = Uα(1 + 0(
α

2n
))

as wanted. Notice that to get here 0( α
2n ) we have used 0( α

22n ) in (6.2).
By definition λα+1 is the number of sequences (fi, gi, hi), 1 ≤ i ≤ α + 1 such that we have:

1. The conditions λα

2. fα+1 /∈ {f1, . . . , fα}

3. gα+1 /∈ {g1, . . . , gα}

4. hα+1 /∈ {h1, . . . , hα}

5. fα+1 ⊕ gα+1 ⊕ hα+1 /∈ {f1 ⊕ g1 ⊕ h1, . . . , fα ⊕ gα ⊕ hα}

We will denote by β1, . . . , β4α the 4α equalities that should not be satisfied here: β1 : fα+1 = f1,
β2 : fα+1 = f2, . . ., β4α : fα+1 ⊕ gα+1 ⊕ hα+1 = fα ⊕ gα ⊕ hα.

First evaluation
When fi, gi, hi values are fixed, 1 ≤ i ≤ α, such that they satisfy conditions λα, for fα+1 that

satisfy 2), we have 2n − α solutions and for gα+1 that satisfy 3) we have 2n − α solutions. Now
when fi, gi, hi, 1 ≤ i ≤ α, and fα+1, gα+1 are fixed such that they satisfy 1), 2), 3), for hα+1 that
satisfy 4) and 5) we have between 2n − α and 2n − 2α possibilities. Therefore (first evaluation for
λα+1

λα
) we have:

λα(2n − α)2(2n − 2α) ≤ λα+1 ≤ λα(2n − α)2(2n − α)

Therefore :
1− 4α

2n
≤ λα+1

23n · λα
≤ 1 (6.4)

This an approximation in O( α
2n ) and from it we get

λα = Uα(1 + O(
α

2n
))α
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i.e. λα = Uα(1 + O(
α2

2n
))

i.e. we get security until α2 � 2n, i.e. until α �
√

2n. However, we want security until α � 2n

and not only α �
√

2n, so we want a better evaluation for λα+1

23n·λα
(i.e. we want something like (6.3)

instead of (6.4)).

7 An induction formula on λα

A more precise evaluation
For each i, 1 ≤ i ≤ 4α, we will denote by Bi the set of (f1, . . . , fα+1, g1, . . . , gα+1, h1, . . . , hα+1),

that satisfy the conditions λα and the conditions βi. Therefore we have:

λα+1 = 23nλα − | ∪4α
i=1 Bi|

We know that for any set Ai and any integer µ, we have:

| ∪µ
i=1 Ai| =

µ∑
i=1

|Ai| −
∑

i1<i2

|Ai1 ∩Ai2 |+
∑

i1<i2<i3

|Ai1 ∩Ai2 ∩Ai3 |+ . . . + (−1)µ+1|A1 ∩A2 ∩ . . .∩Aµ|

Moreover, each set of 5 (or more) equations βi is in contradiction with the conditions λα because
we will have at least two equations in f , or two in g, or two in h, or two in f ⊕g⊕h (and fα+1 = fi

and fα+1 = fj gives fi = fj with i 6= j and 1 ≤ α, j ≤ α, in contradiction with λα).
Therefore, we have:

λα+1 = 23nλα −
4α∑
i=1

|Bi|+
∑
i<j

|Bi ∩Bj | −
∑

i<j<k

|Bi ∩Bj ∩Bk|+
∑

i<j<k<l

|Bi ∩Bj ∩Bk ∩Bl|

• 1 equation.
In Bi, we have the conditions λα plus the equation βi, and βi will fix fα+1, or gα+1, or hα+1

from the other values. Therefore:

|Bi| = 22nλα and −
4α∑
i=1

|Bi| = −4α · 22nλα

• 2 equations.
First Case: βi and βj are two equations in f (or two in g, or two in h, or two in f⊕g⊕h. ( For

example: fα+1 = f1 and fα+2 = f2). Then these equations are not compatible with the conditions
λα, therefore |Bi ∩Bj | = 0.

Second Case: we are not in the first case. Then two variables (for example fα and gα) are
fixed from the others. Therefore: |Bi ∩Bj | = 2nλα and

∑
i<j |Bi ∩Bj | = 6α2 · 2nλα.

• 3 equations.
If we have two equations in f , or in g, or in h, or in f ⊕ g⊕h, we have |Bi ∩Bj ∩Bk| = 0. If we

are not in these cases, then fα+1, gα+1 and hα+1 are fixed by the three equations from the other
variables, and then |Bi ∩Bj ∩Bk| = λα. Therefore: −

∑
i<j<k |Bi ∩Bj ∩Bk| = −4α3λα.

• 4 equations.
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This value is different from 0 only if we have one equation fα+1 = fi, one equation gα+1 = gj ,
one equation hα+1 = hk and one equation fα+1⊕gα+1⊕hα+1 = fl⊕gl⊕hl. Then |Bi∩Bj∩Bk∩Bl| =
number of fa, gb, hc, with a, b, c ∈ {1, . . . , α}, that satisfy the conditions λα plus the equation X:
fi ⊕ gj ⊕ hk = fl ⊕ gl ⊕ hl.

Case 1. i, j, k, l are pairwise distinct. Here we have α(α−1)(α−2)(α−3) = α4−6α3+11α2−6α
possibilities for i, j, k, l and from the symmetries of all indexes in the conditions λα, all the λ′

α(X)
of this case 1 are equal. We denote by λ

′(4)
α this value of λ′

α(X). (The (4) here is to remember that
we have exactly 4 indexes i, j, k, l).

Case 2. In {i, j, k, l}, we have exactly 3 indexes. Here we have 6α(α − 1)(α − 2) = 6α3 −
18α2 + 12α possibilities for i, j, k, l (since there are 6 possibilities to choose an equality). From the
symmetries in the conditions λα, all the λ′

α(X) of this case 2 are equal. We denote by λ
′(3)
α this

value of λ′
α(X).

Case 3. In {i, j, k, l}, 3 indexes have the same value (example i = j = k) and the other one
has a different value. Then X is not compatible with the conditions λα.

Case 4. In i, j, k, l, we have 2 indexes and we are not in the Case 3 (for example i = j and
k = l). Here we have 3α(α − 1) = 3α2 − 3α possibilities for i, j, k, l. From the symmetries in the
conditions λα all the λ′

α(X) of this case 4 are equal. We denote by λ
′(2)
α this value of λ′

α(X).
Case 5. We have i = j = k = l. Here we have α possibilities for i, j, k, l. Here X is always

true, and λ′
α(X) = λα.

From these 5 cases we get:∑
i<j<k<l

|Bi∩Bj∩Bk∩Bl| = α(α−1)(α−2)(α−3)λ
′(4)
α +6α(α−1)(α−2)λ

′(3)
α +3α(α−1)λ

′(2)
α +αλα

Therefore

λα+1 = (23n − 4α · 22n + 6α2 · 2n − 4α3 + α)λα + (α4 − 6α3 + 11α2 − 6α)λ
′(4)
α +

(6α3 − 18α2 + 12α)λ
′(3)
α + (3α2 − 3α)λ

′(2)
α (7.1)

We will denote by [λ′
α] any value of λ′

α(X) such that X is compatible with the conditions λα and
such that X is not always true (X is not 0 = 0). Then, from (7.1) we write

λα+1 = (23n − 4α · 22n + 6α2 · 2n − 4α3 + α)λα + (α4 − 4α2 + 3α)[λ′
α] (7.2)

where A · [λ′
α] is just a notation to mean that we have A terms λ′

α but each of these λ′
α may have

different values. Our aim is to get (6.3) from (7.2). For this we see that we have to prove that

[λ′
α] =

λα

2n
(1 + O(

1
2n

) + O(
α

22n
)) (7.3)

for “most” values [λ′
α] or for the values λ

′(4)
α . This is what we will do in the Appendices.

8 From [εα] to AdvPRF
φ

Let [εα] = 2n[λ′α]
λα

− 1. Therefore, [λ′
α] = λα

2n (1 + [εα]). From the analysis of the previous sections,
we know that if we can prove that |[εα]| is small, then AdvPRF

φ will be small. Let evaluate more
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precisely the links between |[εα]| and AdvPRF
φ that we have. From formula (7.2), we have:

λα+1 = 23n[1− 4α

2n
+

6α2

22n
− 4α3

23n
+

α

23n
+

(α4 − 4α2 + 3α)
24n

+ A]λα

with

A ≤ α4[εα]
2n · 23n

(8.1)

Therefore, by using Uα of section 6 we have:

λα+1

λα
=

Uα+1

Uα
·
(1− 4α

2n + 6α2

22n − 4α3

23n + α
23n + (α4−4α2+3α)

24n + A)

(1− 4α
2n + 6α2

22n − 4α3

23n + α4

24n )

λα+1

λα
=

Uα+1

Uα
· (1 +

α
23n − 4α2

24n + 3α
24n + A

1− 4α
2n + 6α2

22n − 4α3

23n + α4

24n

) (8.2)

Therefore, with (8.1) we have

λα+1

λα
=

Uα+1

Uα
· (1 + O1(

α

23n
) + O2(A))

with
|O1(

α

23n
)| ≤ α

23n(1− 4α
2n )

(8.3)

and
|O2(A)| ≤ A

(1− 4α
2n )

(8.4)

Since λ1 = U1 = 23n, we have

λα = (
λα

λα−1
)(

λα−1

λα−2
) . . . (

λ2

λ1
)λ1 = Uα[1 + O(

α

23n
) + O(A)]α

λα =
[2n(2n − 1) . . . (2n − α + 1)]4

2nα
(1 + O(

α2

23n
) + αO(A)) (8.5)

Now from (8.5) and (5.5) we get:

V (N) ≤ E(N) + (E(N))2(O(
α2

23n
) + αO(A))

Therefore, from (3.1) we get that the best CPA-2 attacks φ satisfy:

AdvPRF
φ ≤ 2

( V (N)
E2(N)

)1/3
≤ 2

( 1
E(N)

+ O(
α2

23n
) + αO(A)

)1/3

More precisely, by using (8.3) and (8.4) we get:

AdvPRF
φ ≤ 2

( 1
E(N)

+
m2

23n(1− 4m
2n )

+
α5 · [εα]

24n · (1− 4α
2n )

)1/3
(8.6)
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Here we have 1
E(N) = 2nm

(2n(2n−1)...(2n−m+1))2
and this is much smaller than m3

23n for example, thanks
to Stirling Formula. From formula (8.6) we see clearly that a bound on |[εα]| gives immediately a
precise bound on AdvPRF

φ . Now, in the Appendices, we will present good bounds for |[εα]|. We will
proceed progressively: first, in Appendix B, we will get a bound for |[εα]| in O( α

2n ) and therefore a
security (from (8.6)) in O(2

5n
6 ). Then, in Appendix D we will get a bound for |[εα]| in O( α5

25n ) and
therefore a security (from (8.6)) in O(2

9n
10 ). Finally, in Appendix E, we will iterate the process in

order to obtain security in m � O(2n) as wanted.

9 A simple variant of the schemes with only one permutation

Instead of G = f1 ⊕ f2, f1, f2 ∈R Bn, we can study G′(x) = f(x‖0) ⊕ f(x‖1), with f ∈R Bn and
x ∈ In−1. This variant was already introduced in [2] and it is for this that in [2] p.9 the security
in m

2n + O(n)( m
2n )3/2 is presented. In fact, from a theoretical point of view, this variant G′ is very

similar to G, and it is possible to prove that our analysis can be modified to obtain a similar proof
of security for G′.

10 A simple property about the Xor of two permutations and a
new conjecture

I have conjectured this property:

∀f ∈ Fn, if
⊕
x∈In

f(x) = 0, then ∃(g, h) ∈ B2
n, such that f = g ⊕ h.

Just one day after this paper was put on eprint, J.F. Dillon pointed to us that in fact this was
proved in 1952 in [5]. We thank him a lot for this information. (This property was proved again
independently in 1979 in [12]).

A new conjecture. However I conjecture a stronger property. Conjecture:

∀f ∈ Fn, if
⊕
x∈In

f(x) = 0, then the number H of (g, h) ∈ B2
n,

such that f = g ⊕ h satisfies H ≥ |Bn|2

2n2n .

Variant: I also conjecture that this property is true in any group, not only with Xor.
Remark: in this paper, I have proved weaker results involving m equations with m � O(2n)

instead of all the 2n equations. These weaker results were sufficient for the cryptographic security
wanted.

11 Conclusion

The results in this paper improve our understanding of the PRF-security of the Xor of two random
permutations. More precisely in this paper we have proved that the Adaptive Chosen Plaintext
security for this problem is in O(2n), and we have obtained an explicit O function. These results
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belong to the field of finding security proofs for cryptographic designs above the “birthday bound”.
(In [1, 7, 11], some results “above the birthday bound” on completely different cryptographic
designs are also given). Our proofs need a few pages, so are a bit hard to read, but the results
obtained are very easy to use and the mathematics used are elementary (essentially combinatorial
and induction arguments). Moreover, we have proved (in Section 5) that this cryptographic problem
of security is directly related to a very simple to describe and purely combinatorial problem. We
have obtained this transformation by combining the “coefficient H technique” of [10, 11] and a
specific computation of the standard deviation of H. (In a way, from a cryptographic point of
view, this is maybe the most important result, and all the analysis after Section 5 can be seen as
combinatorial mathematics and not cryptography anymore). Since building PRF from PRP has
many practical applications,we believe that these results are of real interest both from a theoretical
point of view and a practical point of view.
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Appendices

A Examples: λ1, λ2, λ3

As examples, we present here the exact values for λ1, λ2, λ3.
Computation of λ1

λ1 =def Number of (f1, g1, h1) with f1, g1, h1 ∈ In

Therefore λ1 = 23n.
Computation of λ2 from (7.2)

λ2 =def Number of (f1, g1, h1), (f2, g2, h2) such that f2 6= f1, g2 6= g1, h2 6= h1, f2⊕g2⊕h2 6= f1⊕g1⊕h1

From the general formula (7.1) or (7.2) of Section 7, we have (with α = 1):

λ2 = [23n − 4 · 22n + 6 · 2n − 3]λ1 + 0

(here [λ′
1] = 0 since we have only one indice and in X we must have at least two indices).

λ2 = [23n − 4 · 22n + 6 · 2n − 3] · 23n

Computations of λ2 from the βi equations

λ2 = 23nλ1 −
4∑

i=1

|Bi|+
∑
i<j

|Bi ∩Bj | −
∑

i<j<k

|Bi ∩Bj ∩Bk|+
∑

i<j<k<l

|Bi ∩Bj ∩Bk ∩Bl|

1 equation:
∑4

i=1 |Bi| = 4 · 22nλ1.
2 equations:

∑
i<j |Bi ∩Bj | = 6 · 2nλ1.

3 equations:
∑

i<j<k |Bi ∩Bj ∩Bk| = 4λ1.
4 equations:

∑
i<j<k<l |Bi ∩Bj ∩Bk ∩Bl| = λ1.

Therefore λ2 = (23n − 4 · 22n + 6 · 2n − 3)λ1 (as expected we obtain the same result as above).
Computation of λ3 from (7.2)
From the general formulas (7.1) and (7.2), we have (with α = 2):

λ3 = (23n − 8 · 22n + 24 · 2n − 30)λ2 + 6λ
′(2)
2

13



where λ
′(2)
2 is the number of (f1, g1, h1), (f2, g2, h2) such that f2 6= f1, g2 6= g1, h2 6= h1, f2 ⊕

g2 ⊕ h2 6= f1 ⊕ g1 ⊕ h1 and f1 ⊕ g1 = f2 ⊕ g2 (all the other equations X of the type λ
′(2)
2 give the

same value λ
′(2)
2 ). When f1, g1, h1 are fixed (we have 23n possibilities) then we will choose f2 6= f1,

h2 6= h1, and g2 = f1 ⊕ f2 ⊕ g1 (so we have g2 6= g1 and f2 ⊕ g2 ⊕ h2 6= f1 ⊕ g1 ⊕ h1). Therefore
λ
′(2)
2 = 23n · (2n − 1)2 and the exact value of λ3 is:

λ3 = (23n − 8 · 22n + 24 · 2n − 30)λ2 + 6 · 23n · (2n − 1)2

(with λ2 = (23n − 4 · 22n + 6 · 2n − 3) · 23n as seen above).
Computation of λ

′(2)
α from the βi equations

λ′
2 = 22nλ1 −

4∑
i=1

|B′
i|+

∑
i<j

|B′i ∩B′
j | −

∑
i<j<k

|B′
i ∩B′

j ∩B′
k|+

∑
i<j<k<l

|B′
i ∩B′

j ∩B′
k ∩B′

l|

Here X is: f1 ⊕ f2 = g1 ⊕ g2

• X + 1 equations.
4∑

i=1

|B′
i| = 4 · 2nλ1

• X+2 equations. If the 2 equations βi are (f1 = f2 and g1 = g2), or (h1 = h2 and f1⊕g1⊕h1 =
f2 ⊕ g2 ⊕ h2), then X is the Xor of these equations. Therefore∑

i<j

|B′i ∩B′
j | = 4 · λ1 + 2 · 2nλ1

• X +3 equations. X is always a consequence of the 3 equations,
∑

i<j<k |B′
i∩B′

j ∩B′
k| = 4λ1.

• X + 4 equations.
∑

i<j<k<l |B′
i ∩B′

j ∩B′
k ∩B′

l| = λ1.
Therefore

λ
′(2)
α = (22n − 4 · 2n + 4− 2 · 2n − 4 + 1)λ1

λ
′(2)
α = (22n − 2 · 2n + 1)λ1

(as expected we obtain the same result as above).
Remark. Here

2nλ
′(2)
2

λ2
=

1− 2
2n + 1

22n

1− 4
2n + 6

22n − 3
23n

= 1 +
2
2n

+
3

22n
+ O(

1
23n

)

Therefore we see that in
2n[λ′

α]
λα

, we have sometimes a term in O( 1
2n ). However this is exceptional:

here f1⊕ g1 = f2⊕ g2 is the Xor of the conditions f1 6= f2 and g1 6= g2, or of the conditions h1 6= h2

and f2 ⊕ g2 ⊕ h2 6= f1 ⊕ g1 ⊕ h1. Moreover here we have only 2 indices.

B Evaluations of [λ′α]/λα in O( α
2n ), Security in m � 2

5n
6

By definition [λ′
α] denotes (as we have seen in Section 7) the number of

(f1, . . . , fα, g1, . . . , gα, h1, . . . , hα) of I3α
n

14



that satisfy the conditions λα plus an equation X of the type:

fj ⊕ gj ⊕ hj = fk ⊕ gl ⊕ hi

with i, j, k, l ∈ {1, . . . , α} such that X is compatible with the conditions λα and such that X
is not 0 = 0 (i.e. we do not have i = j = k = l). We have seen in Section 7 that [λ′

α] is
not a fixed value: it can be λ

′(4)
α (by symmetries of the hypothesis for this case we can assume

X to be: fα ⊕ gα ⊕ hα = hα−1 ⊕ gα−2 ⊕ fα−3) or λ
′(3)
α (for this case we can assume X to be:

fα ⊕ gα = fα−1 ⊕ gα−2) or λ
′(2)
α (for this case we can assume X to be: fα ⊕ gα = fα−1 ⊕ gα−1).

However, as we will see all these three values [λ′
α] are very near, and they are very near λα

2n . (Remark:

we are mainly interested in λ
′(4)
α very near λα

2n since in formula (7.1) of Section 7 we have a term in

α4λ
′(4)
α ).

Theorem 3 For all values [λ′
α] we have:

1− 8α

2n
≤ 2n [λ′

α]
λα

≤ 1 +
8α

(1− 8α
2n )2n

Proof of Theorem 3
We will present here the proof with X : fα⊕ gα⊕hα = hα−1⊕ gα−2⊕ fα−3. The proof is exactly

similar for all the other cases. From (6.4), we have:

1− 4(α− 1)
2n

≤ λα

23nλα−1
≤ 1

and
1− 4(α− 2)

2n
≤ λα−1

23nλα−2
≤ 1

Therefore
26nλα−2(1−

4(α− 1)
2n

)2 ≤ λα ≤ 26nλα−2 (B1)

We will now evaluate [λ′
α] from λα−2.

In [λ′
α] we have the condition λα−2 plus

1. fα−1 /∈ {f1, . . . , fα−2}

2. gα−1 /∈ {g1, . . . , gα−2}

3. hα−1 /∈ {h1, . . . , hα−2}

4. fα−1 ⊕ gα−1 ⊕ hα−1 /∈ {f1 ⊕ g1 ⊕ h1, . . . , fα−2 ⊕ gα−2 ⊕ hα−2}

5. fα /∈ {f1, . . . , fα−1}

6. gα /∈ {g1, . . . , gα−1}

7. hα /∈ {h1, . . . , hα−1}

8. fα ⊕ gα ⊕ hα /∈ {f1 ⊕ g1 ⊕ h1, . . . , fα−1 ⊕ gα−1 ⊕ hα−1}
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9. (Equation X): fα ⊕ gα ⊕ hα = fα−3 ⊕ gα−2 ⊕ hα−1

We can decide that X will fix hα from the other values: hα = fα ⊕ gα ⊕ fα−3 ⊕ gα−2 ⊕ hα−1, and
we can decide that conditions 2., 3., 4. and 8. will be written in hα−1 and gα−1:

hα−1 /∈ {h1, . . . , hα−2,

f1 ⊕ g1 ⊕ h1 ⊕ fα−1 ⊕ gα−1, . . . , fα−2 ⊕ gα−2 ⊕ hα−2 ⊕ fα−1 ⊕ gα−1,

f1 ⊕ g1 ⊕ h1 ⊕ fα−3 ⊕ gα−2, . . . , fα−2 ⊕ hα−2 ⊕ fα−3}

In this set we have between α− 2 and 3(α− 2) elements when h1, . . . , hα−2 are pairwise distinct.

gα−1 /∈ {g1, . . . , gα−2, fα−1 ⊕ fα−3 ⊕ gα−2}

In this set we have between α − 2 and α − 1 elements when g1, . . . , gα−2 are pairwise distinct
(gα−1 6= fα−1 ⊕ fα−3 ⊕ gα−2 comes from the last condition 8).

Similarly, we can write conditions 6 and 7 in gα:

gα /∈ {g1, . . . , gα−1, h1 ⊕ fα ⊕ fα−3 ⊕ gα−2 ⊕ hα−1, . . . , hα−1 ⊕ fα ⊕ fα−3 ⊕ gα−2 ⊕ hα−1}

In this set we have between α − 1 and 2(α − 1) elements when g1, . . . , gα−1 are pairwise distinct.
Therefore we get:

[λ′
α] ≥ λα−2 (2n − (α− 2))︸ ︷︷ ︸

fα−1

(2n − (α− 1))︸ ︷︷ ︸
gα−1

(2n − 3(α− 2))︸ ︷︷ ︸
hα−1

(2n − (α− 1))︸ ︷︷ ︸
fα

(2n − 2(α− 1))︸ ︷︷ ︸
gα

and

[λ′
α] ≤ λα−2 (2n − (α− 2))︸ ︷︷ ︸

fα−1

(2n − (α− 2))︸ ︷︷ ︸
gα−1

(2n − (α− 2))︸ ︷︷ ︸
hα−1

(2n − (α− 1))︸ ︷︷ ︸
fα

(2n − (α− 1))︸ ︷︷ ︸
gα

So

(1− (α− 2)
2n

)(1− (α− 1)
2n

)2(1− 3(α− 2)
2n

)(1− 2(α− 1)
2n

) ≤ [λ′
α]

25nλα−2
≤ (1− (α− 2)

2n
)3(1− (α− 1)

2n
)2

So we have:

1− 8α

2n
≤ [λ′

α]
25nλα−2

≤ 1

and with (B1) this gives:

25nλα

26n
(1− 8α

2n
) ≤ [λ′

α] ≤ 25nλα

26n(1− 4(α−1)
2n )2

≤ λα

2n(1− 8α
2n )

So

1− 8α

2n
≤ 2n[λ′

α]
λα

≤ 1 +
8α

2n(1− 8α
2n )

as claimed.

Theorem 4 We have AdvPRF
φ ≤ 2(

1
E(N)

+
m2

23n(1− 4m
2n )

+
8m6

25n(1− 12m
2n )

)1/3 (B.2)
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Proof of Theorem 4
This proof follows immediately from Theorem 3 and formula (8.6) of Section 8.
Remark: If m >>

√
2n (these are the only difficult cases), then in this expression, the main

term is
(

8m6

25n(1− 12m
2n )

)1/3
in O( m2

25n/3 ).

In order to get security in m � 2n, instead of m � 25n/6, we need to have a better evaluation
of [λ′

α] (i.e. we need |[εα]| = O( α
22n ) instead of O( α

2n )).

C An induction formula on λ
′(4)
α

The values λ
′(4)
α have been introduced in section 7. By definition, λ

′(4)
α+1 is the number of sequences

(fi, gi, hi), 1 ≤ i ≤ α + 1, such that

1. The conditions λα+1 are satisfied.

2. This condition X is satisfied:

X : fα+1 ⊕ gα+1 ⊕ hα+1 = f1 ⊕ g2 ⊕ h3

(there we have chosen the indices α + 1, 1, 2, 3 but all other choices of 4 distinct indices give
the same result λ

′(4)
α+1 due to the symmetries of the conditions λα+1).

In this Appendix, we will compute λ
′(4)
α+1 from λα and other values with indices less than or equal

to α.
For each i, 1 ≤ i ≤ 4α, we will denote by B′

i the set of

(f1, . . . , fα+1, g1, . . . , gα+1, h1, . . . , hα+1)

that satisfy the conditions λα and that satisfy the conditions βi, and the condition X (the βi

equations have been defined in Section 6). Therefore we have:

λ
′(4)
α+1 = 22nλα − | ∪4α

i=1 B′
i|

We will proceed here exactly as in section 6, but with the sets B′
i instead of the sets Bi. Since 5

equations βi are always incompatible with the conditions λα, we have:

λ
′(4)
α+1 = 22nλα −

4α∑
i=1

|B′
i|+

∑
i<j

|B′
i ∩B′

j | −
∑

i<j<k

|B′
i ∩B′

j ∩B′
k|+

∑
i<j<k<l

|B′
i ∩B′

j ∩B′
k ∩B′

l|

• X + 1 equation.
Case 1: βi is not an equation in fα+1 ⊕ gα+1 ⊕ hα+1. Then X and βi will fix two variables

among fα+1, gα+1, hα+1 from the other variables fi, gi, hi. Therefore:

|B′
i| = 2nλα

Case 2: βi is fα+1 ⊕ gα+1 ⊕ hα+1 = fl ⊕ gl ⊕ hl, for a value l ≤ α. Then |B′
i| = 22n[λ′

α], where
[λ′

α] denotes the number of (fi, gi, hi), 1 ≤ i ≤ α, that satisfy the conditions λα plus the equation
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Y : fl ⊕ gl ⊕ hl = f1 ⊕ g2 ⊕ h3. When l /∈ {1, 2, 3}, we will denote [λ′
α] by λ

′(4)
α , and if l ∈ {1, 2, 3},

we will denote [λ′
α] = λ

′(3)
α . From Cases 1 and 2, we get:

−
4α∑
i=1

|B′
i| = −3α · 2nλα − (α− 3) · 22nλ

′(4)
α − 3 · 22nλ

′(3)
α

• X + 2 equations.
Let βi and βj be these two equations.
Case 1: βi and βj are two equations in f , or in g, or in h, or in f ⊕ g⊕ h. Then |B′

i ∩B′
j | = 0.

Case 2: βi and βj are not in f ⊕ g ⊕ h and we are not in Case 1. Then |B′
i ∩B′

j | = λα. (Here
we have 3α2 possibilities for the indices).

Case 3: βi is in f ⊕ g⊕ h, but not βj (or the opposite). (Here we have 3α2 possibilities for the
indices). For example βi is

fα+1 ⊕ gα+1 ⊕ hα+1 = fl ⊕ gl ⊕ hl

for a value l ≤ α. Then X ⊕ βi is: fl ⊕ gl ⊕ hl = f1 ⊕ g2 ⊕ h3. Then, with the same notation as
above for X + 1 equations, |B′

i ∩ B′
j | = 2n[λ′

α], where [λ′
α] = λ

′(4)
α if l /∈ {1, 2, 3} and [λ′

α] = λ
′(3)
α if

l ∈ {1, 2, 3}. Then from Cases 1, 2, 3, we get:∑
i<i

|B′
i ∩B′

j | = 3α2λα + (3α2 − 9α)2nλ
′(4)
α + 9α · 2nλ

′(3)
α

.
• X + 3 equations.
Let βi, βj and βk be these three equations.
Case 1: If we have with βi, βj , βk, two conditions in f , or two conditions in g, or two conditions

in h, or two conditions in f ⊕ g ⊕ h, then |B′
i ∩B′

j ∩B′
k| = 0.

Case 2: X is a linear dependency of βi, βj , βk. Then βi, βj , βk are: fα+1 = f1, gα+1 = g2,
hα+1 = h3 and we have here: |B′

i ∩B′
j ∩B′

k| = λα

Case 3: X is not a linear dependency of βi, βj , βk and in βi, βj , βk, we have one equation in
f , one equation in g and one equation in h (none in f ⊕ g ⊕ h). Then |B′

i ∩ B′
j ∩ B′

k| = [λ′
α], and

in most of the cases, we have [λ′
α] = λ

′(6)
α (i.e. 6 different indices).

Case 4: X is not a linear dependency of βi, βj , βk and in βi, βj , βk, we have one f ⊕ g ⊕ h
and we are not in Case 1. Then |B′

i ∩ B′
j ∩ B′

k| = [λ′
α], and in most of the cases, we have here

[λ′
α] = λ

′(4)
α (i.e. 4 different indices).

Then from cases 1, 2, 3, 4 we get:

−
∑

i<j<k

|B′
i ∩B′

j ∩B′
k| = −λα − (4α3 − 1− (3α− 3))[λ′

α]

where most of the [λ′
α] are λ

′(6)
α or λ

′(4)
α .

• X + 4 equations.
If |B′

i∩B′
j∩B′

k∩B′
l| 6= 0, we need to have one equation fα+1 = fi, one gα+1 = gj , one hα+1 = hk

and one fα+1 ⊕ gα+1 ⊕ hα+1 = fl ⊕ gl ⊕ hl. Then, with X, we obtain:

Y and Z : fl ⊕ gl ⊕ hl = fi ⊕ gj ⊕ hk = f1 ⊕ g2 ⊕ h3

Case 1: Y and Z give only one equation.
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Then (i = 1, j = 2, k = 3), or (i = l, j = l, k = l) and we have α possibilities for l. Then

|B′
i ∩B′

j ∩B′
k ∩B′

l| = λ
′(4)
α

Case 2: X, λα and the 4 equations βi are not compatible.
These cases are (i = l, j = l, k 6= l), or (j = l, k = l, i 6= l), or (i = l, k = l, j 6= l), or

(j = 2, k = 3, i 6= 1), or (i = 1, k = 3, j 6= 2) or (i = 1, j = 2, k 6= 3) or (i = j = k 6= l). So we have
here 7α(α− 1) possibilities for the indices.

Case 3: We are not in Case 1 or in Case 2. Then |B′
i∩B′

j ∩B′
k ∩B′

l| = [λ′′
α], where [λ′′

α] denotes
the number of (fi, gi, hi), 1 ≤ i ≤ α, that satisfy the conditions λα plus the equations Y and Z:
fl ⊕ gl ⊕ hl = fi ⊕ gj ⊕ hk = f1 ⊕ g2 ⊕ h3.

Then from Cases 1, 2, 3, we get:∑
i<j<k<l

|B′
i ∩B′

j ∩B′
k ∩B′

l| = 2αλ
′(4)
α + (α4 − 2α− 7α(α− 1))[λ′′

α]

Therefore the induction formula for λ
′(4)
α+1 gives:

λ
′(4)
α+1 = (22n − 3α · 2n + 3α2 − 1)λα + (−α · 22n + 3α2 · 2n − 4α3 + 5α− 3)[λ′

α]

+(α4 − 7α2 + 5α)[λ′′
α] (C1)

In this formula:
• The only term in O(α4) in [λ′′

α] is λ
′′(7)
α , i.e. is for i, j, k, l, 1, 2, 3 pairwise distinct with equations:

fl ⊕ gl ⊕ hl = fi ⊕ gj ⊕ hk = f1 ⊕ g2 ⊕ h3.
• The terms in O(α · 22n) or O(α2 · 2n) or O(α3) in [λ′

α] are λ
′(4)
α or λ

′(6)
α .

So λ
′′(7)
α and λ

′(6)
α are needed. (We want something like: λ

′(6)
α = λα

2n (1 + O( 1
2n ) + O( α

22n )) and

λ
′′(7)
α = λ

′(4)
α
2n (1 + O( 1

2n ) + O( α
22n )). Now by induction from these terms, more general terms will

appears. This is why we will establish properties on more general equations than λα and λ
′(4)
α in

the next Appendices.

D Security in m � 2
9n
10

We will denote by [εα] = 2n[λ′α]
λα

− 1. Therefore, [λ′
α] = λα

2n (1 + [εα]). We have seen in Appendix
B (Theorem 3) that |[εα]| ≤ 8α

2n·(1− 8α
2n )

. We want now a better evaluation of |[εα]|, since this will

give us (cf formula (8.6)) a better security result. If we write formula (C.1) of Appendix C in [εα]
instead of [λ′

α], we get:

2nλ
′(4)
α+1 = [23n − 4α · 22n + (6α2 − 1) · 2n + (−4α3 + 5α− 3)]λα+

(−α · 22n + 3α2 · 2n − 4α3 + 5α− 3)[εα]λα + (α4 − 7α2 + 5α) · 2n[λ′′
α] (D.1)

Similarly, if we write formula (7.2) of Section 7 in [εα] instead of [λ′
α], we get:

λα+1 = (23n − 4α · 22n + 6α2 · 2n − 4α3 + α +
α4 − 4α2 + 3α

2n
)λα +

(α4 − 4α2 + 3α)
2n

[εα]λα (D.2)
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Therefore, for [εα+1] =
2nλ

′(4)
α+1−λα+1

λα+1
, we obtain:

[εα+1] = (−2n + (4α− 3) +
−α4 + 4α2 − 3α

2n
)

λα

λα+1
+

(−α · 22n + 3α2 · 2n − 4α3 + 5α− 3 +
−α4 + 4α2 − 3α

2n
)
[εα]λα

λα+1
+

(α4 − 7α2 + 5α)2n [λ′′
α]

λα+1
(D.3)

Therefore:

[εα+1] = −[εα]
α

2n
+

α4

2n · λα+1
(22n[λ′′

α]− λα) + negl (D.4)

Where “negl” are some terms negligible compared with [εα] α
2n , or negligible compared with O( 1

2n ).
Now, exactly as we have proved (cf Appendix B):

1− 8α

2n
≤ 2n[λ′

α]
λα

≤ 1 +
8α

(1− 8α
2n )2n

we have

(1− 8α

2n
)2 ≤ 22n[λ′′

α]
λα

≤ 1
(1− 8α

2n )2
(D.5)

(Evaluation in O( α
2n ) are easy, we just have to proceed like in Appendix B. Evaluation in O( 1

2n ) or
in O( α

22n ) are more difficult). From (D.4) we have:

|[εα+1]| ≤ [εα]
α

2n
+

α4

2n
(
22n[λ′′

α]− λα

λα
)(

λα

λα+1
) + negl (D.6)

Now from (6.4) we have: λα
λα+1

≤ 1
(1− 4α

2n )·23n . Therefore, from (D.6), (6.4) and (D.5) we get:

|[εα+1]| ≤ [εα]
α

2n
+

α5

25n
· 1
(1− 20α

2n )
+ negl (D.7)

Now from our first approximation |[εα]| ≤ 8α
(1− 8α

2n )2n , we get from (D.7)

|[εα+1]| ≤
8α2

22n
+ o(

α2

22n
)

(where o( α2

22n ) are negligible terms compared with α2

22n ). By re-injecting this in (D.7) we get:

|[εα+2]| ≤
8α3

23n
+ o(

α3

23n
)

One more time

|[εα+3]| ≤
8α4

24n
+ o(

α4

24n
)
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One more time

|[εα+4]| ≤
9α5

25n
+ o(

α5

25n
)

Therefore, if α ≥ 5, we can write:

|[εα]| ≤ 9α5

25n
+ o(

α5

25n
) (D.8)

Now from (D.8) and (8.6) we get:

AdvPRF
φ ≤ 2

( 1
E(N)

+
m2

23n(1− 4m
2n )

+
9m10

29n(1− 4m
2n )

+ o(
m10

29n
)
) 1

3 (D.9)

Therefore here we have obtained security when m � 2
9n
10 .

E Security in m � 2
kn

k+1 for any integer k and security in m � 2n

In Section 6, we have obtained security when m �
√

2n. In Appendix B, we have obtained security
when m � 2

5n
6 . In Appendix D, we have obtained security when m � 2

9n
10 . Moreover, what we

did in Appendix D is just the same thing as in Appendix B, with the analysis of λ′′
α values (with 2

more equations X and Y than λα) in a similar way of λ′
α values (with one more equation X than

λα). Obviously, we can iterate the process by introducing λ′′′
α (with 3 more equations) in the same

way etc. With λ′′′
α we will obtain a better evaluation for [λ′′α]

λα
and from it and formula (D.4), it will

give us a better bound for |[εα]|. If we look at the process of the proof that we use here (in order to
obtain proofs of security in 2

kn
k+1 for larger and larger k) we see that we use two types of relations:

1. Evaluation in O( α
2n) of λ′α

λα
, λ′′α

λα
, λ′′′α

λα
etc. This is easily obtained as in Appendix B. More

precisely, by iterating the evaluation of Appendix B, we get:

(1− 8α

2n
)µ ≤ 2kn[λ[µ]

α ]
λα

≤ 1
(1− 8α

2n )µ

for any integer k. ([µ] means that we have µ more equations, compatible and independent,
in λ

[µ]
α than in λα).

2. We have an induction formula that gives λ
[µ]
α+1 from values λ

[µ−1]
i , λ

[µ]
i , λ

[µ+1]
i , i ≤ α.

By combining 1 and 2, we get security better and better when µ increases. More precisely, if we
look at the number of operations that we perform in order to obtain security in m � 2

kn
k+1 , we see

that the coefficient involved increases at most in 2k. Therefore from (8.6) we will get:

AdvPRF
φ ≤ 2

( 1
E(N)

+
m2

23n(1− 4m
2n )

+
k∑

i=1

(2m)i

2in
+

9mk+1

2kn(1− 4m
2n )

) 1
3

(In formula (D.9) the term
∑9

i=1
(2m)i

2in was in the o(m10

29n )). Therefore,

AdvPRF
φ ≤ 2

( 1
E(N)

+
m2

23n(1− 4m
2n )

+
2m

2n(1− 2m
2n )

+
9mk+1

2kn(1− 4m
2n )

) 1
3 (E.1)
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This gives security when m � 2
kn

k+1 for any integer k. Finally, by choosing k = n, we can notice
that mn+1

2(n2)
≤ (2m

2n )n (since m ≤ 2n). Therefore we have:

AdvPRF
φ ≤ 2

( 1
E(N)

+
m2

23n(1− 4m
2n )

+
2m

2n(1− 2m
2n )

+ (
2m

2n
)n · 9

(1− 4m
2n )

) 1
3 (E.2)

This gives security when m � 2n, as wanted.

F Proof of a “coefficients H” Theorem

We present here a proof in English of a Theorem published in French in 1991 in J.Patarin PhD
Thesis p.27(see [10]). This result was used in various papers (in Europe and Japan for example)
but no english version of the proof was published so far. The corollary in the case of the Xor of
two random permutations is also presented here.

Theorem 5 Let k be an integer. Let K be a set of k-uples of functions (f1, . . . , fk). Let G be an
application of K → Fn (Therefore G is a way to design a function of Fn from k-uples (f1, . . . , fk)
of K). Let α and β be real numbers, α > 0 and β > 0. Let E be a subset of Im

n such that
|E| ≥ (1− β) · 2nm.

If:
1) For all sequences ai, 1 ≤ i ≤ m, of pairwise distinct elements of In and for all sequences bi,

1 ≤ i ≤ m, of E we have:

|H| ≥ |K|
2nm

(1− α)

where H denotes the number of (f1, . . . , fk) ∈ K such that

∀i, 1 ≤ i ≤ m, G(f1, . . . fk)(ai) = bi (1)

Then
2) For every CPA-2 with m chosen plaintexts we have: p ≤ α + β where p = AdvPRF

φ denotes
the probability to distinguish G(f1, . . . , fk) when (f1, . . . , fk) ∈R K from a function f ∈R Fn (2).

Proof of Theorem 5

(We follow here a proof, in French, of this Theorem in J.Patarin, PhD Thesis, 1991, Page 27).
Let φ be a (deterministic) algorithm which is used to test a function f of Fn. (φ can test any

function f from In → In). φ can use f at most m times, that is to say that φ can ask for the values
of some f(Ci), Ci ∈ In, 1 ≤ i ≤ m. (The value C1 is chosen by φ, then φ receive f(C1), then φ
can choose any C2 6= C1, then φ receive f(C2) etc). (Here we have adaptive chosen plaintexts). (If
i 6= j, Ci is always different from Cj). After a finite but unbounded amount of time, φ gives an
output of “1” or “0”. This output (1 or 0) is noted φ(f).

We will denote by P ∗
1 , the probability that φ gives the output 1 when f is chosen randomly in

Fn. Therefore

P ∗
1 =

Number of functions f such that φ(f) = 1
|Fn|
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where |Fn| = 2n·2n
.

We will denote by P1, the probability that φ gives the output 1 when (f1, . . . , fk) ∈R K and
f = G(f1, . . . , fk). Therefore

P1 =
Number of (f1, . . . , fk) ∈ K such that φ(G(f1, . . . , fk)) = 1

|K|
We will prove:
(“Main Lemma”): For all such algorithms φ,

|P1 − P ∗
1 | ≤ α + β

Then Theorem 1 will be an immediate corollary of this “Main Lemma” since AdvPRF
φ is the best

|P1 − P ∗
1 | that we can get with such φ algorithms.

Proof of the “Main Lemma”
Evaluation of P ∗

1

Let f be a fixed function, and let C1, . . . , Cm be the successive values that the program φ will ask
for the values of f (when φ tests the function f). We will note σ1 = f(C1), . . . , σm = f(Cm). φ(f)
depends only of the outputs σ1, . . . , σm. That is to say that if f ′ is another function of Fn such
that ∀i, 1 ≤ i ≤ m, f ′(Ci) = σi, then φ(f) = φ(f ′). (Since for i < m, the choice of Ci+1 depends
only of σ1, . . . , σi. Also the algorithm φ cannot distinguish f from f ′, because φ will ask for f and
f ′ exactly the same inputs, and will obtain exactly the same outputs). Conversely, let σ1, . . . , σn

be m elements of In. Let C1 be the first value that φ choose to know f(C1), C2 the value that φ
choose when φ has obtained the answer σ1 for f(C1), . . ., and Cm the mth value that φ presents to
f , when φ has obtained σ1, . . . , σm−1 for f(C1), . . . , f(Cm−1). Let φ(σ1, . . . , σm) be the output of
φ (0 or 1). Then

P ∗
1 =

∑
σ1,...,σn

φ(σ1,...σm)=1

Number of functions f such that ∀i, 1 ≤ i ≤ m, f(Ci) = σi

2n·2n

Since the Ci are all distinct the number of functions f such that ∀i, 1 ≤ i ≤ m, f(Ci) = σi is
exactly |Fn|/2nm. Therefore

P ∗
1 =

Number of outputs (σ1, . . . , σm) such that φ(σ1, . . . σm) = 1
2nm

Let N be the number of outputs σ1, . . . , σm such that φ(σ1, . . . σm) = 1. Then P ∗
1 = N

2nm .
Evaluation of P1

With the same notation σ1, . . . , σn, and C1, . . . Cm:

P1 =
∑

σ1,...,σn
φ(σ1,...σm)=1

Number of (f1, . . . , fk) ∈ K such that ∀i, 1 ≤ i ≤ m, G(f1, . . . , fk)(Ci) = σi

|K|
(3)

Now (by definition of β) we have at most β ·2nm sequences (σ1, . . . , σm) such that (σ1, . . . , σm) /∈ E.
Therefore, we have at least N − β · 2nm sequences (σ1, . . . , σm) such that φ(σ1, . . . σm) = 1 and
(σ1, . . . , σm) ∈ E (4). Therefore, from (1), (3) and (4), we have

P1 ≥
(N − β · 2nm) · |K|

2nm (1− α)
|K|

23



Therefore
P1 ≥ (

N

2nm
− β)(1− α)

P1 ≥ (P ∗
1 − β)(1− α)

Thus P1 ≥ P ∗
1 − α− β (5), as claimed.

We now have to prove the inequality in the other side. For this, let P ∗
0 be the probability that

φ(f) = 0 when f ∈R Fn. P0 = 1 − P ∗
1 . Similarly, let P0 be the probability that φ(f) = 0 when

(f1, . . . , fk) ∈R K and f = G(f1, . . . , fk). P0 = 1 − P1. We will have P0 ≥ P ∗
0 − α − β (since the

outputs 0 and 1 have symmetrical hypothesis. Or, alternatively since we can always consider an
algorithm φ′ such that φ′(f) = 0 ⇔ φ(f) = 1 and apply (5) to this algorithm φ′).

Therefore, 1 − P1 ≥ 1 − P ∗
1 − α − β, i.e. P ∗

1 ≥ P1 − α − β (6). Finally, from (5) and (6), we
have: |P1 − P ∗

1 | ≤ α + β, as claimed.

Example of Application: Xor of two permutations
With k = 2, K = |Bn|2 and G(f1, . . . , fk) = f1 ⊕ f2 we obtain immediately:

Theorem 6 Let α and β be real numbers, α > 0 and β > 0. Let E be a subset of Im
n such that

|E| ≥ (1− β) · 2nm.
If:
1) For all sequences ai, 1 ≤ i ≤ m, of pairwise distinct elements of In and for all sequences bi,

1 ≤ i ≤ m, of E we have:

|H| ≥ |Bn|2

2nm
(1− α)

where H denotes the number of (f, g) ∈ B2
n such that

∀i, 1 ≤ i ≤ m, f ⊕ g(ai) = bi

Then
2) For every CPA-2 with m chosen plaintexts we have: p ≤ α + β where p = AdvPRF

φ denotes
the probability to distinguish f ⊕ g when (f, g) ∈R B2

n from a function h ∈R Fn.
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