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Abstract. As pervasive communication becomes a reality, where everything from vehicles to heart
monitors constantly communicate with their environments, system designers are facing a cryptographic
puzzle on how to authenticate messages. These scenarios require that : (1) cryptographic overhead
remain short, and yet (2) many messages from many different signers be verified very quickly. Pairing-
based signatures have property (1) but not (2), whereas schemes like RSA have property (2) but not
(1). As a solution to this dilemma, in Eurocrypt 2007, Camenisch, Hohenberger and Pedersen showed
how to batch verify two pairing-based signatures so that the total number of pairing operations was
independent of the number of signatures to verify. CHP left open the task of batching privacy-friendly
authentication, which is desirable in many pervasive communication scenarios.

In this work, we revisit this issue from a more practical standpoint and present the following results:
1. We describe a framework, consisting of general techniques, to help scheme and system designers

understand how to securely and efficiently batch the verification of pairing equations.
2. We present a detailed study of when and how our framework can be applied to existing regular,

identity-based, group, ring, and aggregate signature schemes. To our knowledge, these batch verifiers
for group and ring signatures are the first proposals for batching privacy-friendly authentication,
answering an open problem of Camenisch et al.

3. While prior work gave mostly asymptotic efficiency comparisons, we show that our framework is
practical by implementing our techniques and giving detailed performance measurements. Addition-
ally, we discuss how to deal with invalid signatures in a batch and our empirical results show that
when ≤ 10% of signatures are invalid, batching remains more efficient that individual verification.

Indeed, our results show that batch verification for short signatures is an effective, efficient approach.

1 Introduction

As we move into the era of pervasive computing, where computers are everywhere as an integrated
part of our surroundings, there are going to be a host of devices exchanging messages with each
other, e.g., sensor networks, vehicle-2-vehicle communications [15, 38]. For these systems to work
properly, messages must carry some form of authentication, but the system requirements on the
authentication are particularly demanding. Any cryptographic solution must simultaneously be:

1. Short: Bandwidth is an issue. Raya and Hubaux argue that due to the limited spectrum available
for vehicular communication, something shorter than RSA signatures is needed [35].

2. Quick to verify large numbers of messages from different sources: Raya and Hubaux also suggest
that vehicles will transmit safety messages every 300ms to all other vehicles within a minimum
range of 110 meters [35], which in turn may retransmit these messages. Thus, it is much more
critical that authentications be quick to verify rather than to generate.
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3. Privacy-friendly: Users should be held accountable, but not become publicly identifiable.

Due to the high overhead of using digital signatures, researchers have developed a number
of alternative protocols designed to amortize signatures over many packets [23, 27], or to replace
them with symmetric MACs [34]. Each approach has significant drawbacks; for example, the MAC-
based protocols use time-delayed delivery so that the necessary verification keys are delivered after
the authenticated messages arrive. This approach can be highly efficient within a restricted setting
where synchronized clocks are available, but it does not provide other desirable features such as non-
repudiability of messages (to hold malicious users accountable) or privacy. Signature amortization
requires verifiers to obtain many packets before verifying, and is vulnerable to denial of service.
It is interesting to note that the short, undeniable signatures of Monnerat and Vaudenay [29, 30]
support a form of batch verification. However, these are inappropriate for the pervasive settings we
consider, since verification is not universal and requires interaction with the signer.

In 2001, Boneh, Lynn and Shacham developed a pairing-based signature that provides security
equivalent to 1024-bit RSA at a cost of only 170 bits [9] (slightly larger than HMAC-SHA1). This was
followed by many signature variants, some of them privacy-friendly, which were also relatively short,
e.g., [7, 11, 20, 21]. Unfortunately, the focus was on reducing the signature size, but less attention
was paid to the verification cost of these schemes which require expensive pairing operations.

Recently, Camenisch, Hohenberger and Pedersen [13] took a step toward speeding up the verifi-
cation of short signatures, by showing how to batch verify two short pairing-based signatures so that
the total number of dominant (pairing) operations was independent of the number of signatures to
verify. However, their solution left open several questions which this work addresses:

1. First and foremost, their work, in common with the other cryptography literature we found on
this subject, was theoretical. To our knowledge, we are the first to provide a detailed empirical
analysis of batch verification of short signatures, and to answer the questions that system im-
plementors need to have answered to deploy these schemes. For example, Camenisch et al. [13]
stated, for one of the signature schemes they considered (referred to here as Waters), that
batching requires fewer pairings once ≥ 3 signatures are collected. To reduce their total pair-
ings, however, they [13] added other operations, such as random number generation and small
modular exponentiations, so it was unclear how well their algorithm would perform in practice.
Fortunately, in section 5, we verified that their complete batching algorithm is more efficient
for ≥ 3 Waters signatures using a standard implementation.

2. Second, the existing theoretical literature contained many good ideas on batch verification,
but these ideas were scattered across multiple papers, and it wasn’t always clear how to safely
employ these techniques from scheme to scheme. In section 3, we present a general framework
for how to securely batch verify a set of pairing-based equations.

3. Third, we present a detailed study of when and how our framework can be applied to exist-
ing regular, identity-based, group, ring, and aggregate signature schemes in section 4. To our
knowledge, these are the first known results for batch verification of group and ring signatures,
answering an open problem of Camenisch et al. [13]. This is particularly exciting, because it is
the first step towards making short, privacy-friendly authentication fast enough for deployment
in real systems.

4. Finally, Camenisch et al. [13] did not address the practical issue of what to do if the batch
verification fails. How does one detect which signatures in the batch are invalid? Does this
detection process eliminate all of the efficiency gains of batch verification? Fortunately, our
empirical studies reveal good news: invalid signatures can be detected via a recursive divide-
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and-conquer approach, and if ≤ 10% of the signatures are invalid, then batch verification is still
more efficient than individual verification.

Overall, we conclude that many interesting short signatures can be batch verified, and that
batch verification is an extremely valuable tool for system implementors. As an example of our
results in section 5, for the short group signatures of Boneh, Boyen and Shacham [7], we see that
when batching 200 group signatures (in a 160-bit MNT curve) individual verification takes 139ms
whereas batch verification reduces the cost to 25ms per signature (see figure 1).

Approx. Signature Size Verification Time
(MNT160 curve) Standard Batched∗

Signatures
BLS [10] (single signer) 160 bits 47.6 ms 2.28 ms
CHP [13] (many signers) 160 bits 73.6 ms 26.16 ms

Identity-Based Signatures
ChCh [16] 320 bits 49.1 ms 3.93 ms
Waters [40] 480 bits 91.2 ms 9.44 ms
Hess [24] 1120 bits 49.1 ms 6.70 ms

Anonymous Signatures
BBS [7] Group signature (modified per §4.1) 2880 bits 139.0 ms 24.80 ms
CYH [20] Ring signature, 2-member ring 480 bits 52.0 ms 6.03 ms
CYH [20] Ring signature, 20-member ring 3360 bits 86.5 ms 43.93 ms
∗Verification time per signature when batching 200 signatures.

Fig. 1. Cryptographic overhead and verification time for some of the pairing-based signatures described in this work. For this
summary table, all schemes were implemented in a 160-bit MNT elliptic curve. See section 4 for a description of all signature
schemes considered and section 5 for full experimental results.

2 Algebraic Setting: Pairings

Let PSetup be an algorithm that, on input the security parameter 1τ , outputs the parameters for a
bilinear pairing as (q, g1, g2,G1,G2,GT , e), where G1 = 〈g1〉,G2 = 〈g2〉 and GT are of prime order
q ∈ Θ(2τ ). The efficient mapping e : G1 × G2 → GT is both: (bilinear) for all g ∈ G1, h ∈ G2

and a, b ← Zq, e(ga, hb) = e(g, h)ab; and (non-degenerate) if g generates G1 and h generates G2,
then e(g, h) 6= 1. This is the general case, called the asymmetric setting. A specialized case is
the symmetric setting, where G1 = G2. We will always write group elements in the multiplicative
notation, although the groups G1 and G2 are actually implemented as additive groups.

Size of Group Elements. Pairings are constructed such that G1 and G2 are groups of points on
some elliptic curve E, and GT is a subgroup of a multiplicative group over a related finite field. All
groups have order q. The group of points on E defined over Fp is written as E(Fp). Usually it is the
case that G1 is a subgroup of E(Fp), G2 is a subgroup of E(Fpk) where k is the embedding degree,
and GT is a subgroup of F∗

pk
. In the symmetric case G1 = G2 is usually a subgroup of E(Fp).

In the following, we use numbers for security comparable to 1024 bit RSA. The MOV attack
by Menezes, Vanstone and Okamoto states that solving the discrete logarithm problem on a curve
reduces to solving it over the corresponding finite field [28]. Hence the size of pk must be comparable
to that of an RSA modulus to provide the same level of security, so elements of Fpk must be of size
1024. But the size of the finite field is not the only thing that matters for security. The group order
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q must also be large enough to resist the Pollard-ρ attack on discrete logarithms, which means
that q ≥ 160. Now assume that |p| = |q| = 160, then we would need an embedding degree k = 6
to get the size of the corresponding field close to the required 1024 bits. However, we could also
let |q| = 160, |p| = 512, and choose k = 2 to achieve the same. Both these options have their
advantages and disadvantages as discussed by Koblitz and Menezes [25].

We have talked about how many bits are required to represent elements in the finite fields, but
what about the groups G1 and G2? Since they are subgroups of a curve over the field, they are
represented by their coordinates (x, y) which are elements of the field, and hence one would expect
their size to be twice the size of an element in the field. However one only needs to represent x
and the LSB of y in order to recompute y later. Also, in some cases (when G2 is the trace zero
subgroup) elements of G2 can be represented as elements of the field E(Fpk/2) instead, which would
only require half the space [25].

To summarize: In the asymmetric setting, the best we can hope for are group elements in G1,G2

and GT of size 160, 512 and 1024 bits respectively. In the symmetric setting it seems the best curve
is a supersingular curve with k = 2, which means that elements of G1 = G2 and GT will be of size
512 and 1024 bits respectively. Finally, an important thing to keep in mind is that no matter the
order of the groups, performance is dominated by the operations in the underlying finite field.

From Symmetric to Asymmetric. If one wants to go from the symmetric to the asymmetric setting
to take advantage of the small group elements in G1, there are a few pitfalls one should be aware
of. In some asymmetric groups it is not possible to hash into G2, but in these groups there exist
a isomorphism from G2 to G1. In other groups there is no such isomorphism, but it is possible to
hash into G2. So if a scheme requires both for the security proof, that scheme cannot be realized
in the asymmetric setting. Galbraith, Paterson and Smart have a more detailed discussion [22].

Testing Membership. The small exponents test assumes that the input lies in a specific group, but
since the input might be supplied by the adversary we cannot trust this to hold. We have to check it.
Our proofs will require that elements of purported signatures are members of G1 and not E(Fp)\G1,
but how efficiently can this fact be verified? Determining whether some data represents a point on
a curve is easy. The question is whether it is in the correct subgroup. Recall that G1 is a subgroup
of E(Fp) of order q, so we can use standard cofactor multiplication to test group membership. The
curve has hq points over Fp, so if an element y satisfies the curve equation and yh 6= 0, then that
element is in G1. If h is small then this test is efficient, otherwise we have to test yq 6= 0 instead.
Chen, Cheng and Smart [19] discuss this and ways to test membership in G2; unfortunately, in
many asymmetric pairings, it may not be possible to efficiently test for membership of G2.

3 A Framework for Pairing-Based Batch Verification

We now provide some useful observations to determine when pairing equations can be batch verified.
Let us begin with a formal definition of pairing based batch verifier.

Pairing-Based Batch Verifier. Recall that PSetup is an algorithm that, on input the security pa-
rameter 1τ , outputs the parameters (q, g1, g2,G1,G2,GT , e), where G1,G2,GT are of prime order
q ∈ Θ(2τ ). Pairing-based verification equation are represented by a generic pairing based claim X

corresponding to a boolean relation of the following form:
∏k
i=1 e(fi, hi)ci

?= A, for k ∈ poly(τ) and
fi ∈ G1, hi ∈ G2 and ci ∈ Z∗q , for each i = 1, . . . , k. A pairing-based verifier Verify for a generic
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pairing-based claim is a probabilistic poly(τ)-time algorithm which on input the representation
〈A, f1, . . . , fk, h1, . . . , hk, c1, . . . , ck〉 of a claim X, outputs accept if X holds and reject otherwise.
Next definition describes a batch verifier for pairing-based claims.

Definition 1 (Pairing-based Batch Verifier). Let PSetup(1τ ) → (q, g1, g2,G1,G2,GT , e). For
each j ∈ [1, η], where η ∈ poly(τ), let X(j) be a generic pairing-based claim and let Verify be a
pairing based verifier. We define pairing-based batch verifier for Verify a probabilistic poly(τ)-time
algorithm which outputs accept if X(j) holds for all j ∈ [1, η] whereas it outputs reject if X(j) does
not hold for any j ∈ [1, η] except with negligible probability.

Note that equations from many different pairing-based schemes can be batched together as long
as they all share the same setting defined by PSetup(1τ ).

Small Exponents Test Applied to Pairing Based Schemes. Bellare, Garay and Rabin proposed
methods for verifying multiple equations of the form yi = gxi for i = 1 to n, where g is a generator
for a group of prime order [4]. One might be tempted to just multiply these equations together and
check if

∏n
i=1 yi = g

Pn
i=1 xi . However, it would be easy to produce two pairs (x1, y1) and (x2, y2)

such that the product of them verifies correctly, but each individual verification does not, e.g. by
submitting the pairs (x1 − α, y1) and (x2 + α, y2) for any α. Instead, Bellare et al. proposed the
following method, which we will later apply to pairings.

Small Exponents Test: Choose exponents δi of (a small number of) ` bits and compute
∏n
i=1 y

δi
i =

g
Pn
i=1 xiδi . Then the probability of accepting a bad pair is 2−`. The size of ` is a tradeoff between

efficiency and security. (In Section 5, we set ` = 80 bits.)

Theorem 1. Let PSetup(1τ )→ (q, g1, g2,G1,G2,GT , e) where q is prime. For each j ∈ [1, η], where
η ∈ poly(τ), let X(j) corresponds to a generic claim as in Definition 1. For simplicity, assume that
X(j) is of the form A

?= Y (j) where A is fixed for all j and all the input values to the claim X(j)

are in the correct groups. For any random vector ∆ = (δ1, . . . , δη) of `b bit elements from Zq, an
algorithm Batch which tests the following equation

∏η
j=1A

δj ?=
∏η
j=1 Y

(j)δj is a pairing-based batch
verifier that accepts an invalid batch with probability at most 2−`b.

Proof. The proof closely follows the proof of the small exponents test by Bellare et al. [4], but for
completeness we include a full proof of this theorem in Appendix A.4

Theorem 1 provides a single verification equation, which we then want to optimize.

3.1 Techniques to Speed Up Batch Verification

Armed with Theorem 1, let’s back up for a moment to get a complete picture of how to develop an
efficient batch verifier. Immediately following the summary, we’ll explain the details.
Framework Summary: Suppose you have η bilinear equations, to batch verify them, do the following:
4 A natural question to ask is if this batch verifier also works for composite order groups. Unfortunately the answer

is not straightforward. The reason for requiring a prime order group, is that for the proof of the small exponents
test to go through, we need an element β1 to have an inverse in Zq, which is the case if gcd(β1, q) = 1. If q is prime
this is always the case, but what if q is composite? If q = p1p2, where p1, p2 are primes, then this is the case except
when β1 is a multiple of p1, p2 or q. If β1 is chosen at random it is very unlikely that an inverse does not exist,
and the small exponents test will work in almost all cases. However, this really depends on the signature scheme,
so if one wants to apply this method to a scheme set in a composite order group, one should examine the proof in
Appendix A and make sure that it still applies to the chosen scheme.
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1. Apply Technique 1 to the individual verification equation, if applicable.
2. Apply Theorem 1 to the equations, this involves checking membership in the expected algebraic

groups and using the small exponents test.
3. Optimize the resulting equation using Techniques 2, 3 and 4.
4. If batch verification fails, use the divide-and-conquer approach to identity the bad signatures.

Technique 1 Change the verification equation. A Σ-protocol is a three step protocol (commit,
challenge, response) allowing a prover to prove various statements to a verifier. Using the Fiat-
Shamir heuristic any Σ-protocol can be turned into a signature scheme, by forming the challenge
as the hash of the commitment and the message to be signed. The signature is then either
(commit, response) or (challenge, response). The latter is often preferred, since the challenge
is usually smaller than the commitment, which results in a smaller signature. However, we
observed that this often causes batch verification to become very inefficient, whereas using
(commit, response) results in a much more suitable verification equation.

We use this technique to help batch the Hess IBS scheme [24] and the group signatures of Boneh,
Boyen and Shacham [7] and Boyen and Shacham [11]. Indeed, we believe that prior attempts to
batch verify group signatures overlooked this idea and thus came up without efficient solutions.

Combination Step: Given η pairing-based claims, apply Theorem 1 to obtain a single equation.
The combination step actually consist of two substeps:

1. Check Membership: Check that all elements are in the correct subgroup. Only elements that
could be generated by an adversary needs to be checked (e.g., elements of a signature one wants
to verify). Public parameters need not be checked, or could be checked once and for all.

2. Small Exponents Test: Combine all equations into one and apply the small exponents test.

Next, optimize this single equation using any of the following techniques in any order.

Technique 2 Move the exponent into the pairing. When a pairing of the form e(gi, hi)δi appears,
move the exponent δi into e(). Since elements of G are usually smaller than elements of GT ,
this gives a small speedup when computing the exponentiation.

Replace e(gi, hi)δi with e(gδii , hi)

Remember that it is also possible to move an exponent out of the pairing, or move it between
the two elements of the pairing. In some instances, this allows for further optimizations.

Technique 3 When two pairings with a common first or second element appear, they can be com-
bined. A simple example could be the following:

Replace e(a, g) · e(b, g) with e(ab, g)

When applying the batching technique from Theorem 1 to verify η equations, one will often end
up with an equation that can be optimized using this technique. It will work like this:

Replace
η∏
i=1

e(gδii , h) with e(
η∏
i=1

gδii , h)
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When batching η instances using Theorem 1 this will reduce η pairings to one. This is also
worth keeping in mind when designing schemes, or picking schemes that one wants to batch
verify. Pick a scheme so that when e(g, h) appears in the verification equation, g or h is fixed.
In rare cases it might even be useful to apply this technique ”in reverse”, e.g. splitting a single
pairing into two pairings, to allow for more efficient batch verification. An example is the ring
signature scheme by Boyen [21] where this is needed to apply Technique 4 below.

Technique 4 Waters hash. In his IBE, Waters described how hash identities to values in G1 [40],
using a technique that was subsequently employed in several signature schemes. Assume the
identity is a bit string V = v1v2 . . . vm, then given public parameters u′, u1, . . . , um ∈ G1,
the hash is u′

∏m
i=1 u

vi
i . Following works by Naccache [31] and Chatterjee and Sarkar [17, 18]

documented the generalization where instead of evaluating the identity bit by bit, divide the k
bit identity bit string into z blocks, and use the Waters hash as before. (In section 5, we SHA1
hash our messages to a 160-bit string, and use z = 5 as proposed in [31].) Recently, Camenisch
et al. [13] pointed out the following method for faster batching of Waters hashes.

Replace
η∏
j=1

e(gj ,
m∏
i=1

u
vij
i ) with

m∏
i=1

e(
η∏
j=1

gj
vij , ui)

In this work, we apply this technique to schemes with structures related to the Waters hash;
namely, the ring signatures of Boyen [21] and the aggregate signatures of Lu et al. [26].

Handling Invalid Signatures. If there is even a single invalid signature in the batch, then
the batch verifier will reject with high probability, but in many real world situations a signature
collection may contain invalid signatures caused by accidental data corruption, or possibly malicious
activity by an adversary seeking to degrade service. In many cases, the ratio of invalid signatures
to valid could be quite small, and yet a standard batch verifier will reject the entire collection.

In some cases this may not be a serious concern. For example, sensor networks with a high level
of redundancy may choose to simply drop messages that cannot be efficiently verified. Alternatively,
systems may be able to cache and/or individually verify important messages when batch verification
fails. However, in some applications, it might be critical to tolerate some percentage of invalid
signatures without losing the performance advantage of batch verification.

To our knowledge, the best known solution to this problem is to use a recursive divide-and-
conquer approach, similar to that of Pastuszak, Pieprzyk, Michalek and Seberry [33], as:

First, shuffle the incoming batch of signatures, and if batch verification fails, simply divide
the collection into two halves, and recurse on the halves. When this process terminates, the batch
verifier outputs the index of each invalid signature. Through careful implementation and caching
of intermediate results, much of the work of the batch verification (i.e., computing the product of
many signature elements) can be performed once over the full signature collection, and need not be
repeated when verifying each sub-collection. Thus, the cost of each recursion is dominated by the
number of pairings used in the batch verification algorithm. In Section 5.2 we show that even if up
to 10% of the signatures are invalid, this technique can still be faster than individual verification.

4 Applying the Framework to Signature Schemes

Next, we apply our framework to a (non-exhaustive) collection of existing regular, identity-based,
group, ring, and aggregate signature schemes. After a careful literature search, we are presenting
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only the schemes with the best results (although we often make a note in the particular sections
about common schemes that do not seem to batch well.) To our knowledge, our batch verifiers for
the group and ring signatures are the first proposals for batching privacy-friendly authentication.
Figure 2 shows a summary of our results.

Scheme Model Individual-Verify Batch-Verify Reference

Group Signatures

BBS [7] RO 5η 2 §4.1
BS [11] RO 5η 2 §4.1

ID-based Ring Signatures

CYH [20] RO 2η 2 §4.2

Ring Signatures

Boyen [21] (same ring) plain ` · (η + 1) min{η · `+ 1, 3 · `+ 1} §4.2

Signatures

BLS [10] RO 2η s+ 1 [10]
CHP [13] (time restrictions) RO 3η 3 [13]

ID-based Signatures

Hess [24] RO 2η 2 §4.2
ChCh [16] RO 2η 2 §4.2
Waters [40, 31, 12, 18] plain 3η min{(2η + 3), (z + 3)} [13]

Aggregate Signatures

BGLS [8] (same users) RO η(`+ 1) `+ 1 §4.2
Sh [39] (same users) RO η(`+ 2) `+ 2 §4.2
LOSSW [26] (same sequence) plain η(`+ 1) min{(η + 2), (` · k + 3)} §4.2

Fig. 2. Summary of signatures schemes for which our framework applies. Let η be the number of signatures
to verify, s be the number of distinct signers involved and ` be either the size of a ring or the size of an aggregate.
Boyen batch verifier requires each signature to be issued according to the same ring. Aggregate verifiers work for
signatures related to the same set of users. In CHP, only signatures from the same time period can be batched and z
is a (small) parameter (e.g., 8). In LOSSW, k is the message bit-length. RO stands for random oracle.

4.1 Short Group Signatures

In this section, we show how to modify the short group signatures of Boneh, Boyen and Shacham
(BBS) [7] and Boneh and Shacham (BS) [11] in order to allow for a batch verifier which requires only
2 pairings at the expense of an increase in the signature size. Fortunately, however, this increase
in size still keeps the signatures shorter than their corresponding RSA-based counterparts. To our
knowledge, these are the first known results for batch verification of group signatures.

Recall that a group signature scheme allows any member to sign on behalf of the group in
such a way that anyone can verify a signature using the group public key while nobody, but the
group manager, can identify the actual signer. A group signature scheme consists in four algorithm:
KeyGen, Sign, Verify and Open, that, respectively generate public and private keys for users and the
group manager, sign a message on behalf of a group, verify the signature on a message according
to the group and trace a signature to a signer.

The BBS Group Signatures. Let PSetup(1τ ) → (q, g1, g2,G1,G2,GT , e), where H : {0, 1}∗ → Zq is
a hash function. Let ` be the number of users in a group. Note that the BBS scheme requires a
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computable isomorphism ψ : G2 → G1 since their definition of the SDH assumption is based on
it, but unfortunately such an isomorphism does not exist for the MNT curves we use in Section 5.
Boneh and Boyen recently gave a cleaner definition which doesn’t require said isomorphism [6].

Key Gen. Select a generator g2 ∈ G2 at random and set g1 ← ψ(g2). Select h $← G1 \ {1G1},
r1, r2

$← Z∗q , and set u, v such that ur1 = vr2 = h. Select γ $← Z∗q , and set w = gγ2 . For each

i = 1, . . . , n, select xi
$← Z∗q , and set fi ← g

1
γ+xi
1 . The public key is gpk = (g1, g2, h, u, v, w), the

group manager’s secret key is gmsk = (r1, r2) and the secret key of the i’th user is gsk[i] = (fi, xi).
Sign. Given a group public key gpk = (g1, g2, h, u, v, w), a user private key (f, x) and a message

M ∈ {0, 1}∗, compute the signature σ as follows: (1) Select α, β $← Zq and compute T1 ←
uα;T2 ← vβ;T3 ← f ·hα+β. (2) Compute γ1 ← x·α and γ2 ← x·β. (3) Select rα, rβ, rx, rγ1 , rγ2

$←
Zq and compute R1 ← urα ; R2 ← vrβ ; R3 ← e(T3, g2)rx · e(h,w)−rα−rβ · e(h, g2)−rγ1−rγ2 ;
R4 ← T rx1 · u−rγ1 ; R5 ← T rx2 · v−rγ2 . (4) Compute c ← H(M,T1, T2, T3, R1, R2, R3, R4, R5). (5)
Compute sα ← rα + c · α; sβ ← rβ + c · β; sx ← rx + c · x; sγ1 ← rγ1 + c · γ1; sγ2 ← rγ2 + c · γ2.
The signature is σ = (T1, T2, T3, c, sα, sβ, sx, sγ1 , sγ2).

Verify. Given a group public key gpk = (g1, g2, h, u, v, w), a message M and a group signature
σ = (T1, T2, T3, c, sα, sβ, sx, sγ1 , sγ2), compute the values R1 ← usα · T−c1 ; R2 ← vsβ · T−c2 ;
R3 ← e(T3, g2)sx · e(h,w)−sα−sβ · e(h, g2)−sδ1−sδ2 ·

(
e(T3, w) · e(g1, g2)−1

)c ;
R4 ← T sx1 ·u

−sδ1 ; R5 ← T sx2 ·v
−sδ2 . Accept if and only if c ?= H(M,T1, T2, T3, R1, R2, R3, R4, R5).

An Efficient Batch Verifier for the BBS Group Signature Scheme. Computing R3 is the most
expensive part of the verification above, but at first glance it isn’t clear this can be batched,
because each R3 is individually hashed. However, as described by technique 1, the signature and
the verification algorithm can be modified in order to efficiently apply our framework without
comprise the security properties of the scheme at the expense of an increase in the signature size.

In particular, the signature is replaced by σ = (T1, T2, T3, R1, R2, R3, R4, R5, sα, sβ, sx, sγ1 , sγ2)
and the verification algorithm becomes as follows:

New Verify. Given a group public key gpk = (g1, g2, h, u, v, w), a messageM and a group signature
σ = (T1, T2, T3, R1, R2, R3, R4, R5, sα, sβ, sx, sγ1 , sγ2), first compute c← H(M,T1, T2, T3, R1, R2,
R3, R4, R5), then verify the validity of the following four (non-pairing) equations:

usα
?= T c1 ·R1, vsβ

?= T c2 ·R2, T sx1 · u
−sγ1

?= R4, T sx2 · v
−sγ2

?= R5.

and finally check the following pairing based equation

e(T3, g2)sx · e(h,w)−sα−sβ · e(h, g2)−sγ1−sγ2 ·
(
e(T3, w) · e(g1, g2)−1

)c ?= R3. (1)

Accept if all checks succeed and reject otherwise.

Now we are ready to define a batch verifier for η BBS purported group signatures, where the main
objective is to cut down on the number of pairings required.

BBS Batch Verify. Let gpk = (g1, g2, h, u, v, w) be the group public key, and let σj = (Tj,1, Tj,2, Tj,3,
Rj,1, Rj,2, Rj,3, Rj,4, Rj,5, sj,α, sj,β, sj,x, sj,γ1 , sj,γ2) be the j’th signature on the message Mj , for
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each j = 1, . . . , η. For each j = 1, . . . , η, first compute cj ← H(Mj , Tj,1, Tj,2, Tj,3, Rj,1, Rj,2, Rj,3,
Rj,4, Rj,5) and verify the validity of the following non-pairing equations:

usj,x
?= T

cj
j,1 ·Rj,1, vsj,β

?= T
cj
j,2 ·Rj,2, T

sj,x
j,1 · u

−sj,γ1
?= Rj,4, T

sj,x
j,2 · v

−sj,γ2
?= Rj,5.

Then check the following single pairing based equation

e(
η∏
j=1

(T sj,xj,3 · h
−sj,γ1

−sj,γ2 · g−cj1 )δj , g2) · e(
η∏
j=1

(h−sj,α−sj,β · T c3 )δj , w) ?=
η∏
j=1

R
δj
j,3. (2)

where (δ1, . . . , δη) is a random vector of `b bit elements from Zq. Accept iff all checks succeed.

Theorem 2. For security level `b, the above algorithm is a batch verifier for the BBS group signa-
ture scheme, where the probability of accepting an invalid signature is 2−`b.

A proof sketch of this theorem is in Appendix B.

The BS Group Signatures. As we point out in Figure 2, the (even shorter) group signatures of
Boneh and Shacham [11] can also be batch verified using techniques similar to those above. The
BS scheme includes an additional feature known as verifier local revocation (VLR), which allows
verifiers to discard signatures from revoked signers. Unfortunately, the checks required to test for
revoked signers cannot easily be batched. Thus, our batch verifier omits them. Since VLR is not a
“traditional” property of a group signature (e.g., [2, 7]), we believe that the resulting batch verifier
is still quite useful for applications where only a standard group signature is needed. Note that
verifiers may still perform revocation checks using the non-batched Verify algorithm. Due to space
limitations, we omit this description and move instead to an efficiency evaluation of both schemes.

Performance and Signature Length. The BBS batch verifier is suitable to verify many signatures
issued by many group members on different messages. The original BBS signature consists of three
elements of G1 and six elements of Zq while its modified version, needed to construct the BBS
batch verifier, requires seven elements of G1, one element of GT , and five elements of Zq. When
implemented in the 170-bit MNT curve proposed by Boneh et al., this results in a signature rep-
resentation of approximately 3,067 bits with security approximately equivalent to 1024-bit RSA.
This is still shorter than the comparable (non-pairing) scheme of Ateniese, Camenisch, Joye and
Tsudik [2] which achieves a similar security level at a cost of at least 3,872 bits. For applications
where bandwidth is at a premium, it is desirable to use the extremely short group signature of
Boneh and Shacham [11] which is suitable to construct a batch verifier that requires only two pair-
ing operations. With appropriate modifications to permit batching, a BS signature results in four
elements of G1, one element of GT , and four elements of Zq which can be represented in 2,384 bits.

4.2 Other Types of Short Signatures

Ring and Identity-based Ring Signatures. In Appendix C, we show how to batch verify:

– The standard model ring signatures of Boyen (Boyen) [21] with the restriction that we can only
batch ring signatures which have the same ring of ` signers using ≤ 3`+ 1 pairings.
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– The random oracle model, identity-based ring signatures of Chow, Yiu and Hui (CYH) [20],
where even rings of different sizes involving different ring members on different messages, can
be batched using only 2 pairings.

Recall that a ring signature scheme allows a signer to sign a message on behalf of a set of users
which include the signer itself in such a way that a verifier is convinced that the signer is one of
the ring members, but he cannot tell which member is the actual signer. In an identity-based ring
signature, a user can choose an arbitrary string, for example her email address, as her public key.

The CYH scheme is fairly straightforward to batch, while the Boyen scheme required more
creativity, especially in the application of techniques 3 and 4.

Signature Schemes and Identity-based Signature Schemes. In Appendix D, we review the
known batch verifiers [10, 13] for:

– The short, random oracle model signatures of Boneh, Lynn and Shacham (BLS) [10] for signa-
tures by the same signer, which require 2 pairings to batch. (In section 5, we’ll use this scheme
to batch certificates.)

– The short, random oracle model signatures of Camenisch, Hohenberger and Pedersen (CHP) [13]
for signatures by different signers within the same time period, which require 3 pairings to batch.

– The standard model, identity-based signatures, called Waters, which were implicitly defined
by Waters [40] and then generalized by subsequent works [31, 12, 18]. These signatures can be
batched using ≤ z + 3 pairings, where z is a small security parameter (e.g., z = 5.)

We then present new results on batch verifiers, requiring only two pairings, for:

– The random oracle model, identity-based signatures of Cha and Cheon (ChCh) [16].
– The random oracle model, identity-based signatures of Hess (Hess) [24].

Interestingly, the ID-based signature due to Sakai, Ohgishi and Kasahara [36] is very similar to
those above, and yet its subtle differences make it a poor candidate for batching.

Aggregate and Sequentially Aggregate Signatures. In Appendix E, we show batch verifiers
for the aggregate signature scheme by Boneh, Gentry, Lynn and Shacham (BGLS) [8] (same users)
and Shao (Shao) [39] (same users), and for the sequential aggregate scheme by Lu, Ostrovsky, Sahai,
Shacham and Waters (LOSSW) [26] (same sequence).

5 Implementation and Performance Analysis

The previous work on batching short signatures [13] considers the asymptotic performance of several
batch verifiers. Unfortunately, this “paper analysis” conceals many details that are revealed only
through empirical evaluation. Additionally, the existing work does not address the most important
practical issue facing system implementors, namely: how a batch verifier will perform in the face of
adversarial behavior such as deliberate injection of invalid signatures.

We seek to answer these questions by conducting the first empirical investigation into the feasi-
bility of short signature batching. To conduct our experiments, we built concrete implementations
of seven signature schemes described in this work, including two public key signature schemes (BLS,
CHP), three Identity-Based Signature schemes (ChCh, Hess, Waters), a ring signature (CYH), and a
short group signature scheme (BBS). For each scheme, we measured the performance of the standard
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signature verification algorithm against that of the corresponding batch verifier. We then turned our
attention to the problem of invalid signatures, constructing a “resilient” divide-and-conquer batch
verifier which efficiently locates invalid signatures in a batch.

Our results lead to several surprising conclusions. First, we note that our batched Identity-Based
signatures provide substantially better performance than standard (public-key) signatures, in the
case where signatures are produced by different signers. This is due to a fluke of scheme construc-
tion, one that appears to stem from the related nature of IBS signing keys. Secondly, we observe
that the “ideal” high-degree elliptic curve setting for short signatures (see section below) simultane-
ously implies both costly individual signature verification, as well as highly-efficient batch verifiers.
Finally, we gather evidence indicating that “resilient” batch verification appears to be practical
even in the presence of a substantial number of invalid signatures. The latter two results provide
strong evidence for the practicality of batch verification in applications where short signatures and
verification times are necessary.

Experimental Setup. To evaluate our batch verifiers, we implemented each signature scheme
in C++ using the MIRACL library for elliptic curve operations [37]. Our timed experiments were
conducted on a 3.0Ghz Pentium D 930 with 4GB of RAM running Linux Kernel 2.6. All hashing
was implemented using SHA1,5 and small exponents were of size 80 bits. For each scheme, our
basic experiment followed the same outline: (1) generate a collection of η distinct signatures on
100-byte random message strings. (2) Conduct a timed verification of this collection using the
batch verifier. (3) Repeat steps (1, 2) four times, averaging to obtain a mean timing. To obtain a
view of batching efficiency on collections of increasing size, we conducted the preceding test for
values of η ranging from 1 to approximately 400 signatures in intervals of 20. Finally, to provide
a baseline, we separately measured the performance of the corresponding non-batched verification,
by verifying 1000 signatures and dividing to obtain the average verification time per signature. A
high-level summary of our results is presented in Figure 4.

Curve k R(G1) R(GT ) SRSA Pairing Time

MNT160 6 160 bits 960 bits 960 bits 23.3 ms
MNT192 6 192 bits 1152 bits 1152 bits 33.2 ms
SS512 2 512 bits 1024 bits 957 bits 16.7 ms

Fig. 3. Description of the elliptic curve parameters used in our experiments. R(·) describes the approximate number
of bits to optimally represent a group element. SRSA is an estimate of “RSA-equivalent” security derived via the
approach of Page et al. [32].

Curve Parameters. The selection of elliptic curve parameters impacts both signature size and
verification time. The two most important choices are the size of the underlying finite field Fp, and
the curve’s embedding degree k. Due to the MOV attack, security is bounded by the size of the
associated finite field Fpk . Simultaneously, the representation of elements G1 requires approximately

5 We selected SHA1 because the digest size closely matches the order of G1. It would be possible to use alternative
hash functions with a similar digest size, e.g., RIPEMD-160, or to truncate the output of a hash function such as
SHA-256 or Whirlpool. Because the hashing time is negligible in our experiments, this should not greatly impact
our results.
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Signature Size (bits) Individual Verification Batched Verification∗

Scheme MNT160 MNT192 SS512 MNT160 MNT192 SS512 MNT160 MNT192 SS512

Signatures

BLS (single signer) 160 192 512 47.6 ms 77.8 ms 52.3 ms 2.28 ms 2.93 ms 32.42 ms
CHP 160 192 512 73.6 ms 119.0 ms 93.0 ms 26.16 ms 34.66 ms 34.50 ms

BLS cert + CHP sig 1280 1536 1536 121.2 ms† 196.8 ms† 145.3 ms† 28.44 ms† 37.59 ms† 66.92 ms†

Identity-Based Signatures

ChCh 320 384 1024 49.1 ms 79.7 ms 73.3 ms 3.93 ms 5.24 ms 59.45 ms
Waters 480 576 1536 91.2 ms 138.64 ms 61.1 ms 9.44 ms 11.49 ms 59.32 ms
Hess 1120 1344 1536 49.1 ms 79.0 ms 73.1 ms 6.70 ms 8.72 ms 55.94 ms

Anonymous Signatures

BBS (modified per §4.1) 2880 3456 5408 139.0 ms 218.3 ms 193.0 ms 24.80 ms 34.18 ms 198.03 ms
CYH, 2-member ring 480 576 1536 52.0 ms 77.0 ms 113.0 ms 6.03 ms 8.30 ms 105.69 ms
CYH, 20-member ring 3360 4032 10752 86.5 ms 126.8 ms 829.3 ms 43.93 ms 61.47 ms 932.66 ms
∗Average time per verification when batching 200 signatures.
†Values were derived by manually combining data from BLS and CHP tests.

Fig. 4. Summary of experimental results. Timing results indicate verification time per signature. With the exception
of BLS, our experiments considered signatures generated by distinct signers. The composite scheme “BLS cert + CHP
sig” describes a BLS-signed certificate on a CHP public key, along with a CHP signature.

|p| bits. Thus, most of the literature on short signatures recommends choosing a relatively small p,
and a curve with a high value of k. (For example, an MNT curve with |p| = 192 bits and k = 6
is thought to offer approximately the same level of security as 1152-bit RSA [32].) The literature
on short signatures focuses mainly on signature size rather than verification time, so it is easy
to miss the fact that using such high-degree curves substantially increases the cost of a pairing
operation, and thus verification time. To incorporate these effects into our results, we implemented
our schemes using two high-degree (k = 6) MNT curves with |p| equal to 160 bits and 192 bits. For
completeness, we also considered a |p|=512 bit supersingular curve with embeddeing degree k = 2,
and a subgroup G1 of size 2160. Figure 3 details the curve choices along with relevant details such
as pairing time and “RSA-equivalent” security determined using the approach of Page et al. [32].

5.1 Performance Results

We now present the results of our timing experiments. We first consider the two standard (public-
key) signature schemes, followed by three Identity-Based alternatives. We then turn our attention
to anonymous ring and group signatures. Finally, we evaluate the performance of a “resilient” batch
verifier designed to verify efficiently in the presence of invalid signatures.

Public-Key signatures. Figure 5 presents the results of our timing experiments for the public-key
BLS and CHP verifiers. Because the BLS signature does not batch efficiently for messages created
by distinct signers, we considered these schemes in the combination suggested by Camenisch et
al. [13], where BLS is used for certificates which are created by a single master authority, and CHP
is used to sign the actual messages under users’ individual signing keys. Surprisingly, the CHP batch
verifier appears to be quite costly in the recommended MNT curve setting. This result, which is
not obvious from the high-level analysis of Camenisch et al., stems from the requirement that user
public keys be in the G2 subgroup. This necessitates expensive point operations in the curve defined
over the extension field, which undoes some of the advantage gained by batching. However, even
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with this limitation, batching reduces the per-signature verification cost to as little as 1/3 to 1/4
that of individual verification.
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Fig. 5. Public-Key Signature Schemes. Per-signature times were computed by dividing total batch verification time
by the number of signatures verified. Note that in the BLS case, all signatures are formulated by the same signer (as
for certificate generation), while for CHP each signature was produced by a different signer. Individual verification
times are included for comparison.

Identity-Based signatures. Figure 6 details the results of our timing experiments for three
Identity-Based signature schemes, ChCh, Waters and Hess. (For comparison, our graphs also present
the non-IBS approach employing CHP signatures with BLS-signed public-key certificates.) In all
experiments we consider signatures generated by different signers. We observe that in contrast with
the public-key schemes, the IBSes batch quite efficiently in this case, at least when implemented in
MNT curves. In particular, the Waters scheme offers surprisingly strong performance for a scheme
not dependent on random oracles.6 Note that in in our implementation of Waters, we first apply a
SHA1 to the message, and use the Waters hash parameter z = 5 which divides the resulting 160-bit
digest into blocks of 32 bits (as proposed in [31]). Because we selected these parameters, we did
not bother to implement the first case of the batch verifier, since the appropriate condition applies
only for batches of size η ≤ 3.

Anonymous signatures. Figure 7 details the results of our timing experiments for two privacy-
preserving signature schemes: the CYH ring signature, and the modified BBS group signature. As
is common with ring signatures, in CYH both the signature size and verification time grow linearly
with the number of members in the ring. For our experiments we arbitrarily selected two cases: (1)
where all signatures are formed under a 2-member ring (useful for applications such as lightweight

6 However, it should be noted that Waters has a somewhat loose security reduction, and may therefore require larger
parameters in order to achieve security comparable to alternative schemes.
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Fig. 6. Identity-Based Signature Schemes. Times represent total batch verification time divided by the number of
signatures verified. “CHP+BLS cert” represents the batched public-key alternative using certificates, and is included
for comparison.

email signing [1]), and (2) where all signatures are formed using a 20-member ring.7 In contrast,
both the signature size and verification time of the BBS group signature are independent of the
size of the group. This makes group signatures like BBS significantly more practical for applications
such as vehicle communication networks, where the number of signers might be quite large.
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Fig. 7. Anonymous Signature Schemes. Times represent total batch verification time divided by the number of
signatures verified. For the CYH ring signature, we consider two distinct signature collections, one consisting of 2-
member rings, and another with only 20-member rings. The BBS group signature verification is independent of the
group size.

5.2 Batch Verification and Invalid Signatures

In section 3.1, we discuss a general technique for dealing with invalid signatures encountered when
batching. When batch verification fails, this divide-and-conquer approach recursively applies the
batch verifier to individual halves of the signature collection, until all invalid invalid signatures
have been located. To save time when recursing, we compute products of the form

∏η
i=1 x

δi
i so that

partial products will be in place for each subset on which me might recurse. We accomplish this by

7 Although the CYH batch verifier can easily batch signatures formed over differently-sized rings, our experiments
use a constant ring size for all signatures. However our results can be considered representative of any signature
collection where the mean ring size is 20.
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placing each xδii at the leaf of a binary tree and caching intermediate products at each level. This
requires no additional computation, and total storage of approximately 2η group elements for each
product to be computed.

To evaluate the feasibility of this technique, we used it to implement a“resilient”batch verifier for
the BLS signature scheme. This verifier accepts as input a collection of signatures where some may
be invalid, and outputs the index of each invalid signature found. To evaluate batching performance,
we first generated a collection of 1024 valid signatures, and then randomly corrupted an r-fraction
by replacing them with random group elements. We repeated this experiment for values of r ranging
from 0 to 15% of the collection, collecting multiple timings at each point, and averaging to obtain
a mean verification time.8 The results of the experiment are presented in figure 8.
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Fig. 8. BLS batch verification in the presence of invalid signatures (160-bit MNT curve). A“resilient”BLS batch verifier
was applied to a collection of 1024 purported BLS signatures, where some percentage were randomly corrupted. Per-
signature times were computed by dividing the total verification time (including identification of invalid signatures)
by the total number of signatures (1024), and averaging over multiple experimental runs.

Our results indicate that batched verification of BLS signatures is preferable to the näıve indi-
vidual verification algorithm even as the number of invalid signatures exceeds 10% of the total size
of the batch. Note also that the random distribution of invalid signatures within the collection is
nearly the worst-case for resilient verification. In many practical scenarios, invalid signatures might
be grouped together within the batch (e.g., if corruption is due to a burst of EM interference). In
this case, the verifier might achieve better results by omitting the random shuffle step, or by using
an alternative re-ordering that is more appropriate for the setting.

6 Conclusion

Our experiments provide strong evidence that batching short signatures is practical, even in a setting
where an adversary can inject invalid signatures. Our results apply to standard and Identity-Based
signatures, as well as to the more exotic short ring and group signatures which are increasingly
being considered for privacy-critical applications. At a deeper level, our results indicate that ef-
ficient batching depends heavily on the underlying design of a signature scheme, particularly on
the placement of elements within the elliptic curve subgroups. For example, the CHP signature
and the ChCh IBS have comparable size and security, yet the latter scheme can batch more than
250 signatures per second (each from a different signer), while our CHP implementation clocks in
8 Although our experiment does not re-order the signature collection, such a re-ordering need not involve memory

copies and could be performed at minimal additional cost.
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at fewer than 40. We believe that scheme designers should begin taking these considerations into
account when proposing new pairing-based signature schemes.
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A Proof of the Small Exponents Test

Proof. It is easy to see that if A = Y (j) holds for all j ∈ [1, η], then
∏η
j=1A

δj =
∏η
j=1 Y

(j)δj holds for
any random vector ∆ = (δ1, . . . , δη). We must now show the other direction, that if Batch outputs
accept, then A = Y (j) holds for all j ∈ [1, η] except with probability at most 2−`b . Since A and
Y (j) are in GT , we can write A = e(g, g)a and Y (j) = e(g, g)y

(j)
for some a, y(j) ∈ Zq. The batch

verification equation can then be written as
∏η
j=1 e(g, g)a =

∏η
j=1 e(g, g)y

(j) ⇒ e(g, g)
Pη
j=1 a =

e(g, g)
Pη
j=1 y

(j)

. Now define βj = a− y(j). Since Batch accepts it must be true that

η∑
j=1

βjδj ≡ 0 (mod q) (3)

Now assume that at least one of the individual equations do not hold. We assume without loss
of generality that this is true for equation j = 1. This means that β1 6= 0. Since q is a prime then
β1 has an inverse γ1 such that β1γ1 ≡ 1 (mod q). This and Equation 3 gives us

δ1 ≡ −γ1

η∑
j=2

δjβj (mod q) (4)
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Let event E occurs if A 6= Y (1), but Batch accepts. Note that we do not make any assumptions
about the remaining values. Let ∆′ = δ2, . . . , δη denote the last η − 1 values of ∆ and let |∆′| be
the number of possible values for this vector. Equation 4 says that given a fixed vector ∆′ there
is exactly one value of δ1 that will make event E happen, or in other words that the probability
of E given a randomly chosen δ1 is Pr[E|∆′] = 2−`b . So if we pick δ1 at random and sum over
all possible choices of ∆′ we get Pr[E] ≤

∑|∆′|
i=1 (Pr[E|∆′] · Pr[∆′]). Plugging in the values, we get:

Pr[E] ≤
∑2`b(η−1)

i=1

(
2−`b · 2−`b(η−1)

)
= 2−`b .

B Proof Sketch for Theorem 2 (Batch Verification of BBS Group Signatures)

We show how to apply Theorem 1 in the following proof of Theorem 2.

Proof sketch. Let gpk = (g1, g2, h, u, v, w) be the group public key, and let σj = (Tj,1, Tj,2, Tj,3,
Rj,1, Rj,2, Rj,3, Rj,4, Rj,5, sj,α, sj,β, sj,x, sj,γ1 , sj,γ2) be the j’th signature on the message Mj , for
each j = 1, . . . , η. Since BBS Batch Verify algorithm performs the first four non-pairing tests of the
New Verify algorithm for each signature separately, we just need to prove that equation 2 is a batch
verifier for the pairing based equation 1. From Theorem 1, for any random vector (δ1, . . . , δη) of `b
bit elements from Zq, the following pairing based equation

η∏
j=1

(
e(Tj,3, g2)sj,x · e(h,w)−sj,α−sj,β · e(h, g2)−sj,γ1

−sj,γ2 ·
(
e(Tj,3, w) · e(g1, g2)−1

)cj)δj ?=
η∏
j=1

R
δj
j,3

(5)
is a batch verifier for the pairing based equation 1. It is easy to see that equation 5 is equivalent to
equation 2. Indeed, equation 2 is an optimized version of equation 5 obtained by applying techniques
2 and 3. ut

C Ring and Identity-based Ring Signature Schemes

Recall that a ring signature scheme allows a signer to sign a message on behalf of a set of users
which include the signer itself in such a way that a verifier is convinced that the signer is one of the
ring members, but he cannot tell which member is the actual signer. A ring signature is a triple of
algorithms KeyGen, Sign and Verify, that, respectively generate public and private keys for a user,
sign a message on behalf of the ring and verify the signature on a message according to the ring.
In an identity-based ring signature, a user can choose an arbitrary string, for example her email
address, as her public key.

In an identity-based ring signature, a user can choose an arbitrary string, for example her
email address, as her public key. The corresponding private key is then created by binding such
a string which represents the user’s identity with the master key of a trusted party called private
key generator (PKG). Such a scheme consists of four algorithms: Setup, KeyGen, Sign and Verify.
During Setup, the PKG sets the system parameters Ppub and chooses a master secret key msk.
During KeyGen, the PKG gives the user a secret key based on her identity string. Then the signing
and verification algorithms and verification algorithms operate as before, except that only Ppub and
the ring members identities are needed in place of their public keys.
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Figures 9 and 10 summarizes the scheme we consider and how to batch them, respectively.9 The
CYH scheme is fairly straightforward to batch, while the Boyen scheme required more creativity,
especially in the application of techniques 3 and 4.

Scheme
Setup

Key Generation
Signature Verify

CYH

(q, g1, g2,G1,
G2,GT , e)← PSetup(1τ )
H1 : {0, 1}∗ → G1

H2 : {0, 1}∗ → Z∗q
α

$← Z∗q
msk ← α
Ppub ← gα

sk ← H1(ID)α

pk ← H1(ID)

Let L = {ID1, ID2, . . . , ID`}
Let IDs be the signer
∀i ∈ [1, `] s.t. i 6= s

ui
$← G1

hi ← H2(M ||L||ui)
r

$← Zq

us ← pkrs ·

0@Y
i 6=s

ui · pkhii

1A−1

hs ← H2(M ||L||us)
S = skhs+r

s

σ ← (u1, . . . , u`, S)

Let σ = (u1, . . . , u`, S)

∀i ∈ [1, `]

hi ← H2(M ||L||ui)

e(
Ỳ
i=1

ui · pkhii , Ppub)
?
= e(S, g2)

Boyen

(q, g1, g2,G1,
G2,GT , e)← PSetup(1τ )
H : {0, 1}∗ → Z∗q
ψ : G2 → G1

Â0, B̂0, Ĉ0
$← G2

a, b, c
$← Z∗q

A← ga1 ; B ← gb1; C ← gc1
Â← ga2 ; B̂ ← gb2; Ĉ ← gc2
sk ← (a, b, c)

pk ← (A,B,C, Â, B̂, Ĉ)

Let L = {pk1, pk2, . . . , pk`}
where pki = (Ai, Bi, Ci, Âi, B̂i, Ĉi)
W.l.o.g., let pk` be the signer

s0, s1, . . . , s`−1, t0, t1, . . . , t`
$← Zq

∀i ∈ [0, `− 1], Si ← gsi1

d← 1
a`+b`·M+c`·t`

S`←

 
g ·
`−1Y
i=0

(Ai ·BMi ·Ctii )−si

!d
σ = (S0, . . . , S`, t0, . . . , t`)

Let σ=(S0, . . . , S`, t0, . . . , t`)

Let D = e(g1, g2)

Ỳ
i=0

e(Si, Âi ·B̂i
M ·Ĉi

ti
)

?
=D

Fig. 9. Ring signature schemes that we consider. We denote by Ppub, sk and pk the system parameters, user
private key and user public key, respectively. Moreover, we denote with pki and ski the public and private keys of
the i-th user in the ring. A ring signature on a message M is denoted by σ and ` represents the ring size.

D Signature and Identity-based Signature Schemes

In this section we briefly review some short signature schemes and the corresponding batch verifier.
In 2001 Boneh et al. [10] proposed the first short pairing-based signature scheme which is secure
against existential forgery under adaptive chosen message attack in the random oracle model. In
the following we refer to such a scheme as BLS. As also noticed by the authors, BLS is suitable
to verify a bunch of purported signatures either issued from the same signer on different messages
or by different public keys on the same message in a faster way than simply verifying each signa-
ture separately. Indeed, consider η BLS signatures σ1, . . . , ση issued by means of the BLS signature

9 In the course of the study about schemes suitable to apply our framework, we noticed that the identity-based ring
signature scheme proposed in [3] is a very nice candidate. Unfortunately, we found that, for ring size greater than
two, the security proof has a flaw. After hearing of this proof flaw, Brent Waters translated it into an attack on
the scheme (personal communication). It is still open to see if such a scheme is indeed secure for rings of size two.
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Scheme

Batch Verification Precomputation

Batch Verification Equation
Techniques

CYH

Let σj = (uj,1, . . . , uj,`, Sj) and Lj = {IDj,1, . . . , IDj,`j}; ∀i, j hj,i ← H2(Mj ||Lj ||uj,i)

e(
Qη
j=1

Q`j
i=1 pk

(hj,i+uj,i)·δj
j,i , Ppub)

2,3

Boyen

Let σj = (Sj,0, . . . , Sj,`, tj,0, . . . , tj,`), pki ← (Ai, Bi, Ci, Âi, B̂i, Ĉi) and D = e(g1, g2)

If η < 3,
Qη
j=1

Q`
i=0 e(S

δj
j,i, Âi · B̂i

mj,i · Ĉi
tj,i

) =
Qη
j=1 D

δj

Otherwise,
Q`
i=0

“
e(
Qη
j=1 S

δj
j,i, Âi)·e(

Qη
j=1 S

δj·mj,i
j,i , B̂i)·e(

Qη
j=1 S

δj·tj,i
j,i , Ĉi)

”
=
Qη
j=1 D

δj

2,3,4

Fig. 10. Batch verifier for the ring signature and ID-based ring signature schemes we consider. Let η be
the number of signatures to verify and Mj be the message corresponding to the j’th signature σj . With pkj,i and `j
we denote the public key of the i’th ring member and the size of the ring associated to the j’th signature, respectively.
The vector (δ1, . . . , δη) in Zq is required by the small exponents test.

Scheme
Setup

Key Generation
Signature

Verification Precomputation

Verification Equation

BLS

(q, g1, g2,G1, G2,GT , e)← PSetup(1τ )
H : {0, 1}∗ → G
α

$← Zq
sk ← α; pk ← gα2

σ ← H(M)sk
e(H(M), pk)

?
= e(σ, g2)

CHP

Let Φ be the set of time periods.
(q, g1, g2,G1,G2,GT , e)← PSetup(1τ )
H1 : Φ→ G1, H2 : Φ→ G1

H3 : {0, 1}∗ × Φ→ Zq
α

$← Zq
sk ← α; pk ← gα2

a← H1(φ)
h← H2(φ)
b← H3(M ||φ)

σ ← ask · hsk·b

a← H1(φ);h← H2(φ); b← H3(M ||φ)

e(σ, g2)
?
= e(a, pk) · e(h, pk)b

Fig. 11. Signature Schemes that we consider. We denote by pk and sk the public key and the private key of a
user, respectively. We denote by σ a signature on a message M . In CHP, φ is a time period in the set of time periods
Φ.

algorithm (see Figure 11) under the same public key pk on different messages M1. . . . ,Mη. Accord-
ing to the BLS verification equation (see Figure 11), 2η pairing evaluations are needed to verify
each equation separately, while applying techniques 2 and 3, only two pairing evaluations suffice:
e(
∏η
j=1H(Mj)δj , pk) = e(

∏η
j=1 σ

δj
j , g2), for some vector (δ1, . . . , δη) in Zq. A similar approach can

be used to batch verify signatures issued by the same public key with only two pairing evaluations.
In Figure 12 we describe a more general batch verification equation, where we consider a bunch of
signatures issued by s different signers. Applying technique 3, it is easy to see that the pairings on
the left hand side of the BLS verification equation corresponding to signatures issued by the same
public key can be grouped in a single pairing. This yields to the BLS batch verification equation
of Figure 12, where each signer i, for i = 1, . . . , s, is responsible of the ni out of the η signatures
identified by the indices i1, . . . , ini . The BLS batch verification equation of Figure 12 requires s+ 1
pairing evaluations. A similar approach can be used to quickly batch verify signatures on m different
messages with m+ 1 pairing evaluations.
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Scheme

Batch Verification Precomputation

Batch Verification Equation
Techniques

BLS Qs
i=1 e(

Qini
`=i1

H(M`)
δ` , pki)

?
= e(

Qη
j=1 σ

δj
j , g2)

2,3

CHP

a← H1(φ);h← H2(φ); ∀j ∈ [1, η], bj ← H3(Mj ||φ)

e(
Qη
j=1 σ

δj
j , g2)

?
= e(a,

Qη
j=1 pk

δj
j ) · e(h,

Qη
j=1 pk

bj ·δj
j )

2,3

Fig. 12. Batch verifiers for the signature schemes we consider. Let η be the number of signatures to verify.
With pkj we denote the public key of the user who issued the j’th signature. The vector (δ1, . . . , δη) in Zq is required
by the small exponents test. In BLS, s is the number of different signer and ni is the number of signatures issued by
the i’th signer (for details see the text). In CHP, φ is a time period in the set of time periods Φ.

In [13], Camenisch et al., proposed a signature scheme secure in the random oracle model which
is derived from the Camenisch and Lysyanskaya signature scheme (CL in brief) [14]. The scheme
in [13] which we refer to as CHP (see Figure 11) allows efficient batch verification of signatures
made by different signers provided that all signatures have been issued during the same period
of time. Since the values g2, a and h are the same for all signatures, from techniques 2 and 3,
the CHP batch verification equation shown in Figure 12 requires only three pairings, instead of
the 5η pairings required to verify η original CL signatures. In the following we focus on batch
verification for identity-based signature schemes. An identity based signature scheme consists of
four algorithms: Setup, Key Generation, Sign and Verify. The public key generator PKG initializes
the system during the Setup phase by choosing the system parameters Ppub which are made public.
Moreover, the PKG chooses a master key msk and keeps it secret. The master key is used in the
key generation phase along with the identity of a user to compute the user’s private key. A user can
sign a message by using the Sign algorithm. Finally, a verifier can check a signature on a message
by using the Verify algorithm on input the signature, the public parameters and the identity of the
signer. In Figure 13 we summarize the identity-based signature schemes we consider.

As shown in Figure 14, techniques 2 and 3 allow to construct a batch verifier which requires
only two pairing evaluations for the schemes ChCh and Hess. Both ChCh and Hess schemes are
proved secure in the random oracle model. By following the lines of Theorem 2 it is easy to see
that the batch verification equations shown in Figure 10 are batch verifier for the corresponding
schemes. In [13] Camenisch et al. showed a batch verifier for an identity-based signature scheme
secure in the standard model. This scheme, which we refer to as Waters, is derived from a number of
contributions [40, 31, 18] which improve upon the Boneh and Boyen identity-based encryption [5].
This scheme, which we refer to as Waters, is derived from a number of contributions [40, 31, 18]
which improve upon the Boneh and Boyen identity-based encryption [5]. In particular, Waters
described how to modify Boneh and Boyen identity-based encryption to make it fully-secure [40].
The difference between these two IBEs is the way the identity is evaluated. Assume the identity is a
bit string V = v1v2 . . . vm. Instead of evaluating it as u′gV1 [5] then evaluating it as u′

∏m
i=1 u

vi
i [40]

makes the scheme fully secure. In 2005 Naccache [31] and Chatterjee and Sarkar [17] independently
showed how to generalize the Waters IBE to optimize it for efficiency. These ideas were extended in
2006 by Chatterjee and Sarkar to Waters HIBE and the resulting HIBE was proven secure in the
standard model [18]. Finally, Waters is the identity-based scheme implicitly defined by Chatterjee
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and Sarkar’s HIBE [18]. In Waters identities and messages are parsed as sequences of z chunks of
`-bit integers. As remarked in Figure 14, by using techniques 2, 3 and 4, Waters allows to define
a batch verifier where the number of pairing evaluations is proportional to the minimum between
the number of signatures η and the number of chunks z.

E Aggregate Signatures

Aggregate signatures were introduced by Boneh et al. in [9]. An aggregate signature is a shorter rep-
resentation of n signatures provided by different users on different messages. In particular, consider
n signatures σ1, . . . , σn on messages M1, . . . ,Mn issued by n users with public keys pk1, . . . , pkn.
An aggregate signature scheme provides an aggregation algorithm, which can be run by anyone
and outputs a compressed short signature σ on input all σi, for i = 1, . . . , n. Moreover, there is a
verification algorithm that on inputs the signature σ the public keys pk1, . . . , pkn and the messages
M1, . . . ,Mn decides if σ is a valid aggregate signature. Figure E reviews the aggregate signatures we
consider. Sh scheme [39] requires the existence of a third party named aggregator who is responsible
of aggregating signatures. LOSSW scheme [26], proved to be secure in the standard model, is a
sequential aggregate signature scheme. The aggregate signature must be constructed sequentially,
with each signer adding its signature in turn. Figure 16 shows the corresponding batch verifier
obtained by using our framework. Following the line of Theorem 2 it is easy to see that the pairing
based equations in Figure 16 are batch verifiers for the corresponding schemes when all aggregate
signatures are issued by the same set of users.
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Scheme
Setup

Key Generation
Sign

Verification Precomputation

Verification Equation

ChCh

(q, g1, g2,G1,
G2,GT , e)← PSetup(1τ )
H1 : {0, 1}∗ → G1

H2 : {0, 1}∗ ×G1 → Zq
α

$← Zq
msk ← α; Ppub ← gα2
sk ← H1(ID)α; pk ← H1(ID)

s
$← Zq

S1 ← pks

a← H2(M ||S1)
S2 ← sks+a

σ ← (S1, S2)

Let σ = (S1, S2), a← H2(M ||S1)

e(S2, g2)
?
= e(S1 · pka, Ppub)

Hess

(q, g1, g2,G1,
G2,GT , e)← PSetup(1τ )
H1 : {0, 1}∗ → G
H2 : {0, 1}∗ ×GT → Zq
α

$← Zq
msk ← α; Ppub ← gα2
sk ← H1(ID)α; pk ← H1(ID)

h
$← G

s
$← Zq

S1 ← e(h, g2)s

a← H2(M ||S1)
S2 ← ska · hs
σ ← (S1, S2)

Let σ = (S1, S2), a← H2(M ||S1)

e(S2, g2)
?
= e(pk, Ppub)

a · S1

Waters

(q, g1, g2,G1,
G2,GT , e)← PSetup(1τ )

α
$← Zq; h

$← G1

A← e(h, g2)α

y′1, y
′
2, y1, y2, . . . , yz

$← Zq
u′1 ← g

y′1
1 ; u′2 ← g

y′2
1

∀` ∈ [1, z], u` ← g
y`
1

û1
′ ← g

y′1
2 ; û2

′ ← g
y′2
2

∀` ∈ [1, z], û` ← g
y`
2

msk ← hα

Ppub ← (A, u′1, u
′
2, u1, . . . , uz,

û1
′, û2

′, û1, . . . , ûz)

r
$← Zq

k1 ← hα · (u′1 ·
Qz
i=1u

κi
i )r

k2 ← g−r1

sk ← (k1, k2)

s
$← Zq

S1 ← k1 ·(u′2 ·
zY
i=1

umii )s

S2 ← k2

S3 ← g−s1

σ ← (S1, S2, S3)

Let σ = (S1, S2, S3) and A = e(h, g2)α

e(S1, g2)·e(S2, û1
′ ·

zY
i=1

ûi
κi)·e(S3, û2

′ ·
zY
i=1

ûi
mi)

?
=A

Fig. 13. Identity-based signature schemes that we consider. We denote by msk, Ppub, sk and pk the master
key, the system parameters, user private key and user public key, respectively. We denote by σ a signature on a
message M . In Waters, z is the number of `-bit chunks. Moreover, the identity ID and the message M are parsed as
κ1, . . . , κz and m1, . . . ,mz, respectively.
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Scheme

Batch Verification Precomputation

Batch Verification Equation
Techniques

ChCh

Let σj = (Sj,1, Sj,2). ∀j ∈ [1, η], aj ← H2(Mj ||Sj,1)

e(
Qη
j=1 S

δj
j,2, g2)

?
= e(

Qη
j=1(Sj,1 · pk

aj
j )δj , Ppub)

2,3

Hess

Let σj = (Sj,1, Sj,2). ∀j ∈ [1, η], aj ← H2(Mj ||Sj,1)

e(
Qη
j=1 S

δj
j,2, g2)

?
= e(

Qη
j=1 pk

aj ·δj
j , Ppub) ·

Qη
j=1 S

δj
j,1

2,3

Waters

Let σj = (Sj,1, Sj,2, Sj,3) and Ppub = (A, u′1, u
′
2, u1, . . . , uz, û1

′, û2
′, û1, . . . , ûz)

If z > 2η − 2,

e(
Qη
j=1 Sj,1, g2) ·

Qη
j=1

“
e(S

δj
j,1, û1

′Qz
i=1 ûj

kj,i) · e(S
δj
j,3, û2

′Qz
i=1 ûj

mj,i)
”

?
= A

Pη
j=1 δj

Otherwise,

e(
Qη
j=1S

δj
j,1, g2)·e(

Qη
j=1S

δj
j,2, û1

′)·e(
Qη
j=1S

δj
j,3, û2

′)·
Qz
i=1e(

Qη
j=1(S

kj,i
j,2 · S

mj,i
j,3 )δj , ûi)

?
=A

Pη
j=1 δj

2,3, 4

Fig. 14. Batch verifiers for the id-based signature schemes we consider. Let η be the number of signatures
to verify. With pkj we denote the public key of the user who issued the j’th signature σj on message Mj . The vector
(δ1, . . . , δη) in Zq is required by the small exponents test. In CHP-2, z is the number of `-bit chunks. Moreover, the
identity IDj and the message Mj corresponding to the j-th signature are parsed as κj,1, . . . , κj,z and mj,1, . . . ,mj,z,
respectively.
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Scheme
Setup

Key Generation
Aggregate Signature Verification

BGLS
Same as BLS

Same as BLS

Let σi be a BLS signature on message
Mi under private key pki
σ ←

Q`
i=1 σi

e(σ, g2)
?
=
Q`
i=1 e(H(Mi), pki)

Sh

Same as BLS

For users and
aggregator, same
as BLS

Let σi be a BLS signature on message
Mi under private key pki
If all BLS signatures are valid, the
aggregator use its secret key skag to
compute

σ ← H(M1|| . . . ||M`)
skag ·

Q`
i=1 σi

e(σ, g2)
?
= e(H(M1,. . .,M`), pkag)·Ỳ

i=1

e(H(Mi), pki)

LOSSW

(q, g1, g2,G1,G2,
GT , e)← PSetup(1τ )

α, y′
$← Zq

(y1, . . . , yk)
$← Zkq

y = (y1, . . . , yk)

u′ ← gy
′

1

û′ ← gy
′

2

∀i = 1, . . . , k,
ui ← gyi1

ûi ← gyi2

u=(u1, . . . , uk,
û1, . . . , ûk)
A← e(g1, g2)α

sk ← (α, y′,y)
pk ← (A, u′, û′,u)

Let σ′=(

`−1Y
i

gαi1 ·
`−1Y
i=1

(u′i

kY
t=1

u
mi,t
i,t )r

′
,

gr
′

1 ) = (S′1, S
′
2) be an aggregate so far

on a set of messages {M1, . . . ,M`−1}
under public keys {pk1, . . . , pk`−1}.
Let M` be the message to sign under
public key pk` and corresponding
secret key sk`.
We denote pki = (Ai, u

′
i, ûi

′, ui,1, . . . ,
ui,k, ˆui,1, . . . , ˆui,k), ski = (αi, y

′
i, yi,1,

. . . , yi,k) and Mi = mi,1, . . . ,mi,k
10.

w1 ← S′1 · gα1 · (S′2)(y′`+
Pk
t=1 y`,t·m`,t)

w2 ← S′2

r
$← Zq

S1←w1(u′`

kY
t=1

u
m`,t
`,t )r

tY
i=1

(u′i

kY
t=1

u
mi,t
i,t )r

S2 ← w2 · gr1
σ = (S1, S2)

Q`
i=1 Ai

?
=

e(S1, g2)/e(S2,
Ỳ
i=1

(ûi
′
kY
t=1

ûi,t
mi,t))

Fig. 15. For setup, key generation and signature of BGLS and Sh see Figure 11. We denote by σ an aggregate signature
on a set of ` messages M1, . . . ,M`. In LOSSW a message Mi is processed as a k-bit string denoted by mi,1, . . . ,mi,k.

Scheme Batch Verification Equation Techniques

BGLS e(
Qη
j=1 σ

δj
j , g2)

?
=
Q`
i=1 e(

Qη
j=1 H(Mj,i)

δj , pki) 2,3

Sh e(
Qη
j=1 σ

δj
j , g2)

?
= e(

Qη
j=1 H(Mj,1, . . . ,Mj,`)

δj , pkag) ·
Q`
i=1 e(

Qη
j=1 H(Mj,i), pki) 2,3

LOSSW

Let σj = (Sj,1, Sj,2) and pki = (Ai, u
′
i, ûi

′, ui,1, . . . , ui,k, ˆui,1, . . . , ˆui,k)

If η < ` · k + 1, e(

ηY
j=1

S
δj
j,1, g2) ·

ηY
j=1

e(S
−δj
j,2 ,

Ỳ
i=1

(ûi
′
kY
t=1

ûi,t
mj,i,t))

?
=

ηY
j=1

Ỳ
i=1

A
δj
i

Otherwise,

e(

ηY
j=1

S
δj
j,1, g2)·e(

ηY
j=1

S
−δj
j,2 ,

Ỳ
i=1

ûi
′)·
Ỳ
i=1

kY
t=1

e(

ηY
j=1

S
−δj·mj,i,t
j,2 , ûi,t)

?
=

ηY
j=1

Ỳ
i=1

A
δj
i

2,3,4

Fig. 16. Let η be the number of signatures to verify. The vector (δ1, . . . , δη) in Zq is required by the small exponents
test. In LOSSW a message Mj,i provided by pki in the j’th aggregate is processed as a k-bit string denoted by
mj,i,1, . . . ,mj,i,k.
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