New State Recovering Attack on RC4
(Full Version)

Alexander Maximov and Dmitry Khovratovich

Laboratory of Algorithmics, Cryptology and Security
University of Luxembourg
6, rue Richard Coudenhove-Kalergi, L-1359 Luxembourg

Alexander.Maximov@ericsson.com, khovratovich@gmail.com

Abstract. ! The stream cipher RC4 was designed by R. Rivest in 1987,
and it has a very simple and elegant structure. It is probably the most
deployed cipher on the Earth.

In this paper we analyse the class RC4-N of RC4-like stream ciphers,
where N is the modulus of operations, as well as the length of internal
arrays. Our new attack is a state recovering attack which accepts the
keystream of a certain length, and recovers the internal state. For the
original RC4-256, our attack has the total complexity around 22*! of op-
erations, whereas the best previous attack needs 277° of time. Moreover,
we show that if the secret key is of length IV bits or longer, the new at-
tack works faster than an exhaustive search. The algorithm of the attack
was implemented and verified on small cases.

Keywords: RC4, state recovering attack, key recovering attack.

1 Introduction

RC4 [Sma03] is a stream cipher designed by Ron Rivest in 1987, since when
it was implemented in many various software applications to ensure privacy of
communication. It is, perhaps, the most widely deployed stream cipher on the
Earth, its most common application is to protect Internet traffic in the SSL
protocol. Moreover, it has been implemented in Microsoft Lotus, Oracle Secure
SQL, etc. The design of RC4 was kept secret until 1994 when it was anonymously
leaked to the members of Cypherpunk community. A bit later the correctness of
the algorithm was confirmed.

In this paper we study a family RC4-N of RC4 like stream ciphers, where NV
is the modulus of operations. The internal state of RC4 is two registers i, j € Zxy
and a permutation S of all elements of Zy. Thus, RC4 has a huge state of
log, (N2N!) bits. For the original version, when N = 256, the size of the state is
~ 1700 bits. This makes any time-memory trade-off attack impractical. RC4-256
uses a variable length key from 1 to 256 bytes for its initialisation.

The initialisation procedure of RC4 has been thorougly analysed in a large
number of various papers, see e.g. [MS01,Man01,PP04]. These results show that

! We thank anonimous reviewers of EUROCRYPT 08 for their editorial comments.

the initialisation of RC4 is weak, and the secret key can be recovered with a small
portion of data/time. Because of these attacks, RC4 can be regarded as broken.
However, if one would tweak the initialisation procedure, the cipher becomes
secure again.

The simplicity of the keystream generating algorithm of RC4 attracts a
huge attention to its analysis. In the most of such analyses the scenario as-
sumes that the keystream of some length is given, and either a distinguish-
ing (|Gol97,FM00,Max05,Man05]) or a state recovering ([KMPT98]|) attack is
the one of the interest. A state recovering attack determines the actual security
level of a cipher, if the initial internal state is considered as a secret key. The
first such an attack was proposed by Knudsen et al in 1998 in [KMP*98§|, the
complexity of which was 277?. Some minor improvements were found in other lit-
erature ([MT98]), but still, there is no attack even close to 27°°. One interesting
attempt to improve the analysis was done in [Man05]. Although that attack does
not actually work, the pretending time complexity claimed was around 22°°.

In this paper we propose a new state recovering attack on RC4-N. For the
original design RC4-256 the total time complexity of the attack is less than 224!,
and it requires the keystream of a similar size. This means that the secret key
cannot be longer than 30 bytes. We also show that in general required time is
less than the one an exhaustive search needs, if the secret key is of length N bits
or longer.

The idea of the new attack is as follows. The algorithm searches for a
place in the keystream where the probability of a specific internal state, compli-
ant with a chosen pattern, is high. Afterwards, the new state recovering algorithm
needs only a small portion of data (around 2N output words) in order to recover
the internal state of the cipher in an iterative manner. This algorithm was im-
plemented and verified for small values of N. The state recovering attack was
successful and revealed a correct internal state on every run of the simulations.
The success rate of the full attack is shown to be at least 98%. For large values
of N, where real attack simulations were impossible, an upper bound for average
complexity of the attack was derived and calculated.

This paper is organized as follows. In Section 2 new iterative state recovering
algorithm is described in detail. Afterwards, Section 3 introduces various prop-
erties of a pattern that are needed for the recovering algorithm, and an effective
searching algorithm to find such patterns is also proposed. Section 4 describes
several techniques to detect specific states by observing the keystream, and also
introduces additional properties of a pattern needed for detection purposes. The-
oretical analysis of the state recovering algorithm and derivation of its complexity
functions are performed in Appendix A (due to the page limitation). All pieces
of the attack are combined in Section 5. Finally, we perform a set of simulations
of the attack, summarize the results and conclude in Section 6. The paper ends
with suggestions for further improvements and open problems in Section 7.

1.1 Notations

All internal variables of RC4 are over the ring Zy, where N is the size of the
ring. To specify a particular instance of the cipher we denote it by RC4-N. Thus,
the original design is RC4-256. Whenever applicable, + and — are performed in
modulo N. At any time ¢ the notation a; denotes the value of a variable a at
time ¢. The keystream is denoted by z = (z1, 22, ...). In all tables probabilities
and complexities will be given in a logarithmical form base 2.

1.2 Description of the Keystream Generator RC4-IN

We skip the description of the initialisation process since it is not in the focus of
this paper. However, the full description of RC4 can be found in, e.g., [Sma03].
After the initialisation procedure, the keystream generation algorithm of RC4
begins. Its description is given in Figure 1.

Internal variables:

i, j — integers in Zn

S[0...N — 1] - a permutation of integers 0... N — 1
The keystream generator RC4-N

1. S[-] is initialised with the secret key

1=35=0
2. Looi) until we get enough symbols over Zn
A)i=i+1
(B) j =j+ Sl
(C) swap(S[i], S[5])
(D) 2 = S[S[i] + Sl

Fig. 1. The keystream generation algorithm of RC4-N.

2 New State Recovering Algorithm

2.1 Previous Analysis: Knudsen’s Attack

In [KMP*98| Knudsen et al. have presented a basic recursive algorithm to recover
the internal state of RC4. It starts at some point ¢ in the keystream z given k
known cells of the permutation S¢, which helps the recursion to cancel unlikely
branches. The idea of the algorithm is simple. At every time ¢ we have four
unknowns:

jer Seliel, Seljil, Si 'zt (1)

One can simply simulate the PRGA and, when necessary, guess these unknown
values in order to continue the simulation. The recursion steps backward when
a contradiction is reached, due to the previously wrong guesses. Additionally, it

can be assumed that some & values are apriori known (guessed, given, or derived
somehow), and this may reduce the complexity of the attack significantly. An
important note is that the known & values should be located in a short window
of the “working area” of the keystream, otherwise they cannot help to cancel
hopeless branches.

The precise complexity of the attack was calculated in [KMP198|, and several
tables for various values of N and k were given in Appendices D.1 and D.2
in [Man01]. As an example, the complete state recovering attack on RC4-256
would require time around 277°.

2.2 Our Algorithm in Brief

In this section we propose an improved version of the state recovering algorithm.
Assume at some time ¢ in a window of length w + 1 of the keystream z all the

values jg, jet+1, Jt+2, - - - » jt+w are known. This means that for w steps the values
Stt1lits1], -+ Sitwlit+w] are known as well, since they are derived as
Sti1ltes1] = Jeg1 — Je, VL. (2)

Consequently, w equations of the following kind can be collected:
S;l[zk]zsk[ik]ﬁ-sk[jk], k=t+1,...,t+w, (3)
where only two variables are unknown

Sy zkl, Skl (4)

instead of fourin Knudsen’s attack, see (1). Let the set of consecutive w equations
of the form (3) be called a window of length w.

Since all js in the window are known, then all swaps done during these w
steps are known as well. This makes it possible to map the positions of the
internal state S; at any time ¢ to the positions of some chosen ground state S,
at some ground time %y in the window. Let us for simplicity set ty = 0.

Our new state recovering algorithm is a recursive algorithm, and it is shown
in Figure 2. It starts with a collection of w equations, and attempts to solve them.
A single equation is called solved or processed if its corresponding unknowns (4)
have been explicitly derived or guessed. During the process, the window will
dynamically increase and decrease. When the length of the window w is long
enough (say, w = 2N), and all equations are solved, the ground state Sy is likely
to be fully recovered.

A more detailed description of the parts of the algorithm follows.

Iterative Recovering (IR) Block The Iterative Recovering block receives as
an input a number a of active equations (not yet processed) in the window of
length w, and tries to derive the values of S;[j;]s and S; *[z¢]s. For this purpose,

Tterative
Recovering

T recursion
Contradiction? ves backward
no
. . Window
equations available? Expansion

recursion
orward

Guess One S[1]

equations in the window
solved?

2.
Find and Guess the)

recursion Maximum Clique
forward

Fig. 2. New state recovering algorithm.

the IR block iteratively performs two steps, until there are no more new deriva-
tions possible. If all previous guesses were correct, then all newly derived values
(cells of the ground state) will be correct with probability 1. Otherwise, when
the IR block catches a contradiction the recursion makes a backward step. These
two steps are as follows.

A. Assume for one of the active equations its output symbol z; is already allo-
cated somewhere in the ground state. Le., the value S; '[z] is known, and
the second unknown S;[j;] can explicitly be derived via (3).

A contradiction is received if (a) S¢[j¢] is already allocated and it is not equal
to the derived value; (b) the derived value already exists at some other cell.

B. Just allocated values may give the value of S;[j;] in another equation. Con-
sequently, a new value S; ![z] can be derived via (3), which might possibly
cause a contradiction.

Figure 3 illustrates the process of the IR block. In that example we start
with specific values of ¢ and j, and also d = 5 cells of the state .S are filled with
certain values, whereas the remaining cells are unknown. This constraint allows
to collect w = 15 equations of the form (3). The keystream is given in the most
right column of the table.

The first iteration, in Figure 3(b), finds that z¢ = 4 and zs = —2 are already
allocated, thus solving equations 6 and 8 (s4 = 10,s9 = 5). Afterwards, given
sg = b, the IR block solves the equation 14 and successfully checks for a con-
tradiction, in Figure 3(c). Finally, after the step (e) four additional cells of the
state S were derived with probability 1.

The part of the state S; at time ¢, just before the swap-operation

i1 jis1]1 23 4 56 7 8 91011121314 15 16 17 18 19 20 ||S[i] S[j] =

1 8 [4-21 8 -451 52835485 S6 S7 Ss S9 S10 S11 S12 S13 S14 S15 || 4 s3 18
2 6 83 21 8 4 S1 S2 4 S4 S5 S S7 S8 S9 S10 S11 S12 S13 S14 S15 -2 S1 29
3 7 |s3s11 8 -4-2s2 4 s4 55 S¢ S7 S8 S9 S10 S11 S12 S13 S14 S15 1 s2 6
4 15 |s3s182 8 -4-2 1 4 s4 85 Se ST S8 S9 S10 S11 S12 S13 S14 S15 8 si10 16
5 11 [s3 81 82810-4-2 1 4 s4 85 S¢ S7 Sg S9 8 S11 S12 S13 S14 S15 -4 s¢ 5

6 9 83 81 S2 S10 Se 21 4 S4 S5 -4 S7 88 S9 8 S11 S12 S13 S14 S15 -2 Sq 4
7 10 83 81 S2 S10 S6 S4 1 4 -2 S5 -4 S7 S8 S9 8 S11 812 S13 S14 S15 1 S5 12
8 14 |s3 51 82 S10 S S4 S5 4 -2 1 -4 s7 sg S9g 8 S11 Si2 S13 S14 Si5 4 s9 -2
9 12 83 S1 S2 S10 S6 S4 S5 S9 21 -4 S7 S8 4 8 S11 S12 S13 S14 S15 -2 S7 21
10 13 |s3 1 52 S10 S6 S4 S5 S9 s7 1 -4 -2 sg 4 8 s11 512 513 S14 S15 1 ss 6
11 9 |s3 8182 810 S6 485 S9 S7s8 -4 -2 1 4 8 s11812813814 s15 ||4 s7 9
12 7 |83 81 82 S10 S6 S4 S5 Sg -4 sg s7 -2 1 4 8 s11 S12 S13 S14 S15 -2 s5 1
13 8 |s3 81 82 810 S6 S4 -2 Sg -4 sg s7 s5 1 4 8 s11 S12 S13 S14 S15 1 s9 10
14 12 83 S1 S2 S10 S6 Sa 21 -4 S8 S7 S5 S9 4 8 S11 S12 S13 S14 S15 4 S5 16
15 20 83 81 S2 S10 S6 S4 21 -4 S8 S7 4 S9 S5 8 S11 S12 S13 S14 S15 8 S15 17
16 7
SRSl = Slzlesz SIS = S[z]ww z SRS = Slz]l<—s z

S3 +40 °? 18 S5 +40 o? 18 S+=10 5 440 o? 18 Si=10

St 20 0? 29 St 20 0? 29 %75 St 20 0? 29 %75

Se +1o o? 6 So +1o o? 6 So +1o o? 6

S10 +8e °? 16 S0 +80 o? 16 S0 +80 o? 16

S6 40 o? 5 S6 4o 0? 5 S6 4o 0? 5

sS4 20 o? 4 10 2010 4.8 10 -20 8 4

S5 +1o o? 12 S5 +1o o? 12 S5 +1o o? 12

So +40 °? -2 5+4o<4L“9_@ 5+40) -2

Sy 20 o? 21 Sy -20 o? 21 S, 20 o? 21

S8 +1o °? 6 Ss +1o o? 6 Ss +1o o? 6

Sy 4o °? 9 S; 4o o? 9 S; 4o o? 9

S5 20 o? 1 S5 -2 o? 1 S5 -2 o? 1

So 1o °? 10 5410 0? 10 ®+ o0 421040 o contra-

S5 +40 °? 16 S5 +4o °? 16 S5 +4o °? '

Si5 +80 o? 17 Si15+80 o? 17 Si15+80 o? 17

(a) () (©

S8 = Slzlez SRSl = Slz]esz SGI+SlT = S[z]w z

S5 +40 o? 18 S+7I10 7 +4o~l o211 @ $4=10 7 +40 011 18 4710

St 20 o? 29 75 S 20 0? 29 75 S 20 0? 29 75

S+l 0? 6 =18 Se +lo 0? 6 %=18 So +1o 0? 6 %=18

510 +8 °? 16 510 +80 0?16 B/ [s0+8e——»? 16l %7

18 -40 18 I10) 18 -4 014 5 1840 014 5

10 -20 o8 4 10 -20 o8 4 10 -20 o8 4

S5 +lo o? 12 S +1o o? 12 Lss +1 ? 12|

5+40 °9 -2 5+40 °9 -2 SHtd4e 09 -2

S; 20 o? 21 Sy 20 o? 21 (S =20 _ ___o?_ _ 21

Ss +1o o? 6 Ss +1o o? 6 sg+lo _ _ _ __ °o? 6.

S 4o °? 9 S7 -4 °? 9 IS, 4e 0?9

S5 20 °? 1 S5 20 0? 1 5 20— o? 1]

5 +1le o6 10 5 +1e 06 10 5 +le 06 10

S5 +40 o? 16 S5 +40 0? 16 S5 +4o———0? 16

Si15+80 o? 17 Si5+80 o? 17 Si5+80 o? 17

Fig. 3. Example of the iterative reconstruction process.

Find and Guess the Maximum Clique (MC) Block If no more active
equations can explicitely be solved, one of St_l[zt]’s has to be guessed. The

Find and Guess the Maximum Clique block analyses given active equations and
chooses such an element to be guessed that gives the maximum number of new
derivations in consecutive recursive calls of the IR block.

A simple analysis is applied. Let a active equations in a graph representation
be vertices v:s. Two vertices vy and vy are connected if zpy = zpr or/and Sy [jy]
and Sy [jp] refer (like pointers) to the same cell of the ground state. A guess of
any unknown variable in any connected subgraph solves all equations involved
in that subgraph. Therefore, let us call these subgraphs by cliqgues. The MC
block searches for a maximum clique, and then guess one S; '[z] for one of the
equations belonging to the clique. Afterwards, the IR block is called recursively.

In Figure 3(f) the maximum clique is of size 4 equations with 5 unknowns. It
means that a guess of only one unknown reveals four other ones. Furthermore, the
space of possible guesses is singnificantly reduced due to the higher probability
of a contradiction to occur.

Window Expansion (WE) Block Obviously, the more equations we have the
faster the algorithm works. Therefore, a new equation is added to the system
as soon as the missing value S[i] in front or in back of the window is derived.
The Window Ezpansion block checks for this event and dynamically extends the
window. Sometimes several equations are added at once, especially on the leafs
of the recursion.

Guess One S[i] (GSi) Block If there are no active equations but the ground
state Sy is not yet fully determined, the window is then expanded by a direct
guess of S[i], in front or in back of the window. Then the WE, IR, MC blocks
continue to work as usual. Additional heuristics can be applied for choosing
which side of the window to be expanded for a larger success.

3 Precomputations: Finding Good Patterns

Assume at time ¢ the internal state of RC4 is compliant to a certain pattern. An
effectiveness of the new state recovering attack strongly depends on the prop-
erties of the pattern. If a pattern has a large window then it helps to decreases
the complexity of the algorithm efficiently. However, it is less probable for the
internal state to be compliant to a pattern with large number of conditions.

In this section we introduce various properties of patterns that influence on
the attack success, and also study their availability.

3.1 Generative States
Let us start with the following definition

Definition 1 (d-order pattern). A d-order pattern is a tuple

A:{i,j,P,V}, iajGZNa (5)

where P and V are two vectors from Zﬁl\, with pairwise distinct elements. At a
time t the internal state is said to be compliant with A if iy = i,j; = j, and
d cells of the state Sy with indices from P contain corresponding values from
V. O

The example in Figure 3 illustrates how a 5-order pattern allows to receive a
window of length 15. However, the higher the order, the less the probability of
such a constraint to happen. Therefore, we are interested in finding a low order
pattern which generates a long window.

Definition 2 (w-generative pattern). A pattern A is called w-generative if
for any internal state compliant with A the next w clockings allow us to derive
w equations of the form (3), i.e., consecutive w values of js are known. a

Table 1 demonstrates a 4-order 7-generative pattern A = {7, —8,{—6, —5, —4, 0},
{6,—1,2,—2}}, which supports the above definitions. Eight equations involve
symbols of the keystream z;11,..., 2115 associated with a certain time ¢. Here
and further we say the keystream is true if the internal state at time ¢ is
compliant with the pattern, otherwise we say the keystream is random.

Let another pattern B be derived from A as

B=A+r={i+7j+7,P+71,V}, (6)

for some “shift” 7. The pattern B is likely to be w-generative as well. This
happens when the properties of A are independent of IV, which is the usual case.

it | Jt S[’L] S[]] S[Z] +S[]] 2zt ||-6-5—-4-3-2-10 1 2 3 4 5
—7-8| — | — - — |6 =1 2 x1 2 3 —2 x4 T5 Tg T7 T8
—6|—2| 6 | x2 6+ 2 ¥ [lxg —1 2 1 6 X3 —2 x4 T5 Te T7 T8
—5|-3|—1]| x1 —14+x ¥ [lxg 1 2 —1 6 x3 —2 x4 T5 Te T7 T8
—4|—1| 2 | x3 24+ x3 * ||r2 1 3 —1 6 2 —2 x4 x5 Te T7 T8
—3|-2|—1 6 5 T8 (|2 X1 X3 6 —1 2 —2 X4 5 Te 7 T8
—2|-3|—1 6 5 g (|2 X1 X3 -1 6 2 =2 X4 Ts5 Te 7 T
—1|-1] 2 2 4 x7||lxe 1 x3 —1 6 2 —2 x4 T5 T6 T7 T8
0|-3[—-2|-1 -3 -2 T2 X1 X3 -2 6 2 —1 X4 5 Te 7 T8
1| x| xq]| * * *

Table 1. An example of a 4-state 7-generative pattern.

3.2 Availability

We have done a set of simulations in order to find mazimum w-generative d-
order patterns (denoted by 9(,); see Table 7(a) for the results. Searching for a
high order pattern is a challenging task since the computation complexity grows
exponentially with d, and the best result achieved in our work is a 14-order
76-generative pattern J4(, .

Real values from our simulations Approximated values
d= 123 4 5 6 7 8 9 10111213 14|[151617 18 19 20 21
Wnax =6 10 15 21 27 31 37 42 50 55 61 68 76||82 88 94 100 106 112 118

Table 2. Dependency of the maximum w from d, simulated and approximated values.

Table 2 shows the dependency of a maximum achievable generativeness wyayx
from the order d. One may note that this dependency is almost linear, and it
converges to Wyay = 6d + A as d — oo. Let us make the following conjecture.

“mr 6 as d — oo. |

Congecture 1. We conjecture that the rate of

Indeed, the "jump" of wyax as d increments by one is the sequence {4,5,6,6,4,6,5,8,5,6,7,8,. . .}.
Obviously, for small ds this "jump" is small, and it is notable that the "jump"
increases for larger ds. In our simulations we used heuristics (see Section 3.3)
when searching patterns for d > 6, this means that that "jump" is possibly even
larger at the sequence since our patterns found by heuristics are not optimal.
This shows that the ratio w — 6d as d — oo seems quite a fair conjecture.

This conjecture allows us to make a prediction about certain parameters for
patterns with large ds, which we actually could not find due to a very high
precomputation complexity, but they are needed for the attack for large Ns
(N = 128,256). Given those parameters (d and w) one can derive theoretical
complexity of the attack in average, and it has been done in our work as well
(see Appendix A).

357 :
—— d=7
—=— d=6

S30 e d=5 /—M—

g sl —— d=4

:325 —— d=3

E [d=2

%20r

g

15

5

Fig. 4. Dependency of the maximum w from ¢ for various d.

As it can be seen from Table 7 all found “good” patterns have Vs with
the values from a short interval Is = [—d... + 4], where § ~ 10...25 is quite

conservative. Figure 4 illustrates the dependency of the maximum achievable w
from 4, and this allows us to make another conjecture.

Congecture 2. A pattern with the largest w is likely found among all possible
combinations for i = 0,5 € I5,V € I¢, with a moderate value of § < N. a

This conjecture is the basis for a significant improvement in searching tech-
nique of such patterns (see Section 3.3). Table 3 provides the number of patterns
for 6 = 15, and various values of d and w. When d and ¢ are fixed, the amount
of desired patterns can exponentially be increased by letting w to be slightly less
than wyax, and this can help to find patterns with additional properties which
we will introduce in further sections.

d The number of patterns Ay when § = 15.

l w—|15141312 11 10 9 8 7 6

4 #{As} —|1 3 10 26 226 863 5234 21702 114563 853012
w—|212019 18 17 16 15 14 13 12

5 #{As} —|1 4 6 15 66 252 652 1879 6832 27202
w —|27 262524 23 22 21 20 19 18

6 #{Ac} —|1 2 7 42 81 177 371 799 2646 10159

Table 3. The number of different constrains for specific d and w, when § = 15.

3.3 Searching Technique

Since the searching space for a d-order pattern grows exponentially, only patterns
of order d < 6 were analysed before in various literature. In this section we
suggest a few techniques that accelerate the search significantly, and allow to
search and analyse patterns of order up to d < 15, approximately, on a usual
desktop PC.

The first idea is to set i = 0 due to (6), and for the remaining variables only
a small set of values I; with some § should be tested due to Conjecture 2.

A straightforward approach would be to allocate d values in a vector S
and then to check the desired properties of the pattern. Its time complexity

is O ((1(\1/)(‘1(}5‘)|I5|)7 which is still very large. However, our second idea is to

allocate a new element in S only when it is necessary.

The diagram of the recursive algorithm exploiting the first two ideas is shown
in Figure 5, but it can be improved with the following heuristic. The third idea
is to start searching for a desired pattern somewhere in the middle of its future
window. Let us split d into dsyq + dpacx and then start the algorithm in Figure 5
allowed to allocate exactly deqq cells of S. At the point (%) the current length of
the window w is compared with some threshold wepe. If w > wene, then a similar
recursive algorithm starts, but it goes backward and allocates remaining dpacx
cells of S. This double-recursion results in a pattern with w likely to be close to
the maximum possible length of the window.

=0

Loop for j € Is

@) J+=S[il
ST, Sl
Check the pro- swap(S[il, S
perties of the .
state (w, b, ...) recursion forward
and output if Loop for S[i] € Is
it is "good".

recursion backward

L—

Fig. 5. Recursive algorithm for searching patterns with large w.

4 Detection of Patterns in the Keystream

In the previous section we have studied properties of a pattern that are desirable
for the state recovering algorithm to work fast and efficient. We have also shown
how these patterns can be found, and introduced an efficient searching algorithm.

In this section we show how the internal state of RC4, compliant to a chosen
pattern, can be detected by observing the keystream. If that detection is very
good, then the number of executions of the state recovering algorithm can be as
small as just once, but at the right place of the keystream.

The detection mechanism itself can be trivial (no detection at all), in which
case the algorithm has to be run at every position of the keystream. A good
detection may require a deep analysis of the keystream, where specific properties
of the pattern can be used efficiently.

4.1 First Level of Analysis

The internal state of RC4 compliant to a d-order pattern A can be regarded as
an internal event with probability

Pr{Ei} = N1 (7)

When the internal event happenes, there could exist an external event Feyy
observed in the keystream, and associated with the pattern A, i.e., Pr{Eeyt|Fint } =
1. Applying the Bayes’ law one can derive

PI’{Eint}

Paet = Pr{Fint|Fext} = m7
ext

(8)

and this is precisely the detection probability of the pattern A in the keystream.
Our goal in this section is to study possible external events with high Pyet in
order to increase the detection of the pattern.

Definition 3 (I-definitive pattern). A w-generative pattern A is called -
definitive if there are exactly I out of w equations with determined S[j]s. ad

It means that in [equations S[i]+ S[j] is known. If, additionally, 2/ = S[S[i]+
S[j]] is also known, then the correct value of z; = 2z’ at the right place ¢ of the
keystream z detects the case “the state at time t is possibly compliant to the
pattern”. Otherwise, when z; # 2/, it says that “the state at time t cannot be
compliant to the pattern”.

For detection purposes a large I (up to d) is important. From our experiments
we found that, however, it can be achieved via a slight reduction of the parameter
w, and it leads us to one more conjecture.

Congecture 8. For any d and w = wyay — A there exist a pattern with | = d,
where A is relatively small. a

Table 6(a) contains patterns Xs with | = d where w is still large, which
supports the above conjecture.

Definition 4 (by, bg, bv-aﬂﬂpredictive pattern). Let us have an l-definitive
pattern A and we consider only those equations where S[j|s are determined.
Then, the pattern A is called by, -*predictive if for b, of the | equations S[S[i]+
S[j]] is determined. For the remaining l —b,, equations two additional definitions
are as follows. The pattern A is called bs-° predictive if for b pairs of the | —b,,
equations the unknowns S[S[i|+S[j]]s must be the same. The set of bg pairs must
be of full rank. The pattern A is called b,-"predictive if the | — b, equations
contain ezxactly b., different variables of S[S[i] + S[j]]. O

These types of predictiveness are other properties of a pattern visible in the
keystream. For example, it is not only necessary to search for known 2’ values (b,
of such), but one can also require that certain pairs of the keystream symbols (bg
of such) are equal zy = 2+, which also helps to detect the pattern significantly.

The parameter b, is usually quite moderate, to have it larger than 15 is quite
difficult. However, the other criteria are more flexible and can be large. These
new parameters follow the constraint

bo +bg+by=1<d. 9)

Consider the remaining w — [equations of the pattern A where S[j]s are not
determined. Let at times t; and ¢ one pair of these equations be such that the
values S[iJs and the pointers S[j]s are equal. If the distance A; = to —t; is small,
it is likely that the output z; is the same as zo. The probability of this event is

Priz = 20| Ar} > (1 _ %) - (1 _ %)A exp (-%Af) . (10)

Definition 5 (bs-’predictive pattern). A pattern A is called by-? predictive
if the number of such pairs (described above) is by. Let the time distances of these
pairs be Ay, ..., Ay,, then the cumulative distance is the sum Iy = X;A; O

These four types of predictiveness are direct external events for a pattern.
One should observe the keystream and search for certain b, symbols, check
another bg and by pairs of symbols that they are equal, and also check that a
group of b, symbols are different from the values of V' and from each other.
Thus, we have

(N —d)!
Nb (N —d —b,y)! (11)
Pr{Fin} ~ N—d-1. g=2le/N

Pr{Fuss} = N0o et

The example in Table 1 is a 4-definitive b, = 1,bg = 1,b, = 2,by = 0-
predictive pattern. For detection one has to test that z;16 = —2, 2,43 = 2114, and
Zt+4, Zt+5 are different from the initial values at V' and 2444 # 2z¢45. Le., when,

for example, N = 64, the detection probability is 6475 = (6472 - 60 - 59/64%) ~
64—2.96 2'

4.2 Second Level of Analysis

In fact, the first level of analysis allows to detect a pattern with probability at
most N~! (because of j is not detectable), whereas with the second level of
analysis it can be 1. Let us introduce the technique that we called a chain of
patterns.

Definition 6 (chain of patterns A — B, distance, intersection). Let us
have two patterns A = {ia, ja, Pa, Va} and B = {ip, jb, Py, Vo }. An event when
two patterns appear in the keystream within the shortest possible time distance
o is called chain of patterns, and denoted as A — B if B appears after A.

The chain distance o between two patterns A and B is the shortest possible
time between A’s ending and B’ beginning of their windows, i.e.,

o =1ip— (i + wg) mod N. (12)

The intersection of A and B is the number £ of positions in A that are
reused in B. These positions must not appear as S[i| during o clockings while
the chain distance between A and B is approached. O

For example, let A = {0,0,{1,3,5,6,7,8,22,23},{2,8,-3,—2,1,7,4,—9}}
and B = {34, 34, {35, 36,37, 38,39, 44, 48,52}, {8, -2, 1, 2,4, -5, 5, 3} }. After w, =
30 clockings the first pattern becomes A’ = {30, 28, {15, 28, 30, 35, 36, 37, 38, 39},
{-3,-9,7,8,-2,1,2,4}}. Obviously, the last £ = 5 positions can be reused in

2 Since 7-predictiveness has a minor influence on detection, further we skip this pa-
rameter in calculations.

B, and after 0 = 4 clockings a new pattern B (w, = 34) can appear if jiy34 = Jp.
The probability of the chain A — B to appear is N~ - N~%, times the prob-
ability that 5 elements from A’ are in place during 4 clockings, and it is much
larger than the trivial N~ - N=9. Thus, a more general theorem can be stated.

Theorem 1 (chain probability). The probability of a chain A — B to appear
18

PA_,B = PI‘{Eint} ~ Nﬁ<da+db+27€) . 672(HHQ+H%)/N . 675. (13)

Proof. In [Man01] it has been shown that & elements stay in place during N

clockings with an approzimate probability e=¢. The remaining part comes from

an assumption that the internal state is random, from where the proof follows.
O

Obviously, the probability of the external event for the chain is
Pr{Eext} — N*(banrbﬁaersa,)*(bwarbﬁbereh) (14)

which can be smaller than Pr{Ein} (see P, in Table 6), confusing the equa-
tion (8). This happens since Pr{Ee: } is calculated assuming that the keystream
is random. However, in real RC4 only a portion of the observed external proba-
bility space can appear (which is another source for a distinguishing attack, but
it is out of scope of this paper). Therefore, in case when Pr{Fey} < Pr{Ein}
we simply assume that the detection probability is 1.

Table 6 presents only several examples with a good trade-off (based on our
intuition) between w and detectability for various d. Since the computation time
for searching such patterns with multiple desired properties is really huge, only
a few examples for small ds were given. However, we believe that for large ds it
is possible to detect such patterns with a high probability, up to 1, applying two
proposed levels of analysis.

5 Complete State Recovering Attack on RC4

5.1 Attack Scenario and Total Complexity

Recall pattern detection techniques from Section 4. In the complete attack sce-
nario an adversary analyses the keystream at every time ¢, and applies the state
recovering algorithm if the desired internal event (pattern) is detected. In all
cases except one the recovering algorithm deals with a random keystream.

Proposition 1 (Total Attack Complexities). Let the detection probability
be Paes, then the total time Cr and data Cp complexities of the attack are

CT = PI‘{Eint}il + (Pd_efl: - 1) : CRand + 1- CTruea

Cp = Pr{Ein} " (15)

O

5.2 Swuccess Rate of the Attack

The complexities Crrye and Crangon are upper bounds for the average time the
algorithm works. It means that for some cases it could take more time than these
bounds. In order to guarantee the upper bound of the total (not average) time
complexity one can terminate the algorithm after, for example, Cyy, operations
are done. In this case the success rate of the attack can be determined.

0.07} I SR
0.06/-
. ~08
~= ~
005 ~
Il \/0 6
00.04] ol
=} =
& & /
0.03f Q /
9—/ 0.4
[—
P00t A
0.2F
0.01F k
0 ‘ ‘ ‘ ‘ ‘ ‘ 0 i ‘ ‘ ‘ ‘
0 5 10 15, 25 30 35 0 5 10 15, 2 2 30 35

Fig. 6. Probability density (left) and cumulative (right) functions of the time Crrye in
the logarithmical form (k = logy Crrue). The scenario is N = 64, 4/1{8, 2000 samples.

Figure 6 shows density and cumulative functions for the time complexity
of an example attack scenario. It shows that around 98% of all simulations of
the attack have time smaller than the average 229-2® (vertical line). When the
keystream is random the termination makes the average time bound Crandgon €ven
smaller, since the random case is likely to be repeated very many times and the
second term in (15) can only decrease.

The plots in Figure 6 also show that even if the termination of the algorithm
is done on the level Cipy = /Crrpe (= 21°), the success rate of the algorithm
is still very high. L.e., the state recovering algorithm on RC4-64 can be done in
time 2'5 with success probability 35%! If a similar situation happens for large
Ns (N = 256, etc), then the full time complexity can be significantly decreased
(perhaps, down to a square root of the estimated average complexity), and the
success probability can still be very large.

6 Simulation Results and Conclusions

We have selected a set of test cases with various parameters and patters, and
derived total data and time complexities of the new attack. Table 4 presents the
results of this work. For example, when N = 64, the total complexity of the new
attack is upper bounded by 29°, if the pattern X, is used. This is much faster

than, for example, Knudsen’s attack whose complexity for this case is 2326,
Even if d = 9 elements of the state are known, Knudsen’s attack needs 298!
of time, which is still much higher. The complexity of a potential (not really
working) attack recently discussed by I. Mantin in [Man05] is also higher. As
it was shown in Section 5.2, the success rate of the new attack is at least 98%,
and further we simply assume it is close to 100%.

N N =64 N =100 N =128 N =160 N =200 N = 256

Cases| 1 [Il [II|[IV][V || VI [VI |[[VII] IX || X [XI || XII | XIII

Descriptions of the cases (x — are hypothetical cases)

Pattern|| MW, | Dy | Xo [Xiy [W5 || Vs * e, * M, * n, *
8 8 9 11 13 14 17 14 18 14 23 14 29
w|| 37 | 29 | 41 49 68 76 92 76 102 76 132 76 168

l| 6 6 5 11 9 10 10 10 10 10 14 10 17
ba|| O 4 4 9 0 10 0 11 0 10 0 11
bg|| 1 1 0 0 2 2 0 2 0 2 2 2 4
by|| 5 1 1 2 7 8 0 8 0 8 2 8 2
be|| 0 0 2 0 2 2 0 2 7 2 4 2 12
|| 0 0 4 0 4 4 0 4 - 4 - 4 -

Internal/external /detection probabilities

Pint |[-54.0{-65.8-60.0{|-79.7[-93.0||-105.0|-112.0{|-109.8|-139.1||-114.7(-183.5||-120.0|-240.0
Pext|| -6.0 {-60.0]-36.0{|-59.8-26.6 || -28.0 | -70.0 || -29.3 |-131.8]| -30.6 |-122.3|| -32.0 |-216.0
Paet ||-48.0| -5.8 |-24.0(|-19.9|-66.4|| -77.0 | -42.0 || -80.5 | -7.3 || -84.1 | -61.2 || -88.0 | -24.0

Complexities of the state recovering algorithm
when the keystream is true/random

3 Theor. || 20.5 | 58.2 {22.8 ||107.8| 10.0 || 71.3 | 71.7 || 191.1 |131.7 || 317.4 |121.3 || 507.4 | 217.1
<& Attun.|| 15.5 | 57.8 107.5 66.3 179.2 302.6 491.8
. Theor. || 35.0 | 64.9 [30.9/120.4| 34.5 || 94.7 |102.0 || 213.0 {138.2 || 335.6 | 157.5 || 519.6 | 225.4
& Attun.|| 30.3 | 57.6 108.3| 31.8 || 85.5 185.1 309.9 501.8
© Reall| 29.9] - | - || - |29.1| - | - - | - - | - - | -
Total data/time complexity, and the comparison
with previous attacks
& " Ck(0) 132.6 236.6 324.8 431.4 572.0 779.7
= L
g § Ck(d) 101.7‘101.7‘98.1 189.3‘181.0 261.3 [256.9 || 364.6 | 346.1 || 501.9 | 458.2 || 705.9 | 629.3
Mantin’s po- 73 114 147 186 243 290
tential attack
-4 Cp|| 54.0 | 54.0 [60.0(| 79.8 |{93.0(/105.0 {112.0|| 109.8 |139.1|/114.7 |183.4|| 120.0 |240.0
-
3% Cr|| 63.5 | 63.4 |60.0|/127.4/93.1 || 143.4 [113.7|| 271.7 [140.4|| 386.7 |184.0| 579.8 |241.7

Table 4. Simulation results and comparisons with previous attacks.

Table 4 also contains intermediate probabilities and complexities of the at-
tack, including theoretical (A = 0) and attuned (A = 2) values for Crana and
Crrue- When it was possible, the real attack on a true keystream was simulated
(real complexities for Crpye are shown in italic). In these simulations the complete

3 In Mantin’s attack they detect a large number of bytes of the state, and then apply
Knudsen’s attack given those bytes. However, to make these knowns to reduce the
attack complexity they must be located in a short window all together, and this is
not the case.

state of RC4 was successfully recovered for every randomly generated keystream
compliant with the corresponding pattern.

For larger Ns patterns of a high order are needed to receive an attack of a low
complexity. The largest pattern that we could find in this work is J4(, ,, and it was
applied to attack RC4-N with N = 128,160, 200, 256. These attack scenarios are
those that we have in our hands already. However, the complexities received are
not optimal, but they are still lower than in Knudsen’s attack. Conjecture 1 and
also discussions in Section 4 make it possible to approximate the parameters of a
hypothetical pattern that is likely to exist (x — patterns). To be secure, we relate
d and w as w = 6d — 6, with a confidence gap of 6 positions. The remaining
parameters were chosen moderate as well. As the result, we obtained an attack
on RC4-256 with the (upper bounded) total complexity of 22417, and this is the
best state recovering attack known to the moment.

In general, we have noted the following tendency. For RC4-N with a secret
key of length N bits or longer, the new attack can recover the internal state
much faster than an exhaustive search. This observation can also be seen from
the results in Table 4.

As the last point of the discussions we should mention the existance of var-
ious papers which deal with a recovering of the secret key conditioned that the
internal state of RC4 is known (initialisation of RC4 is not one-way). This part is
significantly faster than any of the the state recovering algorithm, and, therefore,
we just refer to these papers [MS01,Man01,PMO07].

7 Further Improvements and Open Problems

Pattern detection improvements. With a chain of patterns described in Section 4
one could reach a good detection. However, not only forward direction of chaining
can be considered, but also backward one. Additionally, there is a possibility to
analyse longer sequences of patterns in order to have a good detectability.

Another idea is to use unusual recyclable patterns in a similar manner as
in [Man05]. The difference is that these patterns are both recyclable and have a
long window. For example, A = {0, -4, {6,4,1,5,3},{0,1,7, -2, —1}}.

State recovering algorithm improvement. The GSi block can choose the corner
(left or right) of the window to be extended by an additional heuristic analysis of
the current situation during the process. Another improvement is achieved if the
MC block could speculatively run the recursion for additional 1-3 extra forward
steps for every possible guess, and, afterwards, make such a guess for which the
number of sub branches is the minimum. The average time of the attack for this
strategy is reduced.

Derivation and statistics. Our investigation showed that the derived theoret-
ical upper bound gives a much larger complexity than the one received from the
real simulations of the attack. Obviously, a better analysis of the algorithm’s
complexity is needed, this would allow to estimate total complexities more ac-
curate, and it might improve the complexities in Table 4 significantly. Another

interesting problem is to determine the density function of the recovering al-
gorithm, likewise in Figure 6. This may allow us to decrease the complexity in
square root times, and still the success rate will be very high.

Other open problems. The search for patterns of a higher order with long win-
dows is another challeging open question. We have shown that there are chains
of patterns with short distances. The first pattern is used for the recovering algo-
rithm, and the second one is for detection. However, here is another interesting
question whether the second pattern can also be used in the recovering algorithm
or not.

We believe that the outlined open problems have a huge potential for reducing
the complexity of the attack on RCY. Perhaps, very soon we will be witnessing
an attack of complexity lower than 2'2% on the full RC4-256.

References

[FM00] S. R. Fluhrer and D. A. McGrew. Statistical analysis of the alleged RC4
keystream generator. In B. Schneier, editor, Fast Software Encryption 2000,
volume 1978 of Lecture Notes in Computer Science, pages 19-30. Springer-
Verlag, 2000.

[Gol97] J. Dj. Goli¢. Linear statistical weakness of alleged RC4 keystream generator.
In W. Fumy, editor, Advances in Cryptology—EUROCRYPT’97, volume
1233 of Lecture Notes in Computer Science, pages 226—238. Springer-Verlag,
1997.

[KMP*98] L. R. Knudsen, W. Meier, B. Preneel, V. Rijmen, and S. Verdoolaege. Anal-
ysis methods for (alleged) RC4. In K. Ohta and D. Pei, editors, Advances in
Cryptology—ASIACRYPT’98, volume 1998 of Lecture Notes in Computer
Science, pages 327-341. Springer-Verlag, 1998.

[Man01] I. Mantin. Analysis of the stream cipher RC4. Master’s thesis, The Weiz-
mann Institute of Science, Department of Applied Math and Computer
Science, Rehovot 76100, Israel., 2001.

[Man05] I. Mantin. Predicting and distinguishing attacks on RC4 keystream gener-
ator. In R. Cramer, editor, Advances in Cryptology—EUROCRYPT 2005,
volume 3494 of Lecture Notes in Computer Science, pages 491-506, 2005.

[Max05] A. Maximov. Two linear distinguishing attacks on VMPC and RC4A and
weakness of RC4 family of stream ciphers. In H. Gilbert and H. Handschuh,
editors, Fast Software Encryption 2005, volume 3557 of Lecture Notes in
Computer Science, pages 342-358. Springer-Verlag, 2005.

[MSO01] I. Mantin and A. Shamir. Practical attack on broadcast RC4. In M. Matsui,
editor, Fast Software Encryption 2001, volume 2355 of Lecture Notes in
Computer Science, pages 152—-164. Springer-Verlag, 2001.

[MT98] S. Mister and S. E. Tavares. Cryptanalysis of RC4-like ciphers. In Selected
Areas in Cryptography—SAC 1998, Lecture Notes in Computer Science,
pages 131-143, 1998.

[PMO07] G. Paul and S. Maitra. Rc4 state information at any stage reveals the
secret key. Available at http://eprint.iacr.org/2007/208 (accessed January
10, 2008), 2007.

[PP04] S. Paul and B. Preneel. A new weakness in the RC4 keystream generator
and an approach to improve the security of the cipher. In B. Roy and

W. Meier, editors, Fast Software Encryption 2004, volume 3017 of Lecture
Notes in Computer Science, pages 245—259. Springer-Verlag, 2004.

[Sma03] N. Smart. Cryptography: An Introduction. McGraw-Hill Education, 2003.
ISBN 0-077-09987-7.

A Complexity Analysis of the Recovering Attack

Since for large inputs it is not always possible to make real simulations of the new
recovering attack, one is interested in a theoretical upper bound of its complexity.
In this section we explain how this complexity can be derived, verified and used.

A.1 Tool for Simulations and Analysis

The new recovering algorithm is a recursion as shown in Figure 7(a). The nodes
are IR and WE blocks, whereas each branch is initiated by MC or GSi blocks.
A branch is terminated when a contradiction occurs, and only one path leads to
the correct solution, where the internal state is successfully recovered.

We measure the complexity of the attack as the number of branches, i.e., the
number of guesses in the MC and GSi blocks done.

2 |

Part-1

3 (3] e
% . 3 art-2
SI/NCHEE
)

\ © ©/) Q Q
@ start — @@
@ finish Cx(1h) (©x(1h) Cx(L)
(© contradiction Part-3

(a) (b)

Fig. 7. (a) Attack as a recursion; (b) Three parts of the tool for simulations.

Let us introduce a three-parts tool, shown in Figure 7(b), in order to calculate
the complexity of the attack when a certain pattern is given. The description of

these parts is the following.

In the first part the simulation of the attack with a certain pattern is launched
(all four blocks, IR, WE, MC, GSi, are working), and the number of branches is
counted. Whenever the depth of the recursion becomes Ay, some precomputed
function for the complexity of the remaining subtree is called, and the recursion
makes a backward step.

The second part is a precomputed pattern-independent upper bound of the
average complexity, when the status of the recursion can be described as the
number of already allocated cells L and the number of active equations a.

The third part is Knudsen’s attack complexity accepted as an upper bound
for the algorithm on the leafs of the recursion, in order to avoid analysis of WE.

To receive theoretical complexity using this tool one should run the simula-
tions for a sufficient number of times, and then take an average of the results.
The exact complexity is received when Agy, = 00, in this case the tool works the
same time as the targeting complexity. On the other hand, when Ay, = 0, the
upper bound of the complexity is received immediately. The reason to introduce
Anre and the three parts of the tool will be explained later.

A.2 Assumptions

We will derive the precomputed pattern-independent upper bound of the average
complexity under the following assumptions.
Assume that the algorithm first [(Logarithms of the complezities)

processes all given w equations of the Random z True z
kind (3) with two unknowns in each, | Patrn. [WE off [WE on [WE off [WE on
and then Knudsen’s attack is applied Agpr =00, N =25,d=4,w =09,
to the remaining part of the recursion | all Si[j:] are different. # of tests is > 500.
(see in the right table on the columns Ay | 1587 | 1425 1 16.33 | 15.09
with WE on and Off). Ao 15.24 | 14.02 | 16.30 | 14.38
Assume that in all given w equa- Ag | 1489 1448 1 16.00 | 14.80
tions the values S;[j;] refer to differ- Lo | 1951 1418 1638 1 14.44
. A s 15.20 | 12.97 | 15.87 | 12.57
ent unknowns. This makes the attack A 14.98 | 12.02 | 15.50 | 11.66

to work slower since in the MC block Avergge 15.32 | 13.86 | 16.09 | 14.24
the maximum clique can, therefore, be A —co. N =25.d=4,w =0, at least

constructed only via symbols of the two St[ji] coincide. # of tests is > 5000.
keystream. Table on the right shows &, 7.41 7.95 | 13.08 | 13.49

that for this assumption the complex- B, 5.08 | 3.71 | 13.42 | 12.03
ity of the attack is larger. 35 4.62 | 3.67 | 13.30 | 12.00

Assume that the keystream is ran- B, 4.84 | 443 | 10.28 | 10.06
dom, which is reasonable since the real %5 3.41 3.72 1 1142 | 1221
iziiz;al state is unknown to an at- @i ;2? iég ﬁ(l)g ggg

Average| 5.37 5.60 | 1248 | 12.54
Assumptions make the algorithm
slower and bound the real complexity.

We have selected several patterns
with similar properties, d = 4,w = 9
(A_s and Bs from Table 7). One half
of them have different St[j:]s, and the
other half contains pairs of equal S[ji]s. Afterwards, the complexities of the

attack are estimated (Awmy = 0o, N = 25) when the keystream is random/true,
and WE is on/off. The results clearly show that the complexities under our
assumptions are upper bounds.

A.3 Average Complexity Derivations

g Cuc(L; Q; Gnax) s C(L;l;a; guax)

Fig. 8. Schematical four cases supporting derivations of the attack complexity.

In this section a precomputed pattern-independent upper bound of the average
complezity is derived under the assumptions as proposed above. In all formulas
the following meaning of variables is accepted: a is the number of active (not yet
processed) equations of the form (3); L is the number of known and previously
assigned cells of the state, and no single z; from the active equations can be one
of the L values; [is the number of recently (just) assigned cells of the state, and
zs from active equations could possibly be one of the [values; guay is the size of
the maximum possible clique that can be found in the MC block.

Every step of the recursion has a complexity to which we will refer as: Cx(L)
— is the complexity of Knudsen’s attack, given that L cells of the internal state

are known, and it can be precomputed as in [KMPT98|; Cuc(L; a; gnax) — is the
complexity of the MC block; C$2(L; I; a; quax) — is the complexity of one iteration
of the IR block that starts with L known and [new values, and ends with another
set of new values of some size 0; Cti(L;1; a; guax) — the same as C3%, but for one
of the equations the value of S[j] is known; C%(L; a; guax) — the complexity of
the case when IR returns none of new assignments, but for one equation S[j] is
known, i.e., the IR block makes an iteration of a different sort in this case.

Supplementary Formulas When L cells of Sy are already known and § new
assignments are performed one-by-one, the probability of no contradiction will
appear is

(N — L)!

Pellid) =y~ —gywe

when 0 <L+6<N. (16)

Let M(r;a;q) be the number of possible keystream sequences of length a,
where each symbol can have one out of r values, and the maximum possible size
of a clique is g. The value of M can recursively be calculated as *

=0 q < a, (17)
M(r;0;0) =1, where 1 <¢t<N.

q
1<a,t<N
M(T;a;Q)ZZ(?)M(T—l;a—i;q), where { =®E=

Complexity C2(L;l; a; gnax) The probability that in one iteration § out of a

equations will be solved is

Pao(L;1; a5 65 Gnax) = <a> MU0 Guae) - MUN = L = 50 = o)

J M(N — L; a; Gnax) ’

18
{OSL+l+aSN, (18)
when

0<édé<a.

In these d equations z; must be one of the [values and they must give § new
values S¢[ji], since, otherwise, they would have been found before. For each of
the ¢ equations S|z is allocated somewhere, therefore, a new value Si[j:] =
S; 'z — Sifig] can be derived. The number of active equations is evidently

* One should start with a loop for t = 1 — N, and then a loop for a = 1 — N, and
then calculate the corresponding subtable.

reduced by d. The total complexity of C2 is recursively expressed as
a—1
CHR(L; 1305 Guax) = Y Pao(L; 13 65 6 Gua) - Pe(L +1;.6) - C1(L + 1565 0. — 6 uax)
6=1
+ Pao(L; 15 45 @5 Gnax) - Pe(L +1;a) - Cx(L 41+ a)

0<L+I+a<N,

L;l;a;0; max - Cwe(L l’ ’ h
+7DAO(3654595 G,) MC(+ a) when {1§qmaxga‘a

C1r(L;1;0;0) = Ck(L +1), when L+1 < N.
(19)

Complexity Cyuc(L; a3 @nax) The probability of a maximum clique of size ¢ to
appear is
Puc(L; a; gmax; q) =
M(N — L;a;q) — M(N — L;a;q — 1) {1§L+LLSN, (20)
, where

M(N—L;a;qmax) lgngmaxéav

with a boundary case Pyc(L; 0;0;0) = 1. The parameter gqay tells that in the re-
maining active equations no cliques of size more than gya, exist, since, otherwise,
it would have been found on a previous call of the MC block.

Consider the unknown z = S; [z from the clique that has to be guessed
as one of the N — L remaining values. The choice of z is in principal one of the
following three options. (a) x is one of the j;s and the equation associated with
time ¢ belongs to the clique. It happens in ¢ choices and results in ¢ — 1 new
values. An additional contradiction test should be included: S¢[it] + z¢ must be
equal to S; *[z] (= x). (b) x is one of the j;s and the equation associated with
time ¢t does not belong to the clique. It happens in a — ¢ choices and results in
¢ + 1 new values. (¢) In the remaining N — L — a choices ¢ new values of the
state are obtained.

Finally, the MC block is the only the block where the complexity is summa-
rized. Thus, its total complexity is

Gnax
CMC(L§ a; Qmax) = (N - L) + Z,PMC(L; @5 Gmax; Q) : [
———

] =1
complexity a

1
+ ¢ - = PdL+1;g-1)-CH(L+ 19— 1l;a—qq)
~—~ N
q branches 27‘,
t = Jt—1 . (21)
+ (a—q) Pe(L+15q) - Crg (L + 1550 — ¢;q)

a — q branches
+ (N—L-a) PdL+1;9)-CR(IL+1¢a-qq)|,
~———

remaining branches

when 1< L+a<N, and 1< quax < a.

Complexity C2:(L;l; a;gnax) This case is similar to that of Cfg, although
there are two subcases with respect to the number of processed equations.

a—1
a—1 M(l;(s;Qmax)'M(N_L_l;a_(s;Qmax)
O (L 105 Goax) = Y (5) M Lo
6:0) 3 4max

probability of processing § equations, except “special” one

CR(L + 1+ 0;a — & gnax), 5=0,a—1}

X Pc L+l,5 .
() {C?é(L+l;5;a—5;qmax), otherwise

+a_1 a—1\ M6+ 1; guag) - M(N — L — ;0 — 8 — 1 Gua)
=~ K M(N_L;a;qmax)'

probability of processing 6 + 1 equations, including “special” one
Cuc(L + 150 — 15 gnax), §=0
Po(L+1;0)- { Cx(L+1+a—1), S=a—1%,
CR(L+1;6;0— 6 —1; guax), otherwise

1
N
(22)

where by a “special” equation we call the one for which the value of S[j] is known.

Complexity C7,(L; a; guax) This is the IR block where one equation (associ-
ated with time t) has S;[j:] known. There could be three cases similar to Cyc.
However, these cases are not chosen by us likewise in MC, but rather one of
them appears with some probability. The probability that the value z; is in the
clique of size ¢ + 1 is

a_1>(N_L)'M(N_L_1;a_q_1;Qmax)’ (23)

L;a; max; =
PAl(;a5 G q) (q M(N_L§G;Qmax)

and the targeting complexity is

Gnax—1
C?R(L;G;Qmax) - Z ,PAI(L;C“(]maX;q) X |:
q=0
1
% N "PC(L+1;q_1)'C£I({)(L+17q_]-aa_q_]-anax)
~— ~—

S~1[z] No contra-

is one diction in
of the ¢ the clique
of size ¢
a—g-1 . Al o .
+ N 'PC(L+17q)'CIR(L+17q7a_q_17qmax)
N—-L—-a+1
— N 'Pc(L+1;CJ)-Cfé’(LJrl;q;a—q—l;qmax)]

(24)

A.4 How to Apply the Complexities?

When the pattern is known and A, # 0, the complexity function should be
applied at the point where the MC block is called. In this case Cyc(L; a; ¢nax)
is added to the total complexity counter, where L and a are known, and ¢pax
is the size of the maximum clique that had been previously found during the
simulation.

When the pattern is unknown (Agny = 0) but its parameters d, w, [, by, bg, by, bg
are given, the upper bound of the total complexity is calculated as

Crana < Pe(d,by) - C13(0;5d + by;w — 1 — bg;w — 1 — bg), for random keystream,
Crrve < Cra*(by; dyw — 13 1), for true keystream,
(25)

where C2* is the same as Cfy except that the first call of the IR block may not
have contradictions °.

A.5 Restricted Verification Tests on Random Keystream

A set of patterns for restricted verification tests were chosen such that practical
simulations of the attack would have as close conditions to the assumptions in
Section A.2 as possible. We set Ay = 0, Ck(L) = 0, switch off the WE and GSi
blocks, take patterns with b, = bg = 0, and test them on a random keystream.

(Logarithms of the complezities)
Tests show that theoretical complexities|[Tests show that the real complexity de-
behave adequatel pends on a certain pattern used
Pattern| G, | Gy, [Gaa [G | 95 [G6 | 90 || G | e | Gsa || Gae | Gaa | Gae
d 2 3 4 4 5 6 7 3 3 3 4 4 4
N w 5 8 11 13 | 16 | 20 25 7 7 7 9 9 9
16| Pract||{10.16| 4.74 | 0.60 | — - - - 5.8715.09(6.09(1.091.26| 1.19
Theor|| 9.76 | 4.65 | 0.98 5.96 | 5.96 | 5.96 || 2.14 | 2.14 | 2.14
30| Pract {{19.90|24.22{21.22(17.90| 8.71 | 1.84 - 22.69|22.73|22.90(|22.50|22.87| 22.27
Theor|[19.32]|23.50|20.49|17.06| 7.65 | 1.92 - 22.41(22.41|22.41|(21.99|21.99| 21.99
38| Pract 25.73(12.25| 2.66
Theor|| — - - - |24.78|11.54| 2.59 - - - - - -

Table 5. Results of restricted verification tests.

The results of the tests are given in Table 5. The first group of tests show
that theoretical complexities behave adequately along with practical simulations
for both small and large inputs. The second group of tests show that the actual
complexity of the attack depends on a certain pattern, and it may vary.

5 Brief boundings that need only d and w are Ct5(0; d; w; w) and Cre*(0; d; w; 1).

A.6 Why Is Part-1 Needed?

Consider the pattern A = {0,0,{3,1},{1,2}} and N = 28, gnax = 1, the length of
the window is w = 5. The probability of exactly one equation to be solved during
the first iteration of the IR block is 0.3042, then a new value of S[j] is received. In
theory the probability of no contradiction would happen is (N—L—1[)/N = 0.928,
whereas in practice it is around 0.6, and this is a large deviation.

This simple example shows that no assumptions could cover all peculiarities
of an actual pattern used. Therefore, when a precise pattern is given, it would
be advised to run partial simulations of the attack in order to test top level
branches of the recursion with the depth 1-3, since the case of the remaining
subtrees becomes well compliant with the assumptions. This solution can attune
theoretical complexity significantly in some cases.

A.7 Full Verification Tests on True Keystream

In order to verify reliability of complexity functions a set of full verification tests
for three attack scenarios were carried out. For all scenarios N = 64, the patterns
are My, Ny, and M(,,, and a true keystream is generated randomly. The four
blocks in practice and the part with Knudsen’s attack in theory are switched on.

405~ 4=8, w=37
—=— d=9, w=42
35 -2 d=10, w=50
199]
<
=
2 30k
=
=Y
E 251
Q
o
<)
B 20
:: . 8 -
S15F e
0
g
<10
=
?b :
o 5
—
0 I I I I I I I I I I
0 1 2 4 6 7 8 9 10

5
Athr

Fig. 9. Three patterns, true keystream, full attack, N = 64. The results of full verifi-
cation tests of complexity functions of the new state recovering attack.

Figure 9 shows the results of the tests for the three scenarios. Real com-
plexities received via simulations of the state recovering algorithm are horisontal
lines, wherease the curves are theoretical upper bounds of these complexities

for various Ay, respectively. When Ay, = 0, points on the curves are pattern
independent upper bounds.

B Patterns Used in This Paper

g
2
n 8
£ g
c o |EIEI2 2| El5E
g|= =l e|ElEE| 5] 2 154 ~ ~
g | w ZlEE|=2 55|88 = &
gl M S e 7|50 5 3
S| SlT|E|a|a|L g g 2l R R
Tk TIE|E| |22 2l 2158 = =
=3 Y Pattern description Sln|T|3|n|d| o T |E= a9 [}
Ref.|ALl| 4,5 PV d|w|l |balbglbe|g|| o |E|Y Int Ext
(a) Trade-off between w and [, the first level of analysis
X, [1°°] 3,0 P={=2,-1}, V={0, 1} 2[4f2[2Jofof0 [- - N7 N2
X, |1°¢] -6, -7 P={-5,-3,-2}, V ={3,2,-1} 3(10/3[3[o|o|0| -]|-|-|] N* N3
X, |1°¢]-10, -11 P ={-9,-7,-6,-2}, V ={3, 2, -4, -1} 4)14/3[3(0|0|0| - |-|-|] N° N3
X (1| 7,2 P={6,-5-3,-1,1}, V={2,4,7,-1,1} 5(16/5 (4|00 0| - |-|-| N° |N*
X |1°¢]-8,-10 P={8,9,-7, -5, 4, -3}, V ={2, -1, 4, 3, -2, 1} 623[4|4|0[1]| 2] - |-|-|NTe/N|N®
X, | 1%] -13,-2 P ={8, 9, -12, -11, -10, -9, -7} 7128/ 4(4|0|2]4]| - |-|-| N Be¥N|NS
vV ={2,-1,-2, 1, -5, 3, 4}
X |1°°| -18,-5 P ={89-17 -16 -15 -14 -13 -9} 8133|5(5(0|2]4]| - |-|[-|N % ¥V|NT
V ={2,-1,-5,-2, 1,4, 5, 3}
X, | 1% |20, -23 P ={0, 1, 5, -19, -17, -16, -15, -14, -7} 9041|540 |2[4| - |-|-|N"We /N NO
V ={5,8,3,5,4,-2,-1,2, 1}
X | 1% |-25, -25 P ={6, 8, -24, -22, -20, -19, -18, -17, -3, -2 } 10{47/6 |50 (2[4 || - |-|-|N"Me¥/N| N7
V={3,4,2,8,-3,-2,1,7,0,-5}
X, |1 |-37, -37 P ={-36, -35, -34, -33, -30, -29, -28, -15, -13, -10, 5} [11[49/11{ 9|0 |. | . N~ N7
Vv ={10, -4,-1,11, 3,-2, 1, 9, -3, -7, 2}
(b) Good detection through the second level of analysis
V, [-7, -7 P={-6,-5,-3,-1}, V ={3, 2, -1, 0} a[9T4f4To].] . [[-T-[-] N° [N T
2nd| 2 1 PP ={0, 2, -1}, V' ={0, -1, 2} 3(4(3[3[0|.| . ||-4|3[0] N 63 |NTT
V.| 1% |-24, -19 P ={1, -23, -22, -20, -18, -10, -3} 7(26/6(5|0|.] .|| -|-|-| N® |N®
V ={3,-2,4,5,1,0,-1}
27| 5 2 P ={0, 1, -4, -3, -2}, V' ={2, -1, 1, 0, -2} 5(6|5[5|0|.]. ||-7]|4[1] N~ |[N710
V, | 1% |-26, -27 P ={-25, -24, -23, -20, -19, -18, -16, -4} 829/6|4[1]0|0]| ~|-|-| N7° N7
V={51,4,-3,-1,2, 3,-2}
2*| 7,2 P ={0, 3, -6, -5, -4,-3,-2}, V' ={-2,3,0,-1,1,-3,2}| 7]10/ 7| 7]|0|0] 0 ||-10{6|1] N"'2e=® N2

Table 6. Various patterns that were achieved by our simulations (part I).

PV

‘d|w‘l

balbsb2 [bo] s

(a) Maximum generative patterns (w — max

0,-1 P={1,3},V=(3,-1} 2[6J]0f0f00[1]1

0,-1 P={1,3,4}, V={3, 2, -1} 3(10/3]0f1|2[0fo0

0,-2 P={1,3, 4,5}, V={4,3, -2 1} 4l15/1]0fof1|1]2

0,-2 P={1,2 4,6 8}, V={5,2,-3, 6, -1} 5[21{olofolo]o]| 0

0,0 P={1,2 3, 4,5, 20}, V={7, -1, 5, -3, 2, -9} 6271301 /2]0f0

0,5 P={1,2,4,6,8,9, 16}, V={-2,4,7,1,3,-3,8 |7[31]4|0|0[4]|1]2

0,5 P={1,2 4,6, 14,18, 19, 25} 8[37[6lo|1|5]0]|0
V={24,51,3 32 -1}

0,9 P={1,2 3678, 11,20, 24} 942|601 5|12
V ={4, -1, 10, 3, -2, 11, 1, 4, -6}

0,3 P={1,2 3,5, 8,10, 18, 21, 22, 23} 10f50{41|1]2|1]2
vV ={1,5,-3,8,-7,3,-2, 59, -1}

0,-1 P={1,23,4,6,9,11, 13, 21, 30, 33} 11]55(10{ 0|19 |0| 0
vV ={6,5,-3,1, 4, -4, 7, -1, 2, -9, 8}

0,6 P={1,2 3459, 15, 17, 34, 35, 43, 45 } 12|50| 8 [1]0| 7|24
vV ={2,-2,1,12,-7, 7,8, -3, 0, -5, 3, 4}

0,0 P={1,356 78,22 23 31,32, 34, 44, 52} 13l68|9 (0|2 7|24
vV ={2,8,-3,-2,1,7,4,-9, 5, 10, -14, -5, 3}

0,15 P={1,2, 3,4, 5, 11, 13, 30, 31, 39, 40, 42, 52, 60} |14|76|10/ 0 |2 | 8| 2] 4

V ={7,-2,1,2,7,8,-3,4,-9, 5, 10, -14, -5, 3}

(b) Patterns with all S;[j;] different to test complexity functions

(=]

P={3,1}, V ={1, 2} 2[5]0

OO OO CcC oo oo o o oo
(53]

\ \
B d b

A b

'
NN O

P ={1,
P ={2,
P ={2,
P={3,
P ={1,
P ={1,

P={2,3, 1,4}, V ={1, 3, 8, -10}

P ={5,
P ={4,
P ={1,
P={2,
P ={2,

3,4}, V ={4, -1, 3}
1,3}, V={1,8, -7}
1,3}, V ={1,7, -6}
1,2}, V ={3,5, -1}
3,4,5}, V={6,-2 1, 4}
2, 4,6}, V ={2,4,5, 1}

3,1,2}, V={1,57 -2}

3,5, 1}, V ={1,9, -8, -5}

3,4,5 8}, V={(8,-3,-1,75}

8,1,6,5, 12}, V={1,2,5, 7, -3, -1}
8,21, 1,6,5, 12}, V ={1, 2,4, 5,7, -3, -1}

N OO e e R R W W W W
Ne

[l e R o B o BN = I — R e B I — B — I]

O o oo Cc oo oo o o oo

O o oo Cc oo oo oCc o oo

O o oo Cc oo oo oCc o oo

OO oo Cc oo oo oCc o oo

OO oo Cc oo oo oCc o oo

(c) Patterns to support assumptions

'
o

> T~ e via B v v e v e vila o B i v o |
;—M;—'\HFM;—*HMH;—'\HFLL;—MMH;—'\HFM;—MMH

|
©No L, L

(=== === e o R oo R e R cn oo B en R o i o)
'
=

= O oo o

[=}

CUN N s = W 00 N = W Ot N Ot

1,4}, V=349 1)

L2}, V={L5
L0,V ={L,

-2}
-5}
-5}
_1}
-1}
_8}
-3}

— W~ 00 00 W=~

3

-
<
Il

-~
—

-
<
I
~
~o

y

1

|
)
-

W B W N W = BRWw-WwiN

<
|
—_~—
. _.H“ -
CUB S WD W 0O N
B WWwNOoWwo o oo

N = 00 = Ot WO
R e e e

|
%)
—

1,4}, V ={1, 3, 8, -10}

L A i
NeliNejileeiNe JiNe Jille Bllc -l le B« Bl =)

COOC OO OCOoOOCOoOOCOCO

OO OO OO OO OO

(== ee e Jen B co il en I o B = 2N == R e R eo R e R e

OO OO oo oo oo oo

NWNHFENN-EOOOO OO

[l == == R = R e B e R e

15
11

7. Various patterns that were achieved by our simulations (part II).

