
New State Recovering Attack on RC4(Full Version)Alexander Maximov and Dmitry KhovratovichLaboratory of Algorithmics, Cryptology and SecurityUniversity of Luxembourg6, rue Richard Coudenhove-Kalergi, L-1359 LuxembourgAlexander.Maximov@ericsson.com, khovratovich@gmail.comAbstract. 1 The stream cipher RC4 was designed by R. Rivest in 1987,and it has a very simple and elegant structure. It is probably the mostdeployed cipher on the Earth.In this paper we analyse the class RC4-N of RC4-like stream ciphers,where N is the modulus of operations, as well as the length of internalarrays. Our new attack is a state recovering attack which accepts thekeystream of a certain length, and recovers the internal state. For theoriginal RC4-256, our attack has the total complexity around 2241 of op-erations, whereas the best previous attack needs 2779 of time. Moreover,we show that if the secret key is of length N bits or longer, the new at-tack works faster than an exhaustive search. The algorithm of the attackwas implemented and veri�ed on small cases.Keywords: RC4, state recovering attack, key recovering attack.1 IntroductionRC4 [Sma03] is a stream cipher designed by Ron Rivest in 1987, since whenit was implemented in many various software applications to ensure privacy ofcommunication. It is, perhaps, the most widely deployed stream cipher on theEarth, its most common application is to protect Internet tra�c in the SSLprotocol. Moreover, it has been implemented in Microsoft Lotus, Oracle SecureSQL, etc. The design of RC4 was kept secret until 1994 when it was anonymouslyleaked to the members of Cypherpunk community. A bit later the correctness ofthe algorithm was con�rmed.In this paper we study a family RC4-N of RC4 like stream ciphers, where Nis the modulus of operations. The internal state of RC4 is two registers i, j ∈ ZNand a permutation S of all elements of ZN . Thus, RC4 has a huge state of
log2(N

2N !) bits. For the original version, when N = 256, the size of the state is
≈ 1700 bits. This makes any time-memory trade-o� attack impractical. RC4-256uses a variable length key from 1 to 256 bytes for its initialisation.The initialisation procedure of RC4 has been thorougly analysed in a largenumber of various papers, see e.g. [MS01,Man01,PP04]. These results show that1 We thank anonimous reviewers of EUROCRYPT'08 for their editorial comments.



the initialisation of RC4 is weak, and the secret key can be recovered with a smallportion of data/time. Because of these attacks, RC4 can be regarded as broken.However, if one would tweak the initialisation procedure, the cipher becomessecure again.The simplicity of the keystream generating algorithm of RC4 attracts ahuge attention to its analysis. In the most of such analyses the scenario as-sumes that the keystream of some length is given, and either a distinguish-ing ([Gol97,FM00,Max05,Man05]) or a state recovering ([KMP+98]) attack isthe one of the interest. A state recovering attack determines the actual securitylevel of a cipher, if the initial internal state is considered as a secret key. The�rst such an attack was proposed by Knudsen et al in 1998 in [KMP+98], thecomplexity of which was 2779. Some minor improvements were found in other lit-erature ([MT98]), but still, there is no attack even close to 2700. One interestingattempt to improve the analysis was done in [Man05]. Although that attack doesnot actually work, the pretending time complexity claimed was around 2290.In this paper we propose a new state recovering attack on RC4-N . For theoriginal design RC4-256 the total time complexity of the attack is less than 2241,and it requires the keystream of a similar size. This means that the secret keycannot be longer than 30 bytes. We also show that in general required time isless than the one an exhaustive search needs, if the secret key is of length N bitsor longer.The idea of the new attack is as follows. The algorithm searches for aplace in the keystream where the probability of a speci�c internal state, compli-ant with a chosen pattern, is high. Afterwards, the new state recovering algorithmneeds only a small portion of data (around 2N output words) in order to recoverthe internal state of the cipher in an iterative manner. This algorithm was im-plemented and veri�ed for small values of N . The state recovering attack wassuccessful and revealed a correct internal state on every run of the simulations.The success rate of the full attack is shown to be at least 98%. For large valuesof N , where real attack simulations were impossible, an upper bound for averagecomplexity of the attack was derived and calculated.This paper is organized as follows. In Section 2 new iterative state recoveringalgorithm is described in detail. Afterwards, Section 3 introduces various prop-erties of a pattern that are needed for the recovering algorithm, and an e�ectivesearching algorithm to �nd such patterns is also proposed. Section 4 describesseveral techniques to detect speci�c states by observing the keystream, and alsointroduces additional properties of a pattern needed for detection purposes. The-oretical analysis of the state recovering algorithm and derivation of its complexityfunctions are performed in Appendix A (due to the page limitation). All piecesof the attack are combined in Section 5. Finally, we perform a set of simulationsof the attack, summarize the results and conclude in Section 6. The paper endswith suggestions for further improvements and open problems in Section 7.



1.1 NotationsAll internal variables of RC4 are over the ring ZN , where N is the size of thering. To specify a particular instance of the cipher we denote it by RC4-N . Thus,the original design is RC4-256. Whenever applicable, + and − are performed inmodulo N . At any time t the notation at denotes the value of a variable a attime t. The keystream is denoted by z = (z1, z2, . . .). In all tables probabilitiesand complexities will be given in a logarithmical form base 2.1.2 Description of the Keystream Generator RC4-NWe skip the description of the initialisation process since it is not in the focus ofthis paper. However, the full description of RC4 can be found in, e.g., [Sma03].After the initialisation procedure, the keystream generation algorithm of RC4begins. Its description is given in Figure 1.Internal variables:
i, j � integers in ZN

S[0 . . . N − 1] � a permutation of integers 0 . . . N − 1The keystream generator RC4-N1. S[·] is initialised with the secret key
i = j = 02. Loop until we get enough symbols over ZN∣

∣
∣
∣
∣
∣
∣
∣

(A) i = i+ 1(B) j = j + S[i](C) swap(S[i], S[j])(D) zt = S[S[i] + S[j]]Fig. 1. The keystream generation algorithm of RC4-N .2 New State Recovering Algorithm2.1 Previous Analysis: Knudsen's AttackIn [KMP+98] Knudsen et al. have presented a basic recursive algorithm to recoverthe internal state of RC4. It starts at some point t in the keystream z given kknown cells of the permutation St, which helps the recursion to cancel unlikelybranches. The idea of the algorithm is simple. At every time t we have fourunknowns:
jt, St[it], St[jt], S−1

t [zt]. (1)One can simply simulate the PRGA and, when necessary, guess these unknownvalues in order to continue the simulation. The recursion steps backward whena contradiction is reached, due to the previously wrong guesses. Additionally, it



can be assumed that some k values are apriori known (guessed, given, or derivedsomehow), and this may reduce the complexity of the attack signi�cantly. Animportant note is that the known k values should be located in a short windowof the �working area� of the keystream, otherwise they cannot help to cancelhopeless branches.The precise complexity of the attack was calculated in [KMP+98], and severaltables for various values of N and k were given in Appendices D.1 and D.2in [Man01]. As an example, the complete state recovering attack on RC4-256would require time around 2779.2.2 Our Algorithm in BriefIn this section we propose an improved version of the state recovering algorithm.Assume at some time t in a window of length w + 1 of the keystream z all thevalues jt, jt+1, jt+2, . . . , jt+w are known. This means that for w steps the values
St+1[it+1], . . . , Si+w[it+w] are known as well, since they are derived as

St+1[it+1] = jt+1 − jt, ∀t. (2)Consequently, w equations of the following kind can be collected:
S−1

k [zk] = Sk[ik] + Sk[jk], k = t + 1, . . . , t + w, (3)where only two variables are unknown
S−1

k [zk], Sk[jk], (4)instead of four in Knudsen's attack, see (1). Let the set of consecutive w equationsof the form (3) be called a window of length w.Since all js in the window are known, then all swaps done during these wsteps are known as well. This makes it possible to map the positions of theinternal state St at any time t to the positions of some chosen ground state St0at some ground time t0 in the window. Let us for simplicity set t0 = 0.Our new state recovering algorithm is a recursive algorithm, and it is shownin Figure 2. It starts with a collection of w equations, and attempts to solve them.A single equation is called solved or processed if its corresponding unknowns (4)have been explicitly derived or guessed. During the process, the window willdynamically increase and decrease. When the length of the window w is longenough (say, w = 2N), and all equations are solved, the ground state S0 is likelyto be fully recovered.A more detailed description of the parts of the algorithm follows.Iterative Recovering (IR) Block The Iterative Recovering block receives asan input a number a of active equations (not yet processed) in the window oflength w, and tries to derive the values of St[jt]s and S−1
t [zt]s. For this purpose,
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Fig. 2. New state recovering algorithm.the IR block iteratively performs two steps, until there are no more new deriva-tions possible. If all previous guesses were correct, then all newly derived values(cells of the ground state) will be correct with probability 1. Otherwise, whenthe IR block catches a contradiction the recursion makes a backward step. Thesetwo steps are as follows.A. Assume for one of the active equations its output symbol zt is already allo-cated somewhere in the ground state. I.e., the value S−1
t [zt] is known, andthe second unknown St[jt] can explicitly be derived via (3).A contradiction is received if (a) St[jt] is already allocated and it is not equalto the derived value; (b) the derived value already exists at some other cell.B. Just allocated values may give the value of St[jt] in another equation. Con-sequently, a new value S−1

t [zt] can be derived via (3), which might possiblycause a contradiction.Figure 3 illustrates the process of the IR block. In that example we startwith speci�c values of i and j, and also d = 5 cells of the state S are �lled withcertain values, whereas the remaining cells are unknown. This constraint allowsto collect w = 15 equations of the form (3). The keystream is given in the mostright column of the table.The �rst iteration, in Figure 3(b), �nds that z6 = 4 and z8 = −2 are alreadyallocated, thus solving equations 6 and 8 (s4 = 10, s9 = 5). Afterwards, given
s9 = 5, the IR block solves the equation 14 and successfully checks for a con-tradiction, in Figure 3(c). Finally, after the step (e) four additional cells of thestate S were derived with probability 1.



The part of the state St at time t, just before the swap-operation
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PSfrag replacementsFig. 3. Example of the iterative reconstruction process.Find and Guess the Maximum Clique (MC) Block If no more activeequations can explicitely be solved, one of S−1

t [zt]'s has to be guessed. The



Find and Guess the Maximum Clique block analyses given active equations andchooses such an element to be guessed that gives the maximum number of newderivations in consecutive recursive calls of the IR block.A simple analysis is applied. Let a active equations in a graph representationbe vertices vts. Two vertices vt′ and vt′′ are connected if zt′ = zt′′ or/and St′ [jt′ ]and St′′ [jt′′ ] refer (like pointers) to the same cell of the ground state. A guess ofany unknown variable in any connected subgraph solves all equations involvedin that subgraph. Therefore, let us call these subgraphs by cliques. The MCblock searches for a maximum clique, and then guess one S−1
t [zt] for one of theequations belonging to the clique. Afterwards, the IR block is called recursively.In Figure 3(f) the maximum clique is of size 4 equations with 5 unknowns. Itmeans that a guess of only one unknown reveals four other ones. Furthermore, thespace of possible guesses is singni�cantly reduced due to the higher probabilityof a contradiction to occur.Window Expansion (WE) Block Obviously, the more equations we have thefaster the algorithm works. Therefore, a new equation is added to the systemas soon as the missing value S[i] in front or in back of the window is derived.The Window Expansion block checks for this event and dynamically extends thewindow. Sometimes several equations are added at once, especially on the leafsof the recursion.Guess One S[i] (GSi) Block If there are no active equations but the groundstate S0 is not yet fully determined, the window is then expanded by a directguess of S[i], in front or in back of the window. Then the WE, IR, MC blockscontinue to work as usual. Additional heuristics can be applied for choosingwhich side of the window to be expanded for a larger success.3 Precomputations: Finding Good PatternsAssume at time t the internal state of RC4 is compliant to a certain pattern. Ane�ectiveness of the new state recovering attack strongly depends on the prop-erties of the pattern. If a pattern has a large window then it helps to decreasesthe complexity of the algorithm e�ciently. However, it is less probable for theinternal state to be compliant to a pattern with large number of conditions.In this section we introduce various properties of patterns that in�uence onthe attack success, and also study their availability.3.1 Generative StatesLet us start with the following de�nitionDe�nition 1 (d-order pattern). A d-order pattern is a tuple

A = {i, j, P, V }, i, j ∈ ZN , (5)



where P and V are two vectors from Z
d
N with pairwise distinct elements. At atime t the internal state is said to be compliant with A if it = i, jt = j, and

d cells of the state St with indices from P contain corresponding values from
V . utThe example in Figure 3 illustrates how a 5-order pattern allows to receive awindow of length 15. However, the higher the order, the less the probability ofsuch a constraint to happen. Therefore, we are interested in �nding a low orderpattern which generates a long window.De�nition 2 (w-generative pattern). A pattern A is called w-generative iffor any internal state compliant with A the next w clockings allow us to derive
w equations of the form (3), i.e., consecutive w values of js are known. utTable 1 demonstrates a 4-order 7-generative patternA = {−7,−8, {−6,−5,−4, 0},
{6,−1, 2,−2}}, which supports the above de�nitions. Eight equations involvesymbols of the keystream zt+1, . . . , zt+8 associated with a certain time t. Hereand further we say the keystream is true if the internal state at time t iscompliant with the pattern, otherwise we say the keystream is random.Let another pattern B be derived from A as

B = A + τ = {i + τ, j + τ, P + τ, V }, (6)for some �shift� τ . The pattern B is likely to be w-generative as well. Thishappens when the properties of A are independent of N , which is the usual case.
it jt S[i] S[j] S[i] + S[j] zt −6 −5 −4 −3 −2 −1 0 1 2 3 4 5

−7 −8 � � � � 6 −1 2 x1 x2 x3 −2 x4 x5 x6 x7 x8

−6 −2 6 x2 6 + x2 ∗ x2 −1 2 x1 6 x3 −2 x4 x5 x6 x7 x8

−5 −3 −1 x1 −1 + x1 ∗ x2 x1 2 −1 6 x3 −2 x4 x5 x6 x7 x8

−4 −1 2 x3 2 + x3 ∗ x2 x1 x3 −1 6 2 −2 x4 x5 x6 x7 x8

−3 −2 −1 6 5 x8 x2 x1 x3 6 −1 2 −2 x4 x5 x6 x7 x8

−2 −3 −1 6 5 x8 x2 x1 x3 −1 6 2 −2 x4 x5 x6 x7 x8

−1 −1 2 2 4 x7 x2 x1 x3 −1 6 2 −2 x4 x5 x6 x7 x8

0 −3 −2 −1 −3 −2 x2 x1 x3 −2 6 2 −1 x4 x5 x6 x7 x8

1 ∗ x4 ∗ ∗ ∗Table 1. An example of a 4-state 7-generative pattern.3.2 AvailabilityWe have done a set of simulations in order to �nd maximum w-generative d-order patterns (denoted by M
d
); see Table 7(a) for the results. Searching for ahigh order pattern is a challenging task since the computation complexity growsexponentially with d, and the best result achieved in our work is a 14-order

76-generative pattern M
14
.



Real values from our simulations Approximated values
d = 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
wmax = 6 10 15 21 27 31 37 42 50 55 61 68 76 82 88 94 100 106 112 118Table 2. Dependency of the maximum w from d, simulated and approximated values.Table 2 shows the dependency of a maximum achievable generativeness wmaxfrom the order d. One may note that this dependency is almost linear, and itconverges to wmax = 6d + λ as d → ∞. Let us make the following conjecture.Conjecture 1. We conjecture that the rate of wmax

d ≈ 6 as d → ∞. utIndeed, the "jump" of wmax as d increments by one is the sequence {4,5,6,6,4,6,5,8,5,6,7,8,. . .}.Obviously, for small ds this "jump" is small, and it is notable that the "jump"increases for larger ds. In our simulations we used heuristics (see Section 3.3)when searching patterns for d ≥ 6, this means that that "jump" is possibly evenlarger at the sequence since our patterns found by heuristics are not optimal.This shows that the ratio w → 6d as d → ∞ seems quite a fair conjecture.This conjecture allows us to make a prediction about certain parameters forpatterns with large ds, which we actually could not �nd due to a very highprecomputation complexity, but they are needed for the attack for large Ns(N = 128, 256). Given those parameters (d and w) one can derive theoreticalcomplexity of the attack in average, and it has been done in our work as well(see Appendix A).
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conservative. Figure 4 illustrates the dependency of the maximum achievable wfrom δ, and this allows us to make another conjecture.Conjecture 2. A pattern with the largest w is likely found among all possiblecombinations for i = 0, j ∈ Iδ, V ∈ Id
δ , with a moderate value of δ � N . utThis conjecture is the basis for a signi�cant improvement in searching tech-nique of such patterns (see Section 3.3). Table 3 provides the number of patternsfor δ = 15, and various values of d and w. When d and δ are �xed, the amountof desired patterns can exponentially be increased by letting w to be slightly lessthan wmax, and this can help to �nd patterns with additional properties whichwe will introduce in further sections.

d The number of patterns Ad when δ = 15.
↓ w → 15 14 13 12 11 10 9 8 7 64 #{A4} → 1 3 10 26 226 863 5234 21702 114563 853012

w → 21 20 19 18 17 16 15 14 13 125 #{A5} → 1 4 6 15 66 252 652 1879 6832 27202
w → 27 26 25 24 23 22 21 20 19 186 #{A6} → 1 2 7 42 81 177 371 799 2646 10159Table 3. The number of di�erent constrains for speci�c d and w, when δ = 15.3.3 Searching TechniqueSince the searching space for a d-order pattern grows exponentially, only patternsof order d ≤ 6 were analysed before in various literature. In this section wesuggest a few techniques that accelerate the search signi�cantly, and allow tosearch and analyse patterns of order up to d ≤ 15, approximately, on a usualdesktop PC.The �rst idea is to set i = 0 due to (6), and for the remaining variables onlya small set of values Iδ with some δ should be tested due to Conjecture 2.A straightforward approach would be to allocate d values in a vector Sand then to check the desired properties of the pattern. Its time complexityis O

((
N
d

)(
|Iδ|
d

)
|Iδ|

), which is still very large. However, our second idea is toallocate a new element in S only when it is necessary.The diagram of the recursive algorithm exploiting the �rst two ideas is shownin Figure 5, but it can be improved with the following heuristic. The third ideais to start searching for a desired pattern somewhere in the middle of its futurewindow. Let us split d into dfwd + dback and then start the algorithm in Figure 5allowed to allocate exactly dfwd cells of S. At the point (∗) the current length ofthe window w is compared with some threshold wthr. If w ≥ wthr, then a similarrecursive algorithm starts, but it goes backward and allocates remaining dbackcells of S. This double-recursion results in a pattern with w likely to be close tothe maximum possible length of the window.
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Fig. 5. Recursive algorithm for searching patterns with large w.4 Detection of Patterns in the KeystreamIn the previous section we have studied properties of a pattern that are desirablefor the state recovering algorithm to work fast and e�cient. We have also shownhow these patterns can be found, and introduced an e�cient searching algorithm.In this section we show how the internal state of RC4, compliant to a chosenpattern, can be detected by observing the keystream. If that detection is verygood, then the number of executions of the state recovering algorithm can be assmall as just once, but at the right place of the keystream.The detection mechanism itself can be trivial (no detection at all), in whichcase the algorithm has to be run at every position of the keystream. A gooddetection may require a deep analysis of the keystream, where speci�c propertiesof the pattern can be used e�ciently.4.1 First Level of AnalysisThe internal state of RC4 compliant to a d-order pattern A can be regarded asan internal event with probability
Pr{Eint} = N−d−1. (7)When the internal event happenes, there could exist an external event Eextobserved in the keystream, and associated with the patternA, i.e., Pr{Eext|Eint} =

1. Applying the Bayes' law one can derive
Pdet = Pr{Eint|Eext} =

Pr{Eint}
Pr{Eext}

, (8)



and this is precisely the detection probability of the pattern A in the keystream.Our goal in this section is to study possible external events with high Pdet inorder to increase the detection of the pattern.De�nition 3 (l-de�nitive pattern). A w-generative pattern A is called l-de�nitive if there are exactly l out of w equations with determined S[j]s. utIt means that in l equations S[i]+S[j] is known. If, additionally, z′ = S[S[i]+
S[j]] is also known, then the correct value of zt = z′ at the right place t of thekeystream z detects the case �the state at time t is possibly compliant to thepattern�. Otherwise, when zt 6= z′, it says that �the state at time t cannot becompliant to the pattern�.For detection purposes a large l (up to d) is important. From our experimentswe found that, however, it can be achieved via a slight reduction of the parameter
w, and it leads us to one more conjecture.Conjecture 3. For any d and w = wmax − λ there exist a pattern with l = d,where λ is relatively small. utTable 6(a) contains patterns Xs with l = d where w is still large, whichsupports the above conjecture.De�nition 4 (bα, bβ, bγ-α,β,γpredictive pattern). Let us have an l-de�nitivepattern A and we consider only those equations where S[j]s are determined.Then, the pattern A is called bα-αpredictive if for bα of the l equations S[S[i]+
S[j]] is determined. For the remaining l−bα equations two additional de�nitionsare as follows. The pattern A is called bβ-βpredictive if for bβ pairs of the l−bαequations the unknowns S[S[i]+S[j]]s must be the same. The set of bβ pairs mustbe of full rank. The pattern A is called bγ-γpredictive if the l − bα equationscontain exactly bγ di�erent variables of S[S[i] + S[j]]. utThese types of predictiveness are other properties of a pattern visible in thekeystream. For example, it is not only necessary to search for known z′ values (bαof such), but one can also require that certain pairs of the keystream symbols (bβof such) are equal zt′ = zt′′ , which also helps to detect the pattern signi�cantly.The parameter bα is usually quite moderate, to have it larger than 15 is quitedi�cult. However, the other criteria are more �exible and can be large. Thesenew parameters follow the constraint

bα + bβ + bγ = l ≤ d. (9)Consider the remaining w− l equations of the pattern A where S[j]s are notdetermined. Let at times t1 and t2 one pair of these equations be such that thevalues S[i]s and the pointers S[j]s are equal. If the distance ∆t = t2− t1 is small,it is likely that the output z1 is the same as z2. The probability of this event is
Pr{z1 = z2|∆t} >

(

1 − ∆t

N

)

·
(

1 − 1

N

)∆t

≈ exp

(

−2∆t

N

)

. (10)



De�nition 5 (bθ-θpredictive pattern). A pattern A is called bθ-θpredictiveif the number of such pairs (described above) is bθ. Let the time distances of thesepairs be ∆1, . . . , ∆bθ
, then the cumulative distance is the sum Πθ = Σi∆i utThese four types of predictiveness are direct external events for a pattern.One should observe the keystream and search for certain bα symbols, checkanother bβ and bθ pairs of symbols that they are equal, and also check that agroup of bγ symbols are di�erent from the values of V and from each other.Thus, we have

Pr{Eext} = N−bα−bβ−bθ ·
[

(N − d)!

N bγ (N − d − bγ)!

]

Pr{Eint} ≈ N−d−1 · e−2Πθ/N .

(11)The example in Table 1 is a 4-de�nitive bα = 1, bβ = 1, bγ = 2, bθ = 0-predictive pattern. For detection one has to test that zt+6 = −2, zt+3 = zt+4, and
zt+4, zt+5 are di�erent from the initial values at V and zt+4 6= zt+5. I.e., when,for example, N = 64, the detection probability is 64−5 ÷ (64−2 · 60 · 59/642) ≈
64−2.96 2.4.2 Second Level of AnalysisIn fact, the �rst level of analysis allows to detect a pattern with probability atmost N−1 (because of j is not detectable), whereas with the second level ofanalysis it can be 1. Let us introduce the technique that we called a chain ofpatterns.De�nition 6 (chain of patterns A → B, distance, intersection). Let ushave two patterns A = {ia, ja, Pa, Va} and B = {ib, jb, Pb, Vb}. An event whentwo patterns appear in the keystream within the shortest possible time distance
σ is called chain of patterns, and denoted as A → B if B appears after A.The chain distance σ between two patterns A and B is the shortest possibletime between A's ending and B' beginning of their windows, i.e.,

σ = ib − (ia + wa) mod N. (12)The intersection of A and B is the number ξ of positions in A that arereused in B. These positions must not appear as S[i] during σ clockings whilethe chain distance between A and B is approached. utFor example, let A = {0, 0, {1, 3, 5, 6, 7, 8, 22, 23}, {2, 8,−3,−2, 1, 7, 4,−9}}andB = {34, 34, {35, 36, 37, 38, 39, 44, 48, 52}, {8,−2, 1, 2, 4,−5, 5, 3}}. After wa =
30 clockings the �rst pattern becomes A′ = {30, 28, {15, 28, 30, 35, 36, 37, 38, 39},
{−3,−9, 7, 8,−2, 1, 2, 4}}. Obviously, the last ξ = 5 positions can be reused in2 Since γ-predictiveness has a minor in�uence on detection, further we skip this pa-rameter in calculations.



B, and after σ = 4 clockings a new pattern B (wb = 34) can appear if jt+34 = jb.The probability of the chain A → B to appear is N−9 · N−4, times the prob-ability that 5 elements from A′ are in place during 4 clockings, and it is muchlarger than the trivial N−9 · N−9. Thus, a more general theorem can be stated.Theorem 1 (chain probability). The probability of a chain A → B to appearis
PA→B = Pr{Eint} ≈ N−(da+db+2−ξ) · e−2(Πθa+Πθb)/N · e−ξ. (13)Proof. In [Man01] it has been shown that ξ elements stay in place during Nclockings with an approximate probability e−ξ. The remaining part comes froman assumption that the internal state is random, from where the proof follows.

utObviously, the probability of the external event for the chain is
Pr{Eext} = N−(bαa+bβa+bθa)−(bαb+bβb+bθb), (14)which can be smaller than Pr{Eint} (see Y

4
in Table 6), confusing the equa-tion (8). This happens since Pr{Eext} is calculated assuming that the keystreamis random. However, in real RC4 only a portion of the observed external proba-bility space can appear (which is another source for a distinguishing attack, butit is out of scope of this paper). Therefore, in case when Pr{Eext} < Pr{Eint}we simply assume that the detection probability is 1.Table 6 presents only several examples with a good trade-o� (based on ourintuition) between w and detectability for various d. Since the computation timefor searching such patterns with multiple desired properties is really huge, onlya few examples for small ds were given. However, we believe that for large ds itis possible to detect such patterns with a high probability, up to 1, applying twoproposed levels of analysis.5 Complete State Recovering Attack on RC45.1 Attack Scenario and Total ComplexityRecall pattern detection techniques from Section 4. In the complete attack sce-nario an adversary analyses the keystream at every time t, and applies the staterecovering algorithm if the desired internal event (pattern) is detected. In allcases except one the recovering algorithm deals with a random keystream.Proposition 1 (Total Attack Complexities). Let the detection probabilitybe Pdet, then the total time CT and data CD complexities of the attack are

CT = Pr{Eint}−1 + (P−1
det

− 1) · CRand + 1 · CTrue,

CD = Pr{Eint}−1.
(15)

ut



5.2 Success Rate of the AttackThe complexities CTrue and CRandom are upper bounds for the average time thealgorithm works. It means that for some cases it could take more time than thesebounds. In order to guarantee the upper bound of the total (not average) timecomplexity one can terminate the algorithm after, for example, Cthr operationsare done. In this case the success rate of the attack can be determined.
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Fig. 6. Probability density (left) and cumulative (right) functions of the time CTrue inthe logarithmical form (k = log2 CTrue). The scenario is N = 64,M
8
, 2000 samples.Figure 6 shows density and cumulative functions for the time complexityof an example attack scenario. It shows that around 98% of all simulations ofthe attack have time smaller than the average 229.28 (vertical line). When thekeystream is random the termination makes the average time bound CRandom evensmaller, since the random case is likely to be repeated very many times and thesecond term in (15) can only decrease.The plots in Figure 6 also show that even if the termination of the algorithmis done on the level Cthr =

√
CTrue (≈ 215), the success rate of the algorithmis still very high. I.e., the state recovering algorithm on RC4-64 can be done intime 215 with success probability 35%! If a similar situation happens for large

Ns (N = 256, etc), then the full time complexity can be signi�cantly decreased(perhaps, down to a square root of the estimated average complexity), and thesuccess probability can still be very large.6 Simulation Results and ConclusionsWe have selected a set of test cases with various parameters and patters, andderived total data and time complexities of the new attack. Table 4 presents theresults of this work. For example, when N = 64, the total complexity of the newattack is upper bounded by 260, if the pattern X9 is used. This is much faster



than, for example, Knudsen's attack whose complexity for this case is 2132.6.Even if d = 9 elements of the state are known, Knudsen's attack needs 298.1of time, which is still much higher. The complexity of a potential (not reallyworking 3) attack recently discussed by I. Mantin in [Man05] is also higher. Asit was shown in Section 5.2, the success rate of the new attack is at least 98%,and further we simply assume it is close to 100%.
N N = 64 N = 100 N = 128 N = 160 N = 200 N = 256Cases I II III IV V VI VII VIII IX X XI XII XIIIDescriptions of the cases (? � are hypothetical cases)Pattern M

8
Y

8
X

9
X

11
M

13
M

14
? M

14
? M

14
? M

14
?

d 8 8 9 11 13 14 17 14 18 14 23 14 29
w 37 29 41 49 68 76 92 76 102 76 132 76 168
l 6 6 5 11 9 10 10 10 10 10 14 10 17

bα 0 4 4 9 0 0 10 0 11 0 10 0 11
bβ 1 1 0 0 2 2 0 2 0 2 2 2 4
bγ 5 1 1 2 7 8 0 8 0 8 2 8 2
bθ 0 0 2 0 2 2 0 2 7 2 4 2 12
Πθ 0 0 4 0 4 4 0 4 � 4 � 4 �Internal/external/detection probabilities

Pint -54.0 -65.8 -60.0 -79.7 -93.0 -105.0 -112.0 -109.8 -139.1 -114.7 -183.5 -120.0 -240.0
Pext -6.0 -60.0 -36.0 -59.8 -26.6 -28.0 -70.0 -29.3 -131.8 -30.6 -122.3 -32.0 -216.0
Pdet -48.0 -5.8 -24.0 -19.9 -66.4 -77.0 -42.0 -80.5 -7.3 -84.1 -61.2 -88.0 -24.0Complexities of the state recovering algorithmwhen the keystream is true/randomTheor. 20.5 58.2 22.8 107.8 10.0 71.3 71.7 191.1 131.7 317.4 121.3 507.4 217.1

C
R
a
n
d Attun. 15.5 57.8 � 107.5 � 66.3 � 179.2 � 302.6 � 491.8 �Theor. 35.0 64.9 30.9 120.4 34.5 94.7 102.0 213.0 138.2 335.6 157.5 519.6 225.4Attun. 30.3 57.6 � 108.3 31.8 85.5 � 185.1 � 309.9 � 501.8 �

C
T
r
u
e Real 29.3 � � � 29.1 � � � � � � � �Total data/time complexity, and the comparisonwith previous attacks

CK(0) 132.6 236.6 324.8 431.4 572.0 779.7Knud- sen's CK(d) 101.7 101.7 98.1 189.3 181.0 261.3 256.9 364.6 346.1 501.9 458.2 705.9 629.3Mantin's po-tential attack 73 114 147 186 243 290
CD 54.0 54.0 60.0 79.8 93.0 105.0 112.0 109.8 139.1 114.7 183.4 120.0 240.0Our attack CT 63.5 63.4 60.0 127.4 93.1 143.4 113.7 271.7 140.4 386.7 184.0 579.8 241.7Table 4. Simulation results and comparisons with previous attacks.Table 4 also contains intermediate probabilities and complexities of the at-tack, including theoretical (∆ = 0) and attuned (∆ = 2) values for CRand and

CTrue. When it was possible, the real attack on a true keystream was simulated(real complexities for CTrue are shown in italic). In these simulations the complete3 In Mantin's attack they detect a large number of bytes of the state, and then applyKnudsen's attack given those bytes. However, to make these knowns to reduce theattack complexity they must be located in a short window all together, and this isnot the case.



state of RC4 was successfully recovered for every randomly generated keystreamcompliant with the corresponding pattern.For larger Ns patterns of a high order are needed to receive an attack of a lowcomplexity. The largest pattern that we could �nd in this work isM
14
, and it wasapplied to attack RC4-N with N = 128, 160, 200, 256. These attack scenarios arethose that we have in our hands already. However, the complexities received arenot optimal, but they are still lower than in Knudsen's attack. Conjecture 1 andalso discussions in Section 4 make it possible to approximate the parameters of ahypothetical pattern that is likely to exist (? � patterns). To be secure, we relate

d and w as w = 6d − 6, with a con�dence gap of 6 positions. The remainingparameters were chosen moderate as well. As the result, we obtained an attackon RC4-256 with the (upper bounded) total complexity of 2241.7, and this is thebest state recovering attack known to the moment.In general, we have noted the following tendency. For RC4-N with a secretkey of length N bits or longer, the new attack can recover the internal statemuch faster than an exhaustive search. This observation can also be seen fromthe results in Table 4.As the last point of the discussions we should mention the existance of var-ious papers which deal with a recovering of the secret key conditioned that theinternal state of RC4 is known (initialisation of RC4 is not one-way). This part issigni�cantly faster than any of the the state recovering algorithm, and, therefore,we just refer to these papers [MS01,Man01,PM07].7 Further Improvements and Open ProblemsPattern detection improvements. With a chain of patterns described in Section 4one could reach a good detection. However, not only forward direction of chainingcan be considered, but also backward one. Additionally, there is a possibility toanalyse longer sequences of patterns in order to have a good detectability.Another idea is to use unusual recyclable patterns in a similar manner asin [Man05]. The di�erence is that these patterns are both recyclable and have along window. For example, A = {0,−4, {6, 4, 1, 5, 3}, {0, 1, 7,−2,−1}}.State recovering algorithm improvement. The GSi block can choose the corner(left or right) of the window to be extended by an additional heuristic analysis ofthe current situation during the process. Another improvement is achieved if theMC block could speculatively run the recursion for additional 1-3 extra forwardsteps for every possible guess, and, afterwards, make such a guess for which thenumber of sub branches is the minimum. The average time of the attack for thisstrategy is reduced.Derivation and statistics. Our investigation showed that the derived theoret-ical upper bound gives a much larger complexity than the one received from thereal simulations of the attack. Obviously, a better analysis of the algorithm'scomplexity is needed, this would allow to estimate total complexities more ac-curate, and it might improve the complexities in Table 4 signi�cantly. Another



interesting problem is to determine the density function of the recovering al-gorithm, likewise in Figure 6. This may allow us to decrease the complexity insquare root times, and still the success rate will be very high.Other open problems. The search for patterns of a higher order with long win-dows is another challeging open question. We have shown that there are chainsof patterns with short distances. The �rst pattern is used for the recovering algo-rithm, and the second one is for detection. However, here is another interestingquestion whether the second pattern can also be used in the recovering algorithmor not.We believe that the outlined open problems have a huge potential for reducingthe complexity of the attack on RC4. Perhaps, very soon we will be witnessingan attack of complexity lower than 2128 on the full RC4-256.References[FM00] S. R. Fluhrer and D. A. McGrew. Statistical analysis of the alleged RC4keystream generator. In B. Schneier, editor, Fast Software Encryption 2000,volume 1978 of Lecture Notes in Computer Science, pages 19�30. Springer-Verlag, 2000.[Gol97] J. Dj. Goli¢. Linear statistical weakness of alleged RC4 keystream generator.In W. Fumy, editor, Advances in Cryptology�EUROCRYPT'97, volume1233 of Lecture Notes in Computer Science, pages 226�238. Springer-Verlag,1997.[KMP+98] L. R. Knudsen, W. Meier, B. Preneel, V. Rijmen, and S. Verdoolaege. Anal-ysis methods for (alleged) RC4. In K. Ohta and D. Pei, editors, Advances inCryptology�ASIACRYPT'98, volume 1998 of Lecture Notes in ComputerScience, pages 327�341. Springer-Verlag, 1998.[Man01] I. Mantin. Analysis of the stream cipher RC4. Master's thesis, The Weiz-mann Institute of Science, Department of Applied Math and ComputerScience, Rehovot 76100, Israel., 2001.[Man05] I. Mantin. Predicting and distinguishing attacks on RC4 keystream gener-ator. In R. Cramer, editor, Advances in Cryptology�EUROCRYPT 2005,volume 3494 of Lecture Notes in Computer Science, pages 491�506, 2005.[Max05] A. Maximov. Two linear distinguishing attacks on VMPC and RC4A andweakness of RC4 family of stream ciphers. In H. Gilbert and H. Handschuh,editors, Fast Software Encryption 2005, volume 3557 of Lecture Notes inComputer Science, pages 342�358. Springer-Verlag, 2005.[MS01] I. Mantin and A. Shamir. Practical attack on broadcast RC4. In M. Matsui,editor, Fast Software Encryption 2001, volume 2355 of Lecture Notes inComputer Science, pages 152�164. Springer-Verlag, 2001.[MT98] S. Mister and S. E. Tavares. Cryptanalysis of RC4-like ciphers. In SelectedAreas in Cryptography�SAC 1998, Lecture Notes in Computer Science,pages 131�143, 1998.[PM07] G. Paul and S. Maitra. Rc4 state information at any stage reveals thesecret key. Available at http://eprint.iacr.org/2007/208 (accessed January10, 2008), 2007.[PP04] S. Paul and B. Preneel. A new weakness in the RC4 keystream generatorand an approach to improve the security of the cipher. In B. Roy and



W. Meier, editors, Fast Software Encryption 2004, volume 3017 of LectureNotes in Computer Science, pages 245�259. Springer-Verlag, 2004.[Sma03] N. Smart. Cryptography: An Introduction. McGraw-Hill Education, 2003.ISBN 0-077-09987-7.A Complexity Analysis of the Recovering AttackSince for large inputs it is not always possible to make real simulations of the newrecovering attack, one is interested in a theoretical upper bound of its complexity.In this section we explain how this complexity can be derived, veri�ed and used.A.1 Tool for Simulations and AnalysisThe new recovering algorithm is a recursion as shown in Figure 7(a). The nodesare IR and WE blocks, whereas each branch is initiated by MC or GSi blocks.A branch is terminated when a contradiction occurs, and only one path leads tothe correct solution, where the internal state is successfully recovered.We measure the complexity of the attack as the number of branches, i.e., thenumber of guesses in the MC and GSi blocks done.
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Fig. 7. (a) Attack as a recursion; (b) Three parts of the tool for simulations.Let us introduce a three-parts tool, shown in Figure 7(b), in order to calculatethe complexity of the attack when a certain pattern is given. The description ofthese parts is the following.



In the �rst part the simulation of the attack with a certain pattern is launched(all four blocks, IR, WE, MC, GSi, are working), and the number of branches iscounted. Whenever the depth of the recursion becomes ∆thr, some precomputedfunction for the complexity of the remaining subtree is called, and the recursionmakes a backward step.The second part is a precomputed pattern-independent upper bound of theaverage complexity, when the status of the recursion can be described as thenumber of already allocated cells L and the number of active equations a.The third part is Knudsen's attack complexity accepted as an upper boundfor the algorithm on the leafs of the recursion, in order to avoid analysis of WE.To receive theoretical complexity using this tool one should run the simula-tions for a su�cient number of times, and then take an average of the results.The exact complexity is received when ∆thr = ∞, in this case the tool works thesame time as the targeting complexity. On the other hand, when ∆thr = 0, theupper bound of the complexity is received immediately. The reason to introduce
∆thr and the three parts of the tool will be explained later.A.2 AssumptionsWe will derive the precomputed pattern-independent upper bound of the averagecomplexity under the following assumptions.Assume that the algorithm �rstprocesses all given w equations of thekind (3) with two unknowns in each,and then Knudsen's attack is appliedto the remaining part of the recursion(see in the right table on the columnswith WE on and o�).Assume that in all given w equa-tions the values St[jt] refer to di�er-ent unknowns. This makes the attackto work slower since in the MC blockthe maximum clique can, therefore, beconstructed only via symbols of thekeystream. Table on the right showsthat for this assumption the complex-ity of the attack is larger.Assume that the keystream is ran-dom, which is reasonable since the realinternal state is unknown to an at-tacker.We have selected several patternswith similar properties, d = 4, w = 9(A s and Bs from Table 7). One halfof them have di�erent St[jt]s, and the

(Logarithms of the complexities)Random z True zPatrn. WE o� WE on WE o� WE on
∆thr = ∞, N = 25, d = 4, w = 9,all St[jt] are di�erent. # of tests is ≥ 500.

A 1 15.87 14.25 16.33 15.09
A 2 15.24 14.02 16.30 14.38
A 3 14.89 14.48 16.00 14.80
A 4 15.51 14.18 16.38 14.44
A 5 15.20 12.97 15.87 12.57
A 6 14.98 12.02 15.50 11.66Average 15.32 13.86 16.09 14.24

∆thr = ∞, N = 25, d = 4, w = 9, at leasttwo St[jt] coincide. # of tests is ≥ 5000.
B1 7.41 7.95 13.08 13.49
B2 5.08 3.71 13.42 12.03
B3 4.62 3.67 13.30 12.00
B4 4.84 4.43 10.28 10.06
B5 3.41 3.72 11.42 12.21
B6 2.94 3.19 12.00 13.38
B7 3.81 4.57 11.12 12.39Average 5.37 5.60 12.48 12.54Assumptions make the algorithmslower and bound the real complexity.other half contains pairs of equal St[jt]s. Afterwards, the complexities of the



attack are estimated (∆thr = ∞, N = 25) when the keystream is random/true,and WE is on/o�. The results clearly show that the complexities under ourassumptions are upper bounds.A.3 Average Complexity Derivations
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Fig. 8. Schematical four cases supporting derivations of the attack complexity.In this section a precomputed pattern-independent upper bound of the averagecomplexity is derived under the assumptions as proposed above. In all formulasthe following meaning of variables is accepted: a is the number of active (not yetprocessed) equations of the form (3); L is the number of known and previouslyassigned cells of the state, and no single zt from the active equations can be oneof the L values; l is the number of recently (just) assigned cells of the state, and
zts from active equations could possibly be one of the l values; qmax is the size ofthe maximum possible clique that can be found in the MC block.Every step of the recursion has a complexity to which we will refer as: CK(L)� is the complexity of Knudsen's attack, given that L cells of the internal state



are known, and it can be precomputed as in [KMP+98]; CMC(L; a; qmax) � is thecomplexity of the MC block; CA0

IR
(L; l; a; qmax) � is the complexity of one iterationof the IR block that starts with L known and l new values, and ends with anotherset of new values of some size δ; CA1

IR
(L; l; a; qmax) � the same as CA0

IR
, but for oneof the equations the value of S[j] is known; CB

IR
(L; a; qmax) � the complexity ofthe case when IR returns none of new assignments, but for one equation S[j] isknown, i.e., the IR block makes an iteration of a di�erent sort in this case.Supplementary Formulas When L cells of S0 are already known and δ newassignments are performed one-by-one, the probability of no contradiction willappear is

Pc(L; δ) =
(N − L)!

(N − L − δ)!N δ
, when 0 ≤ L + δ ≤ N. (16)Let M(r; a; q) be the number of possible keystream sequences of length a,where each symbol can have one out of r values, and the maximum possible sizeof a clique is q. The value of M can recursively be calculated as 4

M(r; a; q) =

q
∑

i=0

(
a

i

)

M(r − 1; a− i; q), where {

1 ≤ a, t ≤ N,

q ≤ a,

M(r; 0; 0) = 1, where 1 ≤ t ≤ N.

(17)
Complexity CA0

IR
(L; l; a; qmax) The probability that in one iteration δ out of aequations will be solved is

PA0(L; l; a; δ; qmax) =

(
a

δ

)
M(l; δ; qmax) · M(N − L − l; a− δ; qmax)

M(N − L; a; qmax)
,when {

0 ≤ L + l + a ≤ N,

0 ≤ δ ≤ a.

(18)In these δ equations zt must be one of the l values and they must give δ newvalues St[jt], since, otherwise, they would have been found before. For each ofthe δ equations St[zt] is allocated somewhere, therefore, a new value St[jt] =
S−1

t [zt] − St[it] can be derived. The number of active equations is evidently4 One should start with a loop for t = 1 → N , and then a loop for a = 1 → N , andthen calculate the corresponding subtable.



reduced by δ. The total complexity of CA0

IR
is recursively expressed as

CA0

IR
(L; l;a; qmax) =

a−1∑

δ=1

PA0(L; l; a; δ; qmax) · Pc(L + l; δ) · CA0

IR
(L + l; δ; a− δ; qmax)

+ PA0(L; l; a; a; qmax) · Pc(L + l; a) · CK(L + l + a)

+ PA0(L; l; a; 0; qmax) · CMC(L + l; a), when {

0 ≤ L + l + a ≤ N,

1 ≤ qmax ≤ a,

CIR(L; l;0; 0) = CK(L + l), when L + l ≤ N. (19)Complexity CMC(L; a; qmax) The probability of a maximum clique of size q toappear is
PMC(L; a; qmax; q) =

M(N − L; a; q) − M(N − L; a; q − 1)

M(N − L; a; qmax)
, where {

1 ≤ L + a ≤ N,

1 ≤ q ≤ qmax ≤ a,

(20)with a boundary case PMC(L; 0; 0; 0) = 1. The parameter qmax tells that in the re-maining active equations no cliques of size more than qmax exist, since, otherwise,it would have been found on a previous call of the MC block.Consider the unknown x = S−1
t [zt] from the clique that has to be guessedas one of the N − L remaining values. The choice of x is in principal one of thefollowing three options. (a) x is one of the jts and the equation associated withtime t belongs to the clique. It happens in q choices and results in q − 1 newvalues. An additional contradiction test should be included: St[it] + zt must beequal to S−1

t [zt] (= x). (b) x is one of the jts and the equation associated withtime t does not belong to the clique. It happens in a − q choices and results in
q + 1 new values. (c) In the remaining N − L − a choices q new values of thestate are obtained.Finally, the MC block is the only the block where the complexity is summa-rized. Thus, its total complexity is

CMC(L; a; qmax) = (N − L)
︸ ︷︷ ︸complexity +

qmax∑

q=1

PMC(L; a; qmax; q) ·
[

+ q
︸︷︷︸

q branches · 1

N
︸︷︷︸

zt = jt−1

·Pc(L + 1; q − 1) · CA0

IR
(L + 1; q − 1; a− q; q)

+ (a − q)
︸ ︷︷ ︸

a − q branches ·Pc(L + 1; q) · CA1

IR
(L + 1; q; a− q; q)

+ (N − L − a)
︸ ︷︷ ︸remaining branches ·Pc(L + 1; q) · CA0

IR
(L + 1; q; a− q; q)

]

,when 1 ≤ L + a ≤ N, and 1 ≤ qmax ≤ a.

(21)



Complexity CA1

IR
(L; l; a; qmax) This case is similar to that of CA0

IR
, althoughthere are two subcases with respect to the number of processed equations.

CA1

IR
(L; l;a; qmax) =

a−1∑

δ=0

(
a − 1

δ

)
M(l; δ; qmax) · M(N − L − l; a − δ; qmax)

M(N − L; a; qmax)·
︸ ︷︷ ︸probability of processing δ equations, except �special� one

× Pc(L + l; δ) ·
{

CB

IR
(L + l + δ; a − δ; qmax), δ = 0, a − 1

CA1

IR
(L + l; δ; a − δ; qmax), otherwise

}

+

a−1∑

δ=0

(
a − 1

δ

)
M(l; δ + 1; qmax) · M(N − L − l; a− δ − 1; qmax)

M(N − L; a; qmax)·
︸ ︷︷ ︸probability of processing δ + 1 equations, including �special� one

× 1

N
· Pc(L + l; δ) ·







CMC(L + l; a − 1; qmax), δ = 0

CK(L + l + a − 1), δ = a − 1

CA0

IR
(L + l; δ; a− δ − 1; qmax), otherwise







,(22)where by a �special� equation we call the one for which the value of S[j] is known.Complexity CB

IR
(L; a; qmax) This is the IR block where one equation (associ-ated with time t) has St[jt] known. There could be three cases similar to CMC.However, these cases are not chosen by us likewise in MC, but rather one ofthem appears with some probability. The probability that the value zt is in theclique of size q + 1 is

PA1(L; a; qmax; q) =

(
a − 1

q

)
(N − L) · M(N − L − 1; a − q − 1; qmax)

M(N − L; a; qmax)
, (23)and the targeting complexity is

CB

IR
(L; a;qmax) =

qmax−1
∑

q=0

PA1(L; a; qmax; q) ×
[

q

N
︸︷︷︸

S−1[z]is oneof the q

· 1

N
︸︷︷︸No contra-diction inthe cliqueof size q

·Pc(L + 1; q − 1) · CA0

IR
(L + 1, q − 1, a − q − 1, qmax)

+
a − q − 1

N
· Pc(L + 1; q) · CA1

IR
(L + 1; q; a − q − 1; qmax)

+
N − L − a + 1

N
· Pc(L + 1; q) · CA0

IR
(L + 1; q; a − q − 1; qmax)

]

. (24)



A.4 How to Apply the Complexities?When the pattern is known and ∆thr 6= 0, the complexity function should beapplied at the point where the MC block is called. In this case CMC(L; a; qmax)is added to the total complexity counter, where L and a are known, and qmaxis the size of the maximum clique that had been previously found during thesimulation.When the pattern is unknown (∆thr = 0) but its parameters d, w, l, bα, bβ , bγ , bθare given, the upper bound of the total complexity is calculated as
CRand < Pc(d, bγ) · CA0

IR
(0; d + bγ ; w − l − bθ; w − l − bθ), for random keystream,

CTrue < CA0∗
IR

(bγ ; d; w − l; 1), for true keystream,(25)where CA0∗
IR

is the same as CA0

IR
except that the �rst call of the IR block may nothave contradictions 5.A.5 Restricted Veri�cation Tests on Random KeystreamA set of patterns for restricted veri�cation tests were chosen such that practicalsimulations of the attack would have as close conditions to the assumptions inSection A.2 as possible. We set ∆thr = 0, CK(L) = 0, switch o� the WE and GSiblocks, take patterns with bα = bβ = 0, and test them on a random keystream.(Logarithms of the complexities)Tests show that theoretical complexitiesbehave adequately Tests show that the real complexity de-pends on a certain pattern usedPattern G

2
G
3a
G
4a
G
4b
G
5
G
6
G
7

G
3b
G
3c
G
3d

G
4c
G
4d

G
4e

d 2 3 4 4 5 6 7 3 3 3 4 4 4
N w 5 8 11 13 16 20 25 7 7 7 9 9 9

16 Pract 10.16 4.74 0.60 � � � � 5.87 5.09 6.09 1.09 1.26 1.19Theor 9.76 4.65 0.98 � � � � 5.96 5.96 5.96 2.14 2.14 2.14
30 Pract 19.90 24.22 21.22 17.90 8.71 1.84 � 22.69 22.73 22.90 22.50 22.87 22.27Theor 19.32 23.50 20.49 17.06 7.65 1.92 � 22.41 22.41 22.41 21.99 21.99 21.99
38 Pract � � � � 25.73 12.25 2.66 � � � � � �Theor � � � � 24.78 11.54 2.59 � � � � � �Table 5. Results of restricted veri�cation tests.The results of the tests are given in Table 5. The �rst group of tests showthat theoretical complexities behave adequately along with practical simulationsfor both small and large inputs. The second group of tests show that the actualcomplexity of the attack depends on a certain pattern, and it may vary.5 Brief boundings that need only d and w are CA0

IR (0; d;w;w) and CA0∗

IR (0; d;w; 1).



A.6 Why Is Part-1 Needed?Consider the pattern A = {0, 0, {3, 1}, {1, 2}} and N = 28, qmax = 1, the length ofthe window is w = 5. The probability of exactly one equation to be solved duringthe �rst iteration of the IR block is 0.3042, then a new value of S[j] is received. Intheory the probability of no contradiction would happen is (N−L−l)/N ≈ 0.928,whereas in practice it is around 0.6, and this is a large deviation.This simple example shows that no assumptions could cover all peculiaritiesof an actual pattern used. Therefore, when a precise pattern is given, it wouldbe advised to run partial simulations of the attack in order to test top levelbranches of the recursion with the depth 1-3, since the case of the remainingsubtrees becomes well compliant with the assumptions. This solution can attunetheoretical complexity signi�cantly in some cases.A.7 Full Veri�cation Tests on True KeystreamIn order to verify reliability of complexity functions a set of full veri�cation testsfor three attack scenarios were carried out. For all scenarios N = 64, the patternsare M
8
, M

9
, and M

10
, and a true keystream is generated randomly. The fourblocks in practice and the part with Knudsen's attack in theory are switched on.
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hecomplexities

Fig. 9. Three patterns, true keystream, full attack, N = 64. The results of full veri�-cation tests of complexity functions of the new state recovering attack.Figure 9 shows the results of the tests for the three scenarios. Real com-plexities received via simulations of the state recovering algorithm are horisontallines, wherease the curves are theoretical upper bounds of these complexities



for various ∆thr, respectively. When ∆thr = 0, points on the curves are patternindependent upper bounds.B Patterns Used in This Paper
Reference levelofanalysis Pattern description order generative de�nitive α

-predictive

β

-predictive

θ

-predictive cumulativedist
ance

chaindistance intersection newguesses P
r{
E

i
n
t
}

P
r{
E

e
x
t
}Ref. A.l. i, j P, V d w l bα bβ bθ Πθ σ ξ ψ Int Ext(a) Trade-o� between w and l, the �rst level of analysis

X
2

1st -3, 0 P ={-2, -1}, V ={0, 1} 2 4 2 2 0 0 0 � � � N−3 N−2

X
3

1st -6, -7 P ={-5, -3, -2}, V ={3, 2, -1} 3 10 3 3 0 0 0 � � � N−4 N−3

X
4

1st -10, -11 P ={-9, -7, -6, -2}, V ={3, 2, -4, -1} 4 14 3 3 0 0 0 � � � N−5 N−3

X
5

1st -7, -2 P ={-6, -5, -3, -1, 1}, V ={-2, 4, 7, -1, 1} 5 16 5 4 0 0 0 � � � N−6 N−4

X
6

1st -8, -10 P ={8, 9, -7, -5, -4, -3}, V ={2, -1, 4, 3, -2, 1} 6 23 4 4 0 1 2 � � � N−7e−4/N N−5

X
7

1st -13,-2 P ={8, 9, -12, -11, -10, -9, -7} 7 28 4 4 0 2 4 � � � N−8e−8/N N−6

V ={2, -1, -2, 1, -5, 3, 4}
X

8
1st -18,-5 P ={8 9 -17 -16 -15 -14 -13 -9} 8 33 5 5 0 2 4 � � � N−9e−8/N N−7

V ={2, -1, -5, -2, 1, 4, 5, 3}
X

9
1st -20, -23 P ={0, 1, 5, -19, -17, -16, -15, -14, -7} 9 41 5 4 0 2 4 � � � N−10e−8/N N−6

V ={-5, 8, 3, 5, 4, -2, -1, 2, 1}
X

10
1st -25, -25 P ={6, 8, -24, -22, -20, -19, -18, -17, -3, -2 } 10 47 6 5 0 2 4 � � � N−11e−8/N N−7

V ={3, 4, 2, 8, -3, -2, 1, 7, 0, -5}
X

11
1st -37, -37 P ={-36, -35, -34, -33, -30, -29, -28, -15, -13, -10, 5} 11 49 11 9 0 . . � � � N−12 N−9

V ={10, -4, -1, 11, 3, -2, 1, 9, -3, -7, 2}(b) Good detection through the second level of analysis
Y

4
1st -7, -7 P ={-6, -5, -3, -1}, V ={3, 2, -1, 0} 4 9 4 4 0 . . � � � N−5 N−42nd -2, -1 P ′ ={0, 2, -1}, V ′ ={0, -1, 2} 3 4 3 3 0 . . -4 3 0 N−6e−3 N−7

Y
7

1st -24, -19 P ={1, -23, -22, -20, -18, -10, -3} 7 26 6 5 0 . . � � � N−8 N−5

V ={-3, -2, 4, 5, 1, 0, -1}2nd -5, -2 P ′ ={0, 1, -4, -3, -2}, V ′ ={2, -1, 1, 0, -2} 5 6 5 5 0 . . -7 4 1 N−10e−4 N−10

Y
8

1st -26, -27 P ={-25, -24, -23, -20, -19, -18, -16, -4} 8 29 6 4 1 0 0 � � � N−9 N−5

V ={5, 1, 4, -3, -1, 2, 3, -2}2nd -7, 2 P ′ ={0, 3, -6, -5, -4, -3, -2}, V ′ ={-2, 3, 0, -1, 1, -3, 2} 7 10 7 7 0 0 0 -10 6 1 N−12e−6 N−12Table 6. Various patterns that were achieved by our simulations (part I).



Ref. i, j P, V d w l bα bβ bγ bθ Πθ(a) Maximum generative patterns (w → max)
M

2
0, -1 P ={1, 3}, V ={3, -1} 2 6 0 0 0 0 1 1

M
3
0, -1 P ={1, 3, 4}, V={3, 2, -1} 3 10 3 0 1 2 0 0

M
4
0, -2 P ={1, 3, 4, 5}, V={4, 3, -2, 1} 4 15 1 0 0 1 1 2

M
5
0, -2 P ={1, 2, 4, 6, 8}, V={5, 2, -3, 6, -1} 5 21 0 0 0 0 0 0

M
6
0, 0 P ={1, 2, 3, 4, 5, 20}, V={7, -1, 5, -3, 2, -9} 6 27 3 0 1 2 0 0

M
7
0, 5 P ={1, 2, 4, 6, 8, 9, 16}, V={-2, 4, 7, 1, 3, -3, 8} 7 31 4 0 0 4 1 2

M
8
0, 5 P ={1, 2, 4, 6, 14, 18, 19, 25} 8 37 6 0 1 5 0 0

V ={-2, 4, 5, 1, 3, -3, 2, -1}
M

9
0, 9 P ={1, 2, 3, 6, 7, 8, 11, 20, 24} 9 42 6 0 1 5 1 2

V ={-4, -1, 10, 3, -2, 11, 1, 4, -6}
M

10
0, 3 P ={1, 2, 3, 5, 8, 10, 18, 21, 22, 23} 10 50 4 1 1 2 1 2

V ={1, 5, -3, 8, -7, 3, -2, -5, 9, -1}
M

11
0, -1 P ={1, 2, 3, 4, 6, 9, 11, 13, 21, 30, 33} 11 55 10 0 1 9 0 0

V ={6, 5, -3, 1, 4, -4, 7, -1, 2, -9, 8}
M

12
0, 6 P ={1, 2, 3, 4, 5, 9, 15, 17, 34, 35, 43, 45 } 12 59 8 1 0 7 2 4

V ={2, -2, 1, 12, -7, 7, 8, -3, 0, -5, 3, 4}
M

13
0, 0 P ={1, 3, 5, 6, 7, 8, 22, 23, 31, 32, 34, 44, 52} 13 68 9 0 2 7 2 4

V ={2, 8, -3, -2, 1, 7, 4, -9, 5, 10, -14, -5, 3}
M

14
0, 15 P ={1, 2, 3, 4, 5, 11, 13, 30, 31, 39, 40, 42, 52, 60} 14 76 10 0 2 8 2 4

V ={-7, -2, 1, 2, 7, 8, -3, 4, -9, 5, 10, -14, -5, 3}(b) Patterns with all St[jt] di�erent to test complexity functions
G
2

0, 0 P ={3, 1}, V ={1, 2} 2 5 0 0 0 0 0 0
G
3a

0, -2 P ={1, 3, 4}, V ={4, -1, 3} 3 8 0 0 0 0 0 0
G
3b

0, -4 P ={2, 1, 3}, V ={1, 8, -7} 3 7 0 0 0 0 0 0
G
3c

0, -3 P ={2, 1, 3}, V ={1, 7, -6} 3 7 0 0 0 0 0 0
G
3d

0, 0 P ={3, 1, 2}, V ={3, 5, -1} 3 7 0 0 0 0 0 0
G
4a

0, -4 P ={1, 3, 4, 5}, V ={6, -2, 1, 4} 4 11 0 0 0 0 0 0
G
4b

0, 5 P ={1, 2, 4, 6}, V ={-2, 4, 5, 1} 4 13 0 0 0 0 0 0
G
4c

0, -3 P ={2, 3, 1, 4}, V ={1, 3, 8, -10} 4 9 0 0 0 0 0 0
G
4d

0, -1 P ={5, 3, 1, 2}, V ={1, 5, 7, -2} 4 9 0 0 0 0 0 0
G
4e

0, 7 P ={4, 3, 5, 1}, V ={1, 9, -8, -5} 4 9 0 0 0 0 0 0
G
5

0, -6 P ={1, 3, 4, 5, 8}, V ={8, -3, -1, 7, 5} 5 16 0 0 0 0 0 0
G
6

0, -2 P ={2, 8, 1, 6, 5, 12}, V ={1, 2, 5, 7, -3, -1} 6 20 0 0 0 0 0 0
G
7

0, -2 P ={2, 8, 21, 1, 6, 5, 12}, V ={1, 2, 4, 5, 7, -3, -1} 7 25 0 0 0 0 0 0(c) Patterns to support assumptions
A

1
0, -10 P ={5, 2, 1, 4}, V ={3, 4, 9, -1} 4 9 0 0 0 0 0 0

A
2
0, -3 P ={2, 3, 1, 4}, V ={1, 3, 8, -10} 4 9 0 0 0 0 0 0

A
3
0, -1 P ={5, 3, 1, 2}, V ={1, 5, 7, -2} 4 9 0 0 0 0 0 0

A
4
0, 0 P ={3, 1, 6, 9}, V ={1, 2, 6, -5} 4 9 0 0 0 0 0 0

A
5
0, 7 P ={4, 3, 5, 1}, V ={1, 9,-8, -5} 4 9 0 0 0 0 0 0

A
6
0, 9 P ={2, 4, 1, 6}, V ={2, 8,-6, -1} 4 9 0 0 0 0 0 0

B1 0, -1 P ={8, 1, 7, 3}, V ={1, 3,-9, -1} 4 9 0 0 0 0 1 1
B2 0, 0 P ={3, 1, 9, 6}, V ={1, 2, 3, -8} 4 9 0 0 0 0 2 10
B3 0, 0 P ={1, 3, 8, 5}, V ={2, 3,-6, -3} 4 9 0 0 0 0 2 11
B4 0, 5 P ={4, 2, 8, 1}, V ={1, 4,-7, -2} 4 9 0 0 0 0 1 2
B5 0, 7 P ={2, 3, 1, 8}, V ={1, 4,-3, -2} 4 9 0 0 0 0 2 4
B6 0, 9 P ={2, 4, 3, 1}, V ={1, 4,-3, -2} 4 9 0 0 0 0 3 15
B7 0, 10 P ={5, 3, 1, 2}, V ={1, 5,-4, -2} 4 9 0 0 0 0 2 11Table 7. Various patterns that were achieved by our simulations (part II).


