
Block Ciphers Implementations Provably Secure
Against Second Order Side Channel Analysis

– Extended Version –

Matthieu Rivain1,2, Emmanuelle Dottax2, Emmanuel Prouff2

1 University of Luxembourg
2 Oberthur Card Systems

{m.rivain,e.dottax,e.prouff}@oberthurcs.com

Abstract. In the recent years, side channel analysis has received a lot
of attention, and attack techniques have been improved. Side channel
analysis of second order is now successful in breaking implementations
of block ciphers supposed to be effectively protected. This progress shows
not only the practicability of second order attacks, but also the need for
provably secure countermeasures. Surprisingly, while many studies have
been dedicated to the attacks, only a few papers have been published
about the dedicated countermeasures. In fact, only the method proposed
by Schramm and Paar at CT-RSA 2006 enables to thwart second order
side channel analysis. In this paper, we introduce two new methods which
constitute a worthwhile alternative to Schramm and Paar’s proposition.
We prove their security in a strong security model and we exhibit a way
to significantly improve their efficiency by using the particularities of
the targeted architectures. Finally, we argue that the introduced methods
allow to efficiently protect a wide variety of block ciphers, including AES.

Keywords: Side Channel Analysis, Second Order SCA, Block Ciphers
Implementations, Masking Countermeasure.

1 Introduction

Side Channel Analysis (SCA) is a cryptanalytic technique that consists in
analyzing the physical leakage (called side channel leakage) produced dur-
ing the execution of a cryptographic algorithm embedded on a physical
device. SCA exploits the fact that this leakage is statistically dependent
on the intermediate variables that are processed, these variables being
themselves related to secret data. Different kinds of leakage can be ex-
ploited. Most of the time SCA focuses on the execution time [12], the
power consumption [13] or the electromagnetic emanations [8].

Block ciphers implementations are especially vulnerable to a power-
ful class of SCA called Differential SCA (DCSA) [4, 13]. Based on sev-
eral leakage observations, a DSCA-attacker estimates a correlation be-
tween the leakage and different predictions on the value of a sensitive

variable. According to the obtained correlation values, this attacker is
able to (in)validate some hypothesis on the secret key. An alternative to
DSCA exists when profiling the side channel leakage is allowed. The so-
called Profiling SCA [6,24] is more powerful than DSCA, but it assumes
a stronger adversary model. Indeed, a Profiling SCA attacker has a de-
vice under control, which he uses to evaluate the distribution of the side
channel leakage according to the processed values. These estimated dis-
tributions are then involved in a maximum likelihood approach to recover
the secret data of the attacked device. Profiling attacks are not only more
efficient than DSCA but they are also more effective since they can target
the key manipulations.

A very common countermeasure against SCA is to randomize sensi-
tive variables by masking techniques [5,9]. The principle is to add one or
several random value(s) (called mask(s)) to each sensitive variable. Masks
and masked variables (together called the shares) propagate throughout
the cipher in such a way that every intermediate variable is independent of
any sensitive variable. This strategy ensures that the instantaneous leak-
age is independent of any sensitive variable, thus rendering SCA difficult
to perform. Two kinds of masking can be distinguished: the hardware
masking (that is included at the logic gate level during the design of
the device) and the software masking (that is included at the algorith-
mic level). Hardware masking is expensive in terms of silicium area and
it admits some security flaws. In particular, the shares are usually pro-
cessed at the same time. As a consequence the instantaneous leakage is
actually dependent of the sensitive variables, which allows some dedicated
attacks [20,28]. Other vulnerabilities come from physical phenomena such
as glitches [16] or propagation delays [27]. Compared to hardware mask-
ing, software masking does not imply any overhead in silicium area, but
it can impact the timing performances and the memory requirements.
Regarding security, it does not suffer from the previous flaws and it is
therefore widely used to protect block ciphers implementations.

The masking can be characterized by the number of random masks
that are used per sensitive variable. A masking that involves d random
masks is called a dth order masking. When a dth order masking is used, it
can be broken by a (d+1)th order SCA, namely an SCA that targets d+1
intermediate variables at the same time. Indeed, the leakages resulting
from the d + 1 shares (i.e. the masked variable and the d masks) are
jointly dependent on the sensitive variable. Whatever the order d, such
an attack theoretically allows to bypass a dth order masking [22]. However,
the noise effects imply that the difficulty of carrying out a dth order SCA

in practice increases exponentially with its order [5,25] and the dth order
SCA resistance (for a given d) is thus a good security criterion for block
cipher implementations.

Though block ciphers can theoretically be protected against dth order
SCA by using a dth order masking, the actual implementation reveals
some issues. The main difficulty lies in performing all the steps of the
algorithm by manipulating the shares separately, while being able to re-
build the expected result. As we will see, non-linear layers – crucial for
the block cipher security – are particularly difficult to protect. Only a
few proposals have been made regarding this issue and actually none of
them provides full satisfaction. A first attempt has been made by Akkar
and Goubin for the DES algorithm [2] – and improved in [1, 15] – but it
rests on an ad-hoc security and it is not provably secure against second
order SCA. A second proposition has been made by Schramm and Paar
in [25] to secure an AES implementation against dth order SCA but it has
been broken in [7] for d ≥ 3. Even if it seems to be resistant for d = 2, its
security has not been proved so that there is nowadays no countermeasure
provably secure against second order SCA.

The lack of solutions implies that the higher order SCA resistance still
needs to be investigated. As a first step, resistance against second order
SCA (2O-SCA) is of importance since it has been substantially improved
and successfully put into practice [11,14,18–20,28].

In this paper, we focus on block ciphers implementations provably
secure against 2O-SCA. We first introduce in Sect. 2 notions about block
ciphers. We recall how they are usually protected and we introduce the
security model. We show that in this model, the whole cipher security can
be simply reduced to the security of the S-box implementation. Then, two
new generic S-box implementations are described in Sect. 3. We analyze
their efficiency and we prove their security against 2O-SCA. In this sec-
tion, we also propose an improvement that allows to substantially speed
up our solutions when several S-box outputs can be stored on one micro-
processor word. Finally, we list in Sect. 4 the existing solutions and we
compare them with our new proposition. We also give practical imple-
mentation results, and we discuss their requirements and their efficiency.

2 Block Ciphers Implementations Secure Against
2O-SCA

In this section, we introduce some basics about block ciphers and we
explain how to implement such algorithms in order to guarantee the se-

curity against 2O-SCA. Then, we introduce a security model to prove the
security of the proposed implementations.

2.1 Block Ciphers

A block cipher is a cryptographic algorithm that, from a secret key K,
transforms a plaintext block P into a ciphertext block C through the
repetition of key-dependent permutations, called round transformations.
Let us denote by p, and call cipher state, the temporary value taken by
the ciphertext during the algorithm. In practice, the cipher is iterative,
which means that it applies R times the same round transformation ρ to
cipher state. This round transformation is parameterized by a round key
k that is derived from K by iterating a key scheduling function α. We
shall use the notations pr and kr when we need to precise the round r
during which the variables p and k are involved: we have kr+1 = α(kr, r)
and pr+1 = ρ[kr](pr), with p0 = P, pR = C and k0 = α(K, 0). Moreover,
we shall denote by (p)j the jth part of the state p.

The round transformation ρ can be further modeled as the composi-
tion of different operations: a key addition layer σ, a non-linear layer γ,
and a linear layer λ:

ρ[k] = λ ◦ γ ◦ σ[k].

The whole cipher transformation can thus be written3:

C = ©R−1
r=0 λ ◦ γ ◦ σ[kr] (P).

Remark 1. The key scheduling function α can also be modeled as the
composition of linear and non-linear layers.

The key addition layer is usually a simple bitwise addition between
the round key and the cipher state and we have σ[k](p) = p⊕k. The non-
linear layer consists of several non-linear vectorial functions Sj , called
S-boxes, that operate independently on a limited number of input bits:
γ(p) =

(
S1((p)1), · · · , SN ((p)N)

)
. For efficiency reasons, S-boxes are most

of the time implemented as look-up tables (LUT). We will consider in this
paper that the linear layer λ, that mixes the outputs of the S-boxes, is
linear with respect to the bitwise addition.

As an illustration, Fig. 1 represents a typical round transformation
with a non-linear layer made of four S-boxes. Note that this description
3 This is not strictly the case for all iterated block ciphers. For instance, the last round

of AES slightly differs from the iterated one. But this restriction does not impact
on our purpose.

is not restrictive regarding the structure of recent block ciphers. In par-
ticular, this description can be straightforwardly extended to represent
the AES algorithm.

S1

S2

S3

S4

pr

σ γ

kr

pr+1
λ

Fig. 1. A typical round transformation with a non-linear layer composed of four S-
boxes.

2.2 Securing Block Ciphers Against 2O-SCA

In order to obtain a 2O-SCA resistant implementation of a block cipher,
we will use masking techniques [5,9]. To prevent any second order leakage,
random shares are introduced: the cipher state p and the secret key k are
represented by three shares – (p0, p1, p2) and (k0, k1, k2) respectively –
that satisfy the following relations:

p = p0 ⊕ p1 ⊕ p2 , (1)
k = k0 ⊕ k1 ⊕ k2 . (2)

In order to ensure the security, shares (p1, p2) and (k1, k2) – called the
masks – are randomly generated. And in order to keep track of the correct
values of p and k, shares p0 and k0 – called the masked state and the
masked key – are processed according to Relations (1) and (2).

Remark 2. For an implementation secure against 2O-DSCA only, the key
does not need to be masked. This amounts in our description to fix the
values of k1 and k2 at zero. In such a case, the key scheduling function
can be normally implemented.

At the end of the algorithm, the desired ciphertext (which corresponds
to the final value pR) is re-built from the shares

(
pR
0 , pR

1 , pR
2

)
. To preserve

the security throughout the cipher and to avoid any second order leak-
age, the different shares must always be processed separately. Thus, the
point is to perform the algorithm by manipulating the shares separately,
while maintaining Relations (1) and (2) in such a way that the unmasked
value can always be re-established. To maintain these relations along the
algorithm, we must be able to maintain them throughout the three layers
λ, σ and γ.

For the linear layer λ, maintaining Relations (1) and (2) is simply
done by applying λ to each share separately. Indeed, by linearity, λ(p)
and the new shares λ(pi) satisfy the desired relation:

λ(p) = λ(p0)⊕ λ(p1)⊕ λ(p2) .

An easy relation stands also for the key addition layer σ where each
ki can be separately added to each pi since we have:

σ[k](p) = σ[k0](p0)⊕ σ[k1](p1)⊕ σ[k2](p2) .

For the non-linear layer, no such relation exists and maintaining Re-
lation (1) is a much more difficult task. This makes the secure implemen-
tation of such a layer the principal issue while protecting block ciphers.

Because of the non-linearity of γ, new random masks p′1, p
′
2 must

be generated. Then a masked output state p′0 has to be processed from
p0, p1, p2 and p′1, p

′
2 in such a way that:

γ(p) = p′0 ⊕ p′1 ⊕ p′2.

Since γ is composed of several S-boxes, each operating on a subpart of
p, the problem can be reduced to securely implement one S-box. The
underlying problem is therefore the following.

Problem 1. Let S be an (n,m)-function (that is a function from Fn
2 in

Fm
2). From a masked input x⊕ r1 ⊕ r2 ∈ Fn

2 , the pair of masks (r1, r2) ∈
Fn

2 × Fn
2 and a pair of output masks (s1, s2) ∈ Fm

2 × Fm
2 , compute S(x)⊕

s1 ⊕ s2 without introducing any second order leakage.

If the problem above can be resolved by an algorithm SecSbox, then
the masked output state p′0 can be constructed by performing each S-box
computation through this algorithm. Let us now assume that we have
such a secure S-box implementation. Then, the scheme described in Fig.
2 can be viewed as the protected version of the round transformation
described in Fig. 1. Finally, the whole block cipher algorithm protected
against 2O-SCA can be implemented as depicted in Algorithm 1.

pr+1
2

pr+1
0

pr+1
1

pr
0

pr
1

pr
2

λ

λ

λ

SecSbox(S1)

SecSbox(S2)

SecSbox(S4)

SecSbox(S3)

kr
0 kr

1 kr
2

Fig. 2. A 2O-SCA resistant round transformation.

Remark 3. We have described above a way to secure a round transforma-
tion ρ. The secure implementation αsec of the key scheduling function α –
necessary to thwart Profiling 2O-SCA – can be straightforwardly deduced
from this description since it is also composed of linear and non-linear lay-
ers.

Algorithm 1 Block Cipher secure against 2O-SCA
Input: a plaintext P , a masked key k0 = K ⊕ k1 ⊕ k2 and the masks (k1, k2)
Output: the ciphertext C

1. (p1, p2) ← rand()

2. p0 ← P ⊕ p1 ⊕ p2

3. for r = 0 to R− 1 do

4. (k0, k1, k2) ← αsec ((k0, k1, k2), r)

5. (p0, p1, p2) ← (p0 ⊕ k0, p1 ⊕ k1, p2 ⊕ k2)

6. (p′1, p
′
2) ← rand()

7. for j = 1 to N do (p′0)j ← SecSbox (Sj , (p0)j , (p1)j , (p2)j , (p
′
1)j , (p

′
2)j)

8. (p0, p1, p2) ← (λ (p′0) , λ (p′1) , λ (p′2))
9. return p0 ⊕ p1 ⊕ p2

This paper aims to design implementations that are provably secure
against any kind of 2O-SCA. We will show how it can be achieved by us-
ing masking only. However, as stated in [5,26], masking must be combined
with hiding-like countermeasures (such as noise addition, pipelining, oper-
ations order randomization etc.) to provide a satisfying resistance4 against
SCA of any order. Otherwise a higher order SCA may be easy to carry
4 By resistance, we mean the computational difficulty of the attack.

out (see for instance [18,19]). Consequently, to offer a good level of resis-
tance against SCA of order greater than 2, our implementations should
be combined with classical hiding techniques (e.g. the operations order
randomization described in [10] for the AES).

2.3 Security Model

In order to prove the security of our implementations, we need to intro-
duce a few definitions. We shall say that a variable is sensitive if it is a
function of the plaintext and the secret key (that is not constant with
respect to the secret key). Additionally, we shall call primitive random
values the intermediate variables that are generated by a random number
generator (RNG) executed during the algorithm processing. In the rest
of the paper, the primitive random values are assumed to be uniformly
distributed and mutually independent.

In the security analysis of our proposal, we will make the distinction
between a statistical dependency and what we shall call a functional de-
pendency. Every intermediate variable of a cryptographic algorithm can
be expressed as a discrete function of some sensitive variables and some
primitive random values (generated by a RNG). When this function in-
volves (resp. does not involve) a primitive or sensitive variable X, the
intermediate variable is said to be functionally dependent (resp. indepen-
dent) of X. If the distribution of an intermediate variable I varies (resp.
does not vary) according to the value of a variable X then I is said to be
statistically dependent (resp. independent) of X. It can be checked that the
two notions are not equivalent since the functional independency implies
the statistical independency but the converse is false. We give hereafter
an example that illustrates these notions.

Example 1. Let X be a sensitive variable and let R be a primitive ran-
dom value. The variable I = X ⊕ R is functionally dependent on X and
on R. On the other hand, it is statistically independent of X since the
probability P [X = x|I = i] is constant for every pair (x, i).

In the rest of the paper, the term (in)dependent will be used alone to
refer to the statistical notion.

Definition 1 (2O-SCA). A second order SCA is an SCA that simulta-
neously exploits the leakages of at most 2 intermediate variables.

From Definition 1 and according to [3,7], we formally define hereafter the
security against 2O-SCA.

Definition 2. A cryptographic algorithm is said to be secure against 2O-
SCA if every pair of its intermediate variables is independent of any sen-
sitive variable.

Conversely, an algorithm is said to admit a second order leakage if two of
its intermediate variables jointly depend on a sensitive variable.

Remark 4. Usually a second order SCA refers to an SCA that simulta-
neously targets two different leakage points in the time-indexed leakage
vector corresponding to the algorithm execution. Thus Definitions 1 and
2 implicitly assume that an instantaneous leakage gives information on at
most one intermediate variable. However, a non careful implementation
may imply one (or several) instantaneous leakage that jointly depends
on two intermediate variables. This may result from physical transitions
occurring at the hardware level (e.g. in a register or on a bus [4, 21]).
The different algorithms proposed in this paper fulfill security according
to Definition 2 and assume a careful implementation to provide practical
security.

Due to Definition 2, proving that an algorithm is secure against 2O-SCA
can be done by listing every pair among its intermediate variables and by
showing that they are all independent of any sensitive variable. In order
to simplify our security proofs, we introduce the notion of independency
for a set.

Definition 3. A set E is said to be independent of a variable X if every
element of E is independent of X.

By extension, Definition 3 implies that the cartesian product of two
sets E1 and E2 is independent of a variable X if any pair in E1 × E2 is
independent5 of X. Thus, according to Definition 2, an algorithm pro-
cessing a set I of intermediate variables is secure against 2O-SCA if and
only if I × I is independent of any sensitive variable.

Based on the definitions above, our security proofs make use of the
two following lemmas.

Lemma 1. Let X and Z be two independent random variables. Then,
for every family (fi)i of measurable functions the set E = {fi(Z); i} is
independent of X.

5 Unlike for a set, a pair is independent of a variable X if its two elements are jointly
independent of X.

Remark 5. In the sequel we will say that an intermediate variable I is a
function of a variable Z (namely I = f(Z)), if its expression involves Z
and (possibly) other primitive random values of which Z is functionally
independent.

Lemma 2. Let X be a random variable defined over Fn
2 and let R be

a random variable uniformly distributed over Fn
2 and independent of X.

Let Z be a variable independent of R and functionally independent of X.
Then the pair (Z, X ⊕R) is independent of X.

When a sensitive variable is masked with two primitive random values,
then Lemmas 1 and 2 imply that no second order leakage occurs if the
three shares are always processed separately.

According to the definitions and lemmas introduced, we have the fol-
lowing proposition.

Proposition 1. Algorithm 1 is secure against 2O-SCA if and only if
SecSbox is secure against 2O-SCA.

Sketch of Proof. Let us denote by I the set of intermediate variables
processed during one execution of Algorithm 1. Moreover, let us denote by
S the set of intermediate variables processed in the different executions of
SecSbox and byO the set of the other intermediate variables of Algorithm
1 (namely I = O∪S). We will argue that I×I admits a leakage (namely
a pair of I×I depends on a sensitive variable) if and only if S×S admits
a leakage.

It is straightforward that if S × S admits a leakage then so does
I × I. Let us now show that the converse is also true. In Algorithm
1, all the operations except the S-box computations are performed in-
dependently on the three shares of every sensitive variable. This im-
plies that O × O is independent of any sensitive variable i.e. it ad-
mits no leakage. Since one execution of SecSbox takes as parameter a
tuple

(
(p0)j , (p1)j , (p2)j , (p′1)j , (p′2)j

)
, every intermediate variable in S

can be expressed as a function of such a tuple. Hence, if O × S de-
pends on a sensitive variable then this one is either (p)j or (p′)j =
S

(
(p)j

)
. We deduce that the intermediate variable in O that jointly leaks

with the one in S is one of the shares (pi)j and (p′i)j . Since we have
{(p0)j , (p1)j , (p2)j , (p′0)j , (p′1)j , (p′2)j} ⊂ S we deduce that if a leakage oc-
curs in O × S then it also occurs in S × S.

Finally, we can conclude that if a leakage occurs in I×I then it occurs
in S × S. ¦

In the next section, we propose two new methods to implement any S-
box in a way which is provably secure against 2O-SCA. Using one of these
methods in the above described block cipher implementation guarantees
a global 2O-SCA resistance.

3 Generic S-box Implementations Secure Against
2O-SCA

In this section, we first describe two methods (Sect. 3.1 and Sect. 3.2)
to implement any (n,m)-function S and we prove their security against
2O-SCA. Then we propose an improvement (Sect. 3.3) that allows to
substantially reduce the complexity of both methods.

3.1 A First Proposition

In the following algorithm we describe a method to securely process a
second order masked S-box output from a second order masked input.

Algorithm 2 Computation of a 2O-masked S-box output from a 2O-masked input
Input: a pair of dimensions (n, m), a masked value x̃ = x ⊕ r1 ⊕ r2 ∈ Fn

2 , the pair of
input masks (r1, r2) ∈ Fn

2 × Fn
2 , a pair of output masks (s1, s2) ∈ Fm

2 × Fm
2 , a LUT for

the (n, m)-function S
Output: the masked S-box output S(x)⊕ s1 ⊕ s2 ∈ Fm

2

1. r3 ← rand(n)

2. r′ ← (r1 ⊕ r3)⊕ r2

3. for a = 0 to 2n − 1 do

4. a′ ← a⊕ r′

5. T [a′] ← (S(x̃⊕ a)⊕ s1)⊕ s2

6. return T [r3]

Remark 6. In the description of Step 5, we used brackets to point out
that the introduction of the two output masks s1 and s2 is done in this
very order (otherwise a second order leakage would occur).

The random value r3 is used to mask the sum r1 ⊕ r2 and to avoid
any second order leakage. The value returned at the end of the algorithm
satisfies:

T [r3] = S(x̃⊕ r3 ⊕ r′)⊕ s1 ⊕ s2 = S(x)⊕ s1 ⊕ s2 , (3)

which shows the correctness of Algorithm 2.

Complexity. Algorithm 2 requires the allocation of a table of 2n m-bit
words in RAM. It involves 4×2n (+2) XOR operations, 2×2n (+1) memory
transfers and the generation of n random bits.

Security Analysis. We prove hereafter that Algorithm 2 is secure against
2O-SCA.

Security Proof. Algorithm 2 involves four primitive random values r1, r2,
s1 and s2. These variables are assumed to be uniformly distributed and
mutually independent together with the sensitive variable x.

The intermediate variables of Algorithm 2 are viewed as functions of
the loop index a and are denoted by Ij(a). The set {Ij(a); 0 ≤ a ≤ 2n−1}
is denoted by Ij . If an intermediate variable Ij(a) does not functionally
depend on a, then the set Ij is a singleton. The set I = I1 ∪ · · · ∪ I15 of
all the intermediate variables of Algorithm 2 is listed in Table 1.

Remark 7. In Table 1, the step values refer to the lines in the algorithm
description (where Step 0 refers to the input parameters manipulation).
Note that one step (in the algorithm description) can involve several in-
termediate variables. However, these ones are separately processed and
do not leak information at the same time.

Table 1. Intermediate variables of Algorithm 2.

j Ij Steps

1 r1 0,2
2 r2 0,2
3 s1 0,2
4 s2 0,2
5 r3 1,6
6 r1 ⊕ r3 2
7 r1 ⊕ r2 ⊕ r3 2,4
8 a 3,4,5
9 a⊕ r1 ⊕ r2 ⊕ r3 4,5

10 x⊕ r1 ⊕ r2 0,5
11 x⊕ r1 ⊕ r2 ⊕ a 5
12 S(x⊕ r1 ⊕ r2 ⊕ a) 5
13 S(x⊕ r1 ⊕ r2 ⊕ a)⊕ s1 5
14 S(x⊕ r1 ⊕ r2 ⊕ a)⊕ s1 ⊕ s2 5

15 S(x)⊕ s1 ⊕ s2 6

In order to prove that Algorithm 2 is secure against 2O-SCA, we show
that I ×I is independent of x. For this purpose, we split I into the three

subsets E1 = I1 ∪ · · · ∪ I9, E2 = I10 ∪ · · · ∪ I14 and I15. First, the sets
E1 ×E1, E2 ×E2 and I15 × I15 are shown to be independent of x. Then,
we show that E1 × E2, E1 × I15 and E2 × I15 are also independent of x,
thus proving the independency between I × I and x.

The set E1×E1 is independent of x since E1 is functionally indepen-
dent of x. Moreover, since x⊕r1⊕r2 (resp. S(x)⊕s1⊕s2) is independent
of x and since each element in E2×E2 (resp. I15× I15) can be expressed
as a function of x⊕ r1 ⊕ r2 (resp. S(x)⊕ s1 ⊕ s2), then Lemma 1 implies
that E2 × E2 (resp. I15 × I15) is independent of x.

One can check that E1 is independent of r1 ⊕ r2 and is functionally
independent of x. Hence, we deduce from Lemma 2 that E1×{x⊕r1⊕r2}
is independent of x, which implies (from Lemma 1) that E1 × E2 and x
are independent. Similarly, E1 is independent of s1⊕s2 so that E1×{I15}
(namely E1 × {S(x)⊕ s1 ⊕ s2}) is independent of S(x) and hence of x.

To prove the independency between E2 × I15 and x, we split E2 into
two subsets: I10∪· · ·∪I13 and I14. One can check that (x⊕r1⊕r2, S(x)⊕s2)
is independent of x and that every element of (I10 ∪ · · · ∪ I13) × I15 can
be expressed as a function of this pair. Hence one deduces from Lemma
1 that (I10 ∪ · · · ∪ I13) × I15 is independent of x. In order to prove that
I14 × I15 is also independent of x, let us denote u1 = S(x) ⊕ s1 ⊕ s2

and u2 = S(x ⊕ a ⊕ r1 ⊕ r2). The variables u1 and u2 are uniformly
distributed6, independent and mutually independent of x. Since I14× I15

equals {S(x)⊕ u2 ⊕ u1} × {u1}, we deduce that it is independent of x. ¦

3.2 A Second Proposition

In this section, we propose an alternative to Algorithm 2 for implementing
an S-box securely against 2O-SCA. This second solution requires more
logical operations but less RAM allocation, which can be of interest for
low cost devices.

The algorithm introduced hereafter assumes the existence of a masked
function compareb that extends the classical Boolean function (defined
by compare(x, y) = 0 iff x = y) in the following way:

compareb(x, y) =
{

b if x = y
b̄ if x 6= y

. (4)

Based on the function above, the second method is an adaptation of the
first order secure S-box implementation which has been published in [23].
6 This holds for u2 if and only if the S-box S is balanced (namely every element in Fm

2

is the image under S of 2n−m elements in Fn
2). As it is always true for cryptographic

S-boxes we implicitly make this assumption.

Algorithm 3 Computation of a 2O-masked S-box output from a 2O-masked input
Input: a pair of dimensions (n, m), a masked value x̃ = x ⊕ r1 ⊕ r2 ∈ Fn

2 , the pair of
input masks (r1, r2) ∈ Fn

2 × Fn
2 , a pair of output masks (s1, s2) ∈ Fm

2 × Fm
2 , a LUT for

the (n, m)-function S
Output: the masked S-box output S(x)⊕ s1 ⊕ s2 ∈ Fm

2

1. b ← rand(1)

2. for a = 0 to 2n − 1 do

3. cmp ← compareb(r1 ⊕ a, r2)

4. Rcmp ← (S(x̃⊕ a)⊕ s1)⊕ s2

5. return Rb

Let indif denote some value in Fm
2 . Steps 3 and 4 of Algorithm 3

perform the following operations:
{

cmp ← b ; Rb ← S(x)⊕ s1 ⊕ s2 if a = r1 ⊕ r2 ,
cmp ← b̄ ; Rb̄ ← indif otherwise.

We thus deduce that the value returned by Algorithm 3 is S(x)⊕ s1⊕ s2.

Complexity. The method involves 4 × 2n XOR operations, 2n memory
transfers and the generation of 1 random bit. Since it also involves 2n

compareb operations, the overall complexity relies on the compareb im-
plementation. As explained in the next paragraph, the implementation of
this function must satisfies certain security properties. We propose such a
secure implementation in Appendix A which – when applied to Algorithm
3 – implies a significant timing overhead compared to Algorithm 2 but
requires less RAM allocation.

Security Analysis. Let δ0 denote the Boolean function defined by
δ0(z) = 0 if and only if z = 0. For security reasons, compareb(x, y)
must be implemented in a way that prevents any first order leakage on
δ0(x ⊕ y) that is, on the result of the unmasked function compare(x, y)
(and more generally on x ⊕ y). Otherwise, Step 3 would provide a first
order leakage on δ0(r1 ⊕ r2 ⊕ a) and an attacker could target this leak-
age together with x̃⊕ a (Step 4) to recover information about x. Indeed,
the joint distribution of δ0(r1 ⊕ r2 ⊕ a) and x̃ ⊕ a depends on x which
can be illustrated by the following observation: x̃ ⊕ a = x if and only
if δ0(r1 ⊕ r2 ⊕ a) = 0. In particular, the straightforward implementa-
tion compareb(x, y) = compare(x, y) ⊕ b is not valid since it processes
compare(x, y) directly. A possible implementation of a secure function
compareb is given in Appendix A. With such a function, Algorithm 3 is
secure against 2O-SCA as we prove hereafter.

Security Proof. As done in Sect. 3.1, we denote by I the set of inter-
mediate variables that are processed during an execution of Algorithm
3. Table 2 lists these variables. The primitive random values r1, r2, s1,
s2 and b are assumed to be uniformly distributed and mutually indepen-
dent together with the sensitive variable x. The following security proof
is quite similar to the one done in Sect. 3.1.

Table 2. Intermediate variables of Algorithm 3.

j Ij Steps

1 r1 0,3
2 r2 0,3
3 s1 0,4
4 s2 0,4
6 b 1,3
7 a 2-4
8 r1 ⊕ a 3
10 δ0(a⊕ r1 ⊕ r2)⊕ b 3

11 x⊕ r1 ⊕ r2 0,4
12 x⊕ r1 ⊕ r2 ⊕ a 4
13 S(x⊕ r1 ⊕ r2 ⊕ a) 4
14 S(x⊕ r1 ⊕ r2 ⊕ a)⊕ s1 4
15 S(x⊕ r1 ⊕ r2 ⊕ a)⊕ s1 ⊕ s2 4

16 S(x)⊕ s1 ⊕ s2 5

In order to prove that Algorithm 3 is secure against 2O-SCA, we need
to show that I × I is independent of x. As in Sect. 3.1 we split I into
three subsets E1 = I1 ∪ · · · ∪ I10, E2 = I11 ∪ · · · ∪ I15 and I16. First, we
show that E1×E1, E2×E2 and I16× I16 are independent of x and then,
we show that E1 ×E2, E1 × I16 and E2 × I16 are independent of x (thus
proving that I × I is independent of x).

As in Sect. 3.1, E1×E1 is straightforwardly independent of x and the
independency between x ⊕ r1 ⊕ r2 (resp. S(x) ⊕ s1 ⊕ s2) and x implies,
by Lemma 1, that E2 ×E2 (resp. I16 × I16) is independent of x.

Since E1 is independent of r1 ⊕ r2 (resp. s1 ⊕ s2) and functionally
independent of x, Lemma 2 implies that E1 × {x ⊕ r1 ⊕ r2} (resp. E1 ×
{S(x) ⊕ s1 ⊕ s2}) is independent of x. Hence, since every element of E2

(resp. I16) can be written as a function of x⊕r1⊕r2 (resp. S(x)⊕s1⊕s2),
Lemma 1 implies that E1 × E2 (resp. E1 × I16) is independent of x.

Every pair in (E2\I15)×I16 can be expressed as a function of (x⊕r1⊕
r2, S(x)⊕s2) which is independent of x. Hence, by Lemma 1, (E2\I15)×I16

is independent of x. And finally, as in Sect. 3.1, I15× I16 can be rewritten
as {S(x)⊕ u2 ⊕ u1} × {u1} – where u1 (= S(x) ⊕ s1 ⊕ s2) and u2 (=
S(x⊕ r1 ⊕ r2 ⊕ a)) are uniformly distributed, mutually independent and
mutually independent of x. This implies that I15 × I16 is independent of
x. ¦

3.3 Improvement

This section aims at describing an improvement of the two previous meth-
ods which can be used when the device architecture allows the storage of
2w S-box outputs on one q-bit word (namely m, w and q satisfy 2wm ≤ q).
This situation may happen for 8-bit architectures when the S-boxes to im-
plement have small output dimensions (e.g. m = 4 and w = 1) or for q-bit
architectures when q ≥ 16 (and m ≤ 8).

In the following, we assume that the S-box is represented by a LUT
having 2n−w elements of bit-length 2wm (instead of 2n elements of bit-
length m). This LUT, denoted by LUT (S′), can then be seen as the table
representation of the (n−w, 2wm)-function S′ defined for every y ∈ Fn−w

2

by:
S′(y) = (S(y, 0), S(y, 1), · · · , S(y, 2w − 1)) , (5)

where each i = 0, · · · , 2w − 1 must be taken as the integer representation
of a w-bit value.

For every x ∈ Fn
2 , let us denote by x[i] the i-th most significant bit of x

and by xH (resp. xL) the vector (x[1], · · · , x[n−w]) (resp. the vector (x[n−
w+1], · · · , x[n])). According to these notations, the S-box output S(x) is
the m-bit coordinate of S′(xH) whose index is the integer representation
of xL.

In order to securely compute the masked output S(x)⊕ s1 ⊕ s2 from
the 3-tuple (x̃, r1, r2), our improvement consists in the two following steps.
In the first step we securely compute the masked vector S′(xH)⊕ z1⊕ z2

(where z1 and z2 are (2wm)-bit random masks). Then, the second step
consists in securely extracting S(x)⊕ s1 ⊕ s2 from S′(xH)⊕ z1 ⊕ z2.

To securely compute the masked vector S′(xH)⊕ z1⊕ z2, we perform
Algorithm 2 (or 3) with as inputs the pair of dimensions (n−w, 2wm), the
3-tuple (x̃H , r1,H , r2,H), the pair of output masks (z1, z2) and the table
LUT (S′). This execution returns the value S′(xH) ⊕ z1 ⊕ z2. Moreover,
as proved in Sect. 3.1 (or Sect. 3.2), it is secure against 2O-SCA.

At this point, we need to securely extract S(x)⊕s1⊕s2 from S′(xH)⊕
z1 ⊕ z2 as well as s1 and s2 from z1 and z2. Namely, we need to extract
the m-bit coordinate of S′(xH) ⊕ z1 ⊕ z2, and of z1 and z2 whose index
corresponds to the integer representation of xL. For such a purpose, we
propose a process that selects the desired coordinate by dichotomy.

For every word y of even bit-length, let H0(y) and H1(y) denote the
most and the least significant half part of y. At each iteration our process
calls an algorithm Select that takes as inputs a dimension l, a 2O-masked
(2l)-bit word z0 = z ⊕ z1 ⊕ z2 (and the corresponding masking words z1

and z2) and a 2O-masked bit c0 = c ⊕ c1 ⊕ c2 (and the corresponding
masking bits c1 and c2). This algorithm returns a 3-tuple of l-bit words
(z′0, z

′
1, z

′
2) that satisfies z′0 ⊕ z′1 ⊕ z′2 = Hc(z). We detail hereafter the

global process that enables to extract the 3-tuple (S(x)⊕ s1 ⊕ s2, s1, s2)
from (S′(xH)⊕ z1 ⊕ z2, z1, z2).

1. z0 ← S′(xH)⊕ z1 ⊕ z2

2. for i = 0 to w − 1
3. (c0, c1, c2) ← (x̃L[w − i], r1,L[w − i], r2,L[w − i])
4. (z′0, z

′
1, z

′
2) ← Select

(
2wm/2i+1, (z0, z1, z2), (c0, c1, c2)

)

4. (z0, z1, z2) ← (z′0, z
′
1, z

′
2)

6. return (z0, z1, z2)

In order to be secure against 2O-SCA, this process requires that Select
admits no second order leakage on z nor on c. A solution for such a
secure algorithm is given hereafter (Algorithm 4). It requires three l-bit
addressing registers (A0, A1), (B0, B1) and (C0, C1).

Algorithm 4
Input: a dimension l, a masked word z0 = z ⊕ z1 ⊕ z2 ∈ F2l

2 , the pair of masks
(z1, z2) ∈ F2l

2 × F2l
2 , a masked bit c0 = c ⊕ c1 ⊕ c2 ∈ F2 and the pair of masking bits

(c1, c2) ∈ F2 × F2

Output: a 3-tuple (z′0, z
′
1, z

′
2) ∈ (Fl

2)
3 that satisfies z′0 ⊕ z′1 ⊕ z′2 = z[c]

1. t1, t2 ← rand(l)

2. b ← rand(1)

3. c3 ← (c1 ⊕ b)⊕ c2

4. Ac3 ← Hc0(z0)⊕ t1

5. Bc3 ← Hc0(z1)⊕ t2

6. Cc3 ← Hc0(z2)⊕ t1 ⊕ t2

7. Ac3 ← Hc0(z0)⊕ t1

8. Bc3 ← Hc0(z1)⊕ t2

9. Cc3 ← Hc0(z2)⊕ t1 ⊕ t2

10. return (Ab, Bb, Cb)

One can verify that Algorithm 4 performs the following operations for
every value of (c1, c2):

{
(Ab, Bb, Cb) ← (Hc(z0)⊕ t1,Hc(z1)⊕ t2,Hc(z2)⊕ t1 ⊕ t2)
(Ab, Bb, Cb) ← (Hc(z0)⊕ t1,Hc(z1)⊕ t2,Hc(z2)⊕ t1 ⊕ t2)

.

Thus the three returned variables satisfiy Ab ⊕Bb ⊕ Cb = z[c].

Complexity. Algorithm 4 involves 10 XOR operations and the generation
of 2l + 1 random bits.

When it is used, the improvement allows to divide the execution time
of Algorithm 2 (or 3) by approximately 2w since it performs a loop of
2n−w iterations instead of 2n. Additionally, the improvement involves w
calls to Algorithm 4 which implies an overhead of approximately 10× w
XOR operations and the generation of 2m× (2w− 1)+w random bits. For
instance, for an 8 × 8 S-box on a 16-bit architecture, the improvement
applied to Algorithm 2 allows to save 512 XOR operations and 128 memory
transfers for an overhead of 10 XOR operations and the generation of 33
random bits (16 more for (z1, z2) than for (s1, s2) and 16+1 for Algorithm
4).

Security Analysis. The random values t1 and t2 are introduced to
avoid any second order leakage on c. Otherwise, if the algorithm simply
returns (Hc(z0),Hc(z1),Hc(z2)), an inherent second order leakage (i.e.
independent of the algorithm operations) occurs. Indeed, by targeting one
of the inputs zi and one of the outputs Hc(zi), an attacker may recover
information on c since

(
zi,Hc(zi)

)
depends on c (even if zi is random).

Security Proof. Table 3 lists all the intermediate variables that are pro-
cessed by Algorithm 4. To prove that Algorithm 4 is secure against 2O-
SCA, we must show that I × I is independent of z and of c.

The independency between I × I and z is straightforward. Indeed,
from Table 3, one can verify that z⊕z1⊕z2, z1 and z2 are always processed
separately.

Now, let us show that I × I is also independent of c. For such a
purpose, we split I into the three subsets E1 = I1 ∪ · · · ∪ I10, E2 =
I11 ∪ · · · ∪ I26 and E3 = I27 ∪ I28 ∪ I29. As done in Sect. 3.1 and Sect.

Table 3. Intermediate variables of Algorithm 4.

j Ij Steps

1 z ⊕ z1 ⊕ z2 0-4-7
2 z1 0,5,8
3 z2 0,6,9
4 c1 0,3
5 c2 0,3
6 t1 1,4,6,7,9
7 t2 1,5,6,8,9
8 b 2-3-10
9 c1 ⊕ b 3
10 c1 ⊕ c2 ⊕ b 3-9

11 c⊕ c1 ⊕ c2 0,4-6
12 Hc⊕c1⊕c2(z ⊕ z1 ⊕ z2) 4
13 Hc⊕c1⊕c2(z ⊕ z1 ⊕ z2)⊕ t1 4
14 Hc⊕c1⊕c2(z1) 5
15 Hc⊕c1⊕c2(z1)⊕ t2 5
16 Hc⊕c1⊕c2(z2) 6
17 Hc⊕c1⊕c2(z2)⊕ t1 6
18 Hc⊕c1⊕c2(z2)⊕ t1 ⊕ t2 6
19 Hc⊕c1⊕c2

(z ⊕ z1 ⊕ z2) 7
20 Hc⊕c1⊕c2

(z ⊕ z1 ⊕ z2)⊕ t1 7
21 Hc⊕c1⊕c2

(z1) 8
22 Hc⊕c1⊕c2

(z1)⊕ t2 8
23 Hc⊕c1⊕c2

(z2) 9
25 Hc⊕c1⊕c2

(z2)⊕ t1 9
26 Hc⊕c1⊕c2

(z2)⊕ t1 ⊕ t2 9

27 Hc(z ⊕ z1 ⊕ z2)⊕ t1 10
28 Hc(z1)⊕ t2 10
29 Hc(z2)⊕ t1 ⊕ t2 10

3.2, we first show that Ei ×Ej is independent of x for i = j and then for
i < j.

E1 is mathematically independent of c which implies that E1 ×E1 is
independent of c. Since c ⊕ c1 ⊕ c2 is independent of c and since every
element of E2 × E2 is a function of c ⊕ c1 ⊕ c2, Lemma 1 implies that
E2×E2 is independent of c. On the other hand, each element of E3×E3

can be rewritten (Hc[u1] ⊕ v1, Hc[u1] ⊕ v1) or (Hc[u1] ⊕ v1,Hc[u2] ⊕ v2)
where u1, u2 v1 and v2 are uniformly distributed random variables that
are mutually independent and mutually independent of c. This implies
(by Lemma 2) that E3 × E3 is independent of c.

One can verify that E1 is independent of c1 ⊕ c2. Moreover E1 is
mathematically independent of c. This implies, according to Lemma 2,
that E1×{c⊕c1⊕c2} is independent of c. Moreover, since every element in
E2 is a function of c⊕c1⊕c2 Lemma 1 implies that E1×E2 is independent
of c.

To prove that E1×E3 is independent of x, we split E1 into two subsets:
E′

1 = E1\ (I6 ∪ I7) and I6∪I7. The set E′
1 is mathematically independent

of c and is independent of t1, t2 and t1⊕ t2. Since every element of E3 is a
function of c that masked wether by t1, t2 or t1⊕t2, then, Lemma 2 implies
that E′

1×E3 is independent of c. On the other hand, every element of E3

is a function of Hc(zi) for i ∈ {0, 1, 2} (recalling z0 = z ⊕ z1 ⊕ z2). Since
zi is uniformly distributed and independent of c, Hc(zi) is independent of
c. And since I6 ∪ I7 is mathematically independent of z, z1, z2 and c, we
can deduce that (I6 ∪ I7)× E3 is independent of c.

To prove that E2×E3 is independent of x, we split E2 into two subsets:
I11 and E′

2 = E2\I11. Every element of I11 ×E3 is a pair (c, Hc(zi)) that
is masked with an independent and uniformly distributed pair (c1⊕ c2, t)
(where t is in {t1, t2, t1 ⊕ t2}). This implies (by Lemma 2) that I11 × E3

is independent of c. On the other hand, every element of E′
2 × E3 is

a function of a pair (Hc0(u1), Hc(u2)) (or (Hc0(u1),Hc(u2))) where c0

equals c⊕c1⊕c2 and where u1 and u2 are two random variables (possibly
equal) both uniformly distributed and independent of c and c0. Then,
since c and c0 are independent, one can verify that (Hc0(u1),Hc(u2))
(and (Hc0(u1),Hc(u2))) is independent of c, thus implying, by Lemma 1,
that E′

2 × E3 is independent of c. ¦

4 Comparison and Application

The purpose of this section is twofold. First, we list all the methods that
have been proposed in the Literature to secure an S-box implementation

against 2O-SCA. We explain that only the proposal of Schramm and Paar
in [25] may be considered as secure against 2O-SCA and we compare the
complexity of their two methods with the one of Algorithm 2. Secondly,
we present several implementations of the AES protected as described in
Sect. 2.2 and where the SecSbox algorithm is implemented either with
one of Schramm and Paar’s methods or with our new proposal (Algorithm
2). We also implemented the different SecSbox algorithms on 8-bit, 16-
bit and 32-bit architectures. To demonstrate the practical interest of the
improvement proposed in Sect. 3.3, we implemented the improved version
of Algorithm 2 for the 16-bit and 32-bit architectures.

4.1 Comparison

State of The Art. We found four papers in the Literature that focus on
secure implementation against higher order SCA. It seems that the first
attempt has been proposed by Akkar and Goubin in [2] for securing the
DES algorithm. The proposed solution had some flaws that were fixed in
two steps, firstly by Akkar et al. in [1] and secondly by Lv and Han in [15].
All these works are more or less based on the same principle. At each
DES execution, a few 32-bit masks are generated (2 masks in [1,2], and 3
masks in [15]). The masks are used to derive several new masked S-boxes
from each of the 8 DES S-boxes and those are combined in different ways
by the DES implementation. In the security discussion conducted in [2]
and implicitly assumed in [1, 15], the masks manipulations and the table
re-computations are supposed to leak no information about the masks
values. Although the different methods proposed in [2] to process the
mask values and the masked S-boxes allow to minimize the instantaneous
leakages on the mask values, they do not perfectly prevent it. Therefore,
according to Definition 1, the implementations proposed in [1, 2, 15] are
not secure against 2O-SCA.

In fact, only the paper by Schramm and Paar presents an implementa-
tion of AES that seems to be provably secure against 2O-SCA according
to Definition 2.

Remark 8. Initially [25] aimed to present an AES implementation secure
against any dth order SCA but the paper by Coron et al. [7] showed that
a 3rd order SCA is always possible when the method is performed for
d ≥ 3.

Schramm and Paar’s S-box Implementations are based on the table
re-computation method [17]. Namely (for the 2O-SCA resistance), the

principle is to compute from a 4-tuple of masks (r1, r2, s1, s2), the LUT of
a masked S-box S∗ that satisfies S∗(x) = S(x⊕r1⊕r2)⊕s1⊕s2 for every
x ∈ Fn

2 . Then, the masked output S(x) ⊕ s1 ⊕ s2 is obtained by simply
accessing the value S∗(x̃) in the re-computed LUT. The tricky part in
such a method is to construct the LUT of S∗ without never manipulating
the sum of masks r1 ⊕ r2 and s1 ⊕ s2 directly (since it would introduce a
second order leakage together with x̃ or with S(x)⊕ s1 ⊕ s2).

In their paper, Schramm and Paar present two solutions. The first one
(the generic) involves two table re-computations7.

Algorithm 5 Schramm and Paar’s Generic Solution
Input: LUT (S), (r1, r2, s1, s2), the masked input x̃ = x⊕ r1 ⊕ r2

Output: the masked output S(x)⊕ s1 ⊕ s2

/*** First table re-computation ***/

1. for a from 0 to 2n − 1 do

2. Stemp1(a) ← S(a⊕ r1)⊕ s1

/*** Second table re-computation ***/

3. for a from 0 to 2n − 1 do

4. S∗(a) ← Stemp1(a⊕ r2)⊕ s2

5. return S∗(x̃)

As noticed by the authors in [25], the algorithm above is quite costly
as it involves two table re-computations for each S-box computation for
each round of the cipher. To reduce this overhead, Schramm and Paar
propose in [25] an improvement. In the new solution, two successive table
re-computations are still preformed to process the first masked S-box
in the first round of the cipher but all the other S-box computations
are protected with a single table re-computation. Before describing the
method, let us assume that the previous S-box computation has been
protected with the 4-tuple of masks (r′1, r

′
2, s

′
1, s

′
2) and with a masked S-

box S∗prev (satisfying S∗prev(y) = S(y⊕ r′1⊕ r′2)⊕s′1⊕s′2 for every y ∈ Fn
2).

To securely compute the new masked output S(x) ⊕ s1 ⊕ s2 from the
masked input x̃, the masked S-box S∗ is derived from S∗prev. Then, the
value S∗(x̃) is accessed to get S(x)⊕ s1 ⊕ s2.

Algorithm 6 Schramm and Paar’s Improved Solution
Input: LUT (S∗prev), the 4-tuples (r1, r2, s1, s2) and (r′1, r

′
2, s

′
1, s

′
2), the masked input

x̃ = x⊕ r1 ⊕ r2

7 We consider that the table re-computations are performed using the straightforward
algorithm since, as argued in [7], other proposals of [25] include some flaws.

Output: the masked output S(x)⊕ s1 ⊕ s2 (and LUT (S∗))

1. ICM ← (r1 ⊕ r′1)⊕ r2 ⊕ r′2
2. OCM ← (s1 ⊕ s′1)⊕ s2 ⊕ s′2
3. for a from 0 to 2n − 1 do

4. S∗(a) ← S∗prev(a⊕ ICM)⊕OCM

5. return S∗(x̃)

Schramm and Paar’s improved solution is clearly much more efficient
than the generic solution and it seems to be secure against 2O-SCA. How-
ever, its use as algorithm SecSbox in a scheme such as described in Sect.
2.2 may potentially introduce a second order leakage in the implemen-
tation. In fact, the proof given in Sect. 2.3 does not apply in this case
since Algorithm 6 does not fulfill the definition of SecSbox (see Problem
1). Indeed, Algorithm 6 takes additional parameters (r′1, r

′
2, s

′
1, s

′
2) which

may induce a second order leakage. For instance, let us assume that the
linear layer λ operates on a pair of successive S-box outputs (S(x′), S(x))
and that it computes a value taking the form S(x′) ⊕ S(x) (this is the
case in AES). When second order masking is used, this sum of successive
S-box outputs takes the form (S(x′) ⊕ s′1 ⊕ s′2) ⊕ (S(x) ⊕ s1 ⊕ s2) that
is (S(x′) ⊕ S(x)) ⊕ (s′1 ⊕ s′2 ⊕ s1 ⊕ s2). Consequently, if Algorithm 6 is
used to implement the S-box computations, then targeting the later sum
together with OCM = s′1 ⊕ s′2 ⊕ s1 ⊕ s2 (which is processed during Step
2) reveals some information about the sensitive variable S(x′)⊕S(x). To
circumvent such a flaw, additional countermeasures have to be added to
the implementation of the linear layer λ. The resulting overhead depends
on the definition of λ and, in some cases, can be non-negligible. In the rest
of our analysis we do not take this overhead into account for simplicity
reasons (namely, the above implementations involving Algorithm 6 may
have such a flaw). However we point out that the issue described above
must not be neglected when it comes to implement Schramm and Paar’s
improved solution.

Complexity Comparisons. The Schramm and Paar’s improved solu-
tion (Algorithm 6) requires 2 × 2n(+6) XOR operations and 2 × 2n(+2)
memory transfers. It is therefore almost 1.5 times faster than our Algo-
rithm 2 (if one considers that the execution timings of a XOR and of a
memory transfer are equal) and 2.5 times faster than Algorithm 3 (when
this last one implements the compareb function given in Appendix A).
However, Algorithm 6 requires the allocation of at least 2×2n×m bits of
RAM for each n×m S-box involved in the algorithm, whereas Algorithms

2 and 3 respectively require 2nm and 2n bits of RAM whatever the num-
ber of involved S-box(es). RAM memory being a sensitive resource in low
cost devices, the memory gain provided by Algorithms 2 and 3 can often
be of great interest even if it is mitigated by a timing overhead. This is
especially true when the S-box input dimension is high (namely greater
than or equal to 8) and/or when the number of S-box(es) to protect is
high (as it is for instance the case for DES).

4.2 Application to AES

We compare hereafter several AES implementations protected against
2O-DSCA (i.e. we do not mask the key and we do not protect the key
scheduling function). We wrote the codes in assembly language for an
8151-based 8-bit architecture. The implementations only differ in their
approaches to protect the S-box computations. The linear steps of the
AES have been implemented in the same way, by following the outlines
of the method presented in Sect. 2.2. To secure the S-box computation,
we implemented the generic and the improved solutions of Schramm and
Paar and the solution that is the fastest among our two new ones (namely
Algorithm 2). Table 4 lists the timing and memory performances of each
implementation.

Table 4. Comparison of AES implementations secure against 2O-DSCA

Method Reference cycles RAM (bytes) ROM (bytes)

AES with Algorithm 5 SP1 10830× 103 512 + 86 2247

AES with Algorithm 6 SP2 5943× 103 512 + 90 2336

AES with Algorithm 2 RDP 6723× 103 256 + 86 2215

As expected, Implementations SP2 (Schramm and Paar improved so-
lution) and RDP (our solution) are much more efficient than the SP1
(Schramm and Paar generic solution) which performs two table re-compu-
tations for each S-box computation. The SP2 Implementation is slightly
faster than RDP (around 1.13 times faster), essentially because it involves
less logical operations (as shown in the complexity analysis conducted in
Sect. 3.1 and 4.1). However, our solution (RDP) only requires the allo-
cation of 256 bytes of RAM, which is two times smaller than the RAM
memory used by SP1 and SP2. Since RAM memory is a sensitive resource
in the area of embedded devices and since the timing performances of SP2

and RDP are close, our tests show that our solution represents a good
alternative to the proposal of Schramm and Paar in applications where
memory constraints are strong.

4.3 Implementation of the Improvement

To demonstrate the practical interest of the improvement proposed in
Sect. 3.3, we implemented the algorithms of Schramm and Paar and our
new proposal (improved or not) on a 16-bit architecture with a proprietary
assembly language and on a 32-bit ARM architecture.

Table 5. Comparison of 8×8 S-box implementations secure against 2O-SCA on 8-bit,
16-bit and 32-bit architectures.

Method Reference Cycles RAM(bytes) ROM(bytes)
8-bit architecture

Algorithm 5 SP1-8 6703 512 + 3 119 + 256
Algorithm 6 SP2-8 3638 512 + 7 89 + 256
Algorithm 2 RDP-8 4142 256 + 3 88 + 256

16-bit architecture
Algorithm 5 SP1-16 6418 512 96 + 512
Algorithm 6 SP2-16 3090 512 56 + 256
Algorithm 2 RDP-16 4125 256 98 + 512

Algorithm 2 + Improvement RDP*-16 2099 256 260 + 256
32-bit architecture

Algorithm 5 SP2-32 3359 512 na.
Algorithm 6 RDP-32 4143 256 na.

Algorithm 2 + Improvement RDP*-32 1415 256 na.

Remark 9. In our implementations of SP1-16 and RDP-16, we repre-
sented each element of the 8×8 S-box by a 16-bit word whose LSB is the
S-box element and whose MSB is the zero element. This representation
multiplies by 2 the size of the LUT in ROM, but avoids the conversions
of 16-bit words into 8-bit words during the loop execution (thus speeding
up the entire S-box calculation by around 1.25).

In all the cases, the implementation of Algorithm 6 is more efficient
than the implementation of Algorithm 2. In average, it is 1.20 times faster.
The use of the improvement (Algorithm 4) allows a gain of 50% for the 16-
bit architecture and of 65% for the 32-bit architecture. With this improve-
ment our method becomes much faster than SP2. For the implementation
on ARM 32-bit architecture, it may be noticed that the gain is smaller
than the one resulting from our theoretical complexity analysis (Sect.

3.3). This is merely due to the fact that the assembly implementation of
Algorithm 4 involves costly registers and data pointers manipulations.

5 Conclusion

In this paper, we have detailed how to implement block ciphers in a
way that is provably secure against second order side channel analysis.
We have introduced two new methods to secure an S-box implementation
and we have proved their security in a strong and realistic security model.
Moreover, we have compared their complexity with the ones of Schramm
and Paar’s solutions (the generic one and the improved one), which are the
only other methods that enable to securely implement S-boxes regarding
second order side channel analysis. We have pointed out that Schramm
and Paar’s improved solution can require some adaptations, depending
on the block cipher particularities, whereas our proposal is completely
generic. To compare the efficiency of the different methods, we have im-
plemented them to protect AES on an 8-bit architecture. With compara-
ble timings and code sizes, our proposal requires nearly half RAM size.
This is of interest since RAM is a scarce resource in embedded devices,
which are the privileged targets of side channel attacks. Furthermore, we
have introduced an improvement of our methods, that can be used when
several S-box outputs can be stored on one processor word. To illustrate
its practical interest, we have given implementation results for an 8 × 8
S-box on 16-bit and 32-bit architectures. The comparison between the dif-
ferent implementations shows that our improved method is always faster
than Schramm and Paar’s solution.

Considering the today feasibility of second order attacks, our propos-
als constitute an interesting contribution in the field of provably secure
countermeasures, as being the sole alternative to Schramm and Paar’s
method and achieving lower memory requirements and possibly better
efficiency.

References

1. M.-L. Akkar, R. Bévan, and L. Goubin. Two Power Analysis Attacks against One-
Mask Method. In B. Roy and W. Meier, editors, Fast Software Encryption – FSE
2004, volume 3017 of Lecture Notes in Computer Science, pages 332–347. Springer,
2004.

2. M.-L. Akkar and L. Goubin. A Generic Protection against High-Order Differential
Power Analysis. In T. Johansson, editor, Fast Software Encryption – FSE 2003,
volume 2887 of Lecture Notes in Computer Science, pages 192–205. Springer, 2003.

3. J. Blömer, J. Guajardo, and V. Krummel. Provably Secure Masking of AES. In
M. Matsui and R. Zuccherato, editors, Selected Areas in Cryptography – SAC 2004,
volume 3357 of Lecture Notes in Computer Science, pages 69–83. Springer, 2004.

4. E. Brier, C. Clavier, and F. Olivier. Correlation Power Analysis with a Leakage
Model. In M. Joye and J.-J. Quisquater, editors, Cryptographic Hardware and Em-
bedded Systems – CHES 2004, volume 3156 of Lecture Notes in Computer Science,
pages 16–29. Springer, 2004.

5. S. Chari, C. Jutla, J. Rao, and P. Rohatgi. Towards Sound Approaches to Coun-
teract Power-Analysis Attacks. In M. Wiener, editor, Advances in Cryptology –
CRYPTO ’99, volume 1666 of Lecture Notes in Computer Science, pages 398–412.
Springer, 1999.

6. S. Chari, J. Rao, and P. Rohatgi. Template Attacks. In B. Kaliski Jr., Ç. Koç, and
C. Paar, editors, Cryptographic Hardware and Embedded Systems – CHES 2002,
volume 2523 of Lecture Notes in Computer Science, pages 13–29. Springer, 2002.

7. J.-S. Coron, E. Prouff, and M. Rivain. Side Channel Cryptanalysis of a Higher
Order Masking Scheme. In P. Paillier and I. Verbauwhede, editors, Cryptographic
Hardware and Embedded Systems - CHES 2007, volume 4727 of Lecture Notes in
Computer Science, pages 28–44. Springer, 2007.

8. K. Gandolfi, C. Mourtel, and F. Olivier. Electromagnetic Analysis: Concrete Re-
sults. In Ç. Koç, D. Naccache, and C. Paar, editors, Cryptographic Hardware
and Embedded Systems – CHES 2001, volume 2162 of Lecture Notes in Computer
Science, pages 251–261. Springer, 2001.

9. L. Goubin and J. Patarin. DES and Differential Power Analysis – The Duplication
Method. In Ç. Koç and C. Paar, editors, Cryptographic Hardware and Embedded
Systems – CHES ’99, volume 1717 of Lecture Notes in Computer Science, pages
158–172. Springer, 1999.

10. P. Herbst, E. Oswald, and S. Mangard. An AES Smart Card Implementation
Resistant to Power Analysis Attacks. In J. Zhou, M. Yung, and F. Bao, editors,
Applied Cryptography and Network Security – ANCS 2006, volume 3989 of Lecture
Notes in Computer Science, pages 239–252. Springer, 2006.

11. M. Joye, P. Paillier, and B. Schoenmakers. On Second-Order Differential Power
Analysis. In J. Rao and B. Sunar, editors, Cryptographic Hardware and Embedded
Systems – CHES 2005, volume 3659 of Lecture Notes in Computer Science, pages
293–308. Springer, 2005.

12. P. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In N. Koblitz, editor, Advances in Cryptology – CRYPTO
’96, volume 1109 of Lecture Notes in Computer Science, pages 104–113. Springer,
1996.

13. P. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In M. Wiener, editor,
Advances in Cryptology – CRYPTO ’99, volume 1666 of Lecture Notes in Computer
Science, pages 388–397. Springer, 1999.

14. K. Lemke-Rust and C. Paar. Gaussian Mixture Models for Higher-Order Side
Channel Analysis. In P. Paillier and I. Verbauwhede, editors, Cryptographic Hard-
ware and Embedded Systems - CHES 2007, volume 4727 of Lecture Notes in Com-
puter Science, pages 14–27. Springer, 2007.

15. J. Lv and Y. Han. Enhanced DES Implementation Secure Against High-Order
Differential Power Analysis in Smartcards. In C. Boyd and J. M. G. Nieto, editors,
Information Security and Privacy, 10th Australasian Conference – ACISP 2005,
volume 3574 of Lecture Notes in Computer Science, pages 195–206. Springer, 2005.

16. S. Mangard, T. Popp, and B. M. Gammel. Side-Channel Leakage of Masked CMOS
Gates. In A. Menezes, editor, Topics in Cryptology – CT-RSA 2005, volume 3376
of Lecture Notes in Computer Science, pages 351–365. Springer, 2005.

17. T. Messerges. Securing the AES Finalists Against Power Analysis Attacks. In
B. Schneier, editor, Fast Software Encryption – FSE 2000, volume 1978 of Lecture
Notes in Computer Science, pages 150–164. Springer, 2000.

18. E. Oswald and S. Mangard. Template Attacks on Masking–Resistance is Futile.
In M. Abe, editor, Topics in Cryptology – CT-RSA 2007, volume 4377 of Lecture
Notes in Computer Science, pages 562–567. Springer, 2007.

19. E. Oswald, S. Mangard, C. Herbst, and S. Tillich. Practical Second-Order DPA At-
tacks for Masked Smart Card Implementations of Block Ciphers. In D. Pointcheval,
editor, Topics in Cryptology – CT-RSA 2006, volume 3860 of Lecture Notes in
Computer Science. Springer, 2006.

20. E. Peeters, F.-X. Standaert, N. Donckers, and J.-J. Quisquater. Improving Higher-
Order Side-Channel Attacks with FPGA Experiments. In J. Rao and B. Sunar,
editors, Cryptographic Hardware and Embedded Systems – CHES 2005, volume
3659 of Lecture Notes in Computer Science, pages 309–321. Springer, 2005.

21. E. Peeters, F.-X. Standaert, and J.-J. Quisquater. Power and Electromagnetic
Analysis: Improved Model, Consequences and Comparisons. Integration, 40(1):52–
60, 2007.

22. G. Piret and F.-X. Standaert. Security Analysis of Higher-Order Boolean Masking
Schemes for Block Ciphers (with Conditions of Perfect Masking). To Appear in
IET Information Security.

23. E. Prouff and M. Rivain. A Generic Method for Secure SBox Implementation. To
Appear in WISA 2007.

24. W. Schindler, K. Lemke, and C. Paar. A Stochastic Model for Differential Side
Channel Cryptanalysis. In J. Rao and B. Sunar, editors, Cryptographic Hardware
and Embedded Systems – CHES 2005, volume 3659 of Lecture Notes in Computer
Science. Springer, 2005.

25. K. Schramm and C. Paar. Higher Order Masking of the AES. In D. Pointcheval,
editor, Topics in Cryptology – CT-RSA 2006, volume 3860 of Lecture Notes in
Computer Science, pages 208–225. Springer, 2006.

26. F.-X. Standaert, E. Peeters, C. Archambeau, and J.-J. Quisquater. Towards
Security Limits of Side-Channel Attacks. In L. Goubin and M. Matsui, editors,
Cryptographic Hardware and Embedded Systems – CHES 2006, volume 4249 of
Lecture Notes in Computer Science, pages 30–45. Springer, 2006.

27. D. Suzuki and M. Saeki. Security Evaluation of DPA Countermeasures Using Dual-
Rail Pre-charge Logic Style. In L. Goubin and M. Matsui, editors, Cryptographic
Hardware and Embedded Systems – CHES 2006, volume 4249 of Lecture Notes in
Computer Science, pages 255–269. Springer, 2006.

28. J. Waddle and D. Wagner. Toward Efficient Second-order Power Analysis. In
M. Joye and J.-J. Quisquater, editors, Cryptographic Hardware and Embedded Sys-
tems – CHES 2004, volume 3156 of Lecture Notes in Computer Science, pages 1–15.
Springer, 2004.

A A Masked Implementation of the Function compare

In this section, we describe a way to implement the function compareb

defined as:

compareb(x, y) =
{

b if x = y
b̄ if x 6= y

,

that prevent any first order leakage on compare(x, y).
The method requires a table T of 2n bits in RAM. At the beginning

of the algorithm in which the compareb function is involved (for instance
Algorithm 3), the following pre-computation is processed:

1. r3 ← rand(n)
2. T ← {b̄, b̄, · · · , b̄}
3. T [r3] ← b

At the end of this pre-computation, the table T satisfies:

T [x] =
{

b if x = r3

b̄ otherwise
.

Then, the function compareb is simply implemented as:

return T [(x⊕ r3)⊕ y]

It is straightforward to observe that all intermediate variables of these
computations (namely {b, b̄, r3, x ⊕ r3, x ⊕ y ⊕ r3, compareb(x, y)}) are
independent of compare(x, y) (as well as on x⊕ y).

Complexity. The method requires 2n bit of RAM. The pre-computation
involves the generation of n random bits and the initialization of the (2n)-
bit table T (which is roughly 2n/q + 1 memory transferts – q being the
bit-size of the microprocessor). Then each call to compareb involves 2 XOR
operations and 1 memory transfert.

Application to Algorithm 3. With such a method, the total complex-
ity (in operations) of Algorithm 3 is: 6 × 2n XOR operations, (2 × 2n +
2n/q + 1) memory transferts and the generation of n + 1 random bits.
Compared to Algorithm 2, this implies a significant timing overhead but
it consumes m times less RAM which is of interest for low cost devices.

