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Abstract. Recent non-interactive timed-release encryption (TRE) schemes can be viewed as being
supported by a certificateless encryption (CLE) mechanism. However, the security models of CLE and
TRE differ and there is no generic transformation that turns a CLE into a TRE. In this paper, we give
a generalized model for CLE that is also sufficient to fulfill the requirements of TRE.
Our model is secure against an adversary with adaptive trapdoor extraction capabilities for arbitrary
identifiers (instead of selective identifiers), decryption capabilities for arbitrary public keys (as consid-
ered in strongly-secure CLE) and partial decryption capabilities (as considered in security-mediated
certificateless encryption, or SMCLE).
Our model also supports hierarchical identities, which is not considered formally in the paradigms of
TRE and CLE. We propose a concrete scheme under our generalized model and prove it secure without
random oracles. Our proposal yields the first strongly-secure (hierarchical) SMCLE and the first TRE in
the standard model. Besides, our technique of partial decryption is different from the previous approach.
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1 Introduction

The distinguished feature of an identity-based encryption (IBE) scheme (e.g. [7, 12, 17, 18, 29–31, 46]) is that
a public key can be derived from any arbitrary string that acts as an identifier (ID). There exists a trusted
authority, called a key generation center (KGC), which is responsible for the generation of the ID-based
private key on demand.

Since the birth of practical constructions of IBE, we see many cryptographic schemes borrowing the
idea of IBE for other security goals (e.g. broadcast encryption [9] and oblivious transfer [31]). This paper
studies two of them, which are certificateless encryption (CLE) [2–4, 44, 19, 21, 23, 24, 37, 42] and timed-release
encryption (TRE) [6, 14–16, 20, 22, 25, 32, 34]. Both of them have undergone quite rapid development.

CLE is an intermediary between IBE and traditional public key encryption (PKE). Generally speaking,
CLE is constructed from a combination of IBE and PKE, such that the ability of the KGC to generate any
ID-based private key cannot help decrypting the ciphertext due to the existence of the PKE component, in
which the KGC does not know the corresponding private key.

TRE is a public key encryption scheme where the sender encrypts the message under a public key and a
time, so the knowledge of both the matching private key and a time-dependent trapdoor are necessary for
decryption. A time-server is trusted to keep a time-dependent trapdoor confidential until at an appointed
time, which means the recipient cannot decrypt the ciphertext prior to a certain instant in time. A feature of
modern TRE schemes is that the sender is not required to interact with the time-server other than retrieving
the system parameter once.
? This research is done while the author was a research intern of FX Palo Alto Laboratory.



1.1 Relationship between CLE and TRE

A practical TRE requires the system parameter size to be small compared with the number of supported
time periods. This is where the idea of IBE (e.g. [7, 12, 29]) comes to the play. By treating the identities
as time periods, IBE gives raise to a time-based unlock mechanism (e.g. [7, 40, 41]). However, this approach
only supports a universal disclosure of encrypted documents since one trapdoor can decrypt all ciphertexts
for a specific time. In other words, the inherent key-escrow property of IBE prohibits the encryption for a
designated receiver.

Since CLE is an “escrow-free version” of IBE, and both TRE and CLE are a kind of double-encryption,
it is natural to think CLE is what we are looking for to realize a TRE. Despite of the similarities in syntax
and functionality one may imagine, it has been pointed out in [14] that a generic transformation from CLE
to TRE is unlikely to be provable secure.

In CLE, each user is determined by a combination of an identity and a public key, which means an
identity is only associated to a certain public key. Difficulty in reducing the confidentiality of TRE to that of
CLE arises when the adversary is a “curious” time-server. In CLE, a curious KGC is not allowed to replace
the public key associated with an identifier (otherwise, decryption of the ciphertext will be trivial since it
holds both pieces of secrets). On the other hand, a time identifier is never bound to any public key in TRE,
which means that the public key associated with a time identifier can be replaced. Thus, there is no way
to simulate this implicit public key replacement when the CLE is viewed as a black box. We will show four
examples of CLE [4, 44, 36, 42] which cannot be trivially extended to TRE in Section 2.2.

Nevertheless, most of the recent non-interactive TRE schemes can be seen as converted from a corre-
sponding implicit CLE mechanism.

1.2 Our Contributions

While the observation in [14] is true for a restricted definition of CLE, this work gives a generalized model
for CLE that is also sufficient to fulfill the requirements of TRE. Our model is secure against an adversary
with adaptive trapdoor extraction capabilities for arbitrary identifiers (instead of selective identifiers, e.g.
[42]), decryption capabilities for arbitrary public keys (as considered in strongly-secure CLE) and partial
decryption capabilities (as considered in security-mediated certificateless encryption, or SMCLE). Our model
also supports hierarchical identities (which is also beneficial for TRE, see Section 5.5) which is not considered
formally in the paradigms of TRE and CLE.

We propose a concrete construction under our generalized model. All existing concrete TRE schemes [6,
14–16, 20, 22, 25, 32, 34] and the only concrete SMCLE scheme [21] are proven in the random oracle model. It
is true that the generic construction of SMCLE [21] can be instantiated by an IBE and a PKE without random
oracles, nevertheless, the resulting scheme is not strongly-secure. Our proposal yields the first strongly-secure
(hierarchical) SMCLE and the first TRE in the standard model. Moreover, our technique of partial decryption
is different from that in [21].

2 Related Work

2.1 Timed-Release Encryption

The concept of timed-release cryptographic protocols is suggested by May [39] in 1993. It is further studied
by many researchers, such as “price via processing” by Dwork and Naor [27], timed key escrow by Bellare
and Goldwasser [5], timed commitments by Boneh and Noar [8], and time capsule signature by Dodis and
Yum [26].

Early TRE schemes require interaction with the time-server. For examples, Rivest et al.’s idea [43] requires
the senders to reveal their identities and the messages’ release-time in their interactions with the server. In
Di Crescenzo et al.’s scheme [22], the job of interacting with the time-server is moved from the sender to
the receiver since a “conditional oblivious transfer protocol” will be executed between the server and the
receiver. Such a protocol ensures that if the release-time is not less than the current time (the condition),
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the receiver learns nothing (obliviousness). However, this protocol [22] is computationally intensive and thus
the whole idea is vulnerable to denial-of-service attacks.

The first attempt to construct a non-interactive and user-anonymous TRE was made in [6]. A concrete
construction is provided, but not supported by a formal security model and any claimed security properties
are only argued for heuristically. The formal security model of message confidentiality is later considered
independently by Cheon et al. [20] and Cathalo-Libert-Quisquater [14]. The former focuses on authenticated
TRE and the latter is claimed to have a stronger model than the implicit non-authenticated version of [20].
Cathalo-Libert-Quisquater [14] also formalizes the release-time confidentiality, but not recipient-anonymity.

The recovery of past time-dependent trapdoors from a current trapdoor is studied in [16] and [41], which
employs a hash chain and a tree structure [13] respectively. The study of the pre-open capability by the
sender is initiated in [34] and later improved by [25].

Recently, Chalkias et al. proposed an efficient TRE scheme [15]. They also claim that their scheme is
the most computationally efficient one for unknown recipients. However, we show in Appendix E that the
confidentiality of their scheme can be broken by a curious time-server. A plausible fix makes their scheme
less efficient and the purported comparative advantage is lost.

Finally, we note that there is another way to realize the idea of TRE without employing a trusted server,
which is known as time-lock puzzle approach [43]. The delayed release is made possible by the fact that the
recipient has to invest a significant computational effort in a non-stop manner to solve a difficult problem.
However, it is computationally expensive and the release-time is not precisely controllable.

Apart from the obvious application of delayed release of information, the need for sending a ciphertext
into the future also appears in many scenarios. They can be broadly classified into two categories.

Rapid Dissemination of Information. The size of the time-dependent trapdoor is small compared with
the ciphertext (even of text message, due to the inherent ciphertext expansion in probabilistic encryption).
With TRE, one can send the bulky ciphertext beforehand, without worrying the leakage of the confidential
information. When it should be made public, a small trapdoor can be made available to a potentially
large set of recipients. This avoids the problem of any network impedance at the release time. Examples of
applicable scenarios are abundant, such as stock market values, strategic business plans, news agencies timed
publications, licensed software updates, scheduled payments, or “casual” applications like internet contests,
where participants should not get any information about the challenge before the designated time.

Commitment of Confidential Information. Commitment of confidential information is needed in many
scenarios, such as sealed-bid auction, electronic lotteries, legal will, certified e-mail [34] etc. One can view the
ciphertext as a kind of commitment made by the sender. In TRE, the decryption algorithm deterministically
recovers the message from the ciphertext by a time-dependent trapdoor and the user’s private key. Once the
ciphertext is sent, there is no chance for the message sender to change the message that will be obtained
from the decryption by the recipient later.

A special class of TRE scheme supports pre-open capability [25, 34], which means that the sender can
help the recipient to decrypt the ciphertext by publishing a pre-open key. Since the pre-open key is given by
the sender, it may give an opportunity to the sender to somehow control what message will be given by the
decryption algorithm by manipulating the pre-open key. Using a TRE with pre-open capability as a way to
commit some confidential information requires the TRE scheme to be binding (to be defined in Section C).

2.2 Certificateless Encryption

The concept of certificateless cryptography has been suggested by Al-Riyami and Paterson [2] in 2003. Before
we delve into the related work, we need a basic understanding of the security model to see the contribution
of different proposals. Two types of adversaries are considered in certificateless cryptography. A Type-I
adversary models coalitions of rogue users without the master secret. Due to the lack of a certificate, the
adversary is allowed to replace the public keys of users at will. A Type-II adversary models a curious KGC
who has the master key but cannot replace the public keys of any users. In Al-Riyami and Paterson’s security
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model for the encryption [2], a Type-I adversary can ask for the decryption of a ciphertext under a replaced
public key. Schemes secure against such a class of attack are called “strongly-secure” [24], and the oracle is
termed as “strong decryption oracle”. A weaker type of adversary, termed Type-I−, can only obtain a correct
plaintext if the ciphertext is submitted along with the corresponding private key.

In security-mediated certificateless encryption [21] (SMCLE) introduced by Chow, Boyd and González
Nieto, there is a security-mediator (SEM) who performs partial decryption for the user per request. This
idea gives another variant for the decryption queries in the CLE paradigm, such that the adversary can
ask for the partial decryption results under either the SEM trapdoor generated by the KGC or the user
private key. Intuitively, the notion of SMCLE is more general than that of CLE since two partial decryption
algorithms can always be combined into a single one, but the converse is not necessary true (see also Section
3.4). A concrete construction in the random oracle model and a generic construction in the standard model
are proposed in [21].

The first CLE scheme by Al-Riyami and Paterson [2] is secure against both Type-I and Type-II adversary
in the random oracle model. This scheme is also the basis for the hierarchical CLE described in [2]. However,
neither a security model nor a security proof are given for this hierarchical extension. The authors later
proposed a more efficient CLE scheme in [3], which has been shown to be insecure [19, 48]. A CLE without
using pairing is proposed in [4]. However, the reduction used in the security proof does not hold up if the
public key associated with the challenge ciphertext has been replaced. The later proposal of CLE without
pairing [36] uses ideas similar to those in [4], and there is no formal evidence showing that the scheme is secure
under the public key replacement attack. This limitation is recently removed in [44]. The reason why these
schemes are pairing-free is that part of the user’s public key is dependent on the identity-specific trapdoor
given by the KGC, which also means that TRE cannot be trivially obtained from these constructions.

Many generic constructions of CLE from IBE and PKE exists, some are later shown to be insecure in
[28, 37, 42], some of them [19, 37] actually rely on the random oracle heuristics.

It is believed [36, 38, 42] that [38] gives the first CLE in the standard model. However, it is possible to
instantiate a prior generic construction in [21] with a PKE and an IBE in the standard model to obtain a
secure CLE without random oracles. Both [38] and the instantiation of [21] are only secure against Type-I−

attacks. Based on [29], a selective-ID secure CLE without random oracles is proposed in [42]. This scheme
cannot be trivially extended to a TRE since the user’s public key is dependent on the identity, but a user’s
public key is never coupled with a single time-identifier in TRE. Recently, the first strongly-secure CLE
secure against Type-I adversaries in the standard model is proposed in [24].

In summary, there is no strongly-secure SMCLE (i.e. a CLE with partial decryption queries) proven
secure in the standard model. We are not ware of any literature with formal work on hierarchical CLE,
particularly none proven secure in the standard model. An extensive survey of CLE can be found in [23].

3 General Security-Mediated Certificateless Encryption

We propose a new definition of the (security-mediated) certificateless encryption. We will also highlight the
relationship between our definition and existing definitions.

3.1 Notations

We use an ID-vector
#   »

ID = (ID1, ID2, · · · , IDL) to denote a hierarchy of identifiers (ID1, ID2, · · · , IDL). The
length of

#   »

ID is denoted by | #   »

ID| = L. Let
#   »

ID||IDr denote the vector (ID1, ID2, · · · , IDL, IDr) of length | #   »

ID|+1.
We say that

#   »

ID is a prefix of
#    »

ID′ if | #   »

ID| ≤ |
#    »

ID′| and IDi = ID′i for all 1 ≤ i ≤ | #   »

ID|. We use ∅ to denote an
empty ID-vector where |∅| = 0 and ∅||IDr = IDr. Finally, we use the notation ({0, 1}n)≤h to denote the set
of vectors of length less than or equal to h, where each component is a n-bit long bit-string.

3.2 Syntax

Extending the definition of a 1-level SMCLE scheme [21], we define an h-level SMCLE scheme as follows.
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Definition 1. An h-level SMCLE scheme for identifiers of length n (where h and n are polynomially-bounded
functions) is defined by the following sextuple of PPT algorithms:

– Setup (run by the server) is a probabilistic algorithm which takes a security parameter 1λ, outputs a
master secret key Msk, which can also be denoted as d∅, and the global parameters Pub. We assume that
λ, h = h(λ) and n = n(λ) are implicit in Pub and all other algorithms take Pub implicitly as an input.

– Extract (run by the server or any one who hold a trapdoor) is a possibly probabilistic algorithm which
takes a trapdoor d #  »

ID corresponding to an h-level identity
#   »

ID ∈ ({0, 1}n)≤h , and a string IDr ∈ {0, 1}n,
outputs a trapdoor key d #  »

ID||IDr associated with the ID-vector
#   »

ID||IDr. The master secret key Msk is a
trapdoor corresponding to a 0-level identity.

– KeyGen (run by a user) is a probabilistic algorithm which generates a public/private key pair (pku, sku).
– Enc (run by a sender) is a probabilistic algorithm which takes a message m from some implicit message

space, an identifier
#   »

ID ∈ ({0, 1}n)≤h, and the receiver’s public key pku as input, returns a ciphertext C.
– DecS (run by the one who hold the trapdoor, either a SEM in SMCLE or a receiver in CLE) is a possibly

probabilistic algorithm which takes a ciphertext C and the trapdoor key d #  »
ID as input, returns either a

token D which can be seen as a partial decryption result of C, or an invalid flag ⊥ (which is not in the
message space).

– DecU (run by a receiver) is a possibly probabilistic algorithm which takes the ciphertext C, the receiver’s
private key sku and a token D as input, returns either the plaintext, an invalid flag ⊥D denoting D is
an invalid token, or an invalid flag ⊥C denoting the ciphertext is invalid.

For correctness, we require that DecU (C, sk,DecS(C,Extract(Msk,
#   »

ID))) = m for all λ ∈ N, all (Pub,Msk) $←
Setup(1λ), all (pk, sk) $← KeyGen, all message m, all ID-vector

#   »

ID in ({0, 1}n)≤h and all C $← Enc(m,
#   »

ID, pk).

3.3 Security

Each adversary has access to the following oracles:

1. An Extract oracle that takes an ID-vector
#   »

ID ∈ ({0, 1}n)≤h as input and returns its trapdoor d #  »
ID.

2. A DecS oracle that takes a ciphertext C and an ID-vector
#   »

ID, and outputs DecS(C, d #  »
ID). Note that C

may or may not be encrypted under
#   »

ID.
3. A DecU oracle that takes a ciphertext C, a public key pk and a token D, and outputs DecU (C, sk, D)

where sk is the secret key that matches pk.
4. A Dec oracle that takes a ciphertext C, an ID-vector

#   »

ID, and a public key pk, and outputs DecU (C, sk, D)
where sk is the secret key that matches pk and D = DecS(C, d #  »

ID). Note that C may or may not be
encrypted under

#   »

ID and pk.

Following common practice, we consider the two kinds of adversaries.

1. A Type-I adversary that models any coalition of rogue users, and who aims to break the confidentiality
of another user’s ciphertext.

2. A Type-II adversary that models a curious KGC, who aims to break the confidentiality of an user’s
ciphertext3.

We use the common security model in which the adversary plays a two-phased game against a challenger.
The game is modeled by the experiment below, for X ∈ {I, II}, denoting whether an PPT adversary

A = (Afind,Aguess) is of Type-I or Type-II. The allowed oracle queries O and the auxiliary information Aux
depends on X.

Definition 2. Experiment ExpCCA−X
A (λ)

3 We do not explicitly consider a rogue SEM since this type of adversary is weaker than the Type-II adversary.
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(Pub,Msk) $← Setup(1λ)

(m0,m1, pk∗,
#   »

ID∗, state) $← AOfind(Pub,Aux)

b
$← {0, 1}, C∗ $← Enc(mb,

#   »

ID∗, pk∗)

b′
$← AOguess(C

∗, state)
If (|m0| 6= |m1|) ∨ (b 6= b′) then return 0 else return 1

where O refers to a set of four oracles Extract(·),DecS(·, ·),DecU (·, ·, ·),Dec(·, ·, ·).

Those variables marked with ∗ are basically about the challenge of the adversary. The adversary chooses
a public key pk∗ and a ID-vector

#   »

ID∗ to be challenged with, and the challenger returns C∗ to the adversary
as the challenge ciphertext. The two definitions below basically prohibit the adversary from trivially cheating
by using the oracles to query for the answer to (parts of) the challenge.

Definition 3. A hierarchical security-mediated certificateless encryption scheme is (t, qE , qD, ε) IND-CCA
secure against a Type-I adversary if |Pr[ExpCCA−I

A (λ) = 1] − 1
2 | ≤ ε for all t-time adversary A making at

most qE extraction queries and qD decryption queries (of any type), subjects to the following constraints:

1. Aux = ∅, i.e. no auxiliary information is given to the adversary.
2. No Extract(

#   »

ID′) query throughout the game, where
#   »

ID′ is a prefix of
#   »

ID∗.
3. No DecS(C∗,

#   »

ID∗) query throughout the game.
4. No Dec(C∗,

#   »

ID∗, pk∗) query throughout the game.

Definition 4. A hierarchical security-mediated certificateless encryption scheme is (t, qE , qD, ε) IND-CCA
secure against a Type-II adversary if |Pr[ExpCCA−II

A (λ) = 1] − 1
2 | ≤ ε for all t-time adversary A making at

most qK public key queries, qE extraction queries and qD decryption queries (of any type), subjects to the
following conditions:

1. Aux = (Msk, {pk∗1, · · · , pk∗qK}), i.e. the master secret key and a set of challenge public key pk∗ is given to
the adversary.

2. pk∗ ∈ {pk∗1, · · · , pk∗qK}, i.e. the challenge public key must be among the set given by the challenger.
3. No DecU (C∗, pk∗, D) query throughout the game, where D is obtained from DecS(C∗,

#   »

ID∗).
4. No Dec(C∗,

#   »

ID∗, pk∗) query throughout the game.

Since Msk is given to the adversary, and it is natural to assume the adversary to know the secret key
corresponding to any adversarially-chosen public key; the challenge public key must be in the set given by
the challenger. Nevertheless, our definition places no restriction on the public key supplied to the decryption
oracle, i.e. the decryption oracle should work even if the public key is adversarially chosen and the corre-
sponding private key is not supplied. It is easy to weaken the strong decryption oracle to one corresponding
to the Type-I− attack by placing the below restriction in Definition 3.

5. (Type-II−) No Dec(C,
#   »

ID, pk) query throughout the game where pk /∈ {pk∗1, · · · pk∗qK}, unless the corre-
sponding private key sk is supplied when the Dec query is made.

Definition 4 can be easily modified to be the weakened definition similarly.

3.4 Discussions on Our Choices for Definition

In addition to the above formalisms, we explain some of the choices being made and some of the intuitions
being modeled by our definition.
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Syntax. In order to support more general applications like TRE, we also need to generalize our syntax
describing the interface of the algorithms. A subtle change in our definition of algorithm description is that
the user key generation algorithm KeyGen only takes the system parameter as input but not the identifier.
In particular, there exists CLE schemes [42, 4, 44] which the inclusion of the identifier or the trapdoor for an
identifier is essential for the generation of the user public key. In the latter case, KeyGen can only be executed
after Extract. A straightforward adaption of these classes of CLE results in inefficient TRE in which the size
of the user public key grows linearly with the total number of supported time periods.

Another difference from the existing model is about the user decryption oracle. Different invalid flags
will be returned by DecU to distinguish the case that the token from the SEM is invalid or the ciphertext
is invalid. This is not captured by the original SMCLE model in [21]. We remark that it is possible to
incorporate such feature into the concrete scheme in [21] by an interactive proof-of-knowledge.

Simplification of Type-I adversary. In most existing models for 1-level CLE (e.g. [24]), Extract query
of

#   »

ID∗ is allowed; but if such a query is issued, the challenge public key pk∗ can no longer chosen by the
adversary. In our discussion, we try to separate this from Type-I model and consider this type of adversarial
behavior (Extract query on (

#   »

ID′) where
#   »

ID′ is a prefix of
#   »

ID∗) as a weaker variant of, and hence covered by,
a Type-II adversary. It is true that our resulting definition for Type-I adversary is weaker [23, Section 2.3.5].
However, the “missing part” will not be omitted from the security requirement since it is unreasonable to
define a CLE without considering Type-II adversary. Indeed, this simplification has already been justified
and adopted [33, Section 2.3].

SMCLE is more general than plain CLE. Having two separated decryption oracles in the SMCLE
model gives a more general notion than CLE. This can be justified as follows:

1. Partial decryption result cannot be made available in the CLE model.
2. Since the decryption oracle is separated into two, the SMCLE model does not have the notion of a “full”

private key which is present in previous CLE models (a full private key is a single secret for the complete
decryption of the ciphertext). On the ground that separated secrets can always be concatenated into a
single full one, this simplification (of private key) has already been adopted in more recent models [33].

Our definition is more general than plain CLE. For our attempt of generalizing CLE, we do not have
an oracle for replacing the public key corresponding to an identifier, which is present in the existing model
for CLE. This may make a difference in the following.

1. The adversary’s choice of the victim user it wishes to be challenged with,
2. The choice of user in decryption oracle queries.

Our model still allows the adversary to choose which identifier/public key it wants to attack. For the decryp-
tion queries, the adversary can just supply different combination of identifier and public key to the DecS and
DecU oracles. In this way, implicitly replacement is done. In other words, when compared with the original
model [2], the security model is not weakened, but generalized to cover other applications of CLE such as
TRE. We thus have the following theorem.

Theorem 1 If there exists an 1-level SMCLE scheme which is secure under Definition 3 and 4, there exists
a CLE scheme which is secure under the definition of [2].

Proof. We describe how to build a simulator which make use of an adversary of CLE to break the security
of our 1-level SMCLE scheme. The simulator basically forwards everything (the system parameters, the
oracle queries and responses) back and forth between its own challenger (of breaking SMCLE) and the CLE
adversary. For most queries, the monotonic details are omitted. The complete decryption queries made by the
CLE adversary is entertained by combining the result of two partial decryption oracle queries. An important
distinction between these “two worlds” is about public key replacement. The simulator needs to maintain
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a table to store the relationship between an identifier and a public key. Whenever a key replacement query
is made, the simulator updates its own table. For every other requests regarding a particular identifier, the
simulator retrieves the corresponding public key in its table and queries its own challenger accordingly. ut

Justifications for “removing” public key replacement oracle. In the traditional definition of CLE
[2], public key replacement oracle is defined upon the fact that an identifier is always bond to a particular
user. Replacing a public key means replacing a particular user’s public key, which means the public key
associated with a particular identifier should be changed. In TRE, and other related paradigms such as
cryptographic workflow [1], identifiers correspond to different policies governing the decryption. It is entirely
possible that a single identifier is “shared” among more than one user. Hence we decide to remove the public
key replacement oracle from the definition, resulting a model free from the concept of “user = identifier”.

Alternative definition of public key replacement. It is possible to give another definition supporting
TRE (and cryptographic workflow [1]) by allowing a “restricted” public key replacement, such that a public
key “associated” with an identifier can be replaced by a public key associated with another identifier, but not
an arbitrary one supplied by the user. Again, this definition makes the model still leads to the concept of an
identifier is belonged to a single user. Moreover, this definition may make the treatment of strong decryption
oracle more complicated. The idea of restricted replacement among a fixed public keys does not naturally
correspond to decryption oracle under adversarially chosen public key.

Justifications for our definition of hierarchical CLE. In the hierarchical scheme suggested (without
a security definition) in [2], an entity at level k derives a trapdoor for its children at level k + 1 using both
its trapdoor and its secret key; while in our proposed model, a level k entity only uses its trapdoor obtained
from its parent at level k− 1 to derive keys for its children. However, we do not see any practical reason for
requiring the secret key in the trapdoor derivation. On the other hand, the resulting scheme will be more
complicated. For example, in the scheme of [2], the decryption requires the public keys of the ancestors.

Note that we do allow the decryption of the ciphertext under
#   »

ID′ which is a prefix of
#   »

ID∗. This is
stronger than the counterpart in some hierarchical IBE model [30].

4 Our Proposed Construction

4.1 Preliminaries

Let G be a multiplicative group of prime order p and GT be a multiplicative group also of order p. We
assume the existence of an efficiently computable bilinear map ê : G×G→ GT such that

1. Bilinearity: For all u, v ∈ G and r, s ∈ Zp, ê(ur, vs) = ê(u, v)rs.
2. Non-degeneracy: ê(u, v) 6= 1GT for all u, v ∈ G \ {1G}.

We also assume the following problems are intractable in such groups.

Definition 5. The Decision 3-Party Diffie-Hellman Problem (3-DDH) in G is to decide if T = gβγδ given
(g, gβ , gγ , gδ, T ) ∈ G5. Formally, defining the advantage of a PPT algorithm D, Adv3−DDH

D (k), as

|Pr[1 $← D(g, gβ , gγ , gδ, T )|T ← gβγδ ∧ β, γ, δ $← Z∗p]− Pr[1 $← D(g, gβ , gγ , gδ, T )|T $← G ∧ β, γ, δ $← Z∗p]|.

We say 3-DDH is intractable if the advantage is a negligible function for all PPT algorithms D.

Compared with the Bilinear Diffie-Hellman (BDH) problem, the problem instance of 3-DDH is purely
in G while that of BDH contains an element t̂ ∈ GT . If BDH problem is solvable, one can solve 3-DDH
by feeding (g, gβ , gγ , gδ, ê(g, T )) to a BDH oracle. Apart from CLE [24], the above assumption has been
employed in other advanced pairing-based cryptographic schemes such as [9].
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We introduce a variant of the weak Bilinear Diffie-Hellman Inversion (BDHI) assumption [7] below in the
favor of 3-DDH. The original h-wBDHI problem in (G,GT ) [7] is to decide whether t̂ = ê(g, gγ)α

h+1
. The

naming of “inversion” comes from the equivalence to the problem of deciding whether t̂ = ê(g, gγ)1/α.

Definition 6. The Modified h-Weak Bilinear-Diffie-Hellman Inversion Problem (h-wBDHI’) in G is to de-
cide if T = gγα

h+1
given (g, gγ , gα, gα

2
, · · · , gαh , T ) ∈ Gh+3. Formally, defining the advantage of a PPT

algorithm D, Advh−wBDHI′

D (k), as

|Pr[1 $← D(g, gγ , gα, gα
2
, · · · , gα

h

, T )|T ← gγα
h+1
∧ α, γ $← Z∗p]

−Pr[1 $← D(g, gγ , gα, gα
2
, · · · , gα

h

, T )|T $← G ∧ α, γ $← Z∗p]|.

We say h-wBDHI’ is intractable if the advantage is a negligible function for all PPT algorithms D.

We require a hash function H drawn from a family of collision resistant hash functions too.

Definition 7. A hash function H
$← H(k) is collision resistant if for all PPT algorithms C the advantage

AdvCR
C (k) = Pr[H(x) = H(y) ∧ x 6= y|(x, y) $← C(1k, H) ∧H $← H(k)]

is negligible as a function of the security parameter k.

4.2 Proposed Construction

Our construction is an h-level generalization of the concrete construction for 1-level in [24]. While [24] uses
the technique of [11] to achieve strong decryption oracle secure against CCA attack, we use the same tech-
nique differently to support partial decryption which is not considered in [24].

Setup(1λ, n): Let G, GT be two multiplicative groups with a bilinear map ê as defined before. They are of
the same order p, which is a prime and 2λ < p < 2λ+1.

– Encryption key: choose two generators g, g2 ∈R G.
– Master public key: choose an exponent α ∈R Zp and set g1 = gα.
– Hash key for identity-based public key derivation: choose hmany (`+1)-length vectors

#»

U 1, · · · ,
#»

Uh
∈R G`+1, where each

#»

U j = (u′j , uj,1, · · · , uj,`), 1 ≤ j ≤ h.
Each vector

#»

U j (1 ≤ j ≤ h) corresponds to the j-th level of the hierarchy. We use the notation
#   »

ID =
(ID1, · · · , IDk) to denote an identity which is a hierarchy of different identities at different levels. Each
IDj is an n-bit string. We write IDj as ` blocks each of length n/` bits (IDj,1, · · · , IDj,`). We define
F #»
U j

(IDj) = u′j
∏`
i=1 u

IDj,i
j,i .

– Hash key for ciphertext validity: choose an (n+ 1)-length vector
#»

V = (v′, v1, · · · , vn) ∈R Gn+1 This
vector defines the hash function F #»

V (w) = v′
∏n
j=1 vj

bj where w is a n-bit string b1b2 · · · bn.
– Hash function: pick a function H : {0, 1}∗ → {0, 1}n from a family of collision-resistant hash functions.

The public parameters Pub and the master secret key Msk are given by

Pub = (G,GT , ê(·, ·), n, g, g1, g2,
#»

U 1, · · · ,
#»

Uh,
#»

V ,H(·)), Msk = gα2 .

Extract(d #  »
ID, IDr): For an identity

#   »

ID = (ID1, · · · , IDk) for k ≤ h, the trapdoor is in the form of

d #  »
ID = (a1, a2,

#»z k+1, · · · , #»z h) = (gα2 · (
k∏
j=1

F #»
U j

(IDj))r, gr, (
#»

U k+1)
r
, · · · , ( #»

Uh)
r
),

where r ∈R Z∗p and (
#»

U j)
r

= ((u′j)
r
, (uj,1)r, · · · , (uj,`)r).
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Note that (a1, a2) is sufficient for decryption, while #»z k+1, · · · , #»z h can help the derivation of the trapdoor
for (ID1, · · · , IDk, IDk+1) for any n-bit string IDk+1 and k + 1 ≤ h. The exact algorithm is as follows.

To generate d #  »
ID||IDr parse d #  »

ID = (a1, a2, (zk+1, zk+1,1, · · · , zk+1,`), · · · (zh, zh,1, · · · , zh,`)) and parse IDr
as b1b2 · · · bn, pick t ∈R Z∗p and output

d #  »
ID||IDr = (a1 · zk+1

∏̀
i=1

(zk+1,i)bi · (
k+1∏
j=1

F #»
U j

(IDj))t, a2 · gt, #»z k+2 · (
#»

U k+2)
t
· · · , #»z h · (

#»

Uh)
t

where the multiplication of two vectors are defined component-wise, i.e. #»z j · #»ν j = (zj · νj , zj,1 · νj,1, · · · , zj,` ·
νj,`). d #  »

ID becomes shorter as the length of
#   »

ID increases.

KeyGen(): Pick sk ∈R Z∗p, return sk as the secret key and pk = (X,Y ) = (gsk, gsk
1 ) as the public key.

Enc(m,
#   »

ID, pk): To encrypt m ∈ GT for
#   »

ID = (ID1, · · · , IDk) where k ≤ h, parse pk as (X,Y ), then check
that it is a valid public key by verifying that ê(X, g1) = ê(g, Y ). If equality holds, pick s ∈R Z∗p and compute

C = (C1, C2, τ, σ)

= (m · ê(Y, g2)s,
k∏
j=1

F #»
U j

(IDj)
s
, gs, F #»

V (w)s)

where w = H(C1, C2, τ,
#   »

ID, pk).

DecS(C, d #  »
ID): Parse C as (C1, C2, τ, σ), and d #  »

ID as (a1, a2, · · · ). First check if ê(τ,
∏k
j=1 F #»

U j
(IDj) ·F #»

V (w′)) =

ê(g, C2 · σ) where w′ = H(C1, C2, τ,
#   »

ID, pk). Return ⊥ if inequality holds or any parsing is not possible,
otherwise pick t ∈R Z∗p and return

D = (D1, D2, D3)
= (a1 · F #»

V (w′)t, a2, g
t)

DecU (C, sk, D): Parse C as (C1, C2, τ, σ) and check if ê(τ,
∏k
j=1 F #»

U j
(IDj) · F #»

V (w′)) = ê(g, C2 · σ) where

w′ = H(C1, C2, τ,
#   »

ID, pk). If equality does not hold or parsing is not possible, return ⊥C . Next, parse D as
(D1, D2, D3) and check if ê(g,D1) = ê(g1, g2)ê(D2,

∏k
j=1 F #»

U j
(IDj))ê(D3, F #»

V (w′))4. If equality does not hold
or parsing is not possible, return ⊥D. Otherwise, return

m← C1 ·
(
ê(C2, D2)ê(σ,D3)

ê(τ,D1)

)sk

.

4.3 Security Analysis

Theorem 2 Our scheme is secure against Type-I attack (Definition 3) if h-wBDHI’ problem is intractable.

Theorem 3 Our scheme is secure against Type-II attack (Definition 4) if 3-DDH problem is intractable.

Proofs for the above two theorems can be found in a single proof in Appendix A.

5 Applying General Certificateless Encryption to Timed-Release Encryption

Now we provide the formal evidence for our thesis – generic certificateless encryption can be used as TRE.
4 The pairing computations involved in checking the ciphertext and the token can be incorporated to the final

decryption step by a technique similar to [35], such that only 4 pairing computations are required.
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5.1 Syntax of Timed-Release Encryption

For ease of discussion, we consider a definition supporting only a single-level of time-identifier as in [14]. It
can be shown that our results hold for an h-level analog. Below gives the security model of [14]5.

Definition 8. A TRE scheme for time-identifiers of length n (where n is a polynomially-bounded function)
is defined by the following sextuple of PPT algorithms:

– Setup (run by the server) is a probabilistic algorithm which takes a security parameter 1λ, outputs a
master secret key Msk, and the global parameters Pub. We assume that λ and n = n(λ) are implicit in
Pub and all other algorithms take Pub implicitly as an input.

– Extract (run by the server) is a possibly probabilistic algorithm which takes the master secret key Msk
and a string ID ∈ {0, 1}n, outputs a trapdoor key dID associated with the identity ID.

– KeyGen (run by a user) is a probabilistic algorithm which generates a public/private key pair (pku, sku).
– Enc (run by a sender) is a probabilistic algorithm which takes a message m from some implicit message

space, an identifier ID ∈ {0, 1}n, and the receiver’s public key pku as input, returns a ciphertext C.
– DecS (run by the one who hold the trapdoor, either a SEM or a receiver) is a possibly probabilistic

algorithm which takes a ciphertext C and the trapdoor key dID as input, returns either a token D which
can be seen as a partial decryption result of C, or an invalid flag ⊥ (which is not in the message space).

– DecU (run by a receiver) is a possibly probabilistic algorithm which takes the ciphertext C, the receiver’s
private key sku and a token D as input, returns either the plaintext, an invalid flag ⊥D denoting D is
an invalid token, or an invalid flag ⊥C denoting the ciphertext is invalid.

For correctness, we require that DecU (C, sk,DecS(C,Extract(Msk, ID))) = m for all λ ∈ N, all (Pub,Msk) $←
Setup(1λ), all (pk, sk) $← KeyGen, all message m, all identifier ID in {0, 1}n and all C $← Enc(m, ID, pk).

5.2 Timed-Release Encryption from General Certificateless Encryption

Given a SMCLE scheme {SMC.Setup,SMC.Extract,SMC.KeyGen,SMC.Enc,SMC.DecS ,SMC.DecU}, a
TRE scheme {T RE .Setup, T RE .Extract, T RE .KeyGen, T RE .Enc, T RE .DecS , T RE .DecU} can be constructed
the following straightforward way.

T RE .Setup(1λ, n): Given a security parameter λ and the length of the time-identifier n, execute (Msk,Pub)←
SMC.Setup(1λ, n), retain Msk as the master secret key and publish Pub as the global parameters.

T RE .Extract(Msk, ID): For a time-identifier ID ∈ {0, 1}n, the time-server executes dID ← SMC.Extract(Msk, ID)
and return the trapdoor dID.

T RE .KeyGen(): Return (sk, pk)← SMC.KeyGen() as the user’s private/public key pair.

T RE .Enc(m, ID, pk): To encrypt m ∈ GT for pk under the time ID ∈ {0, 1}n, first perform any checking of
pk that is required by the SMC scheme. If pk is a valid public key, return SMC.Enc(m, ID, pk).

T RE .DecS(C, dID): To partially decrypt the ciphertext C by the time-dependent trapdoor dID, just return
the token D ← SMC.DecS(C, dID).

T RE .DecU (C, sk, D): To decrypt the ciphertext C by the secret key sk and the token D, just return
SMC.DecU (C, sk, D).

5 The model in [14] is stronger than its counterparts in [34, 20]. We chose not to use the framework from [25] since
it is tightly coupled with the pre-open capability. However, the essence of the message confidentiality requirements
in [25] is still being captured in the model of [14].
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Theorem 4 If SMC is an 1-level SMCLE scheme which is CCA-secure against Type-I adversary (Defini-
tion 3), T RE is CCA-secure against Type-I adversary (Definition 10).

Theorem 5 If SMC is an 1-level SMCLE scheme which is CCA-secure against Type-II adversary (Defini-
tion 4), T RE is CCA-secure against Type-II adversary (Definition 11).

Proof. We prove the above theorems by contradiction. Suppose A is a PPT Type-X adversary such that
|Pr[ExpCCA′−X

A (λ) = 1]− 1
2 | > ε, we construct an adversary B such that |Pr[ExpCCA−X

A (λ) = 1]− 1
2 | > ε in

the face of a SMCLE challenger C where the running times of B and A are equal.
Setup: When C gives B (Pub,Aux), B just forwards it to A.
First Phase of Queries: B forwards every request of A to the oracles of its own challenger C. From the

description of T RE , we can see that every legitimate oracle query made by A can be answered faithfully.
Challenge: When A gives B (m0,m1, pk∗, ID∗), B just forwards it to C.
Second Phase of Queries: Again, B just forwards every request of A to the oracles of its own challenger

C. From the description of T RE , it is easy to see that every oracle query which does not violate the restriction
made by A also does not violate the restriction made enforced by C.

Output: Finally, A outputs a bit b, B forwards it to C as its own answer. The probability for A to
win the TRE experiment simulated by B is equals to the probability for B to win the SMCLE game played
against C. It is easy to see that the running times of A and B are the same. ut

Section 4 presented a CLE scheme in the standard model, the above theorems imply that our scheme
can be instantiated as a TRE scheme without random oracle, which is the first one in the literature.

5.3 Certificateless Encryption from Timed-Release Encryption

One may note that our formulations of general certificateless encryption and timed-release encryption are
essentially the same, and expect CLE can be constructed from TRE. Nevertheless, note that the usage of
time-identifier is only a specific instantiation of the timed-release idea. For example, there exists TRE scheme
[16] which time is denoted by a repeated computation of one-way hash function similar to S/Key password
system. On the other hand, the notion of CLE supports an exponential number of arbitrary identifiers6. A
CLE scheme cannot be realized by a TRE if the total number of different time periods supported is too few.

5.4 Security-Mediator in Timed-Release Encryption

We introduce the concept of security-mediator in the TRE paradigm, which gives a new business model
for the operation of the time-server. Traditional TRE only allows the time-server to release a system-wide
time-dependent trapdoor. With the possibility of partial decryption, the time-server can charge for each
decryption. The time-server can decrypt a ciphertext partially by the time-dependent trapdoor per request,
while the partial decryption of one ciphertext would not help the decryption of any other ciphertext.

5.5 Time Hierarchy

Each identifier corresponds to a single time period, which means that the server has to publish t private
keys on a bulletin board after t time-periods have passed. Given a hierarchical CLE, the amount data on the
bulletin board can be reduced by using CHK forward secure encryption scheme [13] in reverse, as suggested
in [7]. For a total of T time periods, the CHK framework is setup as a tree of depth lg T . To encrypt a
message for time t < T , the time identifier is the CHK identifier for time period T − t. Release of trapdoor
is done in the same manner, the private key for the time period T − t is released on the tth time period. This
single private key enables anyone to derive the private keys for CHK time periods T − t, T − t + 1, · · · , T ,
which means the user can obtain the trapdoors for time in the range of 1, · · · , t. By using this trick, the
server only needs to publish a single private key comprising O(lg2 T ) group elements at any time.
6 Even though the scheme may be insecure when more than a polynomial number of trapdoors are compromised by

a single adversary.
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6 Conclusions

In the study of cryptography, we always seek for the strongest definition and try to achieve it. The current
model of certificateless encryption (CLE) is restrictive and cannot give the desired security properties when it
is instantiated as timed-release encryption (TRE). We give a generalized model for CLE that is also sufficient
to fulfill the requirements of TRE. All future CLE proposals in our general model automatically gives a secure
TRE scheme. Our model is defined against full-identifier extraction, decryption under arbitrary public key,
and partial decryption, which incorporates the strongest properties one may desire. Our concrete scheme
yields the first strongly-secure (hierarchical) security-mediated CLE and the first TRE in the standard model.
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14. Julien Cathalo, Benôıt Libert, and Jean-Jacques Quisquater. Efficient and Non-interactive Timed-Release En-
cryption. In Sihan Qing, Wenbo Mao, Javier Lopez, and Guilin Wang, editors, Information and Communications
Security, ICICS 2005, volume 3783 of Lecture Notes in Computer Science, pages 291–303. Springer, 2005.

13



15. Konstantinos Chalkias, Dimitrios Hristu-Varsakelis, and George Stephanides. Improved Anonymous Timed-
Release Encryption . In Joachim Biskup and Javier Lopez, editors, Computer Security - ESORICS 2007, 12th
European Symposium on Research in Computer Security, Dresden, Germany, September 24-26, 2007, Proceedings,
volume 4734 of Lecture Notes in Computer Science, pages 311–326. Springer, 2007.

16. Konstantinos Chalkias and George Stephanides. Timed Release Cryptography from Bilinear Pairings Using
Hash Chains. In Herbert Leitold and Evangelos P. Markatos, editors, Communications and Multimedia Security,
volume 4237 of Lecture Notes in Computer Science, pages 130–140. Springer, 2006.

17. Sanjit Chatterjee and Palash Sarkar. New Constructions of Constant Size Ciphertext HIBE Without Random
Oracle. In Min Surp Rhee and Byoungcheon Lee, editors, ICISC, volume 4296 of Lecture Notes in Computer
Science, pages 310–327. Springer, 2006.

18. Sanjit Chatterjee and Palash Sarkar. On (Hierarchical) Identity Based Encryption Protocols with Short Public
Parameters (With an Exposition of Waters’ Artificial Abort Technique). Cryptology ePrint Archive, Report
2006/279, 2006.

19. Zhaohui Cheng, Liqun Chen, Li Ling, and Richard Comley. General and Efficient Certificateless Public Key
Encryption Constructions. In Takagi et al. [45], pages 83–107.

20. Jung Hee Cheon, Nicholas Hopper, Yongdae Kim, and Ivan Osipkov. Timed-Release and Key-Insulated Public
Key Encryption. In Giovanni Di Crescenzo and Avi Rubin, editors, Financial Cryptography, volume 4107 of
Lecture Notes in Computer Science, pages 191–205. Springer, 2006.

21. Sherman S. M. Chow, Colin Boyd, and Juan Manuel González Nieto. Security-Mediated Certificateless Cryptog-
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A Formal Security Proof for Our Proposed Construction

We now define a series of games where each one is an interactive game between a simulator S and an
adversary A, which is either an insider attacker (Type-I adversary) or a curious server (Type-II adversary),
depending on the allowed queries. The skeleton of the proof is based on the proof given in [24].

Game 1 (The Original Game). This game is the one played between a simulator S and an adversary
A as specified in the experiment ExpCCA−X. We use the following notations: For the queries, let T =
{ #   »

ID1, · · · ,
#   »

IDqE} denote the trapdoors extraction queries and W = {w1, · · · , wqD} be the set of strings
involved in decryption queries where wj = H(C1, C2, τ,

#   »

IDj , pkj). For the challenges, let
#   »

ID∗ and pk∗ denote
the challenge identifier and the challenge public key respectively, and let C∗ = (C∗1 , C

∗
2 , τ
∗, σ∗) be the returned

challenge ciphertext and let w∗ = H(C∗1 , C
∗
2 , τ
∗,

#   »

ID∗, pk∗). The random bit ι is chosen by S in order to select
which message is encrypted.
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Game 2 (Change of Public Parameters). Let Zi = (g)α
i

, 1 ≤ i ≤ h+1. This game is the same as Game
1 except that the generation of the parameters is changed. S picks α, β ∈R Zp, and set g1 = Z1, g2 = Zh ·gβ .

The simulator also changes the vectors as follows. Let ρu and ρv be integers such that ρu(n+ 1) < p and
ρv(n+ 1) < p. The exact choices of ρu and ρu will be determined later. The simulator randomly selects

– κu1 , · · · , κun , κv from {0, · · · , `(n1/` − 1)},
– h many (`+ 1)-length vectors #»x 1, · · · , #»xh from Zρu , where each #»x j = (x′j , xj,1, · · · , xj,`).
– h many (`+ 1)-length vectors #»y 1, · · · , #»y h from Zp, where each #»y j = (y′j , yj,1, · · · , yj,`).
– (x′v, xv,1, · · · , xv,n) from Zn+1

ρv

– (y′v, yv,1, · · · , yv,n) from Zn+1
p .

The hash keys for the identity-based key derivation, for 1 ≤ j ≤ h, are set as:

u′j = Z
(p+ρuκj−x′j)
h−j+1 · gy

′
j , uj,i = Z

−x′j,i
h−j+1 · g

yj,i for 1 ≤ i ≤ `.

The hash key for the ciphertext validity is set as (note that g2 = Zh · gβ):

v′ = g
(p+ρvκv−x′v)
2 · gy

′
v , vi = g

−xv,i
2 gy

′
v,i for 1 ≤ i ≤ n.

Define the following functions

Ju1(ID1) = p+ ρuκ1 − x′1 −
∑̀
i=1

x1,iID1,i, Ku1(ID1) = y′1 +
∑`

1=1 y1,iIDh,i,

...
...

Juh(IDh) = p+ ρuκh − x′h −
∑̀
i=1

xh,iIDh,i, Kuh(IDh) = y′h +
∑`

1=1 yh,iIDh,i,

Jv(w) = p+ ρvκv − x′v −
∑̀
i=1

xv,jbj , Kv(w) = y′v +
∑`

1=1 yv,jbj ,

that take as input IDj = (IDj,1, · · · , IDj,`) or w = b1 · · · bn. The settings above give

F #»
U j

(IDj) = u′j
∏̀
i=1

u
IDj,i
j,i = Z

Juj (IDj)

h−j+1 · g
Kuj (IDj), j ∈ {1, · · · , h}

F #»
V (w) = v′

n∏
j=1

vj
bj = g

Jv(w)
2 · gKv(w)

These changes do not change the distribution of the public parameters, so we have Pr[S2] = Pr[S1].

Game 3 (Elimination of Hash Collisions). The simulator aborts and assumes A outputs a random
bit in this game if A submits a decryption query (C,

#   »

ID, pk = (gsk, gsk
1 )) for a well-formed ciphertext C =

(C1, C2, τ, σ) where w = H(C1, C2, τ,
#   »

ID, pk) is either equal to the same value as a previously submitted
ciphertext or w∗ of the challenge ciphertext.

For such a decryption query to be legal, we have C 6= C∗ or (
#   »

ID, pk) 6= (
#   »

ID∗, pk∗). In either case, this
implies a collision for H, which means we can construct an adversary C against the collision resistance of H
such that |Pr[S3]− Pr[S2]| ≤ AdvCR

C (k).

16



Game 4 (Preparation for the Simulation of the Challenge Ciphertext). Let
#   »

ID∗ = (ID∗1, · · · , ID
∗
k)

where k ≤ h. This time S aborts if Juj (ID
∗
j ) 6= 0 mod p for any j ∈ {1, · · · , k} or Jv(w∗) 6= 0 mod p.

Since the values determining these functions are information theoretically hidden from A, such ID∗ and
w∗ can only be produced by chance. Therefore

Pr[Jv(w∗) = 0 mod p]
= Pr[Jv(w∗) = 0 mod p|Jv(w∗) = 0 mod ρv] · Pr[Jv(w∗) = 0 mod ρv]

=
1

ρv(n+ 1)

Unless S aborts, Game 3 and Game 4 are identical and we have |Pr[S4] − Pr[S3]| ≤ 1
(ρu)hρv(`+1)h+1 by a

similar computation (n ≥ `). The significance of this extra abort condition will be manifested in Game 7.

Game 5 (Artificial Abort for Consistent View of Adversary). Now S aborts if Ju1(ID′1) = · · · =
Juk(ID′k) = 0 mod ρu for some

#   »

ID′ = (ID′1, · · · , ID
′
k) ∈ T or Jv(w′) = 0 mod ρv for some w′ ∈ W.

Since A’s power is dependent on the extraction and decryption queries, the above abort event is not
independent of S4, and we cannot relate the probability of S4 and S5 in a similar way as before.

This problem can be circumvented by the “re-normalization” technique due to Waters [46], such that
“artificial aborts” are added to make sure that the probability of aborts is exactly equal to some negligible
upper bound for the probability that E occurs for any set of oracle queries.

Conditioning on Pr[Jv(w∗) = 0 mod p] the theoretical lower bound of Pr[Jv(w∗) 6= 0 mod p] is (1− qD
ρv

).
Setting ρv = 2qD and will make it bounded by 1/2. On the other hand, a lower bound on the probability for
the first event is 1

2(4`qE2n/`)h
by setting ρu = 4qE [17].

We estimate the probability that A’s oracle queries will cause S to abort by repeatedly sampling values
determining Ju1(·), · · · , Juh(·), Jv(·). This would not involve re-running A as A’s view (of the public parame-
ters) remains unchanged by assuming y’s are changing accordingly. Waters [46] has shown that a polynomial
number of trials is sufficient to give an estimate of the abort probability η to within a negligible error term.

If S did not abort, we force an artificial abort with probability (η − 1/(4(4`qE2n/`)h))/η, and S will
abort with probability sufficiently close to 1

4(4`qE2n/`)h
. Now we can say Pr[S5] = Pr[S4]/4(4`qE2n/`)h. An

exposition of Waters’ technique can be found at [18].

Game 6 (Simulation of Extraction and Decryption). This game changes the simulation of all A’s
queries for trapdoor extractions, partial decryptions, and complete decryptions. We will have Pr[S6] = Pr[S5].

Trapdoor extraction: For trapdoor key extraction query of
#   »

ID = (ID1, · · · , IDk) where k ≤ h. Let j′ ∈
{1, · · · , k} be a minimum one such that Juj′ (IDj′) 6= 0. There exists such a j′ or S has aborted in Game 5.
S needs to return d #  »

ID = (a1, a2,
#»z k+1, · · · , #»z h).

We first show how to compute a1|j′ , a “trapdoor for only IDj′” (without any appearance of any elements
from other levels); then we will show how to compute a trapdoor (a1, a2,

#»z k+1, · · · , #»z h) that matches the

same implicit random factor used in a1|j′ . Recall that F #»
U j′

(IDj′) = Z
Ju
j′

(IDj′ )

h−j′+1 · gKuj′ (IDj′ ). S picks r ∈ Z∗p
and computes

a1|j′ = (Zβ1 · Zj′
−
Ku

j′
(ID
j′ )

Ju
j′

(ID
j′ ) ) · (Z

Ju
j′

(IDj′ )

h−j′+1 · gKuj′ (IDj′ ))r
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The second component of a1|j′ is only for randomization. We will show the first component of a1|j′ is in the

form of gα2 (F #»
U j′

(IDj′))
− αj

′

Ju
j′

(ID
j′ ) , which means a1|j′ is in the form of gα2 (F #»

U j′
(IDj′))r̃ where r̃ = r− αj

′

Ju
j′

(IDj′ )
.

gα2 (F #»
U j′

(IDj′))
− αj

′

Ju
j′

(ID
j′ )

= (Zh · gβ)α(Z
Ju
j′

(IDj′ )

h−j′+1 · gKuj′ (IDj′ ))
− αj

′

Ju
j′

(ID
j′ )

= Zh+1 · Zβ1 · Z
−
Ju
j′

(ID
j′ )

Ju
j′

(ID
j′ )

h+1 · Z
−
Ku

j′
(ID
j′ )

Ju
j′

(ID
j′ )

j′

= Zβ1 · Zj′
−
Ku

j′
(ID
j′ )

Ju
j′

(ID
j′ )

To compute a1 = gα2 · (
∏k
j=1 F #»

U j
(IDj))r̃, S needs to compute F #»

U j
(IDj)r̃ = (Z

Juj (IDj)

h−j+1 )r̃ · (gKuj (IDj))r̃ for
j 6= j′. We would like to compute it without knowing α and Zh+1, but with the help of (Z1, · · · , Zh). Now
the only difficulty comes from the fact that αj

′
in r̃ is unknown. Note that the second term (gKuj (IDj))α

j′

can be computed from Zj′ . We can see how the first term can be obtained by considering two different cases.

1. j < j′: Juj (IDj) = 0 by the choice of j′.

2. j > j′: Zα
j′

h−j+1 = Zh+1−(j−j′), note that 1 ≤ j − j′ ≤ h− 1.

By similar reasoning, since k + 1 > j′, it is easy to see that #»z k+1, · · · , #»z h can also be computed from
(Z1, · · · , Zh). This completes the simulation of the trapdoor queries.

SEM partial decryption: S performs the usual validity checking to reject any invalid ciphertext C that is
purported to be encrypted under

#   »

ID and pk. For decrypting a valid ciphertext with hash w by the trapdoor
of

#   »

ID, if d #  »
ID = (a1, a2, · · · ) is computable by S, it is easy to generate (a1F #»

V (w)t, a2, g
t) for a random t ∈ Z∗p.

S cannot generate the trapdoor for d #  »
ID only if Ju1(ID1) = · · · = Juk(IDk) = 0 mod ρu. Note that

Jv(w) 6= 0 mod ρv or S has aborted in Game 5. Under this condition, S can generate the token similar to
the generation of the trapdoor before. Recall that F #»

V (w) = (Zh · gβ)Jv(w) · gKv(w), we have

gα2 (F #»
V (w))−

α
Jv(w)

= (Zh · gβ)α(ZJv(w)
h · (gβ)Jv(w) · gKv(w))−

α
Jv(w)

= Zh+1 · Zβ1 · Z
− Jv(w)
Jv(w)

h+1 · Z
−β Jv(w)

Jv(w)
1 · Z

−Kv(w)
Jv(w)

1

= Z
−Kv(w)
Jv(w)

1

This means Z
−Kv(w)
Jv(w)

1 gives a token with the implicit random factor equals to − α
Jv(w) . Randomization can

be done easily by multiplying the above term by (F #»
V (w))r where r ∈ Z∗p. Since Ju1(ID1) = · · · = Juk(IDk) =

0 mod ρu, all α
Jv(w) power terms appear in the construction of the token can be computed from Z1.

User partial decryption:A queries S’s oracle DecU (C, pk, D). S performs the usual ciphertext validity checking
to reject any invalid ciphertext C that is purported to be encrypted under

#   »

ID and pk, and the token validity
checking to reject any invalid token D that is purported to be a partial decryption of C.

For decrypting a valid ciphertext (C1, C2, τ, σ) with hash w, we have τ = gs and σ = F #»
V (w)s for some

s ∈ Z∗p, i.e. σ = g
s·Jv(w)
2 · (gs)Kv(w). S can get gs2 by (σ/τKv(w))

1
Jv(w) , ê(Y, g2)s can thus be computed easily.

Note that the secret key sk that matches pk is never explicitly used.

Complete decryption: After validity checking, S returns m = C1/ê(Y, (σ/τKv(w))
1

Jv(w) ) for valid ciphertext.
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Game 7 (Simulation of the Ciphertext / Embedding of the Problem Instance). Depending on
whether the adversary is an insider or the server, we have different modes of simulations. Now S introduces
a variable γ ∈R Z∗p and sets τ∗ = gγ .

If mode = I, g1 is set to Z1 = gα. A chooses an identifier
#   »

ID∗ = (ID∗1, · · · , ID
∗
k), a public key pk∗ =

(X∗, Y ∗) to be challenged with. S proceeds if ê(Y ∗, g) = ê(X∗, g1). Let T = (gα
h+1

)γ , S computes C∗1 by

mι · ê(X∗, T ) · (Y ∗, gγ)β

= mι · ê(X∗, (gα
h+1

)γ) · (Y ∗, gγ)β

= mι · ê(Y ∗, gα
h

)γ · (Y ∗, gβ)γ

= mι · ê(Y ∗, Zh · gβ)γ

= mι · ê(Y ∗, g2)γ

Note that it is the first time in the simulation that β is used directly (i.e. not in the form of gβ).
If mode = II, S introduces a variable δ ∈R Z∗p. Since A is a Type-II adversary, it can only choose

a public key from {pk∗1, · · · pk∗qK} given in aux to attack. A chooses an identifier
#   »

ID∗ and a public key
pk∗i = (X∗i , Y

∗
i ) = ((gδ)θi , (gδ)θiα) to be challenged with. Note that the choice of θi ∈R Z∗p is known to S

since it was S who prepared it. Let T = gβγδ, S computes C∗1 by

mι · (ê(gδ, gγ)α
h+1
· ê(gα, T ))θi

= mι · (ê(gδ, gα
h+1

)γ · ê(gα, gβγδ))θi

= mι · ê(gδθiα, gα
h

)γ · ê(gδθiα, gβ)γ

= mι · ê(Y ∗, Zh · gβ)γ

= mι · ê(Y ∗, g2)γ

Note that it is the first time in the simulation that α is used directly (i.e. not in the form of gα, · · · , gαh).
In both modes, S sets C∗2 =

∏k
j=1 (gγ)Kuj (ID∗j ), σ∗ = (gγ)Kv(w

∗) where w∗ = H(C∗1 , C
∗
2 , τ
∗,

#   »

ID∗, pk∗) for
the rest of the challenge, which is a perfect simulation if S did not abort in Game 4. We have Pr[S7] = Pr[S6].

Game 8 (The Indistinguishability Cards). If mode = I, S forgets (α, γ). If mode = II, S forgets (β, γ, δ).
Note that S can simulate the game in both modes as long as (gα, · · · , gαh , gγ) are known for mode = I or
(gβ , gγ , gδ) are known for mode = II, except computing the term T . Now S just picks a T ∈R G. The
transition from Game 7 to Game 8 is based on the intractability of either h-wBDHI’ or 3-DDH. Both games
are equal unless there exists a PPT algorithm D that distinguishes T from random. Therefore, we have
|Pr[S8]−Pr[S7]| ≤ AdvX

D(k) where X is either h-wBDHI’ or 3-DDH. Finally, C∗1 perfectly hides mι from A,
we have Pr[S8] = 1/2.

B Security Models of Timed-Release Encryption

We consider the two kinds of adversaries. A Type-I adversary models any coalition of rogue users, and who
aims to break the confidentiality of another user’s ciphertext. A Type-II adversary that models a curious
time server, who aims to break the confidentiality of an user’s ciphertext. Security against these adversaries
are modeled by the experiment below for X ∈ {I, II}, denoting whether an PPT adversary A = (Afind,Aguess)
is of Type-I or Type-II. The allowed oracle queries O and the auxiliary information Aux depends on X.

Definition 9. Experiment ExpCCA′−X
A (λ)

(Pub,Msk) $← Setup(1λ)

(m0,m1, pk∗, ID∗, state) $← AOfind(Pub,Aux)

19



b
$← {0, 1}, C∗ $← Enc(mb, ID

∗, pk∗)

b′
$← AOguess(C

∗, state)
If (|m0| 6= |m1|) ∨ (b 6= b′) then return 0 else return 1

where O refers to a set of four oracles Extract(·),DecS(·, ·),DecU (·, ·, ·),Dec(·, ·, ·) defined as below.

1. An Extract oracle that takes an identifier ID ∈ {0, 1}n as input and returns its trapdoor dID.
2. A DecS oracle that takes a ciphertext C and an identifier ID, and outputs DecS(C, dID). Note that C may

or may not be encrypted under ID.
3. A DecU oracle that takes a ciphertext C, a public key pk and a token D, and outputs DecU (C, sk, D)

where sk is the secret key that matches pk.
4. A Dec oracle that takes a ciphertext C, an identifier ID, and a public key pk, and outputs DecU (C, sk, D)

where sk is the secret key that matches pk and D = DecS(C, dID). Note that C may or may not be
encrypted under ID and pk.

Definition 10. A timed-release encryption scheme is (t, qE , qD, ε) IND-CCA secure against a Type-I adver-
sary if |Pr[ExpCCA′−I

A (λ) = 1]− 1
2 | ≤ ε for all t-time adversary A making at most qE extraction queries and

qD decryption queries (of any type), subjects to the following constraints:

1. Aux = ∅, i.e. no auxiliary information is given to the adversary.
2. No Extract(ID∗) query throughout the game.
3. No DecS(C∗, ID∗) query throughout the game.
4. No Dec(C∗, ID∗, pk∗) query throughout the game.

Definition 11. A timed-release encryption scheme is (t, qE , qD, ε) IND-CCA secure against a Type-II ad-
versary if |Pr[ExpCCA′−II

A (λ) = 1]− 1
2 | ≤ ε for all t-time adversary A making at most qK public key queries,

qE extraction queries and qD decryption queries (of any type), subjects to the following conditions:

1. Aux = (Msk, {pk∗1, · · · , pk∗qK}), i.e. the master secret key and a set of challenge public key pk∗ is given to
the adversary.

2. pk∗ ∈ {pk∗1, · · · , pk∗qK}, i.e. the challenge public key must be among the set given by the challenger.
3. No DecU (C∗, pk∗, D) query throughout the game, where D is obtained from DecS(C∗, ID∗).
4. No Dec(C∗, ID∗, pk∗) query throughout the game.

C Pre-open Capability

In many applications of TRE, it is desirable to have a pre-open mechanism that the sender can enable the
recipient to decrypt the ciphertext before the pre-specified release-time, without re-sending the plaintext. In
a TRE with such a pre-open capability [34], the sender gets hold of a pre-open key that can functionally
substitute the role of the system’s time-dependent trapdoor, for the ciphertext prepared by him/her.

The concept of pre-open capability is introduced to the TRE paradigm by [34]. However, the scheme of
[34] does not consider the security threat that the sender can give a pre-open key which opens the ciphertext
to another message that is different from the one originally being encrypted. This deficiency is pointed out by
[25], where the property of binding is formally defined and a scheme with binding pre-open key is proposed.

C.1 Model

We chose not to cover pre-open capability in the our general model because we do not think it makes a good
sense in the context of CLE. The syntactic changes for pre-open capability include:

– Enc (run by a sender) is a probabilistic algorithm which takes a message m from some implicit message
space, an identifier

#   »

ID ∈ ({0, 1}n)≤h, and the receiver’s public key pku as input, returns a ciphertext C
and its pre-open key DC .
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– PreOpen (run by a receiver) is a possibly probabilistic algorithm which takes the ciphertext C, the
receiver’s private key sku and a pre-open key DC as input, returns either the plaintext, an invalid flag
⊥D denoting DC is an invalid pre-open key, or an invalid flag ⊥C denoting the ciphertext is invalid.

Correctness requires PreOpen(C, sk, DC) = m for all λ, n ∈ N, all Pub given by Setup(1λ, n), all (pk, sk)
given by KeyGen, all message m, all time

#   »

ID in ({0, 1}n)≤h and all (C,DC) given by Enc(m,
#   »

ID, pk).
Binding requires the following probability is negligible for all PPT algorithm A.

Pr[(C∗, ID∗, D∗C
$← A(Pub) | (Pub,Msk) $← Setup(1λ)

∧ PreOpen(C∗, sk, D∗C) /∈ {⊥D,⊥C}
∧ PreOpen(C∗, sk, D∗C) 6= DecU (C∗, sk,DecS(C∗,Extract(Msk,

#      »

ID∗)))]

C.2 Construction

To make our concrete scheme supports pre-open capability, Enc just outputs DC = gs1 as the pre-open key,
where s is the random factor chosen in Enc. The pre-open mechanism is defined as below.

PreOpen(C, sk, DC): Firstly, check if the pre-open key is valid by ê(DC , g) = ê(g1, τ), returns ⊥D if the
equality does not hold. Otherwise, parse C as (C1, C2, τ, σ) and check if ê(τ,

∏k
j=1 F #»

U j
(IDj) · F #»

V (w′)) =

ê(g, C2 · σ) where w′ = H(C1, C2, τ,
#   »

ID, pk). Return ⊥C if parsing is not possible or the equality does not
hold. Otherwise, return m← C1/ê(DC , g2)sk.

C.3 Security

A Type-I adversary is not entitled to have the pre-open key. We show that the addition of pre-open key
will not compromise the confidentiality of the scheme against a time-server adversary. Using the knowledge
of α (which is known to a Type-II adversary), the pre-open key of the challenge ciphertext can be easily
computed by (gγ)α = g1

γ .
Next, we need to show it is binding. Given (

#   »

ID, pk), the random factor in a valid ciphertext is uniquely
fixed. From the pre-open key validity checking ê(DC , g) = ê(g1, τ) and the bilinearity, DC must be in a
correct form. Hence, the probability for breaking the binding property is zero.

D Release-time Confidentiality and Recipient Anonymity

D.1 Release-time Confidentiality

Release-time confidentiality protects the ciphertext release-time from being known to anyone but the recip-
ient. In the context of CLE, this property means recipient-ID anonymity.

Naturally, one will consider an anonymous IBE (e.g. [10, 12, 29]), where the ciphertext does not reveal any
information about its intended recipient. However, we can leverage the fact that a kind of double-encryption
is done in TRE.

In the context of TRE, even the ciphertext may not leak any information about the release-time, the
release-time should be sent to the intended recipient. So we add into our framework another algorithm called
GetID for this purpose.

Model. The algorithm GetID is one executed by the intended recipient who holds the user private key
and the ciphertext, but not the time-dependent trapdoor. This allows the intended recipient to get the
time-identifier from the ciphertext by using the user secret key. The correctness requirement is as follows.

– GetID(Enc(m,
#   »

ID, pk), sk) =
#   »

ID,C and DecU (C, sk,DecS(C,Extract(Msk,
#   »

ID))) = m for all `, n ∈ N, all
Pub given by Setup(1`, n), all (pk, sk) given by KeyGen, all message m, and all identifier

#   »

ID in ({0, 1}n)≤h.
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Since
#   »

ID is hidden in the ciphertext (in particular, hidden from the SEM), a ciphertext should be
transformed by the sk so that the SEM can check whether the transformed ciphertext is one intended for
the purported identifier.

The formal security requirement is similar to that in [14], but on top of that we need to add an GetID
oracle that takes a ciphertext and a public key of the adversary’s choice. Basically, the challenge ciphertext
is not encrypting one of the two messages under the fixed identifier all given by the adversary, but encrypting
a fixed message under one of the two identifiers. The adversary’s goal is to tell which random identifier is
employed by the challenger.

Security is only defined against a Type-II adversary. For any Type-I adversary, it can replace the public
key, and hence obtaining

#   »

ID from GetID(C, sk) is trivial.

Definition 12. Experiment ExpRTC−II
A (λ)

(Pub,Msk) $← Setup(1λ)

(m, pk∗,
#   »

ID∗0,
#   »

ID∗1, state) $← AOfind(Pub,Aux)

b
$← {0, 1}, C∗ $← Enc(m,

#   »

ID∗b , pk∗)

b′
$← AOguess(C

∗, state)
If b 6= b′ then return 0 else return 1

where O refers to a set of five oracles Extract(·),GetID(·, ·),DecS(·, ·),DecU (·, ·, ·),Dec(·, ·, ·).

Definition 13. A hierarchical security-mediated certificateless encryption scheme is (t, qE , qD, ε) RTC-CCA
secure against a Type-II adversary if |Pr[ExpRTC−II

A (λ) = 1] − 1
2 | ≤ ε for all t-time adversary A making at

most qK public key queries, qE extraction queries and qD decryption queries (of any type), subjects to the
following conditions:

1. Aux = (Msk, {pk∗1, · · · , pk∗qK}), i.e. the master secret key and a set of challenge public key pk∗ is given to
the adversary.

2. pk∗ ∈ {pk∗1, · · · , pk∗qK}, i.e. the challenge public key must be among the set given by the challenger.
3. No GetID(C∗, pk∗) query throughout the game.
4. No DecU (C∗, pk∗, D) query throughout the game, where D is obtained from DecS(C∗,

#   »

ID∗0) or DecS(C∗,
#   »

ID∗1).
5. No Dec(C∗,

#   »

ID∗, pk∗) query throughout the game, where
#   »

ID∗ ∈ { #   »

ID∗0,
#   »

ID∗1}.

Construction. We need the help of a key-derivation function K : GT → {0, 1}n·h+k+1, which we assume
the output of K is computationally indistinguishable from a random distribution when the input comes from
a uniformly distribution. We also assume an implicit one-to-one mapping between G and {0, 1}k+1, i.e. the
public parameters Pub is given by

Pub = (G,GT , ê(·, ·), n, g, g1, g2,
#»

U 1, · · · ,
#»

Uh,
#»

V ,H(·),K(·))

The modified encryption algorithm Enc and the GetID algorithm are described as follows.
Enc(m,

#   »

ID, pk): To encrypt m ∈ GT for
#   »

ID = (ID1, · · · , IDk) where k ≤ h, parse pk as (X,Y ), then check
that it is a valid public key by ê(X, g1) = ê(g, Y ). If equality holds, pick s ∈R Z∗p and compute

C = (C1, C2, τ, σ)

= (m · ê(Y, g2)s, (
#   »

ID||
k∏
j=1

F #»
U j

(IDj)
s)⊕K(ê(X, g2)s), gs, F #»

V (w)s)

where w = H(C1, C2, τ,
#   »

ID, pk,K(ê(X, g2)s)).

GetID(C, sk): Parse C as (C1, C2, τ, σ), C2 ⊕ K(ê(τ, g2)sk) as (
#   »

ID′||f ′), and
#   »

ID′ as (ID1, · · · , IDk); check
if ê(τ,

∏k
j=1 F #»

U j
(IDj) · F #»

V (w′)) = ê(g, f ′σ) where w′ = H(C1, C2, τ,
#   »

ID′, pk,K(ê(τ, g2)sk)). Return ⊥ if

inequality holds or any parsing is not possible, otherwise return
#   »

ID′, C1, f
′, τ, σ.
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Security. We have the following theorems for the security of our modified scheme.

Theorem 6 Our modified scheme is secure against Type-I attack (Definition 3) if h-wBDHI’ problem is
intractable.

Theorem 7 Our modified scheme is secure against Type-II attack (Definition 4) if 3-DDH problem is in-
tractable.

Theorem 8 Our modified scheme is RTC-II-secure (Definition 12) if 3-DDH problem is intractable.

Here we only highlight the changes we need to make in our main proof in Appendix A. The new things
in the security proof are the simulation of the challenge ciphertext in a new format, all decryption oracles
including GetID, and the new well-formness checking of the ciphertext (since w is the output of the hash H
which now takes ê(X, g2)s as part of the input, but not just public information).

Note that the padding for encrypting the message is ê(Y, g2)s while the padding we introduced for hiding
all the information related to the identifier is ê(X, g2)s.

Even though the term
∏k
j=1 F #»

U j
(IDj)

s is now hidden by K(ê(X, g2)s) and it seems that the ciphertext
validity cannot be checked, the simulator (in Game 6) only takes C1 and τ to compute gs2, and hence
the term K(ê(X, g2)s) can be recovered. Specifically, for user partial decryption, S computes ê(Y, g2)s as
ê(Y, (σ/τKv(w))

1
Jv(w) ), ê(X, g2)s can thus easily computed as ê(X, (σ/τKv(w))

1
Jv(w) ). The same is true for

computing w for well-formness checking.
Intuitively, the malleable XOR cipher can be used in C2 since the decryption algorithms checks the σ

term, which is computed from the hash taking C2 as part of the input.
Although the release-time confidentiality is defined against Type-II attack, we still need to show the

simulation goes through for Type-I proof for CCA-security against Type-I adversary. The simulation of the
new ciphertext (in Game 7) is done in different way according to the type of the adversary. For Type-I,
S computes ê(X, g2)s by ê(X∗, (gα

h

)γ) · (X∗, gγ)β = ê(X∗, Zh · gβ)γ = ê(X∗, g2)γ . For Type-II, by the
relationship that Y ∗ = (X∗)α, S can easily obtain ê(X∗, g2)s by (ê(Y ∗, g2)s)

1
α .

D.2 Recipient Anonymity

Release-time is not the only dimension about which key can be used to decrypt the ciphertext. It may
be possible that information about the intended recipient is leaked from the ciphertext too, which against
the requirement of recipient anonymity. In the context of CLE, release-time confidentiality and recipient
anonymity ensures that no one can tell who is the intended recipient of a CLE-encrypted ciphertext.

The formal security requirement is similar to the release-time confidentiality. The adversary chooses two
public keys to be challenged with. The challenger encrypts a message chosen by the adversary under a
random key among the two. The adversary’s goal is to tell which key is employed by the challenger.

Definition 14. Experiment ExpRKA−II
A (λ)

(Pub,Msk) $← Setup(1λ)

(m, pk′0, pk′1,
#   »

ID∗, state) $← AOfind(Pub,Aux)

b
$← {0, 1}, C∗ $← Enc(m,

#   »

ID∗, pk′b)

b′
$← AOguess(C

∗, state)
If b 6= b′ then return 0 else return 1

where O refers to a set of four oracles Extract(·),GetID(·, ·),DecS(·, ·),DecU (·, ·, ·),Dec(·, ·, ·).

Definition 15. A hierarchical security-mediated certificateless encryption scheme is (t, qE , qD, ε) RKA-CCA
secure against a Type-II adversary if |Pr[ExpRKA−II

A (λ) = 1] − 1
2 | ≤ ε for all t-time adversary A making at

most qK public key queries, qE extraction queries and qD decryption queries (of any type), subjects to the
following conditions:
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1. Aux = (Msk, {pk∗1, · · · , pk∗qK}), i.e. the master secret key and a set of challenge public key pk∗ is given to
the adversary.

2. pk′0, pk′1 ∈ {pk∗1, · · · , pk∗qK}, i.e. the challenge pair of public keys must be among the set given by the
challenger.

3. No GetID(C∗, pk′) query throughout the game, where pk′ ∈ {pk′0, pk′1}.
4. No DecU (C∗, pk′, D) query throughout the game, where D is obtained from DecS(C∗,

#   »

ID∗) and where
pk′ ∈ {pk′0, pk′1}.

5. No Dec(C∗,
#   »

ID∗, pk′) query throughout the game, where pk′ ∈ {pk′0, pk′1}.

Security. The recipient anonymity of our scheme can be easily seen in the Game 7 and 8 of our proof.
The intended recipient of the ciphertext is uniquely determined by θi. When T is a random element, θi is
perfectly hidden.

E Analysis of A Recent Timed-Release Encryption Scheme

E.1 Review

We first review how the ciphertext is constructed in the TRE scheme proposed by Chalkias et al. [15].

Setup(1λ, 1λ0): Given security parameters λ and λ0, where λ0 is a polynomially-bounded function of λ, Let
G, GT be two multiplicative groups with a bilinear map ê as defined before. They are of the same order p,
which is a prime and 2λ < p < 2λ+1. The public parameters Pub and the master secret key Msk are given by

Pub = (λ, λ0, p,G,GT , ê(·, ·), P, S = P s, H1(·), H2(·), H3(·), H4(·)), Msk = s ∈R Z∗p.

where P is an arbitrary generator of G, H1(·), H2(·), H3(·), H4(·) are cryptographic hash functions modeled
as random oracles. Their domains and ranges will be clear from the description of the other algorithms.

Extract(Msk, T ): Given a time-identifier T , the time-dependent trapdoor is dT = P
1

(s+t) , where t = H1(T ).

KeyGen(): Pick sk ∈R Z∗p, return sk as the secret key and pk = gsk as the public key.

Enc(m,T, pk): Suppose the message m is encrypted under the time T and the public key pk, the algorithm
proceeds as follow.

1. Compute t = H1(T ) ∈ Z∗p;
2. Choose x ∈R {0, 1}λ0 and h = H2(m||x||T ) ∈ {0, 1}2λ;
3. Treat h̄ as the 2λ-bit integer value of h, parse it as r1||r2, where r1, r2 ∈ Z∗p;
4. Compute c1 = (S · P t)r1 and c2 = P r2 ;
5. Compute d = H3(ê(P, P )r1) ∈ Z∗p;
6. Compute K = H4(pk(d·r2)) and c3 = (m||x||h)⊕K;
7. Return C = (c1, c2, c3, T ).

Dec(C, dT , sk): To decrypt the ciphertext C = (c1, c2, c3, T ) using the trapdoor dT and the secret key sk, the
algorithm proceeds as follow.

1. Compute d = H3(ê(c1, dT ));
2. Compute K = H4(c(d·sk)

2 );
3. Parse c3 ⊕K as m||x||h;
4. Return m if H2(m||x||T ) = h.
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E.2 Attacks

Even though there is a checking of H2(m||x||T ) = h, there is no checking whether r1 in c1 = (S · P t)r1
and r2 in c2 = P r2 are really from the 2λ-bit integer value of h. Our attacks exploit this fact. Given the
challenge ciphertext C∗ = (c∗1, c

∗
2, c
∗
3, T

∗) that is encrypted under the public key pk∗, our first attack proceeds
as follows.

Attack 1 (with strong decryption oracle):

1. Randomly choose z ∈ Zp;
2. Compute c′2 = c∗2

z;
3. Query the decryption oracle to decrypt (c∗1, c

′
2, c
∗
3, T

∗) with respect to the replaced public key pk∗
1/z.

Suppose pk∗ = gsk∗ , the adversary does not know the secret key sk∗/z corresponding to pk∗
1/z. However, in

the security model ([15, Definition 2]), the adversary is entitled with a decryption oracle that can decrypt
any ciphertext except the challenge one, under any public key without supplying the corresponding private
key. So this is a legitimate decryption query.

We claim that the decryption oracle will just return the message encrypted inside the challenge ciphertext.
To see this, the decryption oracle computes d = H3(ê(c∗1, dT∗)) and K = H4(c′2

(d·sk′)) = H4(c∗2
z(d·sk∗/z)) =

H4(c∗2
(d·sk∗)), which is exactly the K computed by Dec(C∗, dT∗ , sk∗).

Attack 2 (by a curious time-server):
Following the reasoning of the above attack, a curious time server can launch a similar attack without
querying the decryption oracle with a replaced public key.

1. Compute t∗ = H1(T ∗) ∈ Z∗p;
2. Randomly choose z ∈ Zp;
3. Compute c′1 = (S · P t∗)z
4. Compute d′ = H3(ê(P, P )z) ∈ Z∗p;
5. Recover d∗ = H3(ê(c∗1, dT∗));
6. Compute c′2 = c∗2

(d∗/d′);
7. Query the decryption oracle to decrypt (c′1, c

′
2, c
∗
3, T

∗) with respect to original public key pk∗

To see the correctness, the decryption oracle computes d = H3(ê(c′1, dT∗)) = H3(ê(P, P )z) = d′ and K =
H4(c′2

(d′·sk′)) = H4(c∗2
(d∗·sk∗·d′/d′)) = H4(c∗2

(d∗·sk∗)), which is exactly the K computed by Dec(C∗, dT∗ , sk∗).
It is possible to fix the scheme by requiring the decryption algorithm to return m if and only if c1 =

(S · P t)r1 and r2 in c2 = P r2 where r1||r2 = h̄ and h̄ is the 2λ-bit integer value of h. However, it adds two
exponentiations in the decryption algorithm and the purported advantage of their scheme is lost.
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