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Abstract. Recent non-interactive timed-release encryption (TRE) schemes can be viewed as being
supported by a certificateless encryption (CLE) mechanism. However, the security models of CLE and
TRE differ and there is no generic transformation that turns a CLE into a TRE. In this paper, we give
a generalized model for CLE that is also sufficient to fulfill the requirements of TRE.
Our model is secure against an adversary with adaptive trapdoor extraction capabilities for arbitrary
identifiers (instead of selective identifiers), decryption capabilities for arbitrary public keys (as consid-
ered in strongly-secure CLE) and partial decryption capabilities (as considered in security-mediated
certificateless encryption, or SMCLE). Our model also supports hierarchical identities, which have not
been considered formally in paradigms of TRE and CLE.
We propose a concrete scheme under our generalized model and prove it secure without random ora-
cles. Our proposal yields the first strongly-secure SMCLE and the first TRE in the standard model. In
addition, our technique of partial decryption is different from the previous approach.
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1 Introduction

The distinguishing feature of identity-based encryption (IBE) (e.g. [7, 15, 16, 25–27, 42]) is that a public key
can be derived from any arbitrary string that acts as an identifier (ID). There exists a trusted authority,
called a key generation center (KGC), which is responsible for the generation of the ID-based private key on
demand. Since the birth of practical IBE constructions, we see many cryptographic schemes borrowing the
idea of IBE for other security goals (e.g. broadcast encryption [9], oblivious transfer [27], etc.). This paper
studies two of them: certificateless encryption (CLE) [2, 3, 18, 20, 21, 33, 38, 40] and timed-release encryption
(TRE) [6, 12–14, 17, 22, 28, 30]. Our main result provides a transformation from a generalized CLE to a TRE.

CLE is intermediate between IBE and traditional public key encryption (PKE). Traditional PKE requires
a certification infrastructure but allows users to create their own public/private key pairs so that their private
keys are truly private. Conversely, IBE avoids the need for certificates at the expense of adding a KGC that
generates the private keys which means the KGC has the capability to decrypt all messages. CLE combines
the advantages of both: no certificates are needed and messages can only be decrypted by the recipient.
Generally, CLE is constructed by combining IBE and PKE. The existence of the PKE component means that
the KGC cannot decrypt messages. Instantaneous revocation is difficult for typical CLE schemes. Security-
mediated certificateless encryption (SMCLE) addresses this issue. Here we give the first strongly-secure
SMCLE in the standard model. Our scheme also supports hierarchical identities.

In TRE, the sender encrypts the message under a public key and a time, so knowledge of both the
matching secret key and a time-dependent trapdoor are necessary for decryption. A time-server is trusted to
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keep a time-dependent trapdoor confidential until an appointed time, so that the recipient cannot decrypt
prior to that time. A feature of modern TRE schemes is that the senders only need to retrieve the system
parameters including the schedule for the release of trapdoors from the time-server, without any other
interaction. Apart from the obvious application of delayed release of information, TRE supports many other
applications which can be classified into two categories: rapid dissemination of information and commitment
of confidential information. With TRE, one can send bulky ciphertexts ahead of time. When the information
should be made public, a small trapdoor can be widely distributed. Because the size of the trapdoor is
small compared with the ciphertext, this approach avoids the problem of any network impedance at the
release time. Applications include release of stock market values, strategic business plans, news agencies
timed publications, licensed software updates, scheduled payments, internet contests, etc. Some applications
require also the commitment of confidential information, such as sealed-bid auction, electronic lotteries, legal
will, certified e-mail [30] etc. Text encrypted using TRE can be viewed as a kind of commitment made by
the sender; once the ciphertext is sent, the sender cannot change the message that will be received.

Our general CLE scheme, together with our security-preserving transformation converting a general CLE
to a TRE, provides the first TRE proven secure in the standard model.

1.1 The difficulty of converting between CLE and TRE

A practical TRE requires the system parameter to be small relative to the number of supported time periods.
This is where the relation with IBE comes into the play. By treating the identities as time periods, IBE gives
rise to a time-based unlock mechanism (e.g. [7, 36, 37]). However, this approach only supports universal
disclosure of encrypted documents since one trapdoor can decrypt all ciphertexts for a specific time. In other
words, the inherent key-escrow property of IBE prohibits the encryption for a designated receiver.

Since CLE is an “escrow-free version” of IBE, and both TRE and CLE are a kind of double-encryption,
it is natural to think CLE is what we are looking for to realize a TRE. While most recent TRE schemes
can be seen as converted from a corresponding implicit CLE mechanism, a generic conversion is not known.
Despite similarities in syntax and functionality, as has been pointed out in [12], a generic transformation
from CLE to TRE is unlikely to be provable secure. Difficulty in reducing the confidentiality of TRE to that
of CLE arises when the adversary is a “curious” time-server. In CLE, each user is determined by a pair-up
of identity and public key such that an identity is only associated to a certain public key. A curious KGC is
not allowed to replace the public key associated with an identifier arbitrarily (otherwise, decryption of the
ciphertext is trivial since it holds both pieces of secrets). On the other hand, a time identifier is never bound
to any public key in TRE, which means that the public key associated with a time identifier can be replaced.
There is no way to simulate this implicit public key replacement when the CLE is viewed as a black box.

Differences among these two notions not only manifest in the time-server model, the subtle difference
in the modelling of a “impatient” recipient is seemingly neglected. In a multi-user system, it is expected
that the security of a user is preserved even if other users are compromised. In CLE, the user secret key is
combined with the trapdoor given by the KGC to give a full private key. With the argument that the user
secret key is generated locally and is assumed to be securely deleted afterward, most CLE models assume
the adversary can only get the trapdoors from the KGC and the full private keys. For most CLE schemes
under this kind of model (e.g. [21]), the user secret key cannot be computed even both the trapdoor and
the full private key are known. Moreover, some CLE formulations [3, 32, 40] do not have the concept of user
secret key at all. While in TRE, user secret keys are held by all users of the system. Without considering
the user secret key in the security model makes reducing the security of TRE to that of CLE not possible.

1.2 Our Contributions

The generalized model for CLE given here overcomes the difficulties described in [12] and has sufficient power
to fulfill the requirements of TRE. Our model is secure against an adversary with adaptive trapdoor extrac-
tion capabilities for arbitrary identifiers (instead of selective identifiers, e.g. [7, 38]), decryption capabilities
for arbitrary public keys (as considered in strongly-secure CLE [21]) and partial decryption capabilities (as
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considered in security-mediated certificateless encryption, or SMCLE [18]). Our model also supports hier-
archical identities which have not been considered formally for CLE and TRE. Design choices behind our
formulation are justified. We also discuss the subtleties involved in building CLE from TRE.

Our model is strong but achievable. We propose a concrete construction under our generalized model.
All existing concrete TRE schemes [6, 12–14, 17, 19, 22, 28, 30] and the only concrete SMCLE scheme [18] are
proven in the random oracle model. It is true that the generic construction of SMCLE [18] can be instantiated
by an IBE and a PKE without random oracles, nevertheless, the resulting scheme is not strongly-secure. Our
proposal yields the first strongly-secure SMCLE and the first TRE in the standard model.

Our technique of partial decryption is different from that in [18], which enriches the study of SMCLE.
It also enriches the TRE such that a new business model for the operation of the time-server is supported.
Finally, hierarchy of identifiers makes decryption of ciphertext for passed periods more manageable.

2 Related Work

2.1 Timed-Release Encryption

The concept of timed-release cryptographic protocols was suggested by May [35] in 1993, and further studied
by many researchers including [5, 8, 23, 24]. Early TRE schemes require interaction with the time-server.
Rivest et al.’s idea [39] requires senders to reveal their identities and the release-time of the messages in
their interactions with the server. In Di Crescenzo et al.’s scheme [19], the job of interacting with the time-
server is moved from the sender to the receiver since a “conditional oblivious transfer protocol” will be
executed between the server and the receiver. Such a protocol ensures that if the release-time is greater than
the current time (the condition), the receiver learns nothing (obliviousness). However, this protocol [19] is
computationally intensive and thus the time-server is vulnerable to denial-of-service attacks.

The first attempt to construct a non-interactive and user-anonymous TRE was made in [6]. A concrete
construction is provided, but not supported by a formal security model and security properties are only argued
for heuristically. The formal security model of message confidentiality is later considered independently by
Cheon et al. [17] and Cathalo, Libert and Quisquater [12]. The former focuses on authenticated TRE. The
latter claims to have a stronger model than the implicit non-authenticated version of [17], and formalizes
the release-time confidentiality. The recovery of past time-dependent trapdoors from a current trapdoor is
studied in [14] and [37], which employs a hash chain and a tree structure [11] respectively.

A special class of TRE scheme supports pre-open capability: the sender can help the recipient to decrypt
the ciphertext early by publishing a pre-open key. Since the pre-open key is held by the sender, by manip-
ulating the pre-open key, the sender might be able to control somehow what message is decrypted. Using a
TRE with pre-open capability as a way to commit confidential information requires the TRE scheme to be
binding. The study of the pre-open capability was initiated in [30] and improved by [22].

Recently, Chalkias, Hristu-Varsakelis and Stephanides proposed an efficient TRE scheme [13]. They claim
their scheme is the most computationally efficient one for unknown recipients. However, it can be shown
that the confidentiality of their scheme can be broken by a curious time-server. A plausible fix makes the
decryption algorithm of their scheme less efficient and lessens the purported comparative advantage.

The time-lock puzzle approach [39] provides a way to realize TRE without a trusted server: delayed release
is obtained by requiring the recipient to invest significant computational effort to solve a difficult problem.
However, not only is this approach time-consuming, but the release-time is not precisely controllable.

2.2 Certificateless Encryption

Certificateless cryptography was suggested by Al-Riyami and Paterson [2] in 2003. We need a basic under-
standing of the security model to understand the contribution of different proposals. An extensive survey of
various CLE security models can be found in [20]. Two types of adversaries are considered in certificateless
cryptography. A Type-I adversary models coalitions of rogue users without the master secret. Due to the
lack of a certificate, the adversary is allowed to replace the public keys of users at will. A Type-II adversary
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models a curious KGC who has the master key but cannot replace the public keys of any users. In Al-Riyami
and Paterson’s security model for the encryption [2], a Type-I adversary can ask for the decryption of a
ciphertext under a replaced public key. Schemes secure against such attacks are called “strongly-secure” [21],
and the oracle is termed a “strong decryption oracle”. A weaker type of adversary, termed Type-I−, can only
obtain a correct plaintext if the ciphertext is submitted along with the corresponding user secret key.

The first CLE scheme by Al-Riyami and Paterson [2] is secure against both Type-I and Type-II adversary
in the random oracle model. Many generic constructions of CLE from IBE and PKE exist, some later shown
to be insecure (see attacks in [33, 38]), while others (e.g. [33]) rely on the random oracle heuristics. It is
believed [32, 34, 38] that [34] gives the first CLE in the standard model. However, it is possible to instantiate
a prior generic construction in [18] with a PKE and an IBE in the standard model to obtain a secure CLE
without random oracles. Both [34] and the instantiation of [18] are only secure against Type-I− attacks.
Based on [25], a selective-ID secure CLE is proposed in [38]. This scheme cannot be trivially extended to a
TRE since the user’s public key is dependent on the identity, but a public key is never coupled with a fixed
time-identifier in TRE. Recently, the first strongly-secure CLE in the standard model is proposed in [21].

Al-Riyami and Paterson scheme is also the basis for the hierarchical CLE described in [2]. However,
neither a security model nor a security proof are given for this hierarchical extension. We are not aware of
any literature with formal work on hierarchical CLE, particularly none proven secure in the standard model.

A CLE that does not use pairings is proposed in [3]. However, the reduction used in the security proof
does not hold up if the public key associated with the challenge ciphertext can be replaced. Another CLE
proposal without pairing [32] uses similar ideas, but no formal evidence was provided to show it does not
have the same weakness. This limitation was recently removed by [40]. To replace the pairing, these schemes
make part of the user’s public key dependent on the identity-specific trapdoor given by the KGC, which
means TRE cannot be obtained trivially from these constructions.

Security-mediated certificateless encryption (SMCLE), introduced by Chow, Boyd and González Nieto
[18], adds a security-mediator (SEM) who performs partial decryption for the user by request. This idea gives
another variant for the decryption queries in the CLE paradigm: the adversary can ask for partial decryption
results under either the SEM trapdoor generated by the KGC or the user secret key. Intuitively, the notion
of SMCLE is more general than that of CLE since two partial decryption algorithms can always be combined
into a single one, but the converse is not necessary true (see Section 3.4). A concrete construction in the
random oracle model and a generic construction in the standard model are proposed in [18]. Prior to our
work, no strongly-secure SMCLE existed that had been proven secure in the standard model.

3 General Security-Mediated Certificateless Encryption

We propose a new definition of the (security-mediated) certificateless encryption. We will also highlight the
relationship between our definition and existing definitions.

3.1 Notation

We use an ID-vector
#   »

ID = (ID1, ID2, · · · , IDL) to denote a hierarchy of identifiers (ID1, ID2, · · · , IDL). The
length of

#   »

ID is denoted by | #   »

ID| = L. Let
#   »

ID||IDr denote the vector (ID1, ID2, · · · , IDL, IDr) of length | #   »

ID|+1.
We say that

#   »

ID is a prefix of
#    »

ID′ if | #   »

ID| ≤ |
#    »

ID′| and IDi = ID′i for all 1 ≤ i ≤ | #   »

ID|. We use ∅ to denote an
empty ID-vector where |∅| = 0 and ∅||IDr = IDr. Finally, we use the notation ({0, 1}n)≤h to denote the set
of vectors of length less than or equal to h, where each component is a n-bit long bit-string.

3.2 Syntax

Extending the definition of a 1-level SMCLE scheme [18], we define an h-level SMCLE scheme as follows.

Definition 1. An h-level SMCLE scheme for identifiers of length n (where h and n are polynomially-bounded
functions) is defined by the following sextuple of PPT algorithms:
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– Setup (run by the server) is a probabilistic algorithm which takes a security parameter 1λ, outputs a
master secret key Msk, which can also be denoted as d∅, and the global parameters Pub. We assume that
λ, h = h(λ) and n = n(λ) are implicit in Pub and all other algorithms take Pub implicitly as an input.

– Extract (run by the server or any one who holds a trapdoor) is a possibly probabilistic algorithm which
takes a trapdoor d #  »

ID corresponding to an h-level identity
#   »

ID ∈ ({0, 1}n)≤h , and a string IDr ∈ {0, 1}n,
outputs a trapdoor key d #  »

ID||IDr associated with the ID-vector
#   »

ID||IDr. The master secret key Msk is a
trapdoor corresponding to a 0-level identity.

– KGen (run by a user) is a probabilistic algorithm which generates a public/private key pair (pku, sku).
– Enc (run by a sender) is a probabilistic algorithm which takes a message m from some implicit message

space, an identifier
#   »

ID ∈ ({0, 1}n)≤h, and the receiver’s public key pku as input , returns a ciphertext C.
– DecS (run by any one who holds the trapdoor, either a SEM in SMCLE or a receiver in CLE) is a possibly

probabilistic algorithm which takes a ciphertext C and the trapdoor key d #  »
ID, returns either a token D

which can be seen as a partial decryption result, or an invalid flag ⊥ (which is not in the message space).
– DecU (run by a receiver) is a possibly probabilistic algorithm which takes the ciphertext C, the receiver’s

secret key sku and a token D as input, returns either the plaintext, an invalid flag ⊥D denoting D is an
invalid token, or an invalid flag ⊥C denoting the ciphertext is invalid.

For correctness, we require that DecU (C, sk,DecS(C,Extract(Msk,
#   »

ID))) = m for all λ ∈ N, all (Pub,Msk) $←
Setup(1λ), all (pk, sk) $← KGen, all message m, all ID-vector

#   »

ID in ({0, 1}n)≤h and all C $← Enc(m,
#   »

ID, pk).

3.3 Security

Each adversary has access to the following oracles:

1. An ExtractO oracle that takes an ID-vector
#   »

ID ∈ ({0, 1}n)≤h as input and returns its trapdoor d #  »
ID.

2. An UskO oracle that takes a public key pk.as input and returns its corresponding private key sk.
3. A DecOS oracle that takes a ciphertext C and an ID-vector

#   »

ID, and outputs DecS(C, d #  »
ID). Note that

C may or may not be encrypted under
#   »

ID.
4. A DecOU oracle that takes a ciphertext C, a public key pk and a token D, and outputs DecU (C, sk, D)

where sk is the secret key that matches pk.
5. A DecO oracle that takes a ciphertext C, an ID-vector

#   »

ID, and a public key pk, and outputs DecU (C, sk, D)
where sk is the secret key that matches pk and D = DecS(C, d #  »

ID). Note that C may or may not be en-
crypted under

#   »

ID and pk.

Following common practice, we consider the two kinds of adversaries.

1. A Type-I adversary that models any coalition of rogue users, and who aims to break the confidentiality
of another user’s ciphertext.

2. A Type-II adversary that models a curious KGC, who aims to break the confidentiality of a user’s
ciphertext3.

We use the common security model in which the adversary plays a two-phased game against a challenger.
The game is modeled by the experiment below, X ∈ {I, II} denotes whether an PPT adversary A =

(Afind,Aguess) is of Type-I or II, and determines the allowed oracle queries O and the auxiliary data Aux.

Definition 2. Experiment ExpCCA−X
A (λ)

(Pub,Msk) $← Setup(1λ)

(m0,m1, pk∗,
#   »

ID∗, state) $← AOfind(Pub,Aux)

b
$← {0, 1}, C∗ $← Enc(mb,

#   »

ID∗, pk∗)

b′
$← AOguess(C

∗, state)
If (|m0| 6= |m1|) ∨ (b 6= b′) then return 0 else return 1

3 We do not explicitly consider a rogue SEM since this type of adversary is weaker than the Type-II adversary.
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where O refers to a set of five oracles ExtractO(·),UskO(·),DecOS(·, ·),DecOU (·, ·, ·),DecO(·, ·, ·).
Those variables marked with ∗ are basically about the challenge of the adversary. The adversary chooses

a public key pk∗ and an ID-vector
#   »

ID∗ to be challenged with, and the challenger returns C∗ to the adversary
as the challenge ciphertext. The two definitions below basically prohibit the adversary from trivially cheating
by using the oracles to query for the answer to (parts of) the challenge.

Definition 3. A hierarchical security-mediated certificateless encryption scheme is (t, qE , qD, ε) CCA-secure
against a Type-I adversary if |Pr[ExpCCA−I

A (λ) = 1]− 1
2 | ≤ ε for all t-time adversary A making at most qE

extraction queries and qD decryption queries (of any type), subjects to the following constraints:
1. Aux = ∅, i.e. no auxiliary information is given to the adversary.
2. No ExtractO(

#   »

ID′) query throughout the game, where
#   »

ID′ is a prefix of
#   »

ID∗.
3. No UskO(pk) query throughout the game for any pk.
4. No DecOS(C∗,

#   »

ID∗) query throughout the game.
5. No DecO(C∗,

#   »

ID∗, pk∗) query throughout the game.

All public keys in the game are chosen by the adversary. It is natural to assume the adversary knows the
corresponding secret keys; and it is also unrealistic to give the adversary a user secret key extraction oracle.

Definition 4. A hierarchical security-mediated certificateless encryption scheme is (t, qK , qD, ε) CCA-secure
against a Type-II adversary if |Pr[ExpCCA−II

A (λ) = 1]− 1
2 | ≤ ε for all t-time adversary A making at most qD

decryption queries (of any type), subjects to the following conditions:
1. Aux = (Msk, {pk∗1, · · · , pk∗qK}), i.e. A is given the master secret and a set of challenge public keys.
2. pk∗ ∈ {pk∗1, · · · , pk∗qK}, i.e. the challenge public key must be among the set given by the challenger.
3. No UskO(pk) query throughout the game if pk /∈ {pk∗1, · · · , pk∗qK} or pk = pk∗.
4. No DecOU (C∗, pk∗, D) query throughout the game, where D is outputted by the algorithm DecS(C∗, d #  »

ID∗).
5. No DecO(C∗,

#   »

ID∗, pk∗) query throughout the game.

Since Msk is given to the adversary, the challenge public key must be in the set given by the challenger.

3.4 Discussions on Our Choices for Definition

In addition to the formalisms, we explain the intuitions behind the choices made in formulating our definition.

User key generation. In order to support more general applications like TRE, we also need to generalize
our syntax describing the interface of the algorithms. A subtle change in our definition of algorithm descrip-
tion is that the user key generation algorithm KGen only takes the system parameter as input but not the
identifier. In particular, there exists CLE schemes [3, 32, 38, 40] which the inclusion of the identifier or the
trapdoor for an identifier is essential for the generation of the user public key. In the latter case, KGen can
only be executed after Extract. A straightforward adaption of these classes of CLE results in inefficient TRE
in which the size of the user public key grows linearly with the total number of supported time periods.

Simplification of Type-I adversary. In existing models for 1-level CLE like [2, 21], ExtractO query of
#   »

ID∗ is allowed; but if such a query is issued, the challenge public key pk∗ can no longer be chosen by the
adversary. In our discussion, we try to separate this from Type-I model and consider this type of adversarial
behavior (ExtractO(

#   »

ID′) where
#   »

ID′ is a prefix of
#   »

ID∗) as a weaker variant of, and hence covered by, a Type-II
adversary. It is true that our resulting definition for Type-I adversary is weaker. However, the “missing part”
is not omitted from the security requirement since it is unreasonable to define a CLE without considering
Type-II adversary. Indeed, this simplification has already been justified and adopted [29, Section 2.3].

Existing models also allow full private key extraction for the public key prepared by the challenger. In our
Type-I game, the challenger does not prepare any public key at all, so UskO query is prohibited. Nevertheless,
it does not mean the adversary does not hold any of the user secret key. On the contrasty, our model offers
more – the user secret key can be adversarially generated. The remaining scenario, in which the adversary
intends to attack a public key given by the challenger, is again a weaker variant of our Type-II model. To
conclude, we keep the essence of the existing models, and include UskO to make it matches with TRE.
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Strong decryption oracle. In our definition, the decryption oracle works even if the public key is adver-
sarially chosen but the secret key is not supplied. The original definition of CLE [2] does not allow strong
decryption oracle for curious KGC adversary, but it is considered in recent work like [21]. It is easy to weaken
the definition to one corresponding to the Type-II− attack by placing the below restriction in Definition 4.

5. (Type-II−) No DecO(C,
#   »

ID, pk) query throughout the game for any C if pk /∈ {pk∗1, · · · pk∗qK}, unless the
corresponding secret key sk is supplied when the DecO query is made.

Type-I− game can be obtained by adding Aux = {pk∗1, · · · pk∗qK} and the above restriction to Definition 3.

Implicit public key replacement. In our generalization of CLE, we “remove” (i.e. make implicit) the
oracle for replacing the public key corresponding to an identifier. This may make a difference in the following.

1. The adversary’s choice of the victim user it wishes to be challenged with,
2. The choice of user in decryption oracle queries.

However, there are other “interfaces” in our model such that the adversary can still make the above choices.
Our model still allows the adversary to choose which identifier/public key it wants to attack. For decryption
queries, the adversary can just supply different combination of identifier and public key to the DecOS and
DecOU oracles. In this way, implicit replacement is done. In other words, when compared with the original
model [2], the security model is not weakened, but generalized to cover applications of CLE such as TRE.

Reason for “removing” public key request and public key replacement oracles. In the traditional
definition of CLE [2], oracles for retrieving and replacing public key are defined upon the fact that an
identifier is always bound to a particular user. Replacing a particular user’s public key means the public
key associated with a particular identifier should be changed. In TRE, and other related paradigms such as
cryptographic workflow [1], identifiers correspond to different policies governing the decryption. It is entirely
possible that a single identifier is “shared” among more than one user. Hence we decide to remove these
public key related oracles from the definition, resulting a model free from the concept of “user = identifier”.

Alternative definition of public key replacement. It is possible to give another definition supporting
TRE (and cryptographic workflow [1]) by allowing a “restricted” public key replacement, such that a public
key “associated” with an identifier can be replaced by a public key associated with another identifier, but
not an arbitrary one supplied by the adversary. Again, this definition makes the model still leads to the
concept of an identifier is belonged to a single user. Moreover, this definition may make the treatment of
strong decryption oracle more complicated. The idea of restricted replacement among a fixed set of public
keys does not naturally correspond to decryption oracle under adversarially chosen public key.

SMCLE is more general than plain CLE. Having two separated decryption oracles in the SMCLE
model gives a more general notion than CLE. This can be justified as follows:

1. Partial decryption result cannot be made available in the CLE model. There exists CLE schemes which
are not CCA-secure when the adversary is given access to a partial decryption oracle [18].

2. Since the decryption oracle is separated in two, the SMCLE model does not have the notion of a “full”
private key which is present in previous CLE models (a full private key is a single secret for the complete
decryption of the ciphertext). On the ground that separated secrets can always be concatenated into a
single full one, this simplification (of private key) has already been adopted in more recent models [29].

Difference with the previous SMCLE definition. In our user decryption oracle, different invalid flags
will be returned by DecOU to distinguish the case that the token from the SEM is invalid or the ciphertext
is invalid. This is not captured by the original SMCLE model in [18].
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User decryption oracle in SMCLE. One of the restrictions for excluding trivial attack in our Type-
II adversary model disallows the challenge ciphertext C∗ to be decrypted by the decryption oracle under
the challenge public key and a token D outputted by the algorithm (not the oracle) DecS(C∗, ID∗), where
ID∗ is the challenge identifier. This restriction requires the ability to check if a token D is a valid token
corresponding to a ciphertext and an identifier, which is ensured by our new SMCLE definition.

From the first glance, our security definition is tightly coupled with the ability to check the token. However,
we think that it is natural for the user to be able to perform such a test (which is especially important if the
user need to pay for each SEM decryption). Even there is no explicit testing algorithm, it maybe possible
that the challenger can setup the system in a way that it can do the test for the challenge ciphertext. It is
stronger than a weaker definition such that no user decryption query is allowed for the challenge ciphertext
under the challenge public key, no matter what the token is.

Justifications for our definition of hierarchical CLE. In the hierarchical scheme suggested (without
a security definition) in [2], an entity at level k derives a trapdoor for its children at level k + 1 using both
its trapdoor and its secret key; while in our proposed model, a level k entity only uses its trapdoor obtained
from its parent at level k− 1 to derive keys for its children. However, we do not see any practical reason for
requiring the secret key in the trapdoor derivation. On the other hand, the resulting scheme will be more
complicated. For example, in the scheme of [2], the decryption requires the public keys of all the ancestors.

Note that we do allow the decryption of the ciphertext under
#   »

ID′ which is a prefix of
#   »

ID∗. This is
stronger than the counterpart in some hierarchical IBE model [26].

Our definition is more general than plain CLE. The following theorem summarizes our discussion.

Theorem 1 If there exists an 1-level SMCLE scheme which is secure under Definition 3 and 4, there exists
a CLE scheme which is secure under the definition of [2].

Proof. We describe how to build a simulator B which make use of an adversary of CLE A to break the
security of our 1-level SMCLE scheme. The simulator basically forwards everything (the system parameters,
the oracle queries and responses, and the guess) back and forth between its own SMCLE challenger and the
CLE adversary. In the face of a Type-II adversary of CLE, the simulator will act as a Type-II security of
1-level SMCLE. However, for a Type-I adversary of CLE, B flips a fair coin to determine its guess whether
A will issue an ExtractO query of

#   »

ID∗. If it guesses not, B just plays the Type-I game as usual. If it guesses
so, B will try to use A to win the Type-II game of SMCLE instead. In particular, the above ExtractO query
can be answered by B because it owns Msk now. The tightness of the reduction is reduced by a factor of 2.
This simple trick is also used in the proof in [21, Appendix B, Game 4].

For most queries, the monotonic details are omitted. Important distinctions between these “two worlds”
are about public key request and replacement. The simulator needs to maintain a table to store the binding
between an identifier and a public key. Whenever a Type-I adversary issues a public key request query, B
executes (pk, sk) $← KGen, stores sk (so B can answer if A asks for it later) and returns pk. For Type-II
adversary, B picks a random public key from {pk∗1, · · · , pk∗qK} in Aux and assigns it as the public key of
queried ID. Whenever a key replacement query is made by A, the simulator updates its own table. For every
other requests regarding a particular identifier, the simulator retrieves the corresponding public key in its
table and queries its own challenger accordingly. Finally, the complete decryption queries made by the CLE
adversary can be entertained by combining the result of two partial decryption oracle queries issued by B. ut

4 Our Proposed Construction

4.1 Preliminaries

Let G be a multiplicative group of prime order p and GT be a multiplicative group also of order p. We
assume the existence of an efficiently computable bilinear map ê : G×G→ GT such that
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1. Bilinearity: For all u, v ∈ G and r, s ∈ Zp, ê(ur, vs) = ê(u, v)rs.
2. Non-degeneracy: ê(u, v) 6= 1GT for all u, v ∈ G \ {1G}.

We also assume the following problems are intractable in such groups.

Definition 5. The Decision 3-Party Diffie-Hellman Problem (3-DDH) in G is to decide if T = gβγδ given
(g, gβ , gγ , gδ, T ) ∈ G5. Formally, defining the advantage of a PPT algorithm D, Adv3−DDH

D (k), as

|Pr[1 $← D(g, gβ , gγ , gδ, T )|T ← gβγδ ∧ β, γ, δ $← Z∗p]− Pr[1 $← D(g, gβ , gγ , gδ, T )|T $← G ∧ β, γ, δ $← Z∗p]|.

We say 3-DDH is intractable if the advantage is a negligible function for all PPT algorithms D.

Compared with the Bilinear Diffie-Hellman (BDH) problem, the problem instance of 3-DDH is purely
in G while that of BDH contains an element t̂ ∈ GT . If BDH problem is solvable, one can solve 3-DDH
by feeding (g, gβ , gγ , gδ, ê(g, T )) to a BDH oracle. Apart from CLE [21], the above assumption has been
employed in other advanced pairing-based cryptographic schemes such as [9].

We introduce a variant of the weak Bilinear Diffie-Hellman Inversion (BDHI) assumption [7] below in the
favor of 3-DDH. The original h-wBDHI problem in (G,GT ) [7] is to decide whether t̂ = ê(g, gγ)α

h+1
. The

naming of “inversion” comes from the equivalence to the problem of deciding whether t̂ = ê(g, gγ)1/α.

Definition 6. The h-Weak Diffie-Hellman Inversion Problem (h-wDHI) in G is to decide if T = gγα
h+1

given (g, gγ , gα, gα
2
, · · · , gαh , T ) ∈ Gh+3. Formally, defining the advantage of a PPT algorithm D as

Advh−wDHI
D (k) = |Pr[1 $← D(g, gγ , gα, gα

2
, · · · , gα

h

, T )|T ← gγα
h+1
∧ α, γ $← Z∗p]

− Pr[1 $← D(g, gγ , gα, gα
2
, · · · , gα

h

, T )|T $← G ∧ α, γ $← Z∗p]|.

We say h-wDHI is intractable if the advantage is a negligible function for all PPT algorithms D.

We require a hash function H drawn from a family of collision resistant hash functions too.

Definition 7. A hash function H
$← H(k) is collision resistant if for all PPT algorithms C the advantage

AdvCR
C (k) = Pr[H(x) = H(y) ∧ x 6= y|(x, y) $← C(1k, H) ∧H $← H(k)]

is negligible as a function of the security parameter k.

4.2 Proposed Construction

Our construction is an h-level generalization of the concrete construction for 1-level in [21]. While [21] uses
the technique of [10] to achieve strong decryption oracle, we use the same technique for a different purpose,
which is a new way (other than the only known way in [18]) to support partial decryption oracle.

Setup(1λ, n): Let G, GT be two multiplicative groups with a bilinear map ê as defined before. They are of
the same order p, which is a prime and 2λ < p < 2λ+1.

– Encryption key: choose two generators g, g2 ∈R G.
– Master public key: choose an exponent α ∈R Zp and set g1 = gα.
– Hash key for identity-based public key derivation: choose hmany (`+1)-length vectors

#»

U 1, · · · ,
#»

Uh
∈R G`+1, where each

#»

U j = (u′j , uj,1, · · · , uj,`), 1 ≤ j ≤ h. ` is a tunable parameter which is a factor of
n and 1 ≤ ` ≤ n. Each vector

#»

U j (1 ≤ j ≤ h) corresponds to the j-th level of the hierarchy. We use the
notation

#   »

ID = (ID1, · · · , IDj , · · · , IDk) to denote a hierarchy of k n-bit string IDj ’s. We write IDj as `
blocks each of length n/` bits (IDj,1, · · · , IDj,`). We define F #»

U j
(IDj) = u′j

∏`
i=1 u

IDj,i
j,i .
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– Hash key for ciphertext validity: choose an (n+1)-length vector
#»

V = (v′, v1, · · · , vn) ∈R Gn+1. This
vector defines the hash function F #»

V (w) = v′
∏n
j=1 vj

bj where w is a n-bit string b1b2 · · · bn.
– Hash function: pick a function H : {0, 1}∗ → {0, 1}n from a family of collision-resistant hash functions.

The public parameters Pub and the master secret key Msk are given by

Pub = (λ, p,G,GT , ê(·, ·), n, `, g, g1, g2,
#»

U 1, · · · ,
#»

Uh,
#»

V ,H(·)), Msk = gα2 .

We require the discrete logarithms (with respect to g) of all G elements in Pub except g, g1 to be unknown
to the KGC. In practice, these elements can be generated from a pseudorandom function of a public seed.

Extract(d #  »
ID, IDr): For an identity

#   »

ID = (ID1, · · · , IDk) for k ≤ h, the trapdoor is in the form of

d #  »
ID = (a1, a2,

#»z k+1, · · · , #»z h) = (gα2 · (
k∏
j=1

F #»
U j

(IDj))r, gr, (
#»

U k+1)
r
, · · · , ( #»

Uh)
r
),

where r ∈R Z∗p and (
#»

U j)
r

= ((u′j)
r
, (uj,1)r, · · · , (uj,`)r).

Note that (a1, a2) is sufficient for decryption, while #»z k+1, · · · , #»z h can help the derivation of the trapdoor
for (ID1, · · · , IDk, IDk+1) for any n-bit string IDk+1 and k + 1 ≤ h. The exact algorithm is as follows.

To generate d #  »
ID||IDr parse d #  »

ID = (a1, a2, (zk+1, zk+1,1, · · · , zk+1,`), · · · (zh, zh,1, · · · , zh,`)) and parse IDr
as ` blocks each of length n/` bits (IDr,1, · · · , IDr,`) pick t ∈R Z∗p and output

d #  »
ID||IDr = (a1 · zk+1

∏̀
i=1

(zk+1,i)IDr,i · (
k+1∏
j=1

F #»
U j

(IDj))t, a2 · gt, #»z k+2 · (
#»

U k+2)
t
· · · , #»z h · (

#»

Uh)
t

where the multiplication of two vectors are defined component-wise, i.e. #»z j · #»ν j = (zj · νj , zj,1 · νj,1, · · · , zj,` ·
νj,`). d #  »

ID becomes shorter as the length of
#   »

ID increases.

KGen(): Pick sk ∈R Z∗p, return sk as the secret key and pk = (X,Y ) = (gsk, gsk
1 ) as the public key.

Enc(m,
#   »

ID, pk): To encrypt m ∈ GT for
#   »

ID = (ID1, · · · , IDk) where k ≤ h, parse pk as (X,Y ), then check
that it is a valid public key by verifying that ê(X, g1) = ê(g, Y )4. If equality holds, pick s ∈R Z∗p and compute

C = (C1, C2, τ, σ) = (m · ê(Y, g2)s,
k∏
j=1

F #»
U j

(IDj)
s
, gs, F #»

V (w)s)

where w = H(C1, C2, τ,
#   »

ID, pk).

DecS(C, d #  »
ID): Parse C as (C1, C2, τ, σ), and d #  »

ID as (a1, a2, · · · ). First check if ê(τ,
∏k
j=1 F #»

U j
(IDj) ·F #»

V (w′)) =

ê(g, C2 · σ) where w′ = H(C1, C2, τ,
#   »

ID, pk). Return ⊥ if inequality holds or any parsing is not possible,
otherwise pick t ∈R Z∗p and return

D = (D1, D2, D3) = (a1 · F #»
V (w′)t, a2, g

t).

DecU (C, sk, D): Parse C as (C1, C2, τ, σ) and check if ê(τ,
∏k
j=1 F #»

U j
(IDj) · F #»

V (w′)) = ê(g, C2 · σ) where

w′ = H(C1, C2, τ,
#   »

ID, pk). If equality does not hold or parsing is not possible, return ⊥C . Next, parse D as

4 One pairing computation can be saved by a technique in [21] (which is similar to the technique in [31]): pick
ξ ∈R Z∗

p and compute C1 = m · ê(Y, g2 · gξ)s/ê(X, gsξ1 ).
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(D1, D2, D3) and check if ê(g,D1) = ê(g1, g2)ê(D2,
∏k
j=1 F #»

U j
(IDj))ê(D3, F #»

V (w′))5. If equality does not hold
or parsing is not possible, return ⊥D. Otherwise, return

m← C1 ·
(
ê(C2, D2)ê(σ,D3)

ê(τ,D1)

)sk

.

4.3 Analysis

Reminiscent to the HIBE scheme of Boneh, Boyen and Goh [7], the size of the ciphertext of our SMCLE
scheme is independent of the hierarchy length. When the scheme is used as a TRE, the ciphertext size is not
affected by the benefit brought by the hierarchy which minimizes the size of the trapdoors (see Section 5.5).

In the concrete SMCLE scheme of Chow, Boyd and González Nieto [18], partial decryption is done by
using the pairing function ê(·, ·) to pair up part of the ciphertext and the ID-based private key. To make
this partial decryption result verifiable requires random oracle for turning a generic interactive proof-of-
knowledge (PoK) non-interactive. Our scheme employs a different technique such that the token generated
by the partial decryption is publicly verifiable without interactive PoK.

Our scheme’s security is asserted by Theorem 2 and 3. Refer to the single proof in Appendix A for details.

Theorem 2 Our scheme is secure against Type-I attack (Definition 3) if h-wDHI problem is intractable.

Theorem 3 Our scheme is secure against Type-II attack (Definition 4) if 3-DDH problem is intractable.

5 Applying General Certificateless Encryption to Timed-Release Encryption

Now we provide the formal evidence for our thesis – general certificateless encryption can be used as TRE.

5.1 Syntax of Timed-Release Encryption

For ease of discussion, we consider a definition supporting only a single-level of time-identifier as in [12]. It
can be shown that our results hold for an h-level analog.

Definition 8. A TRE scheme for time-identifiers of length n (where n is a polynomially-bounded function)
is defined by the following sextuple of PPT algorithms:

– Setup (run by the server) is a probabilistic algorithm which takes a security parameter 1λ, outputs a
master secret key Msk, and the global parameters Pub. We assume that λ and n = n(λ) are implicit in
Pub and all other algorithms take Pub implicitly as an input.

– Extract (run by the server) is a possibly probabilistic algorithm which takes the master secret key Msk
and a string ID ∈ {0, 1}n, outputs a trapdoor key dID associated with the identity ID.

– KGen (run by a user) is a probabilistic algorithm which generates a public/private key pair (pku, sku).
– Enc (run by a sender) is a probabilistic algorithm which takes a message m from some implicit message

space, an identifier ID ∈ {0, 1}n, and the receiver’s public key pku as input, returns a ciphertext C.
– DecS (run by any one who holds the trapdoor, either a SEM or a receiver) is a possibly probabilistic

algorithm which takes a ciphertext C and the trapdoor key dID as input, returns either a token D which
can be seen as a partial decryption result of C, or an invalid flag ⊥ (which is not in the message space).

– DecU (run by a receiver) is a possibly probabilistic algorithm which takes the ciphertext C, the receiver’s
secret key sku and a token D as input, returns either the plaintext, an invalid flag ⊥D denoting D is an
invalid token, or an invalid flag ⊥C denoting the ciphertext is invalid.

For correctness, we require that DecU (C, sk,DecS(C,Extract(Msk, ID))) = m for all λ ∈ N, all (Pub,Msk) $←
Setup(1λ), all (pk, sk) $← KGen, all message m, all identifier ID in {0, 1}n and all C $← Enc(m, ID, pk).
5 The same trick for minimizing the number of pairing computations [31] involved in checking the ciphertext and

the token can be incorporated to the final decryption step. The modified decryption algorithm only uses 4 pairing
computations; however, it gives a random message (instead of an invalid flag ⊥) for an invalid ciphertext.
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5.2 Timed-Release Encryption from General Certificateless Encryption

Given a SMCLE scheme {SMC.Setup,SMC.Extract,SMC.KGen,SMC.Enc,SMC.DecS ,SMC.DecU}, a TRE
scheme {T RE .Setup, T RE .Extract, T RE .KGen, T RE .Enc, T RE .DecS , T RE .DecU} can be built as below.

T RE .Setup(1λ, n): Given a security parameter λ and the length of the time-identifier n, execute (Msk,Pub)←
SMC.Setup(1λ, n), retain Msk as the master secret key and publish Pub as the global parameters.

T RE .Extract(Msk, ID): For a time-identifier ID ∈ {0, 1}n, the time-server returns dID ← SMC.Extract(Msk, ID).

T RE .KGen(): Return (sk, pk)← SMC.KGen() as the user’s private/public key pair.

T RE .Enc(m, ID, pk): To encrypt m ∈ GT for pk under the time ID ∈ {0, 1}n, first perform any checking of
pk that is required by the SMC scheme. If pk is a valid public key, return SMC.Enc(m, ID, pk).

T RE .DecS(C, dID): To partially decrypt C by a time-dependent trapdoor dID, returnD ← SMC.DecS(C, dID).

T RE .DecU (C, sk, D): To decrypt C by the secret key sk and the token D, just return SMC.DecU (C, sk, D).

Theorem 4 If SMC is an 1-level SMCLE scheme which is CCA-secure against Type-I adversary (Defini-
tion 3), T RE is CCA-secure against Type-I adversary (Definition 10 in Appendix B).

Theorem 5 If SMC is an 1-level SMCLE scheme which is CCA-secure against Type-II adversary (Defini-
tion 4), T RE is CCA-secure against Type-II adversary (Definition 11 in Appendix B).

Proof. We prove the above theorems by contradiction. Suppose A is a PPT Type-X adversary such that
|Pr[ExpCCA′−X

A (λ) = 1]− 1
2 | > ε, we construct an adversary B such that |Pr[ExpCCA−X

A (λ) = 1]− 1
2 | > ε in

the face of a SMCLE challenger C where the running times of B and A are equal.
Setup: When C gives B (Pub,Aux), B just forwards it to A. The public key to be passed to A is either

chosen from the a set of public key in Aux (in Type-II game), or chosen by B itself (in Type-I game).
First Phase of Queries: B forwards every request of A to the oracles of its own challenger C. From the

description of T RE , we can see that every legitimate oracle query made by A can be answered faithfully.
Challenge: When A gives B (m0,m1, pk∗, ID∗), B just forwards it to C.
Second Phase of Queries: Again, B just forwards every request of A to the oracles of its own challenger

C. From the description of T RE , it is easy to see that every oracle query which does not violate the restriction
enforced by A also does not violate the restriction enforced by C.

Output: Finally, A outputs a bit b, B forwards it to C as its own answer. The probability for A to win
the TRE experiment simulated by B is equal to the probability for B to win the SMCLE game played against
C. It is easy to see that the running times of A and B are the same. ut

Section 4 presented a CLE scheme in the standard model, the above theorems imply that our scheme
can be instantiated as a TRE scheme without random oracle, which is the first one in the literature.

5.3 Certificateless Encryption from Timed-Release Encryption

One may expect that a general CLE can be constructed from any TRE. Nevertheless, note that the usage of
time-identifier is only a specific instantiation of the timed-release idea. Other formulations of TRE which are
different from Definition 8 exists and hence there will be syntactic differences. For example, there exists a
TRE scheme [14] which time is denoted by the number of repeated computations of one-way hash function.

Note also that the notion of CLE supports an exponential number of arbitrary identifiers6. A CLE scheme
cannot be realized by a TRE if the total number of time periods supported is too few.
6 Even though the scheme may be insecure when more than a polynomial number of trapdoors are compromised by

a single adversary.
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While the syntax of general CLE and that of TRE are similar, there is an important difference in the
definitions of security – the public keys in TRE are certified while there is no certification in CLE, which
means it can be chosen adversarially. In typical TRE formulation [6, 13, 17, 22, 30], a single public key is given
to the adversary as the target of attack. Target public key is also not adversarially chosen in cryptographic
workflow scheme [1, 4]. However, we remark that the TRE formulation in [12] allows uncertified public keys.

5.4 Security-Mediator in Timed-Release Encryption

We introduce the concept of security-mediator in the TRE paradigm, which gives a new business model
for the operation of the time-server. Traditional TRE only allows the time-server to release a system-wide
time-dependent trapdoor. With the possibility of partial decryption, the time-server can charge for each
decryption. The time-server can decrypt a ciphertext partially by the time-dependent trapdoor per request,
while the partial decryption of one ciphertext would not help the decryption of any other ciphertext.

5.5 Time Hierarchy

Each identifier corresponds to a single time period, which means that the server has to publish t private
keys on a bulletin board after t time-periods have passed. Given a hierarchical CLE, the amount data on the
bulletin board can be reduced by using CHK forward secure encryption scheme [11] in reverse, as suggested
in [7]. For a total of T time periods, the CHK framework is setup as a tree of depth lg T . To encrypt a
message for time t < T , the time identifier is the CHK identifier for time period T − t. Release of trapdoor
is done in the same manner, the private key for the time period T − t is released on the tth time period. This
single private key enables anyone to derive the private keys for CHK time periods T − t, T − t + 1, · · · , T ,
which means the user can obtain the trapdoors for time in the range of 1, · · · , t. By using this trick, the
server only needs to publish a single private key comprising O(lg2 T ) group elements at any time.

6 Conclusions

In the study of cryptography, we always seek for the strongest definition and try to achieve it. Previous models
of certificateless encryption (CLE) were too restrictive. In particular, they cannot give the desired security
properties when instantiated as timed-release encryption (TRE). Our generalized CLE model is sufficient to
fulfill the requirements of TRE. All future CLE proposals in our general model automatically give secure TRE
schemes. Our model is defined against full-identifier extraction, decryption under arbitrary public key, and
partial decryption, which incorporates the strongest properties one may desire. Our concrete scheme yields
the first strongly-secure (hierarchical) security-mediated CLE and the first TRE in the standard model.
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raphy. In Yung et al. [43], pages 508–524.

19. Giovanni Di Crescenzo, Rafail Ostrovsky, and Sivaramakrishnan Rajagopalan. Conditional Oblivious Transfer
and Timed-Release Encryption. In Jacques Stern, editor, Advances in Cryptology - EUROCRYPT ’99, volume
1592 of Lecture Notes in Computer Science, pages 74–89. Springer, 1999.

20. Alexander W. Dent. A Survey of Certificateless Encryption Schemes and Security Models. Cryptology ePrint
Archive, Report 2006/211, 2006. http://eprint.iacr.org/.

21. Alexander W. Dent, Benoit Libert, and Kenneth G. Paterson. Certificateless Encryption Schemes Strongly Secure
in the Standard Model. In Public Key Cryptography - PKC 2008, volume 4939 of Lecture Notes in Computer
Science, pages 344–359. Springer, 2008. Full version at http://eprint.iacr.org/2007/121.

22. Alexander W. Dent and Qiang Tang. Revisiting the Security Model for Timed-Release Public-Key Encryption
with Pre-Open Capability. In Juan Garay, Arjen K. Lenstra, Masahiro Mambo, and Rene Peralta, editors,
Information Security, ISC 2007, volume 4779 of Lecture Notes in Computer Science, pages 158–174. Springer,
2007.

23. Yevgeniy Dodis and Dae Hyun Yum. Time Capsule Signature. In Andrew S. Patrick and Moti Yung, editors,
Financial Cryptography and Data Security, 9th International Conference, FC 2005, Roseau, The Commonwealth
of Dominica, February 28 - March 3, 2005, Revised Papers, volume 3570 of Lecture Notes in Computer Science,
pages 57–71. Springer, 2005.

14



24. Cynthia Dwork and Moni Naor. Pricing via Processing or Combatting Junk Mail. In Ernest F. Brickell, editor,
Advances in Cryptology - CRYPTO ’92, 12th Annual International Cryptology Conference, Santa Barbara, Cali-
fornia, USA, August 16-20, 1992, Proceedings, volume 740 of Lecture Notes in Computer Science, pages 139–147.
Springer, 1992.

25. Craig Gentry. Practical Identity-Based Encryption Without Random Oracles. In Serge Vaudenay, editor, Ad-
vances in Cryptology - EUROCRYPT 2006, 25th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, St. Petersburg, Russia, May 28 - June 1, 2006, Proceedings, volume 4004 of Lecture
Notes in Computer Science, pages 445–464. Springer, 2006.

26. Craig Gentry and Alice Silverberg. Hierarchical ID-Based Cryptography. In Yuliang Zheng, editor, Advances in
Cryptology - ASIACRYPT 2002, 8th International Conference on the Theory and Application of Cryptology and
Information Security, Queenstown, New Zealand, December 1-5, 2002, Proceedings, volume 2501 of Lecture Notes
in Computer Science, pages 548–566. Springer, 2002.

27. Matthew Green and Susan Hohenberger. Blind Identity-Based Encryption and Simulatable Oblivious Transfer.
In Kaoru Kurosawa, editor, Advances in Cryptology - ASIACRYPT 2007, 13th International Conference on the
Theory and Application of Cryptology and Information Security, Kuching, Sarawak, Malaysia, December 2-6,
2007, Proceedings, volume 4833 of Lecture Notes in Computer Science, pages 265–282. Springer, 2007.

28. Dimitrios Hristu-Varsakelis, Konstantinos Chalkias, and George Stephanides. Low-cost Anonymous Timed-
Release Encryption. In The Third International Symposium on Information Assurance and Security, pages
77–82. IEEE, 2007.

29. Bessie C. Hu, Duncan S. Wong, Zhenfeng Zhang, and Xiaotie Deng. Certificateless Signature: A New Security
Model and An Improved Generic Construction. Designs, Codes and Cryptography, 42(2):109–126, 2007.

30. Yong Ho Hwang, Dae Hyun Yum, and Pil Joong Lee. Timed-Release Encryption with Pre-open Capability and
Its Application to Certified E-mail System. In Jianying Zhou, Javier Lopez, Robert H. Deng, and Feng Bao,
editors, ISC, volume 3650 of Lecture Notes in Computer Science, pages 344–358. Springer, 2005.

31. Eike Kiltz and David Galindo. Direct Chosen-Ciphertext Secure Identity-Based Key Encapsulation Without
Random Oracles. In Lynn Margaret Batten and Reihaneh Safavi-Naini, editors, ACISP, volume 4058 of Lecture
Notes in Computer Science, pages 336–347. Springer, 2006.

32. Junzuo Lai and Weidong Kou. Self-Generated-Certificate Public Key Encryption Without Pairing. In Tatsuaki
Okamoto and Xiaoyun Wang, editors, Public Key Cryptography, volume 4450 of Lecture Notes in Computer
Science, pages 476–489. Springer, 2007.
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A Formal Security Proof for Our Proposed Construction

We now define a series of games where each one is an interactive game between a simulator S and an
adversary A, which is either an insider attacker (Type-I adversary) or a curious server (Type-II adversary),
depending on the allowed queries. The skeleton of the proof is based on the proof given in [21].

Game 1 (The Original Game). This game is the one played between a simulator S and an adver-
sary A as specified in the experiment ExpCCA−X. We use the following notation: For the queries, let
T = { #   »

ID1, · · · ,
#   »

IDqE} denote the trapdoors extraction queries and W = {w1, · · · , wqD} be the set of
strings involved in decryption queries where wj = H(C1, C2, τ,

#   »

IDj , pkj). For the challenges, let
#   »

ID∗ and
pk∗ denote the challenge identifier and the challenge public key respectively, and let C∗ = (C∗1 , C

∗
2 , τ
∗, σ∗)

be the returned challenge ciphertext and let w∗ = H(C∗1 , C
∗
2 , τ
∗,

#   »

ID∗, pk∗). The random bit ι is chosen by S
in order to select which message is encrypted.

Game 2 (Change of Public Parameters). Let Zi = (g)α
i

, 1 ≤ i ≤ h+1. This game is the same as Game
1 except that the generation of the parameters is changed. S picks α, β ∈R Zp, and set g1 = Z1, g2 = Zh ·gβ .

If mode = II, A should obtain Aux = Msk, {pk∗1, · · · pk∗qK} from S. S computes Msk = αh + β. For public
keys, S randomly chooses θi from Zp, and computes pk∗i = (X∗i , Y

∗
i ) = (gθi , (gα)θi),∀i ∈ {1, · · · , qK}.

The simulator also changes the vectors as follows. Let ρu and ρv be integers such that ρu(n+ 1) < p and
ρv(n+ 1) < p. The exact choices of ρu and ρu will be determined later. The simulator randomly selects

– κu1 , · · · , κun , κv from {0, · · · , `(n1/` − 1)},
– h many (`+ 1)-length vectors #»x 1, · · · , #»xh from Zρu , where each #»x j = (x′j , xj,1, · · · , xj,`).
– h many (`+ 1)-length vectors #»y 1, · · · , #»y h from Zp, where each #»y j = (y′j , yj,1, · · · , yj,`).
– (x′v, xv,1, · · · , xv,n) from Zn+1

ρv
– (y′v, yv,1, · · · , yv,n) from Zn+1

p .

The hash keys for the identity-based key derivation, for 1 ≤ j ≤ h, are set as:

u′j = Z
(p+ρuκj−x′j)
h−j+1 · gy

′
j , uj,i = Z

−x′j,i
h−j+1 · g

yj,i for 1 ≤ i ≤ `.

The hash key for the ciphertext validity is set as (note that g2 = Zh · gβ):

v′ = g
(p+ρvκv−x′v)
2 · gy

′
v , vi = g

−xv,i
2 gy

′
v,i for 1 ≤ i ≤ n.

Define the following functions

Ju1(ID1) = p+ ρuκ1 − x′1 −
∑̀
i=1

x1,iID1,i, Ku1(ID1) = y′1 +
∑`

1=1 y1,iIDh,i,

...
...

Juh(IDh) = p+ ρuκh − x′h −
∑̀
i=1

xh,iIDh,i, Kuh(IDh) = y′h +
∑`

1=1 yh,iIDh,i,

Jv(w) = p+ ρvκv − x′v −
∑̀
i=1

xv,ibi, Kv(w) = y′v +
∑`

1=1 yv,ibi,
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that take as input IDj = (IDj,1, · · · , IDj,`) or w = b1 · · · bn. The settings above give

F #»
U j

(IDj) = u′j
∏̀
i=1

u
IDj,i
j,i = Z

Juj (IDj)

h−j+1 · g
Kuj (IDj), j ∈ {1, · · · , h}

F #»
V (w) = v′

n∏
j=1

vj
bj = g

Jv(w)
2 · gKv(w)

These changes do not change the distribution of the public parameters, so we have Pr[S2] = Pr[S1].

Game 3 (Elimination of Hash Collisions). The simulator aborts and assumes A outputs a random
bit in this game if A submits a decryption query (C,

#   »

ID, pk = (gsk, gsk
1 )) for a well-formed ciphertext C =

(C1, C2, τ, σ) where w = H(C1, C2, τ,
#   »

ID, pk) is either equal to the same value as a previously submitted
ciphertext or w∗ of the challenge ciphertext.

For such a decryption query to be legal, we have C 6= C∗ or (
#   »

ID, pk) 6= (
#   »

ID∗, pk∗). In either case, this
implies a collision for H, which means we can construct an adversary C against the collision resistance of H
such that |Pr[S3]− Pr[S2]| ≤ AdvCR

C (k).

Game 4 (Preparation for the Simulation of the Challenge Ciphertext). Let
#   »

ID∗ = (ID∗1, · · · , ID
∗
k)

where k ≤ h. This time S aborts if Juj (ID
∗
j ) 6= 0 mod p for any j ∈ {1, · · · , k} or Jv(w∗) 6= 0 mod p.

Since the values determining these functions are information theoretically hidden from A, such ID∗ and
w∗ can only be produced by chance. Therefore

Pr[Jv(w∗) = 0 mod p]
= Pr[Jv(w∗) = 0 mod p|Jv(w∗) = 0 mod ρv] · Pr[Jv(w∗) = 0 mod ρv]

=
1

ρv(n+ 1)

Unless S aborts, Game 3 and Game 4 are identical and we have |Pr[S4] − Pr[S3]| ≤ 1
(ρu)hρv(`+1)h+1 by a

similar computation (n ≥ `). The significance of this extra abort condition will be manifested in Game 8.

Game 5 (Artificial Abort for Consistent View of Adversary). Now S aborts if Ju1(ID′1) = · · · =
Juk(ID′k) = 0 mod ρu for some

#   »

ID′ = (ID′1, · · · , ID
′
k) ∈ T or Jv(w′) = 0 mod ρv for some w′ ∈ W.

Since A’s power is dependent on the extraction and decryption queries, the above abort event is not
independent of S4, and we cannot relate the probability of S4 and S5 in a similar way as before.

This problem can be circumvented by the “re-normalization” technique due to Waters [42], such that
“artificial aborts” are added to make sure that the probability of aborts is exactly equal to some negligible
upper bound for the probability that E occurs for any set of oracle queries.

Conditioning on Pr[Jv(w∗) = 0 mod p] the theoretical lower bound of Pr[Jv(w∗) 6= 0 mod p] is (1− qD
ρv

).
Setting ρv = 2qD and will make it bounded by 1/2. On the other hand, a lower bound on the probability for
the first event is 1

2(4`qE2n/`)h
by setting ρu = 4qE [15].

We estimate the probability that A’s oracle queries will cause S to abort by repeatedly sampling values
determining Ju1(·), · · · , Juh(·), Jv(·). This would not involve re-running A as A’s view (of the public parame-
ters) remains unchanged by assuming y’s are changing accordingly. Waters [42] has shown that a polynomial
number of trials is sufficient to give an estimate of the abort probability η to within a negligible error term.

If S did not abort, we force an artificial abort with probability (η − 1/(4(4`qE2n/`)h))/η, and S will
abort with probability sufficiently close to 1

4(4`qE2n/`)h
. Now we can say Pr[S5] = Pr[S4]/4(4`qE2n/`)h. An

exposition of Waters’ technique can be found at [16].
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Game 6 (Simulation of Extraction and Decryption). This game changes the simulation of all A’s
queries for trapdoor extractions, partial decryptions, and complete decryptions. We will have Pr[S6] = Pr[S5].

Trapdoor extraction: For trapdoor key extraction query of
#   »

ID = (ID1, · · · , IDk) where k ≤ h. Let j′ ∈
{1, · · · , k} be a minimum one such that Juj′ (IDj′) 6= 0. There exists such a j′ or S has aborted in Game 5.
S needs to return d #  »

ID = (a1, a2,
#»z k+1, · · · , #»z h).

We first show how to compute a1|j′ , a “trapdoor for only IDj′” (without any appearance of any elements
from other levels); then we will show how to compute a trapdoor (a1, a2,

#»z k+1, · · · , #»z h) that matches the

same implicit random factor used in a1|j′ . Recall that F #»
U j′

(IDj′) = Z
Ju
j′

(IDj′ )

h−j′+1 · gKuj′ (IDj′ ). S picks r ∈ Z∗p
and computes

a1|j′ = (Zβ1 · Zj′
−
Ku

j′
(ID
j′ )

Ju
j′

(ID
j′ ) ) · (Z

Ju
j′

(IDj′ )

h−j′+1 · gKuj′ (IDj′ ))r

The second component of a1|j′ is only for randomization. We will show the first component of a1|j′ is in the

form of gα2 (F #»
U j′

(IDj′))
− αj

′

Ju
j′

(ID
j′ ) , which means a1|j′ is in the form of gα2 (F #»

U j′
(IDj′))r̃ where r̃ = r− αj

′

Ju
j′

(IDj′ )
.

gα2 (F #»
U j′

(IDj′))
− αj

′

Ju
j′

(ID
j′ )

= (Zh · gβ)α(Z
Ju
j′

(IDj′ )

h−j′+1 · gKuj′ (IDj′ ))
− αj

′

Ju
j′

(ID
j′ )

= Zh+1 · Zβ1 · Z
−
Ju
j′

(ID
j′ )

Ju
j′

(ID
j′ )

h+1 · Z
−
Ku

j′
(ID
j′ )

Ju
j′

(ID
j′ )

j′

= Zβ1 · Zj′
−
Ku

j′
(ID
j′ )

Ju
j′

(ID
j′ )

To compute a1 = gα2 · (
∏k
j=1 F #»

U j
(IDj))r̃, S needs to compute F #»

U j
(IDj)r̃ = (Z

Juj (IDj)

h−j+1 )r̃ · (gKuj (IDj))r̃ for
j 6= j′. We would like to compute it without knowing α and Zh+1, but with the help of (Z1, · · · , Zh). Now
the only difficulty comes from the fact that αj

′
in r̃ is unknown. Note that the second term (gKuj (IDj))α

j′

can be computed from Zj′ . We can see how the first term can be obtained by considering two different cases.

1. j < j′: Juj (IDj) = 0 by the choice of j′.

2. j > j′: Zα
j′

h−j+1 = Zh+1−(j−j′), note that 1 ≤ j − j′ ≤ h− 1.

By similar reasoning, since k + 1 > j′, it is easy to see that #»z k+1, · · · , #»z h can also be computed from
(Z1, · · · , Zh). This completes the simulation of the trapdoor queries.

SEM partial decryption: S performs the usual validity checking to reject any invalid ciphertext C that is
purported to be encrypted under

#   »

ID and pk. For decrypting a valid ciphertext with hash w by the trapdoor
of

#   »

ID, if d #  »
ID = (a1, a2, · · · ) is computable by S, it is easy to generate (a1F #»

V (w)t, a2, g
t) for a random t ∈ Z∗p.

S cannot generate the trapdoor for d #  »
ID only if Ju1(ID1) = · · · = Juk(IDk) = 0 mod ρu. Note that

Jv(w) 6= 0 mod ρv or S has aborted in Game 5. Under this condition, S can generate the token similar to
the generation of the trapdoor before. Recall that F #»

V (w) = (Zh · gβ)Jv(w) · gKv(w), we have

gα2 (F #»
V (w))−

α
Jv(w)

= (Zh · gβ)α(ZJv(w)
h · (gβ)Jv(w) · gKv(w))−

α
Jv(w)

= Zh+1 · Zβ1 · Z
− Jv(w)
Jv(w)

h+1 · Z
−β Jv(w)

Jv(w)
1 · Z

−Kv(w)
Jv(w)

1

= Z
−Kv(w)
Jv(w)

1
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This means Z
−Kv(w)
Jv(w)

1 gives a token with the implicit random factor equals to − α
Jv(w) . Randomization can

be done easily by multiplying the above term by (F #»
V (w))r where r ∈ Z∗p. Since Ju1(ID1) = · · · = Juk(IDk) =

0 mod ρu, all α
Jv(w) power terms appear in the construction of the token can be computed from Z1.

User partial decryption: A queries S’s oracle DecOU (C, pk, D). S performs the usual ciphertext validity
checking to reject any invalid ciphertext C that is purported to be encrypted under

#   »

ID and pk, and the
token validity checking to reject any invalid token D that is purported to be a partial decryption of C.
These validity checks prevent loss of information about the secret key sk. In particular, without the token
checking, it is trivial for a Type-II adversary to derive the message in the challenge ciphertext by asking
DecOU (C∗, pk∗, D′) where D′ is some invalid token derived from a valid one.

Suppose C is a valid ciphertext and D is valid for C and
#   »

ID, DecOU (C, pk, D) should give a correct
decryption. For decrypting a valid ciphertext (C1, C2, τ, σ) with hash w, we have τ = gs and σ = F #»

V (w)s for
some s ∈ Z∗p, i.e. σ = g

s·Jv(w)
2 · (gs)Kv(w). S can get gs2 by (σ/τKv(w))

1
Jv(w) , ê(Y, g2)s can thus be computed

easily. Note that the secret key sk that matches pk is never explicitly used.

Complete decryption: After validity checking, S returns m = C1/ê(Y, (σ/τKv(w))
1

Jv(w) ) for valid ciphertext.

Game 7 (User Secret Key Extraction). If mode = II, A may issue UskO query on some public key
pku ∈ {pk∗1, · · · pk∗qK}. S picks a random integer q′ from {1, · · · , qK}. If A issues the query UskO(pk∗q′), S
aborts; returns θi for i 6= q′. This gives Pr[S7] = Pr[S6] for mode = I and Pr[S7] = Pr[S6]/qK for mode = II.

Game 8 (Simulation of the Ciphertext / Embedding of the Problem Instance). Depending on
whether the adversary is an insider or the server, we have different modes of simulations. Now S introduces
a variable γ ∈R Z∗p and sets τ∗ = gγ .

If mode = I, g1 is set to Z1 = gα. A chooses an identifier
#   »

ID∗ = (ID∗1, · · · , ID
∗
k), a public key pk∗ =

(X∗, Y ∗) to be challenged with. S proceeds if ê(Y ∗, g) = ê(X∗, g1). Let T = (gα
h+1

)γ , S computes C∗1 by

mι · ê(X∗, T ) · (Y ∗, gγ)β

= mι · ê(X∗, (gα
h+1

)γ) · (Y ∗, gγ)β

= mι · ê(Y ∗, gα
h

)γ · (Y ∗, gβ)γ

= mι · ê(Y ∗, Zh · gβ)γ

= mι · ê(Y ∗, g2)γ

Note that it is the first time in the simulation that β is used directly (i.e. not in the form of gβ) except the
computation of Msk, which is fine since S does not need to compute it explicitly for a Type-I adversary.

If mode = II, S introduces a variable δ ∈R Z∗p, and compute (X∗q′ , Y
∗
q′) by ((gδ)θq′ , (gδ)θq′α) instead.

Under the artificial abort condition in Game 7, S has guessed the public key A wants to attack correctly.
Let T = gβγδ, S computes C∗1 by

mι · (ê(gδ, gγ)α
h+1
· ê(gα, T ))θi

= mι · (ê(gδ, gα
h+1

)γ · ê(gα, gβγδ))θi

= mι · ê(gδθiα, gα
h

)γ · ê(gδθiα, gβ)γ

= mι · ê(Y ∗, Zh · gβ)γ

= mι · ê(Y ∗, g2)γ

Note that it is the first time in the simulation that α is used directly (i.e. not in the form of gα, · · · , gαh).
In both modes, S sets C∗2 =

∏k
j=1 (gγ)Kuj (ID∗j ), σ∗ = (gγ)Kv(w

∗) where w∗ = H(C∗1 , C
∗
2 , τ
∗,

#   »

ID∗, pk∗) for
the rest of the challenge, which is a perfect simulation if S did not abort in Game 4. We have Pr[S8] = Pr[S7].
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Game 9 (The Indistinguishability Cards). If mode = I, S forgets (α, γ). If mode = II, S forgets (β, γ, δ).
Note that S can simulate the game in both modes as long as (gα, · · · , gαh , gγ) are known for mode = I or
(gβ , gγ , gδ) are known for mode = II, except computing the term T . Now S just picks a T ∈R G. The
transition from Game 8 to Game 9 is based on the intractability of either h-wDHI or 3-DDH. Both games
are equal unless there exists a PPT algorithm D that distinguishes T from random. Therefore, we have
|Pr[S9] − Pr[S8]| ≤ AdvX

D(k) where X is either h-wDHI or 3-DDH. Finally, C∗1 perfectly hides mι from A,
we have Pr[S9] = 1/2.

B Security Models of Timed-Release Encryption

We following the typical TRE formulation [6, 13, 17, 22, 30] such that public key is certified and the typical
TRE security model [13, 17, 22, 30] such that only a single public key is considered. However, we extend the
existing notion such that partial decryption by a security-mediator is supported.

We consider the two kinds of adversaries. A Type-I adversary models any coalition of rogue users, and
who aims to break the confidentiality of another user’s ciphertext. A Type-II adversary that models a curious
time server, who aims to break the confidentiality of a user’s ciphertext. Security against these adversaries
are modeled by the experiment below for X ∈ {I, II}, denoting whether an PPT adversary A = (Afind,Aguess)
is of Type-I or Type-II. The allowed oracle queries O and the auxiliary information Aux depends on X.

Definition 9. Experiment ExpCCA′−X
A (λ)

(Pub,Msk) $← Setup(1λ)

(pk∗, sk∗) $← KGen

(m0,m1, ID
∗, state) $← AOfind(Pub,Aux, pk∗)

b
$← {0, 1}, C∗ $← Enc(mb, ID

∗, pk∗)

b′
$← AOguess(C

∗, state)
If (|m0| 6= |m1|) ∨ (b 6= b′) then return 0 else return 1

where O refers to a set of four oracles Extract(·),DecS(·, ·),DecU (·, ·, ·),Dec(·, ·, ·) defined as below.

1. An Extract oracle that takes an identifier ID ∈ {0, 1}n as input and returns its trapdoor dID.
2. A DecS oracle that takes a ciphertext C and an identifier ID, and outputs DecS(C, dID). Note that C may

or may not be encrypted under ID.
3. A DecU oracle that takes a ciphertext C, a public key pk and a token D, and outputs DecU (C, sk, D)

where sk is the secret key that matches pk.
4. A Dec oracle that takes a ciphertext C, an identifier ID, and a public key pk, and outputs DecU (C, sk, D)

where sk is the secret key that matches pk and D = DecS(C, dID). Note that C may or may not be
encrypted under ID and pk.

Definition 10. A timed-release encryption scheme is (t, qE , qD, ε) CCA-secure against a Type-I adversary
if |Pr[ExpCCA′−I

A (λ) = 1] − 1
2 | ≤ ε for all t-time adversary A making at most qE extraction queries and qD

decryption queries (of any type), subjects to the following constraints:

1. Aux = (sk∗), i.e. the user secret key is given to the adversary.
2. No Extract(ID∗) query throughout the game.
3. No DecS(C∗, ID∗) query throughout the game.
4. No Dec(C∗, ID∗, pk∗) query throughout the game.

Definition 11. A timed-release encryption scheme is (t, qD, ε) CCA-secure against a Type-II adversary if
|Pr[ExpCCA′−II

A (λ) = 1] − 1
2 | ≤ ε for all t-time adversary A making at most qD decryption queries (of any

type), subjects to the following conditions:

1. Aux = (Msk), i.e. the master secret key is given to the adversary.
2. No DecU (C∗, pk∗, D) query throughout the game, where D is obtained from DecS(C∗, ID∗).
3. No Dec(C∗, ID∗, pk∗) query throughout the game.
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