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Abstract. An explicit construction of pairing-friendly hyperelliptic curves
with ordinary Jacobians was firstly given by D. Freeman. In this pa-
per, we give other explicit constructions of pairing-friendly hyperelliptic
curves. Our methods are based on the closed formulae for the order of
the Jacobian of a hyperelliptic curve of type y2 = x5 + ax over a finite
prime field Fp which are given by E. Furukawa, M. Haneda, M. Kawa-
zoe and T. Takahashi. We present two methods in this paper. One is
an analogue of the Cocks-Pinch method and the other is a cyclotomic
method. Our methods construct a pairing-friendly hyperelliptic curve
y2 = x5 + ax over Fp whose Jacobian has a prescribed embedding de-
gree with respect to some prime number `. Curves constructed by the
analogue of the Cocks-Pinch method satisfy p ≈ `2, whereas p ≈ `4 in
Freeman’s construction. Moreover, for the case of embedding degree 24,
we can construct a cyclotomic family with p ≈ `3/2.
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1 Introduction

Pairing based cryptography is a new public key cryptographic scheme, which
was proposed around 2000 by three important works due to Joux [11], Sakai,
Ohgishi and Kasahara [16] and Boneh and Franklin [4]. In these last two papers,
the authors constructed an identity-based encryption scheme by using the Weil
pairing of elliptic curves. Pairing-based cryptosystem can be constructed by using
the Weil or Tate pairing on abelian varieties over finite fields. In cryptography,
abelian varieties obtained as Jacobians of hyperelliptic curves are often used.
Suitable elliptic or hyperelliptic curves for pairing-based cryptography are called
“pairing-friendly”. For the case of elliptic curves, there are many results for
constructing pairing-friendly elliptic curves: Miyaji, Nakabayashi and Takano
[14], Cocks and Pinch [6], Brezing and Weng [5], Barreto and Naehrig [2], Scott
and Barreto [17], Freeman, Scott and Teske [7] and so on. On the other hand,
there are very few results for constructing pairing-friendly hyperelliptic curves.
In particular, for an explicit construction of pairing-friendly hyperelliptic curves
with ordinary Jacobians, the only known result is Freeman’s construction [8].
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In this paper, we give other explicit constructions of pairing-friendly hyperel-
liptic curves. We present two different methods in this paper. One is an analogue
of the Cocks-Pinch method and the other is a cyclotomic method. Both methods
are based on the closed formulae for the order of the Jacobian of a hyperellip-
tic curve of type y2 = x5 + ax over a finite prime field Fp which are given by
E. Furukawa, M. Haneda, M. Kawazoe and T. Takahashi [9], [12]. For a given
embedding degree k, our methods construct a pairing-friendly hyperelliptic curve
y2 = x5 + ax over Fp whose Jacobian has embedding degree k with respect to
some prime number `. Curves constructed by the analogue of the Cocks-Pinch
method satisfy p ≈ `2, whereas p ≈ `4 in Freeman’s construction. Moreover,
when the embedding degree equals 24, we can construct a cyclotomic family
with p ≈ `3/2.

2 Definition and Basic Facts on Pairing Based
Cryptography

In this section, we recall pairing based cryptography using abelian varieties over
finite fields. For the simplicity, we describe only for the case of abelian varieties
over finite prime fields in the following. We remark that all facts we state in this
section hold for abelian varieties over finite fields. Let p be a prime, K := Fp a
finite field with p elements and A an abelian variety defined over K. The finite
abelian group of K-rational points of A and its order are denoted by A(K) and
#A(K), respectively. Assume that A(K) has a subgroup G of a large prime
order. Let ` be the order of G. We denote by A[`] the group of `-torsion points
of A(K) where K is an algebraic closure of K.

For a positive integer ` coprime to the characteristic of K, the Weil pairing
is a non-degenerate bilinear map

e` : A[`]×A[`] → µ` ⊂ K̂∗

where µ` is the group of `th roots of unity in K
∗

and K̂ is the smallest field
extension of K contains µ`.

The key idea of pairing based cryptography is based on the fact that the
subgroup G of prime order ` is embedded to the multiplicative group µ` via the
Weil pairing or some other pairing map. The extension degree of the field exten-
sion K̂/K is called the embedding degree of E with respect to `. The embedding
degree with respect to ` equals the smallest positive integer k such that ` divides
pk − 1.

When A is an elliptic curve, K̂ is the field extension of K generated by
coordinates of all `-torsion points [1]. For the case of dim A ≥ 2, the following
result is known:

Proposition 1 ([8]). Let A be an abelian variety over Fp, χ(t) the characteris-
tic polynomial of pth power Frobenius map of A. For a prime number ` 6 | p and
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a positive integer k, suppose the following hold:

χ(1) ≡ 0 (mod `)
Φk(p) ≡ 0 (mod `)

where Φk is the kth cyclotomic polynomial. Then A has the embedding degree
k with respect to `. Furthermore, if k > 1 then A(Fpk) contains two linearly
independent `-torsion points.

In pairing based cryptography, the following conditions must be satisfied to
make a system secure:

– the order ` of a prime order subgroup of A(K) should be large enough so
that solving a discrete logarithm problem on the group is computationally
infeasible and

– the order pk of the field Fpk should be large enough so that solving a dis-
crete logarithm problem on the multiplicative group F∗pk is computationally
infeasible.

Moreover for an efficient implementation of a pairing based cryptosystem, the
following are important:

– the embedding degree k should be appropriately small and
– the ratio log2 p/ log2 ` should be appropriately small.

For an abelian variety of dimension g, the above ratio g log2 p/ log2 ` is denoted
by ρ.

Abelian varieties satisfying the above four conditions are called “pairing-
friendly”. Hyperelliptic curves whose Jacobian varieties are pairing-friendly are
also called “pairing-friendly”. In practice, it is currently recommended that `
should be larger than 2160 and pk should be larger than 21024.

3 Formulae for the order of the Jacobian of hyperelliptic
curves of type y2 = x5 + ax

Our methods are based on the closed formulae for the order of the Jacobian of
a hyperelliptic curve of type y2 = x5 + ax over a finite prime field Fp which are
given by E. Furukawa, M. Haneda, M. Kawazoe and T. Takahashi [9], [12].

First, we recall the relation between the order of Jacobian and the Frobenius
map. Let p be an odd prime, Fp a finite field of order p and C a hyperelliptic
curve of genus g defined over Fp. Then the defining equation of C is given as
y2 = f(x) where f(x) is a polynomial in Fp[x] of degree 2g + 1. Let JC be
the Jacobian variety of a hyperelliptic curve C. The Jacobian variety JC is an
abelian variety of dimension g. We denote the group of Fp-rational points on JC

by JC(Fp) and call it the Jacobian group of C. Let χ(t) be the characteristic
polynomial of the pth power Frobenius endomorphism of C. We call χ(t) for C
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the characteristic polynomial of C. Then, it is well-known that the order ]JC(Fp)
is given by

]JC(Fp) = χ(1).

In [9] and [12], the characteristic polynomial of a hyperelliptic curve of type
y2 = x5 + ax over a finite prime field Fp are determined as follows:

Theorem 1 ([9], [12]). Let p be a prime, C a hyperelliptic curve defined by
an equation y2 = x5 + ax over Fp, JC the Jacobian variety of C and χ(t) the
characteristic polynomial of pth power Frobenius map of C. Write p as p =
c2 +2d2 where c and d are integers and c ≡ 1 (mod 4). Then the following hold:

(1) If p ≡ 1 (mod 8) and a(p−1)/2 ≡ −1 (mod p), then χ(t) = t4 + (−1)f4dt3 +
8d2t2 +(−1)f4dpt+p2 where f = (p−1)/8 and 2d ≡ −(af +a3f )c (mod p).

(2) If p ≡ 1 (mod 8) and a(p−1)/4 ≡ −1 (mod p), or if p ≡ 3 (mod 8) and
a(p−1)/2 ≡ −1 (mod p), then χ(t) = t4 + (4c2 − 2p)t2 + p2.

Characteristic polynomials for other cases are also given in [9]. We remark
that χ(t) for other cases are reducible over the ring Z. The above theorem leads
to the following formulae for the order of the Jacobian group JC(Fp).

Corollary 1 ([9], [12]) Let p be a prime and C a hyperelliptic curve defined
by an equation y2 = x5 + ax over Fp. Write p as p = c2 + 2d2 where c and d are
integers and c ≡ 1 (mod 4).

(1) If p ≡ 1 (mod 8) and a(p−1)/2 ≡ −1 (mod p), then ]JC(Fp) = 1+(−1)f4d+
8d2 + (−1)f4dp + p2 where f = (p− 1)/8 and 2d ≡ −(af + a3f )c (mod p).

(2) If p ≡ 1 (mod 8) and a(p−1)/4 ≡ −1 (mod p), or if p ≡ 3 (mod 8) and
a(p−1)/2 ≡ −1 (mod p), then ]JC(Fp) = 1 + 4c2 − 2p + p2.

4 Analogue of the Cocks-Pinch method

By using the formulae given in Corollary 1, we obtain the following theorems:

Theorem 2. For a given positive integer k, execute the following procedure:

(1) Let ` be a prime such that LCM(8, k)|(`− 1).
(2) Let α be a primitive kth root of unity in (Z/`Z)×, β a positive integer such

that β2 ≡ −1 (mod `) and γ a positive integer such that γ2 ≡ 2 (mod `).
(3) Let c and d be integers such that

c ≡ 1 (mod 4),

c ≡ (α + β)(γ(β + 1))−1 (mod `),

d ≡ (αβ + 1)(2(β + 1))−1 (mod `).
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If p = c2 + 2d2 is a prime satisfying p ≡ 1 (mod 8), then for an integer a
satisfying

a(p−1)/2 ≡ −1 (mod p)

2(−1)(p−1)/8d ≡ (a(p−1)/8 + a3(p−1)/8)c (mod p),

the Jacobian group JC(Fp) of a hyperelliptic curve C defined by y2 = x5 + ax
over Fp has a subgroup of order ` and the embedding degree of JC with respect
to ` is k.

Theorem 3. For a given positive integer k, execute the following procedure:

(1) , (2) are as in Theorem 2.
(3) Let c and d be integers such that

c ≡ 1 (mod 4),

c ≡ 2−1(α− 1)β (mod `),

d ≡ (α + 1)(2γ)−1 (mod `).

If p = c2+2d2 is a prime satisfying p ≡ 1, 3 (mod 8), take an integer δ satisfying
δ(p−1)/2 ≡ −1 (mod p) and set an integer a as

a = δ2 when p ≡ 1 (mod 8),
a = δ when p ≡ 3 (mod 8).

Then the Jacobian group JC(Fp) of a hyperelliptic curve C defined by y2 =
x5 + ax over Fp has a subgroup of order ` and the embedding degree of JC with
respect to ` is k.

Remark 1. Then condition k|(` − 1) means that a primitive kth root of unity
are contained in (Z/`Z)×. The condition 8|(` − 1) means that square roots of
−1 and 2 are contained in (Z/`Z)×.

Theorem 2 and 3 give an analogue of the Cocks-Pinch method for a hyperel-
liptic curve of type y2 = x5 + ax. We call curves obtained by Theorem 2 “Type
I”, and curves obtained by Theorem 3 “Type II”.

We emphasize that our analog of the Cocks-Pinch method does not require
the CM method for constructing explicit curves. Constructing explicit curves
using the CM method is a heavy part of Freeman’s construction. Moreover, we
remark that p ≈ `2 (i.e. ρ ≈ 4) in our construction, whereas p ≈ `4 (i.e. ρ ≈ 8)
in Freeman’s construction.

5 Result of search for pairing-friendly hyperelliptic
curves: the analogue of the Cocks-Pinch method

In Table 1, we show the number of pairing-friendly hyperelliptic curves of Type
I, II for 4 ≤ k ≤ 36 obtained by using our method.
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k Type I Type II
p ≡ 1 (mod 8) p ≡ 3 (mod 8)

4 35 76 64
5 45 43 36
6 33 52 31
7 47 40 33
8 140 171 165
9 37 31 44
10 31 42 48
11 36 34 35
12 83 69 71
13 44 42 39
14 34 38 40
15 42 43 38
16 149 163 169
17 33 42 46
18 29 39 48
19 32 42 44
20 78 75 81

k Type I Type II
p ≡ 1 (mod 8) p ≡ 3 (mod 8)

21 34 29 30
22 35 50 34
23 64 46 45
24 141 152 124
25 33 47 32
26 43 35 36
27 41 45 31
28 82 90 69
29 31 40 36
30 32 31 30
31 29 26 37
32 143 161 164
33 32 30 35
34 34 36 32
35 50 50 42
36 72 63 80

Table 1. The number of pairing-friendly hyperelliptic curves for 4 ≤ k ≤ 36 obtained
by the analogue of the Cocks-Pinch method for ` ∈ [2160, 2160 + 220] with |c| < ` and
|d| < 2`.

Here we show examples of pairing-friendly hyperelliptic curves obtained by
the analogue of the Cocks-Pinch method.
(Type I)

k =12
` =1461501637330902918203684832716283019655933242609 (161 bits)
p =1569444521968619033001399048330217048586679017248205808079665766\

9365832060993944346162021683857
a =243
ρ =3.91139

k =16
` =1461501637330902918203684832716283019655932840529 (161 bits)
p =2210884894346798442145165481525960184900817737075987357833399335\

226916051626079472576037262113
a =3
ρ =3.87605



7

(Type II, p ≡ 1 (mod 8))

k =12
` =1461501637330902918203684832716283019655933051401 (161 bits)
p =1632602178388172958667084294365664861300872737133820054877337525\

37545895217625280835747878949953
a =25
ρ =3.95363

k =16
` =1461501637330902918203684832716283019655932635041 (161 bits)
p =6013300217687864234648174070831976672330956639931526918110147404\

9963901888492617076533975837497
a =9
ρ =3.93562

(Type II, p ≡ 3 (mod 8))

k =12
` =1461501637330902918203684832716283019655933142121 (161 bits)
p =5200414358851436030207390198712837840574260460011915231054535741\

6077845064383591153508081427667
a =2
ρ =3.933

k =16
` =1461501637330902918203684832716283019655933261329 (161 bits)
p =1225507417189915284657440942525236908784564653725351434657747928\

37343107125446145071475078040659
a =2
ρ =3.94846
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6 Another construction: cyclotomic families

Here we give another construction of pairing-friendly hyperelliptic curves of type
y2 = x5 + ax. It is also based on the formulae given in Corollary 1, but it is a
hyperelliptic version of cyclotomic families.

Cyclotomic families for the case of elliptic curves have been investigated by
Brezing and Weng [5], Freeman, Scott and Teske [7] and some other researchers.
In a cyclotomic family, a cyclotomic polynomial is used to set a prime ` as
` = Φk(t) or ` = Φck(t) for some c > 1 where k is the embedding degree.
Though a prime ` is not taken arbitrary, cyclotomic families have advantage
that log2 p/ log2 ` of obtained curves can be smaller than the one obtained by
the analogue of the Cocks-Pinch method.

For a hyperelliptic curves of type y2 = x5 +ax, we require the condition that
the embedding degree k is divisible by 8. Assume that the embedding degree k
is divisible by 8 and `−1 is divisible by k. Let α be a primitive kth root of unity
modulo `, β an integer such that β2 ≡ −1 (mod `) and γ an integer such that
γ2 ≡ 2 (mod `). Then we have that β = ±αk/4 and γ = ± (

αk/8 − α3k/8
)
. Note

that if gcd(k, h) = 1, then αh is also a primitive kth root of unity modulo `.

6.1 A cyclotomic family of type I

From Theorem 2, we have

c =
α + β

βγ + γ
=

(α + β)(βγ − γ)
(βγ + γ)(βγ − γ)

=
α(γ − βγ) + (γ + βγ)

4

d =
αβ + 1
2(β + 1)

=
(αβ + 1)(−β)β(1− β)

(2(1 + β)(1− β)
=

(α− β)(β + 1)
4

.

Hence we obtain the following for curves of type I.

c =

{
± 1

4

(
αh+3k/8 − αk/8

)
when β = αk/4

± 1
4

(
αh+k/8 − α3k/8

)
when β = −αk/4

d =

{
± 1

4

(
αh − αk/4

) (
αk/4 + 1

)
when β = αk/4

± 1
4

(
αh + αk/4

) (−αk/4 + 1
)

when β = −αk/4.

Let c̃i(t) and d̃i(t) for i = 1, 2 be polynomials of minimal degree satisfying
the following condition:

c̃1(t) ≡ th+3k/8 − tk/8 mod Φk(t)

d̃1(t) ≡
(
th − tk/4

)(
tk/4 + 1

)
mod Φk(t)

c̃2(t) ≡ th+k/8 − t3k/8 mod Φk(t)

d̃2(t) ≡
(
th + tk/4

)(
−tk/4 + 1

)
mod Φk(t)



9

Set polynomials p̃i(t) for i = 1, 2 as

p̃i(t) = c̃i(t)2 + 2d̃i(t)2.

Since c = ±c̃i(α)/4 and d = ±d̃i(α)/4, we have

p̃i(α) = c̃i(α)2 + 2d̃i(α)2 = 16(c2 + 2d2) = 16p.

It is necessary for p = c2 + 2d2 being prime with p ≡ 1 (mod 8) and c ≡ 1
(mod 4) that p̃i(x) is irreducible, c̃i(j) ≡ 4 (mod 8) and d̃i(j) ≡ 0 (mod 4) for
some i = 1, 2 and 0 ≤ j ≤ 7. Note that the above condition is only necessary
condition.

Searching suitable h which gives polynomials c̃i(t), d̃i(t) and p̃i(t) satisfying
the above condition, we find the following for k = 56 and k = 88.

For k = 56, the following is found:

h = 15 (th = t15)

c̃2(t) = −2t21 + 2t22

d̃2(t) = 1 + t + t14 + t15

p̃2(t) = 1 + 2t + t2 + 2t14 + 4t15 + 2t16 + t28 + 2t29 + t30 + 4t42 − 8t43 + 4t44

Since Φ56(t) = 1 − t4 + t8 − t12 + t16 − t20 + t24, it is expected that p ≈ `11/6.
Actually, using the above polynomials we obtain pairing-friendly hyperelliptic
curves of type I with p ≈ `11/6 (ρ ≈ 11/3 = 3.667). For example, we obtain the
following curve y2 = x5 + ax over Fp:

a =16807
t =17783
` =Φ56(t)

=10002779230686568658271891198740139916691391002533265730688161\
69982687153678515599218400393930598555361(339 bits)

p =25009926587955740652430711168299461474477487005330814448266309\
21859994292374132881840001627580847758991403586307212832793884\
593036831026874212168508718320085925724310352568705063914008009

ρ =3.655

For k = 88, the following is found:

h = 23 (th = t23)

c̃2(t) = −2t33 + 2t34

d̃2(t) = 1 + t + t22 + t23

p̃2(t) = 1 + 2t + t2 + 2t22 + 4t23 + 2t24 + t44 + 2t45 + t46 + 4t66 − 8t67 + 4t68

Since Φ88(t) = 1− t4 + t8− t12 + t16− t20 + t24− t28 + t32− t36 + t40, it is expected
that p ≈ `17/10. Actually, using the above polynomials we obtain pairing-friendly
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hyperelliptic curves of type I with p ≈ `17/10 (ρ ≈ 3.4). For example, we obtain
the following curve:

a =3
t =199
` =Φ88(t)

=89975248773375980287736899780373775482536205530620741366421495\
054732082932077802106417196001(306 bits)

p =51948550275340748307649331008646861056632332831993137655971404\
20748796756622875142195206065076104982161233197234965880387214\
42241963134109531978004228456601

ρ =3.387

Changing polynomial d̃i(t) as

d̃1(t) =
(
(th mod Φk(t))− tk/4

) (
tk/4 + 1

)

d̃2(t) =
(
(th mod Φk(t)) + tk/4

) (
−tk/4 + 1

)
,

we find polynomials satisfying the condition for k = 8.

h = 1 (th = t)
c̃1(t) = 2 + 2t

d̃1(t) = (t− t2)(1 + t2)

p̃1(t) = 4 + 8t + 5t2 − 2t3 + 3t4 − 4t5 + 3t6 − 2t7 + t8

Since Φ8(t) = 1 + t4, it is expected that p ≈ `2.
Actually, using the above polynomials we obtain pairing-friendly hyperelliptic

curves of type I with p ≈ `2 (ρ ≈ 4).

a =13
t =1099511628193
` =Φ8(t)/2 = 730750819774027608217118960060276298985251336001(160 bits)
p =26699838029972102220848505267856400207807895259155218981981072088\

0440889507772121638755455925409
ρ =3.987

6.2 A cyclotomic family of type II

From Theorem 3, we have

c =
β(α− 1)

2

d =
α + 1
2γ

=
γ(α + 1)

4
.
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Hence we obtain the following for curves of type II.

c = ±αk/4
(
αh − 1

)

2

d = ±
(
αk/8 − α3k/8

) (
αh + 1

)

4
.

Let c̃(t) and d̃(t) are polynomials of minimal degree satisfying

c̃(t) ≡ tk/4
(
th − 1

)
mod Φk(t)

d̃(t) ≡
(
tk/8 − t3k/8

) (
th + 1

)
mod Φk(t)

and set a polynomial p̃(t) as

p̃(t) = 2c̃(t)2 + d̃(t)2.

Since c = ±c̃(α)/2 and d = ±d̃(α)/4, we have

p̃(α) = 2c̃(α)2 + d̃(α)2 = 8(c2 + 2d2) = 8p.

It is necessary for p = c2 + 2d2 being prime with p ≡ 1, 3 (mod 8) and c ≡ 1
(mod 4) that p̃(x) is irreducible, c̃(j) ≡ 2 (mod 4) and d̃(j) ≡ 0 (mod 4) for
0 ≤ j ≤ 3. Note that the above condition is only necessary condition.

Searching suitable h which gives polynomials c̃(t), d̃(t) and p̃(t) satisfying
the above condition, we find the following for k = 24.

h = 11

th ≡ −t3 + t7 (mod Φ24(t))

c̃(t) = −t5 − t6

d̃(t) = −1 + t− t2 + t3 + t4 − t5

p̃(t) = 1− 2t + 3t2 − 4t3 + t4 + 2t5 − 3t6 + 4t7 − t8 − 2t9 + 3t10 + 4t11 + 2t12

Since Φ24(t) = 1− t4 + t8, it is expected that p ≈ `3/2.
Actually, using the above polynomials we obtain pairing-friendly hyperelliptic

curves of type I with p ≈ `3/2 (ρ ≈ 3). For example, we obtain the following
curve:

a =2
t =1049085
` =Φ24(t) = 1467186828927128936514540199634172027208104690001(161 bits)
p =4442924836378410825984100156654939780832773854842227112675716008\

30352907
ρ =2.975
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7 Conclusion

In this paper, we give two different methods constructing explicit pairing-friendly
hyperelliptic curves based on the formulae for the order of the Jacobian of a
hyperelliptic curve of type y2 = x5 + ax. One is an analogue of the Cocks-Pinch
method and the other is a cyclotomic method. Our methods construct a pairing-
friendly hyperelliptic curve y2 = x5 + ax over a prime field Fp whose Jacobian
has a prescribed embedding degree with respect to some prime number `. We
obtain pairing-friendly hyperelliptic curves with p ≈ `2 for arbitrary embedding
degree by using the analogue of the Cocks-Pinch method, whereas p ≈ `4 in
Freeman’s construction. Moreover, by using the cyclotomic method, we obtain
pairing-friendly hyperelliptic curves with p ≈ `3/2 for the embedding degree 24.
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