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Abstract. An explicit construction of pairing-friendly hyperelliptic curves
with ordinary Jacobians was firstly given by D. Freeman. In this pa-
per, we give other explicit constructions of pairing-friendly hyperelliptic
curves with ordinary Jacobians based on the closed formulae for the or-
der of the Jacobian of a hyperelliptic curve of type y2 = x5 + ax. We
present two methods in this paper. One is an analogue of the Cocks-Pinch
method and the other is a cyclotomic method. By using these methods,
we construct a pairing-friendly hyperelliptic curve y2 = x5 + ax over a
finite prime field Fp whose Jacobian is ordinary and simple over Fp with
a prescribed embedding degree. Moreover, the analogue of the Cocks-
Pinch produces curves with ρ ≈ 4 and the cyclotomic method produces
curves with 3 ≤ ρ ≤ 4.
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1 Introduction

Pairing-based cryptography was proposed around 2000 by three important works
due to Joux [15], Sakai, Ohgishi and Kasahara [19] and Boneh and Franklin [4].
In these last two papers, the authors constructed an identity-based encryption
scheme by using the Weil pairing of elliptic curves. Pairing-based cryptosystem
can be constructed by using the Weil or Tate pairing on abelian varieties over
finite fields. The key idea is that for an abelian variety of dimension g defined over
a finite field Fq, its subgroup of prime order ℓ is embedded into the multiplicative
group of some extension field Fqk as the multiplicative group of ℓth roots of
unity via the Weil pairing or some other pairing map. The ratio g log q/ log ℓ
and the extension degree k are important for the construction of pairing-based
cryptosystem. This ratio g log q/ log ℓ is denoted by ρ, and the extension degree
k is called the embedding degree with respect to ℓ.

In cryptography, abelian varieties obtained as Jacobians of hyperelliptic curves
are often used. The Jacobian variety of a hyperelliptic curve of genus g is an
abelian variety of dimension g. Note that an elliptic curve is a hyperelliptic
curve of genus one and also an abelian variety of dimension one. Suitable abelian
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varieties for pairing-based cryptography are called “pairing-friendly”. Moreover,
hyperelliptic curves whose Jacobians are suitable for pairing-based cryptography
are also called “pairing-friendly”. One of important conditions for being pairing-
friendly is that the embedding degree should be in a appropriate size. It is known
that supersingular abelian varieties have small embedding degree (cf. [18]). For
example, for the case of dimension one (i.e. elliptic curves) it is at most 6, and for
the case of dimension two it is at most 12. Hence, if we need a larger embedding
degree, we need ordinary abelian varieties. Another important condition is that
the value of ρ should be small. By the definition of ρ, its theoretical minimum
is ρ ≈ 1 for abelian varieties of any dimension.

For the case of elliptic curves, there are many results for constructing pairing-
friendly ordinary elliptic curves: Miyaji, Nakabayashi and Takano [17], Cocks
and Pinch [7], Brezing and Weng [5], Barreto and Naehrig [2], Scott and Barreto
[20], Freeman, Scott and Teske [10] and so on. Using the above methods, we can
construct pairing-friendly elliptic curves with ρ ≈ 1 for the embedding degree
less than or equal to 6 (cf. [17]), ρ ≈ 2 (cf. [7]) or 1 < ρ < 2 for many embedding
degrees (cf. [10]). On the other hand, there are very few results for explicit
constructions of pairing-friendly ordinary abelian varieties of higher dimension.
The only known results are Freeman [8], Freeman, Stevenhagen and Streng [11]
and Freeman [9]. The ρ-values in these results are 4 ≤ ρ ≤ 8 for dimension two
(one family with ρ ≈ 4 is given in [9]) and ρ ≈ 12 for dimension three.

In this paper, we give other explicit constructions of pairing-friendly hyper-
elliptic curves with ordinary Jacobians. One is an analogue of the Cocks-Pinch
method and the other is a cyclotomic method. Both methods are based on the
closed formulae for the order of the Jacobian of a hyperelliptic curve of type
y2 = x5 + ax over a finite prime field Fp which are given by E. Furukawa,
M. Kawazoe and T. Takahashi [12] and M. Haneda, M. Kawazoe and T. Taka-
hashi [14]. By using these methods, for a given embedding degree k, we construct
a pairing-friendly hyperelliptic curve y2 = x5 +ax over Fp. Though Jacobians of
curves constructed by our methods are not absolutely simple, our methods pro-
duce curves whose Jacobians are simple over defining fields with smaller ρ-values
than previously obtained. In fact, the analogue of the Cocks-Pinch method pro-
duces curves with ρ ≈ 4 for arbitrary embedding degree and the cyclotomic
method produces curves with 3 ≤ ρ ≤ 4. In particular, when the embedding
degree equals 24, we obtain a cyclotomic family with ρ ≈ 3.

2 Definition and Basic Facts on Hyperelliptic Curves and
Pairing-Based Cryptography

In this section, we recall some basic facts on hyperelliptic curves and pairing-
based cryptography.
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2.1 Hyperelliptic curves and their Jacobians

First, we recall the relation between the order of the Jacobian and the Frobenius
map. Let p be an odd prime and Fq a finite field with q elements where q = pr

for a positive integer r.
Let C be a hyperelliptic curve of genus g defined over Fq. Then the defining

equation of C is given as y2 = f(x) where f(x) is a polynomial in Fq[x] of
degree 2g + 1 or 2g + 2. Let JC be the Jacobian variety of a hyperelliptic curve
C. The Jacobian variety JC is an abelian variety of dimension g. Note that if
g = 1 (i.e. C is an elliptic curve), then C is isomorphic to JC . The finite abelian
group of Fq-rational points on JC is denoted by JC(Fq) and called the Jacobian
group of C. Let χ(t) be the characteristic polynomial of the qth power Frobenius
endomorphism of C. We call χ(t) for C the characteristic polynomial of C. Then,
it is well-known that the order #JC(Fq) is given by

#JC(Fq) = χ(1).

2.2 Pairing-based cryptography

Here we recall pairing-based cryptography using Jacobian varieties of hyperel-
liptic curves over finite fields. Let C be a hyperelliptic curve of genus g defined
over Fq. Assume that JC(Fq) has a subgroup G of a large prime order. Let ℓ be
the order of G. The group of ℓ-torsion points of JC(Fq) is denote by JC [ℓ] where
Fq is an algebraic closure of Fq and JC(Fq) is a group of Fq-rational points on
JC .

For a positive integer ℓ coprime to the characteristic of Fq, the Weil pairing
is a non-degenerate bilinear map

eℓ : JC [ℓ] × JC [ℓ] → µℓ ⊂ F×
qk

where µℓ is the multiplicative group of ℓth roots of unity in Fq
×

and Fqk is the
smallest field extension of Fq containing µℓ.

The key idea of pairing-based cryptography is based on the fact that the
subgroup G of prime order ℓ is embedded to the group µℓ via the Weil pairing or
some other pairing map. The extension degree k of the field extension Fqk/Fq is
called the embedding degree of JC with respect to ℓ. The embedding degree with
respect to ℓ equals the smallest positive integer k such that ℓ divides qk − 1. In
other words, q is a primitive kth root of unity modulo ℓ.

When C is an elliptic curve and k is the embedding degree of C with respect
to ℓ, Fqk is a field generated by coordinates of all ℓ-torsion points [1]. For the
higher genus case, we refer to the following result for an abelian varieties due to
Freeman [8].

Proposition 1 ([8]). Let A be an abelian variety over a finite field Fq, χ(t)
the characteristic polynomial of the qth power Frobenius map of A. For a prime
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number ℓ ̸ | q and a positive integer k, suppose the following hold:

χ(1) ≡ 0 (mod ℓ)
Φk(q) ≡ 0 (mod ℓ)

where Φk is the kth cyclotomic polynomial. Then A has the embedding degree
k with respect to ℓ. Furthermore, if k > 1 then A(Fqk) contains two linearly
independent ℓ-torsion points.

In pairing-based cryptography, for the Jacobian variety JC defined over Fq,
the following conditions must be satisfied to make a system secure:

– the order ℓ of a prime order subgroup of JC(Fq) should be large enough so
that solving a discrete logarithm problem on the group is computationally
infeasible and

– the order qk of the field Fqk should be large enough so that solving a dis-
crete logarithm problem on the multiplicative group F×

qk is computationally
infeasible.

Moreover for an efficient implementation of a pairing-based cryptosystem, the
following are important:

– the embedding degree k should be appropriately small and
– the ratio ρ = g log2 q/ log2 ℓ should be appropriately small.

Jacobian varieties satisfying the above four conditions are called “pairing-
friendly”. Hyperelliptic curves whose Jacobian varieties are pairing-friendly are
also called “pairing-friendly”. In practice, it is currently recommended that ℓ
should be larger than 2160 and qk should be larger than 21024.

3 Formulae for the order of the Jacobian of hyperelliptic
curves of type y2 = x5 + ax

Our methods are based on the closed formulae for the order of the Jacobian of
a hyperelliptic curve of type y2 = x5 + ax over a finite prime field Fp which
were given by E. Furukawa, M. Kawazoe and T. Takahashi [12] and M. Haneda,
M. Kawazoe and T. Takahashi [14]. Due to the results of [12] and [14], the
characteristic polynomial of a hyperelliptic curve of type y2 = x5 + ax over Fp

are determined completely as follows. For the proof of the following theorem, see
[14] for the proof of (1) and see [12] for others.

Theorem 1 ([12], [14]). Let p be an odd prime, C a hyperelliptic curve defined
by an equation y2 = x5 + ax over Fp, JC the Jacobian variety of C and χ(t)
the characteristic polynomial of the pth power Frobenius map of C. Then the
following holds: (In the following, c and d denote integers such that p = c2 +2d2

and c ≡ 1 (mod 4). Note that such c and d exist if and only if p ≡ 1, 3 (mod 8).)
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(1) If p ≡ 1 (mod 8) and a(p−1)/2 ≡ −1 (mod p), then χ(t) = t4−4dt3+8d2t2−
4dpt + p2 where f = (p − 1)/8 and 2(−1)fd ≡ (af + a3f )c (mod p).

(2) If p ≡ 1 (mod 8) and a(p−1)/4 ≡ −1 (mod p), or if p ≡ 3 (mod 8) and
a(p−1)/2 ≡ −1 (mod p), then χ(t) = t4 + (4c2 − 2p)t2 + p2.

(3) If p ≡ 1 (mod 16) and a(p−1)/8 ≡ 1 (mod p), or if p ≡ 9 (mod 16) and
a(p−1)/8 ≡ −1 (mod p), then χ(t) = (t2 − 2ct + p)2.

(4) If p ≡ 1 (mod 16) and a(p−1)/8 ≡ −1 (mod p), or if p ≡ 9 (mod 16) and
a(p−1)/8 ≡ 1 (mod p), then χ(t) = (t2 + 2ct + p)2.

(5) If p ≡ 3 (mod 8) and a(p−1)/2 ≡ 1 (mod p), then χ(t) = (t2 + 2ct + p)(t2 −
2ct + p).

(6) If p ≡ 5 (mod 8) and a(p−1)/4 ≡ 1 (mod p), or if p ≡ 7 (mod 8), then
χ(t) = (t2 + p)2.

(7) If p ≡ 5 (mod 8) and a(p−1)/4 ≡ −1 (mod p), then χ(t) = (t2 − p)2.
(8) If p ≡ 5 (mod 8) and a(p−1)/2 ≡ −1 (mod p), then χ(t) = t4 + p2.

Remark 1. For the convenience in the following argument, we replaced d in [14]
by (−1)f+1d in Theorem 1 (1).

We remark that χ(t) for the case (3)-(7) are reducible over the ring Z. More-
over, the case (6), (7) and (8) are the supersingular case. In the following we
restrict our interest to the case (1) and (2), because these are the only cases that
JC is a simple ordinary Jacobian over Fp. The above theorem leads to the closed
formulae for the order of the Jacobian group JC(Fp) by using #JC(Fp) = χ(1).

4 Analogue of the Cocks-Pinch method

By using the formulae given in Theorem 1 (1) and (2), we obtain an analogue
of the Cocks-Pinch method for hyperelliptic curves y2 = x5 + ax. Let χ be
1 − 4d + 8d2 − 4dp + p2 or 1 + 4c2 − 2p + p2. Then we can construct pairing-
friendly hyperelliptic curves of type y2 = x5 + ax over Fp if we find integers c,
d and odd primes p, ℓ satisfying the following conditions: (Note that p ≡ 1, 3
(mod 8). )

χ ≡ 0 (mod ℓ)
Φk(p) ≡ 0 (mod ℓ)

p = c2 + 2d2 with c ≡ 1 (mod 4).

The first condition means that the order of the Jacobian of a constructed curve
has a subgroup of prime order ℓ. The second condition means that the embedding
degree with respect to ℓ of the Jacobian of a constructed curve is k. Note that
the second condition implies that p is a primitive kth root of unity modulo ℓ and
therefore it implies that ℓ− 1 must be divisible by k. Moreover, in both cases of
Theorem 1 (1) and (2), square roots of −1 and 2 are required to be contained
in the ring Z/ℓZ so that integers c and d satisfying the above conditions exist.
Hence ℓ − 1 is required to be divisible by 8.

According to Theorem 1 (1) and (2), we have the following theorems:
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Theorem 2. For a given positive integer k, execute the following procedure:

(1) Let ℓ be a prime such that LCM(8, k)|(ℓ − 1).
(2) Let α be a primitive kth root of unity in (Z/ℓZ)×, β a positive integer such

that β2 ≡ −1 (mod ℓ) and γ a positive integer such that γ2 ≡ 2 (mod ℓ).
(3) Let c and d be integers such that

c ≡ (α + β)(γ(β + 1))−1 (mod ℓ) and c ≡ 1 (mod 4),

d ≡ (αβ + 1)(2(β + 1))−1 (mod ℓ).

If p = c2 + 2d2 is a prime satisfying p ≡ 1 (mod 8), then for an integer a
satisfying

a(p−1)/2 ≡ −1 (mod p)

2(−1)(p−1)/8d ≡ (a(p−1)/8 + a3(p−1)/8)c (mod p),

the Jacobian group JC(Fp) of a hyperelliptic curve C defined by y2 = x5 + ax
over Fp has a subgroup of order ℓ and the embedding degree of JC with respect
to ℓ is k.

Proof. First note that the condition k|(ℓ − 1) implies that a primitive kth root
of unity is contained in the ring Z/ℓZ and the condition 8|(ℓ − 1) implies that
square roots of −1 and 2 are contained in Z/ℓZ.

Let ℓ be a prime as in (1) and let α, β and γ be as in (2). Substituting
c ≡ (α + β)(γ(β + 1))−1 (mod ℓ) and d ≡ (αβ + 1)(2(β + 1))−1 (mod ℓ) into
p = c2 + 2d2, we have

p ≡
(
(α + β)2 + (αβ + 1)2

) (
2(β + 1)2

)−1 ≡ (4αβ)(4β)−1 ≡ α (mod ℓ).

Since α is a primitive kth root of unity in (Z/ℓZ)×, we have Φk(p) ≡ 0 (mod ℓ).
Next we check the condition on the order of the Jacobian. From the condition

d ≡ (αβ + 1)(2(β + 1))−1 (mod ℓ), we have

1 − 2d ≡ (2d − α)β (mod ℓ).

Substituting this into the formula #JC(Fp) = 1− 4d + 8d2 − 4dp + p2 and using
p ≡ α (mod ℓ), we have

#JC(Fp) = (1 − 2d)2 + (2d − p)2 ≡ −(2d − α)2 + (2d − p)2 ≡ 0 (mod ℓ)

Thus the Jacobian variety of a constructed curve y2 = x5 + ax over Fp has
a subgroup of order ℓ and its embedding degree with respect to ℓ is k. ⊓⊔

Theorem 3. For a given positive integer k, execute the following procedure:

(1) , (2) are as in Theorem 2.
(3) Let c and d be integers such that

c ≡ 2−1(α − 1)β (mod ℓ) and c ≡ 1 (mod 4),

d ≡ (α + 1)(2γ)−1 (mod ℓ).
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If p = c2+2d2 is a prime satisfying p ≡ 1, 3 (mod 8), take an integer δ satisfying
δ(p−1)/2 ≡ −1 (mod p) and set an integer a as

a = δ2 when p ≡ 1 (mod 8),
a = δ when p ≡ 3 (mod 8).

Then the Jacobian group JC(Fp) of a hyperelliptic curve C defined by y2 =
x5 + ax over Fp has a subgroup of order ℓ and the embedding degree of JC with
respect to ℓ is k.

Proof. As in the proof of Theorem 2, substituting c ≡ 2−1(α− 1)β (mod ℓ) and
d ≡ (α + 1)(2γ)−1 (mod ℓ) into p = c2 + 2d2, we have

p ≡ 4−1
(
(β(α − 1))2 + (α + 1)2

)
≡ α (mod ℓ).

In particular, we have Φk(p) ≡ 0 (mod ℓ).
Next we check the condition on the order of the Jacobian. Substituting c ≡

2−1(α − 1)β (mod ℓ) into the formula #JC(Fp) = 1 + 4c2 − 2p + p2 and using
p ≡ α (mod ℓ), we have

#JC(Fp) = 4c2 + (p − 1)2 ≡ −(α − 1)2 + (p − 1)2 ≡ 0 (mod ℓ).

Thus the Jacobian variety of constructed curve y2 = x5 + ax over Fp has a
subgroup of order ℓ and its embedding degree with respect to ℓ is k. ⊓⊔

Theorem 2 and 3 give an analogue of the Cocks-Pinch method for a hyperel-
liptic curve of type y2 = x5 + ax. We call curves obtained by Theorem 2 “Type
I”, and curves obtained by Theorem 3 “Type II”.

Since our method based on the closed formulae of the order of the Jacobian,
we can construct a pairing-friendly hyperelliptic curve in a very short time. For
the running time of our algorithm, see Section 5. Moreover, we remark that ρ ≈ 4
in our construction. This ρ-value is smaller than previously obtained. (Recently,
Freeman [9] proposed another method to construct pairing-friendly hyperelliptic
curves and obtained one family with ρ ≈ 4 for the embedding degree 5.)

We remark one more thing. As is shown in [12], Jacobians for curves of type
I and II are isogenous to the product of two elliptic curves over the extension
field which contains a1/4.

Lemma 1 ([12]). Let p be an odd prime and C a hyperelliptic curve defined by
y2 = x5 + ax, a ∈ F×

p and Fq = Fpr , r ≥ 1. If a1/4 ∈ Fq, then JC is isogenous
to the product of the following two elliptic curves E1 and E2 over Fq:

E1 : Y 2 = X(X2 + 4a1/4X − 2a1/2),

E2 : Y 2 = X(X2 − 4a1/4X − 2a1/2).

By the above lemma, we have the following: (1) Jacobian for type I splits over
Fp4 , (2) Jacobian for type II with p ≡ 3 (mod 8) splits over Fp4 , and (3) Jacobian
for type II with p ≡ 1 (mod 8) splits over Fp2 .
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Let C be a pairing-friendly hyperelliptic curve of type I or II with embedding
degree k with respect to ℓ. We write the value 2 log2 p/ log2 ℓ for C as ρ(C). If C
is of type I, or of type II with p ≡ 3 (mod 8), then E1 or E2 is a pairing-friendly
elliptic curve over Fp4 with embedding degree k/4 with ρ = log2 p4/ log2 ℓ =
2ρ(C). If C is of type II with p ≡ 1 (mod 8), then E1 or E2 is a pairing-friendly
elliptic curve over Fp2 with embedding degree k/2 with ρ = log2 p2/ log2 ℓ =
ρ(C).

5 Result of search for pairing-friendly hyperelliptic
curves: the analogue of the Cocks-Pinch method

In Table 1 and Table 2, we show the number of pairing-friendly hyperelliptic
curves of Type I, II for 7 ≤ k ≤ 36 obtained by using our method.

These tables show that we can find many pairing-friendly hyperelliptic curves
with ordinary Jacobians by using our method. All computations have been done
by Mathematica 6 on Mac OS X (1.66GHz Intel Core Duo with 1GB memory).
For each k, the running time of the search is on average 90 seconds in Table 1
and 170 seconds in Table 2, respectively.

k Type I Type II
p ≡ 1 (mod 8) p ≡ 3 (mod 8)

7 47 40 33
8 140 171 165
9 37 31 44
10 31 42 48
11 36 34 35
12 83 69 71
13 44 42 39
14 34 38 40
15 42 43 38
16 149 163 169
17 33 42 46
18 29 39 48
19 32 42 44
20 78 75 81
21 34 29 30

k Type I Type II
p ≡ 1 (mod 8) p ≡ 3 (mod 8)

22 35 50 34
23 64 46 45
24 141 152 124
25 33 47 32
26 43 35 36
27 41 45 31
28 82 90 69
29 31 40 36
30 32 31 30
31 29 26 37
32 143 161 164
33 32 30 35
34 34 36 32
35 50 50 42
36 72 63 80

Table 1. The number of pairing-friendly hyperelliptic curves obtained by the analogue
of the Cocks-Pinch method for ℓ ∈ [2160, 2160 + 220] with |c| < ℓ and |d| < 2ℓ.

Here we show only one example of pairing-friendly hyperelliptic curves of
type I with k = 16 obtained by the analogue of the Cocks-Pinch method. For
examples of other type and other k, see Appendix.
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k Type I Type II
p ≡ 1 (mod 8) p ≡ 3 (mod 8)

7 10 7 11
8 60 55 52
9 16 13 18
10 11 18 21
11 15 18 18
12 26 38 43
13 16 19 12
14 6 13 18
15 16 13 18
16 55 59 81
17 9 16 19
18 14 14 10
19 18 28 26
20 30 27 29
21 15 7 18

k Type I Type II
p ≡ 1 (mod 8) p ≡ 3 (mod 8)

22 15 17 26
23 21 13 17
24 70 67 61
25 21 12 24
26 26 17 12
27 16 13 17
28 34 25 26
29 17 14 10
30 15 13 14
31 6 10 17
32 64 59 47
33 13 11 22
34 14 12 9
35 13 11 13
36 29 40 28

Table 2. The number of pairing-friendly hyperelliptic curves obtained by the analogue
of the Cocks-Pinch method for ℓ ∈ [2256, 2256 + 220] with |c| < ℓ and |d| < 2ℓ.

k =16 (Type I)
ℓ =1461501637330902918203684832716283019655932840529 (161 bits)
α =81844167457893182397317622245688612690934307989
β =195562276567303320541291199692793181706146839127
γ =759224753535341599938962978629340510421546983720
c =44377152517514522371933429191352073808466251009
d =10989841417965341398489085346020251473054265996
p =2210884894346798442145165481525960184900817737075987357833399335\

226916051626079472576037262113 (311 bits)
a =3
#JC(Fp) = 48880120160508541101232277959462765729571682125818741808\

2910733116855655035560868542777327696362024706637568420695212814\
3139938957120301819393955637481342467018816294397128800020723098\
722 (621 bits)

ρ =3.88
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6 Another construction: cyclotomic families

Here we give another construction of pairing-friendly hyperelliptic curves of type
y2 = x5 + ax. It is also based on the formulae given in Theorem 1 (1) and (2),
but it is a hyperelliptic version of cyclotomic families.

Cyclotomic families for the case of elliptic curves have been investigated by
Brezing and Weng [5], Freeman, Scott and Teske [10] and some other researchers.
In a cyclotomic family, a cyclotomic polynomial is used to set a prime ℓ as
ℓ = Φk(t) or ℓ = Φck(t) for some c > 1 where k is the embedding degree and t is
a positive integer. Though a prime ℓ is not taken arbitrarily, cyclotomic families
have an advantage that the ρ-value of obtained curves can be smaller than the
one obtained by the Cocks-Pinch method.

For a hyperelliptic curves of type y2 = x5 +ax, we require the condition that
the embedding degree k is divisible by 8. Assume that the embedding degree k
is divisible by 8 and ℓ−1 is divisible by k. Let α be a primitive kth root of unity
modulo ℓ, β an integer such that β2 ≡ −1 (mod ℓ) and γ an integer such that
γ2 ≡ 2 (mod ℓ). Then we have that β = ±αk/4 and γ = ±

(
αk/8 − α3k/8

)
. Note

that if gcd(k, h) = 1, then αh is also a primitive kth root of unity modulo ℓ.

6.1 A cyclotomic family of type I

From Theorem 2, we have

c =
α + β

βγ + γ
=

(α + β)(βγ − γ)
(βγ + γ)(βγ − γ)

=
α(γ − βγ) + (γ + βγ)

4

d =
αβ + 1
2(β + 1)

=
(αβ + 1)(−β)β(1 − β)

2(1 + β)(1 − β)
=

(α − β)(β + 1)
4

.

Hence we obtain the following for curves of type I:

c =

{
±1

2

(
αh+3k/8 − αk/8

)
when β = αk/4

±1
2

(
αh+k/8 − α3k/8

)
when β = −αk/4

d =

{
±1

4

(
αh − αk/4

) (
αk/4 + 1

)
when β = αk/4

±1
4

(
αh + αk/4

) (
−αk/4 + 1

)
when β = −αk/4

where h is a positive integer such that gcd(k, h) = 1. Here we consider all choices
of primitive kth roots of unity modulo ℓ.

Let c̃i(t) and d̃i(t) for i = 1, 2 be polynomials of minimal degree satisfying
the following conditions:

c̃1(t) ≡ th+3k/8 − tk/8 mod Φk(t)

d̃1(t) ≡
(
th − tk/4

)(
tk/4 + 1

)
mod Φk(t)

c̃2(t) ≡ th+k/8 − t3k/8 mod Φk(t)

d̃2(t) ≡
(
th + tk/4

)(
−tk/4 + 1

)
mod Φk(t).
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Set polynomials p̃i(t) for i = 1, 2 as

p̃i(t) = 2c̃i(t)2 + d̃i(t)2.

Since c = ±c̃i(α)/2 and d = ±d̃i(α)/4, we have

p̃i(α) = 2c̃i(α)2 + d̃i(α)2 = 8(c2 + 2d2) = 8p.

It is necessary for p = c2 + 2d2 being prime with p ≡ 1 (mod 8) and c ≡ 1
(mod 4) that p̃i(x) is irreducible, c̃i(j) ≡ 2 (mod 4) and d̃i(j) ≡ 0 (mod 4) for
some i = 1, 2 and 0 ≤ j ≤ 3.

Searching suitable h which gives polynomials c̃i(t), d̃i(t) and p̃i(t) satisfying
the above condition and ρ < 4, we find the following pairs of (k, h) for k ≤ 96.

k h th (mod Φk(t)) c̃(t) d̃(t) ρ

16 5 t5 −x6 + x7 1 + x + x4 + x5 3.5
16 13 −t5 −x6 − x7 1 − x + x4 − x5 3.5

32 9 t9 −x12 + x13 1 + x + x8 + x9 3.25
32 25 −t9 −x12 − x13 1 − x + x8 − x9 3.25

56 15 t15 −x21 + x22 1 + x + x14 + x15 3.67
56 43 −t15 −x21 − x22 1 − x + x14 − x15 3.67

64 17 t17 −x24 + x25 1 + x + x16 + x17 3.125
64 49 −t17 −x24 − x25 1 − x + x16 − x17 3.125

80 21 t21 −x30 + x31 1 + x + x20 + x21 3.875
80 61 −t21 −x30 − x31 1 − x + x20 − x21 3.875

88 23 t23 −x33 + x34 1 + x + x22 + x23 3.4
88 67 −t23 −x33 − x34 1 − x + x22 − x23 3.4

Table 3. A list of (k, h, th (mod Φk(t)), ρ) which gives the best ρ-value less than 4 for
each k

Here we show examples of pairing-friendly curves for k in Table 3.
For k = 16, the following is found:

h = 5 (th = t5)

c̃2(t) = −t6 + t7

d̃2(t) = 1 + t + t4 + t5

p̃2(t) = 1 + 2t + t2 + 2t4 + 4t5 + 2t6 + t8 + 2t9 + t10 + 2t12 − 4t13 + 2t14

Since Φ16(t) = 1 + t8, it is expected that p ≈ ℓ7/4. Actually, using the above
polynomials we obtain pairing-friendly hyperelliptic curves of type I with p ≈
ℓ7/4 (ρ ≈ 7/2 = 3.5). For example, we obtain the following curve y2 = x5 + ax
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over Fp:

a =161051
t =1051667
ℓ =Φ16(t)/2

=748162569063423099637274524451199719643782405521(160 bits)
p =50609801500369207540345144627565332515009742601634921840696895\

2354388303076095790281
ρ =3.497

For k = 32, the following is found:

h = 9 (th = t9)

c̃2(t) = −t12 + t13

d̃2(t) = 1 + t + t8 + t9

p̃2(t) = 1 + 2t + t2 + 2t8 + 4t9 + 2t10 + t16 + 2t17 + t18 + 2t24 − 4t25 + 2t26

Since Φ32(t) = 1 + t16, it is expected that p ≈ ℓ13/8. Actually, using the above
polynomials we obtain pairing-friendly hyperelliptic curves of type I with p ≈
ℓ13/8 (ρ ≈ 13/4 = 3.25). For example, we obtain the following curve y2 = x5+ax
over Fp:

a =243
t =1491
ℓ =Φ32(t)/2

=298271871767803247714167829477732515100314693637921(168 bits)
p =80867867039944398724351455322470974932398368634743109511244287\

37447877493187018297
ρ =3.246

For k = 56, the following is found:

h = 15 (th = t15)

c̃2(t) = −t21 + t22

d̃2(t) = 1 + t + t14 + t15

p̃2(t) = 1 + 2t + t2 + 2t14 + 4t15 + 2t16 + t28 + 2t29 + t30 + 2t42 − 4t43 + 2t44

Since Φ56(t) = 1 − t4 + t8 − t12 + t16 − t20 + t24, it is expected that p ≈ ℓ11/6.
Actually, using the above polynomials we obtain pairing-friendly hyperelliptic
curves of type I with p ≈ ℓ11/6 (ρ ≈ 11/3 = 3.667). For example, we obtain the
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following curve y2 = x5 + ax over Fp:

a =16807
t =17783
ℓ =Φ56(t)

=10002779230686568658271891198740139916691391002533265730688161\
69982687153678515599218400393930598555361(339 bits)

p =25009926587955740652430711168299461474477487005330814448266309\
21859994292374132881840001627580847758991403586307212832793884\
593036831026874212168508718320085925724310352568705063914008009

ρ =3.655

For k = 64, the following is found:

h = 17 (th = t17)

c̃2(t) = −t24 + t25

d̃2(t) = 1 + t + t16 + t17

p̃2(t) = 1 + 2t + t2 + 2t16 + 4t17 + 2t18 + t32 + 2t33 + t34 + 2t48 − 4t49 + 2t50

Since Φ64(t) = 1 + t32, it is expected that p ≈ ℓ25/16. Actually, using the above
polynomials we obtain pairing-friendly hyperelliptic curves of type I with p ≈
ℓ25/16 (ρ ≈ 25/8 = 3.125). For example, we obtain the following curve y2 =
x5 + ax over Fp:

a =7
t =527
ℓ =Φ32(t)/2

=62648357772543703301005438973620924004221846867043603752647141\
1841278385528854236092161(289 bits)

p =30677575045546872361962043882902056514095176791575855579833087\
82578378747763956641725522035763587621193146183433232810845021\
729737057201

ρ =3.122

For k = 80, the following is found:

h = 61 (th ≡ −t21 mod Φ80(t))

c̃2(t) = −t30 − t31

d̃2(t) = 1 − t + t20 − t21

p̃2(t) = 1 − 2t + t2 + 2t20 − 4t21 + 2t22 + t40 − 2t41 + t42 + 2t60 + 4t61 + 2t62
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Since Φ80(t) = 1 − t8 + t16 − t24 + t32, it is expected that p ≈ ℓ31/16. Actually,
using the above polynomials we obtain pairing-friendly hyperelliptic curves of
type I with p ≈ ℓ31/16 (ρ ≈ 31/8 = 3.875). For example, we obtain the following
curve y2 = x5 + ax over Fp:

a =3
t =5921
ℓ =Φ80(t)

=52076519965325235906078154544654476627688522014624136085231189\
95835873073892609505663600513142013994178583633631762731521
(402 bits)

p =19345523199151679271682235175459341329082595235620711463245427\
05469079909207934329770211444887059634614931641804025676952280\
69843534955787163283893883369970172935464105827397521204178068\
951851135706224480242884499312400755231373077921

ρ =3.865

For k = 88, the following is found:

h = 23 (th = t23)

c̃2(t) = −t33 + t34

d̃2(t) = 1 + t + t22 + t23

p̃2(t) = 1 + 2t + t2 + 2t22 + 4t23 + 2t24 + t44 + 2t45 + t46 + 2t66 − 4t67 + 2t68

Since Φ88(t) = 1− t4 + t8− t12 + t16− t20 + t24− t28 + t32− t36 + t40, it is expected
that p ≈ ℓ17/10. Actually, using the above polynomials we obtain pairing-friendly
hyperelliptic curves of type I with p ≈ ℓ17/10 (ρ ≈ 3.4). For example, we obtain
the following curve:

a =3
t =199
ℓ =Φ88(t)

=89975248773375980287736899780373775482536205530620741366421495\
054732082932077802106417196001(306 bits)

p =51948550275340748307649331008646861056632332831993137655971404\
20748796756622875142195206065076104982161233197234965880387214\
42241963134109531978004228456601

ρ =3.387

For some k, there is no h for which the necessary condition on the polynomials
p̃(t), c̃i(t) and d̃i(t) is satisfied. In such case, changing a choice of polynomials
c̃i(t) and d̃i(t), we might obtain h for which the necessary condition is satisfied.
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For example, when k = 8, taking a polynomial d̃i(t) without modulo Φk(t), we
obtain the following with h = 1 (th = t) which gives ρ ≈ 4:

c̃1(t) = 1 + t, d̃1(t) = (t − t2)(1 + t2),

p̃1(t) = 2 + 4t + 3t2 − 2t3 + 3t4 − 4t5 + 3t6 − 2t7 + t8.

Since Φ8(t) = 1 + t4, it is expected that p ≈ ℓ2. Using the above polynomials we
obtain pairing-friendly hyperelliptic curves of type I with p ≈ ℓ2 (ρ ≈ 4) when t
is odd and ℓ = Φ8(t)/2. We show an example of such curves:

a =13
t =1099511628193
ℓ =Φ8(t)/2 = 730750819774027608217118960060276298985251336001(160 bits)
p =26699838029972102220848505267856400207807895259155218981981072088\

0440889507772121638755455925409
ρ =3.987.

6.2 A cyclotomic family of type II

From Theorem 3, we have

c =
β(α − 1)

2
, d =

α + 1
2γ

=
γ(α + 1)

4
.

Hence we obtain the following for curves of type II:

c = ±
αk/4

(
αh − 1

)
2

, d = ±
(
αk/8 − α3k/8

) (
αh + 1

)
4

.

Let c̃(t) and d̃(t) be polynomials of minimal degree satisfying

c̃(t) ≡ tk/4
(
th − 1

)
mod Φk(t)

d̃(t) ≡
(
tk/8 − t3k/8

) (
th + 1

)
mod Φk(t).

As in Section 6.1, set a polynomial p̃(t) as p̃(t) = 2c̃(t)2+d̃(t)2. Since c = ±c̃(α)/2
and d = ±d̃(α)/4, we have

p̃(α) = 2c̃(α)2 + d̃(α)2 = 8(c2 + 2d2) = 8p.

It is necessary for p = c2 + 2d2 being prime with p ≡ 1, 3 (mod 8) and c ≡ 1
(mod 4) that p̃(x) is irreducible, c̃(j) ≡ 2 (mod 4) and d̃(j) ≡ 0 (mod 4) for
0 ≤ j ≤ 3.

Searching suitable h which gives polynomials c̃(t), d̃(t) and p̃(t) satisfying
the above condition and ρ < 4, we find (k, h) = (24, 11), (24, 23). Here we show
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the detail only for (k, h) = (24, 11):

h = 11, th ≡ −t3 + t7 (mod Φ24(t)),

c̃(t) = −t5 − t6, d̃(t) = −1 + t − t2 + t3 + t4 − t5,

p̃(t) = 1 − 2t + 3t2 − 4t3 + t4 + 2t5 − 3t6 + 4t7 − t8 − 2t9 + 3t10 + 4t11 + 2t12.

Since Φ24(t) = 1 − t4 + t8, it is expected that p ≈ ℓ3/2. Actually, using the
above polynomials we obtain pairing-friendly hyperelliptic curves of type I with
p ≈ ℓ3/2 (ρ ≈ 3). For example, we obtain the following curves.

a =2
t =1049085
ℓ =Φ24(t) = 1467186828927128936514540199634172027208104690001(161 bits)
p =4442924836378410825984100156654939780832773854842227112675716008\

30352907 (p ≡ 3 mod 8)
ρ =2.975.

a =4
t =1053485
ℓ =Φ24(t) = 1517144162644737377755036951800847708319310090001(161 bits)
p =4671766292298283353152675913306924035112456269114411777886815868\

14707307 (p ≡ 1 mod 8)
ρ =2.975.

7 Conclusion

In this paper, we present the analogue of the Cocks-Pinch method and the cy-
clotomic method by which we can construct pairing-friendly hyperelliptic curves
of type y2 = x5 +ax with ordinary Jacobians for a prescribed embedding degree.
These methods produce pairing-friendly hyperelliptic curves with small ρ-values.
More precisely, we obtain pairing-friendly hyperelliptic curves with ρ ≈ 4 for ar-
bitrary embedding degree by using the analogue of the Cocks-Pinch method and
with 3 ≤ ρ ≤ 4 by using the cyclotomic method.

Constructing pairing-friendly ordinary abelian varieties of higher dimension
with smaller ρ-values are still in progress. The current best ρ-values are still
large compared with elliptic curves. Thus the problem is still open.
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Appendix. Examples of pairing-friendly hyperelliptic curves obtained
by using the analogue of the Cocks-Pinch method

Here we show examples of pairing-friendly hyperelliptic curves obtained by
the analogue of the Cocks-Pinch method.

k =24 (Type I)
ℓ =1461501637330902918203684832716283019655932607833 (161 bits)
p =1847897864407894552288699809460676006668888779550356111198433454\

9731951205842130479887529417649
a =243
ρ =3.914

k =16 (Type I)
ℓ =1157920892373161954235709850086879078532699846656405640394575840\

07913130160457 (257 bits)
p =1481146215498410360424614463856750745944411770248019012076220169\

0729222878658709908471226638555684580055423116081360950900530695\
87696153814135255331126169

a =7
ρ =3.975

k =16 (Type II, p ≡ 1 (mod 8))
ℓ =1461501637330902918203684832716283019655932635041 (161 bits)
p =6013300217687864234648174070831976672330956639931526918110147404\

9963901888492617076533975837497
a =9
ρ =3.936
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k =24 (Type II, p ≡ 1 (mod 8))
ℓ =1461501637330902918203684832716283019655932813801 (161 bits)
p =1945992921649431050030944328023755332187909583017341439791018990\

6700500204899677291876916119281
a =9
ρ =3.915

k =16 (Type II, p ≡ 3 (mod 8))
ℓ =1461501637330902918203684832716283019655933261329 (161 bits)
p =1225507417189915284657440942525236908784564653725351434657747928\

37343107125446145071475078040659
a =2
ρ =3.948

k =24 (Type II, p ≡ 3 (mod 8))
ℓ =1461501637330902918203684832716283019655933525833 (161 bits)
p =3894921442880306450940944469945239562304223637639147861767317233\

80254731344235351367437807800939
a =2
ρ =3.969


