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Abstract. Consider an abstract storage device Σ(G) that can hold a single element x from a �xed, publicly known
�nite group G. Storage is private in the sense that an adversary does not have read access to Σ(G) at all. However,
Σ(G) is non-robust in the sense that the adversary can modify its contents by adding some offset ∆ ∈ G. Due to the
privacy of the storage device, the value ∆ can only depend on an adversary's a priori knowledge of x. We introduce
a new primitive called an algebraic manipulation detection (AMD) code, which encodes a source s into a value x
stored on Σ(G) so that any tampering by an adversary will be detected, except with a small error probability δ. We
give a nearly optimal construction of AMD codes, which can �exibly accommodate arbitrary choices for the length
of the source s and security level δ. We use this construction in two applications:

� We show how to ef�ciently convert any linear secret sharing scheme into a robust secret sharing scheme, which
ensures that no unquali�ed subset of players can modify their shares and cause the reconstruction of some value
s′ 6= s.

� We show how how to build nearly optimal robust fuzzy extractors for several natural metrics. Robust fuzzy ex-
tractors enable one to reliably extract and later recover random keys from noisy and non-uniform secrets, such
as biometrics, by relying only on non-robust public storage. In the past, such constructions were known only
in the random oracle model, or required the entropy rate of the secret to be greater than half. Our construction
relies on a randomly chosen common reference string (CRS) available to all parties.

1 Introduction

We consider an abstract storage device Σ(G) that can hold a single element x from a �xed, publicly known
�nite (additive) group G. Storage is private in the sense that an adversary does not have read access to Σ(G)
at all. However, Σ(G) allows tampering in the sense that an adversary may manipulate the stored value x
by adding some offset ∆ ∈ G of his choice. As a result, Σ(G) stores the element x + ∆ ∈ G. Due to the
privacy of the storage device, the value ∆ can only depend on an adversary's a priori knowledge of x. For
instance, one-time-pad encryption can be understood as such a storage device: it hides the message perfectly,
but an adversary can add (bitwise-xor) a string to the message without being detected. Of course, by itself,
this example is not very interesting, since it requires some additional private and tamper-proof storage for
the one-time pad key. 5 However, in the two applications discussed below, no other private or tamper-proof
storage is available and hence we will need to use Σ(G) alone to achieve authenticity.

5 For example, by using a slightly longer secret key containing a key to a one-time MAC in addition to the one-time-pad key, one
can trivially add authentication to this application.



1.1 Linear Secret Sharing Schemes

In a linear secret sharing scheme (e.g. Shamir's secret sharing [26] and many others) a secret s is distributed
among n players so that each player gets some algebraic share of the secret. Any quali�ed subset of the
players can pool their shares together and recover s by means of a linear transformation over the appropriate
domain while any unquali�ed subset gets no information about s. Unfortunately, the correctness of the
recovery procedure is guaranteed only if all the shares are correct. In particular, if a quali�ed subset of the
players pools their shares for reconstruction, but the honest players among them form an unquali�ed set,
then the dishonest players (possibly just one!) can cause the reconstruction of a modi�ed secret. Moreover,
the difference between the correct secret s and the reconstructed secret s′ is controlled by the corrupted
players, due to the linearity of the scheme. Luckily, this is �all� that the corrupted players can do: (1) by
the privacy of the secret sharing scheme, the noise introduced by the corrupted players can only depend on
their prior knowledge of the secret and (2) by the linearity of the secret sharing scheme, for any attempted
modi�cation of their shares, the corrupted players must �know� the additive difference between s and s′. In
essence, a linear secret sharing scheme of s can be viewed as storing s on our abstract device Σ(G).

To deal with this problem, we introduce the notion of an algebraic manipulation detection (AMD) code.
This is a probabilistic encoding of a source s from a given set S as an element of the group G, with unique
decodability. The security of the code ensures that, when the encoding is stored in Σ(G), any manipulation
of contents by an adversary will be detected except with a small error probability δ. The guarantee holds
even if the adversary has full a priori knowledge of the source state s. No secret keys are required since we
rely on the privacy of Σ(G) instead.

Using an AMD code, we can turn any linear secret sharing scheme into a robust secret sharing scheme [28],
which ensures that no unquali�ed subset of players can modify their shares and cause the reconstruction of
some value s′ 6= s. The transformation is very simple: apply the linear secret sharing scheme to the encoding
of s rather than s itself.

In terms of parameters, we obtain robust secret sharing schemes which are nearly as ef�cient as their
non-robust counterparts, since the overhead added by encoding a source will be very small. More precisely,
to achieve security 2−κ, we build an AMD code where the length of the encoding of a u-bit value s is only
2κ + O(log(u/κ)) bits longer than the length of s. This construction is close to optimal since we prove a
lower bound of 2κ on the amount of overhead that an AMD encoding must add to the size of the source. As
a concrete example, in order to robustly secret share a 1 megabyte message with security level δ = 2−128,
our best construction adds fewer than 300 bits by encoding the message, whereas previous constructions
(described below) add nearly 2 megabytes.

Relation to Prior Work on Secret Sharing. Although AMD codes were never formally de�ned in previous
work, some constructions of AMD codes have appeared, mostly in connection with making secret sharing
robust [20, 7, 21]. Although some of these constructions are essentially optimal, all of them are largely
in�exible in that the error probability δ is dictated by the cardinality of the source space S: δ ≈ 1/|S|.
In particular, this implies that when the cardinality of S is large, the known constructions may introduce
signi�cantly more overhead than what is needed to achieve a particular security threshold. In contrast, our
constructions can accommodate arbitrary choices of security δ and message length u.

For example, Cabello, Padró and Sáez [7] (see also [23, 22]) proposed an elegant construction of a robust
secret sharing scheme which implicitly relies on the following AMD code. For any �nite �eld F of order q,
the encoding of the secret s ∈ F is a triple (s, x, x · s), where x ∈R F. This code achieves security δ = 1/q
and optimal message overhead 2 log(q) = 2 log(1/δ) for this value of δ. However, as already mentioned,
it is far from optimal when we only desire a security level δ À 1/q, making this construction in�exible
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for many applications. Similarly, Ogata and Kurosawa [20] proposed an in�exible construction of a weakly
robust secret sharing scheme (the scheme is robust only if the shared secret is uniformly random) that
implicitly de�nes what we call a weak AMD code. We describe this construction and argue its in�exibility
in Appendix C.3. In Appendix D, we also show a natural generic transformation of weak AMD codes
to (ordinary �strong�) AMD codes, observing that such a transformation can never achieve the optimal
overhead (nearly) achieved by our direct construction. AMD codes are also very useful for several other
related applications. Indeed, in Section 3 we point their applications to robust information dispersal, secure
private storage and anonymous message transmission.

In the context of robust secret sharing, the in�exibility issue mentioned above has recently been ad-
dressed in a paper by Obana and Araki [19], where a �exible robust secret sharing scheme (in fact, an
AMD code in our terminology) was proposed and claimed to be �proven� secure. However, as we discuss in
Appendix B, the proposed robust secret sharing scheme (respectively AMD code) is completely insecure.

1.2 Fuzzy Extractors

A less obvious example comes from the domain of fuzzy extractors [10]. A fuzzy extractor extracts a uni-
formly random key R from some non-uniform secret w (e.g., biometric data) in such a way that this key
can be recovered from any w′ suf�ciently close to w in some appropriate metric space.6 To accomplish this
task, the fuzzy extractor also computes a public helper string P in addition to the extracted key R, and then
recovers R using w′ and P . Unfortunately, the original notion of a fuzzy extractor critically depends on the
value of P being stored on a tamper-proof (though public) device. As observed by Boyen et al. [6, 5], this
severely limits the usability of the concept. To address this problem, [6, 5] introduced a stronger notion of
a robust fuzzy extractor, where any tampering of P will be detected by the user, even with an imperfect
reading w′ of w! Thus, P can be stored on a potentially untrusted server without the fear that a wrong key
R̃ 6= R will be extracted.

Before describing the new and prior results on robust fuzzy extractors, let us give some intuition on how
this setting is related to our abstract storage device. As we will show (extending the previous observation of
[11]), for �appropriately designed� (non-robust) fuzzy extractors, the effect of modifying the helper string
P into P̃ can be essentially subsumed by giving the attacker the ability to control the difference between the
original key R extracted from w, and the �defective� key R̃ extracted from w′ and P̃ . Thus, on a very high
level, storing the public helper P on a public and unprotected storage can be viewed as implicitly storing
the extracted key R on a device Σ(G) that ensures privacy but allows tampering.

Unfortunately, in this application one does not have the freedom of storing some encoding of R on
Σ({0, 1}u), so AMD codes are not directly applicable. Instead, we introduce a related notion called a (one-
time) message authentication code with key manipulation security (KMS-MAC). Abstractly, this authentica-
tion code is keyed by a random element of some �nite group G, and remains secure even if the key is stored
in Σ(G). The message and the authentication tag can be stored in insecure storage that is neither private
nor tamper-proof. The adversary, who gets to see one valid message/tag pair and modify the key stored on
Σ(G), will be unable to produce an alternative message/tag pair that veri�es under the modi�ed key, except
with some small error probability δ. We show how to construct KMS-MACs using appropriate AMD codes.
Combined with our nearly optimal AMD construction, we get KMS-MACs that essentially achieve the same
parameters as ordinary (one-time) MACs: to authenticate an u-bit message with substitution security 2−κ,
one uses a key of size 2κ +O(log(u/κ)) and a tag of size κ +O(log(u/κ)).

6 For now and much of the paper, we will concentrate on the Hamming space over {0, 1}n, later pointing out how to extend our
results to related metrics.
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We use KMS-MACs to add robustness to fuzzy extractors. As we mentioned, the public helper P is
stored on a public unprotected storage and we can think of the extracted key R as being stored in Σ({0, 1}u).
Surprisingly, we can use the key R (which is derived from P ) to authenticate P itself! The idea is to split
the extracted key R into two parts Rmac and Rout. The �long� Rout will be the new extracted key, while the
�short� Rmac will be sacri�ced and used as the key to the KMS-MAC applied to the original helper string
P (so that the new helper string will contain P and the tag). An adversary that replaces P with P ′ implicitly
adds a known offset to Rmac but, by the security of the KMS-MAC, is then unable to compute a valid tag for
P ′ under the modi�ed key. As a result, for the �rst time, we obtain robust fuzzy extractors for the Hamming
(and related) metrics, which do not rely on random oracles (or other computational assumptions) and achieve
nearly the same optimal parameters as their non-robust counterparts. However, as we explain shortly, this
result is obtained in the Common Reference String model. Indeed, a setup assumption is necessary as our
result breaks the impossibility result of [12] for the plain model.

Relation to Prior Work on Fuzzy Extractors. In their original paper, Dodis et al. [10] gave several nearly
optimal constructions for (non-robust) fuzzy extractors for the Hamming and several other metrics. Boyen
et al. [5] gave a generic transformation which makes a fuzzy extractor robust in the random oracle model,
without considerably sacri�cing any of the parameters. Unfortunately, in the plain model Dodis et al. [11]
showed that robustness can only be achieved if the initial secret w contains an entropy rate of at least one
half (i.e. the entropy of the secret is at least half the length of the secret). In fact, this holds even if no errors
are allowed [12] (i.e., w = w′). Moreover, even when the secret does meet this threshold, robustness is only
achieved at a large cost in the length of the extracted random key, as compared to the optimal non-robust
extractors for the same entropy threshold.

In this work we overcome this pessimistic state of affairs by building robust fuzzy extractors in the
Common Reference String (CRS) model. The common reference string can be chosen once when the system
is designed and can be hardwired/hardcoded into all hardware/software implementing the system. Moreover,
the CRS can be published publicly and we allow the attacker to observe (but not modify) it.7 Our CRS is a
random bitstring - it has no trapdoors and we do not require any ability to �program� it. Since most users do
not create their own hardware/software but instead assume that a third party implementation is correct, the
assumption that this implementation also contains an honestly generated random string does not signi�cantly
increase the amount of trust required from users. We do assume that the probability distribution from which
the secret w is chosen is independent of the CRS. This is a very natural assumption for biometrics and many
other scenarios. However, it also means that our scheme is not applicable in the setting of exposure resilient
cryptography (see [9]) where the attacker can learn some function of the secret after seeing the CRS.

What our result shows, however, is that this seemingly minor addition not only allows us to achieve
robustness without additional restrictions on the entropy rate of the secret, but also to nearly match the
extracted key length of non-robust fuzzy extractor constructions (or the robust fuzzy extractor constructions
in the random oracle model [5]).

On a technical level, it is also interesting to compare our model and techniques with those of Dodis et al.
[11], who built robust fuzzy extractors in the plain model (with the necessarily poor parameters mentioned
above). The work of [11] could be viewed (in our language) as reducing the question of building robust fuzzy
extractors to that of using the the original secret w stored in Σ(G), for authentication purposes. In partic-
ular, the authors had to build a message authentication code (in fact, one secure against key manipulation

7 We remark that assuming tamper-proof storage of the CRS, which can be shared by many users, is very different than assuming
tamper-proof storage of a �user-speci�c� helper string P . Indeed, the former can be hardwired into the system, and the latter can
not.
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attacks) using the non-uniform string w as the key. Authentication codes keyed by non-uniform randomness
imply non-trivial parameter degradation in the plain model [12] and all the (necessary) inef�ciencies of [11]
followed from this fact. In contrast, the addition of the CRS reduces the question of building robust fuzzy
extractors to that of using uniformly random extracted randomness R, stored on Σ(G), for authentication
purposes (this implication is non-trivial and forms one of the contributions of this work). As a consequence,
we can use much more ef�cient KMS-MACs relying on uniformly random secret keys and, therefore, obtain
nearly optimal robust fuzzy extractors in the CRS model.

2 Algebraic Manipulation Detection Codes
De�nition 1. An (S,G, δ)-algebraic manipulation detection code, or (S,G, δ)-AMD code for short, is a
probabilistic encoding map E : S → G from a set S of size S into an (additive) group G of order G, together
with a (deterministic) decoding function D : G → S∪{⊥} such that D(E(s)) = s with probability 1 for any
s ∈ S. The security of an AMD code requires that for any s ∈ S, ∆ ∈ G, Pr[D(E(s) + ∆) 6∈ {s,⊥}] ≤ δ.

An AMD code is called systematic if S is a group, and the encoding is of the form
E : S → S × G1 × G2, s 7→ (s, x, f(x, s))

for some function f and x ∈R G1. The decoding function of a systematic AMD code is naturally given by
D(s′, x′, σ′) = s′ if σ′ = f(x′, s′) and ⊥ otherwise.
Intuitively, E(s) can safely be stored on a private storage device Σ(G) so that an adversary who manipulates
the stored value by adding an offset ∆, cannot cause it to decode to some s′ 6= s. It is also possible to de�ne
a weak AMD code where security only holds for a random s ∈ S rather than an arbitrary one. We focus of
regular (strong) AMD codes and mention some constructions and applications of weak AMD codes in the
appendices.

From a practical perspective, it is typically not suf�cient to have one particular code, but rather one
would like to have a class of codes at hand such that for every choice u for the bit-length of the source s and
for every choice κ of the security level, there exists a code that ��ts� these parameters. This motivates the
following de�nition:
De�nition 2. An AMD code family is a class of AMD codes such that for any κ, u ∈ N there exists an
(S,G, δ)-AMD code in that class with S ≥ 2u and δ ≤ 2−κ.
We point out that in this de�nition, the group G can be different for every AMD code in the family and is
left unspeci�ed. In our constructions the group G will often be the additive group of the vector space Fd for
some �eld F. Speci�cally, we will often focus on the �eld F2d (as an additive group, this is equivalent to Fd

2)
so addition (and subtraction) is just bitwise-xor of d bit long strings.

We would like the construction of an AMD code to be close to optimal in that G should not be much
larger than S . We consider the tag size $ of a (S, G, δ)-AMD code de�ned as $ = log(G) − log(S).
Intuitively, this denotes the number of bits that the AMD code appends to the source. More generally we
de�ne the ef�ciency of an AMD code family as follows.
De�nition 3. The effective tag size $∗(κ, u) with respect to κ, u ∈ N of an AMD code family is de�ned
as $∗(κ, u) = min{log(G)} − u where the minimum is over all (S, G, δ)-AMD codes in that class with
S ≥ 2u and δ ≤ 2−κ.
In Appendix A, we prove the following lower bound on the effective tag size of an AMD code family.
Theorem 1. Any AMD code family has an affective tag size lower bounded by $∗(κ, u) ≥ 2κ− 2−u+1 ≥
2κ− 1.
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2.1 Optimal and Flexible Construction

We are now ready to present a construction of AMD codes which is both optimal and �exible. As noted in
the introduction, a similar, but more complicated construction appeared in [11], though it was presented as
part of a larger construction, and its properties were not stated explicitly as a stand-alone primitive. The two
constructions were discovered concurrently and independently from each other.

Let F be a �eld of size q and characteristic p, and let d be any integer such that d + 2 is not divisible by
p. De�ne the function E : Fd → Fd × F× F by E(s) = (s, x, f(x, s)) where

f(x, s) = xd+2 +
d∑

i=1

six
i

Theorem 2. The given construction is a systematic (qd, qd+2, (d + 1)/q)-AMD code with tag size $ =
2 log q.

Proof. We wish to show that for any s ∈ F and ∆ ∈ Fd+2: Pr[D(E(s) + ∆) 6∈ {s,⊥}] ≤ δ. It is enough to
show that for any s′ 6= s and any ∆x,∆f ∈ F: Pr[f(x, s) + ∆f = f(x + ∆x, s′)] ≤ δ. Hence we consider
the event

xd+2 +
d∑

i=1

six
i + ∆f = (x + ∆x)d+2 +

d∑

i=1

s′i(x + ∆x)i (1)

We rewrite the right hand side of (1) as xd+2 +(d+2)∆xxd+1 +
∑d

i=1 s′ix
i +∆x ·p(x), where p(x) is some

polynomial of degree at most d in x. Subtracting this term from both sides of equation (1), xd+2 cancels out
and we get

−(d + 2)∆xxd+1 +
d∑

i=1

(si − s′i)x
i −∆x · p(x) + ∆f = 0 (2)

We claim that the left side of equation 2 is a non-zero polynomial of degree at most d + 1. To see this,
let us consider two cases:

1. If ∆x 6= 0, then the leading coef�cient is−(d+2)∆x 6= 0 (here we use the fact that d+2 is not divisible
by the characteristic of the �eld).

2. If ∆x = 0, then (2) simpli�es to
∑d

i=1(si − s′i)x
i + ∆f = 0, which is not identically zero since we

assumed that s 6= s′.

This shows that (2) has at most d + 1 solutions x. Let B be the set of such solutions so |B| ≤ d + 1. Then

Pr[D(E(s) + ∆) 6∈ {s,⊥}] = Pr
x←F

[x ∈ B] ≤ d + 1
q

ut
Notice, the elements of the range group G = Fd × F× F can be conveniently viewed as elements of Zt

p, for
some t (recall, p is the characteristic of F). Thus, addition in G simply corresponds to element-wise addition
modulo p. When p = 2, this simply becomes the XOR operation.

Quantifying the above construction over all �elds F and all values of d (such that d + 2 is not divisible
by p), we get a very �exible AMD family. Indeed, we show that the effective tag size of the family is nearly
optimal.
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Corollary 1. The effective tag size of the AMD code family is $∗(κ, u) ≤ 2κ+2 log(u
κ +3)+2. Moreover,

this can be achieved with the range group G being the group of bitstrings under the bitwise-xor operation.8

Proof. For a given κ and u, choose d and q as follows: let d be the smallest positive odd integer such that
u ≤ d(κ + log(d + 1)), and choose q = 2dκ+log(d+1)e. Note that d + 2 is not divisible by 2, which is the
characteristic of Fq. Furthermore u ≤ d log(q), and thus we can restrict the source space Fd, viewed as
{0, 1}d log(q), to the subset S = {0, 1}u and the range Fd × F × F to the subgroup G = S × F × F. The
resulting (S, G, δ)-AMD code �ts κ and u in that S ≥ 2u and δ = (d + 1)/q ≤ 2−κ. The effective tag size
is given by:

log(G)− u = log(|S × F× F|)− u = 2 log(q) ≤ 2κ + 2 log(d + 1) + 2
≤ 2κ + 2 log(u

κ + 3) + 2 .

Thus $∗(κ, u) ≤ 2κ + 2 log(u
κ + 3) + 2. ut

3 Application to Robust Secret Sharing

A secret sharing scheme is given by two probabilistic functions. The function Share maps a secret s from
some group G to a vector S = (S1, . . . , Sn) where the shares Si are in some group Gi. The function Recover
takes as input a vector of shares S̃ = (S̃1, . . . , S̃n) where S̃i ∈ Gi ∪ {⊥} and outputs s̃ ∈ G ∪ {⊥}. A secret
sharing schemes is de�ned over some monotone access structure which maps subsets B ⊆ {1, . . . , n} to
a status: qualified,unqualified,⊥. The correctness property of such a scheme states that for any
s ∈ G and any quali�ed set B, the following is true with probability 1. If S ← Share(s) and S̃ is de�ned to
be S̃i = Si for each i ∈ B and S̃i = ⊥ for each i 6∈ B, then Recover(S̃) = s. Similarly, the privacy of such
a scheme states that for any unquali�ed subset A, the shares {Si}i∈A reveal no information about the secret
s (this is formalized using standard indistinguishability).

Thus, quali�ed sets of players can recover the secret from their pooled shares, while unquali�ed subsets
learn no information about the secret. Sets of players which are neither quali�ed nor unquali�ed might not
be able to recover the secret in full but might gain some partial information about its value.

A linear secret sharing scheme has the property that the Recover function is linear: given any s ∈ G,
any S ∈ Share(s), and any vector S′ (possibly containing some ⊥ symbols), we have Recover(S + S′) =
s + Recover(S′), where vector addition is de�ned element-wise and addition with ⊥ is de�ned by ⊥+ x =
x +⊥ = ⊥ for all x.

Examples of linear secret sharing schemes include Shamir's secret sharing scheme [26] where the access
structure is simply a threshold on the number of players, or a scheme for a general access structure in [16].

We consider a setting where an honest dealer uses a secret sharing scheme to share some secret s among
n players. Later, an outside entity called the reconstructor contacts some quali�ed subset B of the players,
collects their shares and reconstructs the secret. The security of the scheme ensures that, as long as the set
A ⊆ B of players corrupted by an adversary is unquali�ed, the adversary gets no information about the
shared secret. However, if the honest players B\A also form an unquali�ed subset, then the adversary can
enforce the reconstruction of an incorrect secret by handing in incorrect shares. In fact, if the reconstructor
contacts a minimal quali�ed subset of the players, then even a single corrupted player can cause the recon-
struction of an incorrect secret. Robust secret sharing schemes (de�ned in [28, 4]) ensure that such attacks

8 We can also imagine situations where the �base� �eld F′ of some characteristic p is given to us, and our freedom is in choosing
the extension �eld F and the appropriate value of d so that S can be embedded into Fd. Under such restrictions, the effective tag
size becomes roughly 2κ + 2 log(u) + O(log p).
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can't succeed: as long as the adversary corrupts only an unquali�ed subset of the players, the reconstructor
will never recover a modi�ed version of the secret.

De�nition 4. A secret sharing scheme is δ-robust if for any unbounded adversary A who corrupts an un-
quali�ed set of players A ⊆ {1, . . . , n} and any s ∈ G, we have the following. Let S ← Share(s) and S̃ be
a value such that, for each 1 ≤ i ≤ n,

S̃i =
{A(i, s, {Si}i∈A) if i ∈ A

Si or ⊥ if i 6∈ A

Then Pr[Recover(S̃) 6∈ {s,⊥}] ≤ δ.

We note that in a (non-robust) linear secret sharing scheme, when the adversary modi�es shares by
setting S̃i = Si + ∆i then, by linearity of the scheme, the adversary also knows the difference ∆ = s̃ − s
between the reconstructed secret s̃ and the shared secret s. This implies that we can think of s as being stored
in an abstract storage device Σ(G), which is private for an adversary who corrupts an unquali�ed subset of
the players, yet is not-robust in that the adversary can specify additive offsets so that Σ(G) stores s + ∆.
This immediately implies that we can turn any linear secret sharing scheme into an δ-robust secret sharing
scheme using AMD codes.

Theorem 3. Let (Share, Recover) denote a linear secret sharing scheme with domain G of order G, and let
(E , D) be an (S, G, δ)-AMD code with range G. Then the scheme (Share∗,Recover∗) given by Share∗(s) =
Share(E(s)), Recover∗(S̃) = D(Recover(S̃)) is an δ-robust secret sharing scheme.

Proof. Let S = Share∗(S) and let S̃ be a vector meeting the requirements of Def. 4. Let S′ = S̃ − S. The
vector S′ contains 0 for honest players, ⊥ for absent players, and arbitrary values for dishonest players. We
have:

Pr[Recover∗(S̃) 6∈ {s,⊥}] = Pr[D(Recover(S) + Recover(S′)) 6∈ {s,⊥}]
= Pr[D(E(s) + ∆) 6∈ {s,⊥}]

where the value ∆ = Recover(S′) is determined by the adversarial strategy A. By the privacy of the secret
sharing scheme, it is only based on the adversary's a-priori knowledge of the shared secret and is otherwise
independent of the value E(s). The conclusion then follows immediately from the de�nition of AMD codes.

ut

For Shamir secret sharing (and similar schemes), where the group G can be an arbitrary �eld of size q ≥ n,
we can use the optimal and �exible AMD code construction from Section 2.1. In doing so, each player's
share would increase by roughly 2 log(1/δ)+2 log u bits (where u in the length of the message) as compared
to the non-robust case.
ROBUST INFORMATION DISPERSAL. Systematic AMD codes have an additional bene�t in that the encod-
ing leaves the original value s intact. This could be bene�cial in the scenario where players do not care about
the privacy of s, but only about its authenticity. In other words, it is safe to use information dispersal on s
or, alternatively, s can be stored in some public non-robust storage. Using a systematic AMD code which
maps s to (s, x, f(x, s)), the players can just secret share the authentication information (x, f(x, s)) and
use it later to authenticate s. As long as the corrupted players form an unquali�ed set, the authentication
information (x, f(x, s)) remains private and hence an adversary who changes s to s′ (and trivially knows
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the offset ∆s = s − s′) still cannot come up with an offset to (x, f(x, s)) so that it authenticates s′ in-
stead of s. The value s might be very large but the authentication information (x, f(x, s)) remains relatively
small, and hence secret sharing only the authentication information (rather than the entire encoding) gives
us signi�cant gains in ef�ciency. Concretely, to authenticate an u-bit secret s, we only need to secret share
roughly 2(log(1/δ) + log u) bits.
SECURE AND PRIVATE STORAGE / SECURE MESSAGE TRANSMISSION. Consider again the problem of
reconstructing a shared secret in the presence of faulty shares. However, now the goal is not only to prevent
the reconstruction of an incorrect secret by detecting foul play, but to ensure that reconstruction always suc-
ceeds in producing the correct secret (except with small probability). In other words we do not want to allow
the option of reconstructing ⊥. We still assume the dealer to be honest and that reconstruction is towards
one player. However, now we additionally assume that among the players participating in reconstruction, the
honest players form a quali�ed set. The dishonest players are still assumed to form an unquali�ed set. This
problem is known under the name (unconditional) secure information dispersal [24, 17] or non-interactive
secure message transmission [14, 13]. There is a generic, though for large player sets computationally inef-
�cient, construction based on a robust secret sharing [8]: for every quali�ed subset of the involved players,
invoke the robust reconstruction until for one set of shares no foul play is detected and a secret is recon-
structed. If the robust secret sharing scheme is 1/2κ+n-secure, then this procedure succeeds in producing
the correct secret except with probability at most 1/2κ.
ANONYMOUS MESSAGE TRANSMISSION. In recent work [3], Broadbent and Tapp explicitly used the no-
tion of AMD codes introduced in this paper (and our construction of them) in the setting of unconditionally
secure multi-party protocols with a dishonest majority. Speci�cally, AMD codes allowed them to obtain
robustness in their protocol for anonymous message transmission. This protocol, and with it the underlying
AMD code, was then used in [2] as a building block to obtain a protocol for anonymous quantum commu-
nication.

4 Message Authentication Codes with Key Manipulation Security

As a notion related to AMD codes, we de�ne message authentication codes which remain secure even if the
adversary can manipulate the key. More precisely, we assume that (only) the key of the authentication code
is stored on an abstract private device Σ(G) to which the adversary has algebraic manipulation access, but
the message and the authentication tag are stored publicly and the adversary can modify them at will. This
is in contrast to AMD codes where the entire encoding of the message is stored in Σ(G).

De�nition 5. An (S,G, T, δ)-message authentication code with key manipulation security (KMS MAC) is
a function MAC : S × G → T which maps a source message in a set S of size S to a tag in the set T of size
T using a key from a group G of order G. We require that for any s 6= s′ ∈ S, any σ, σ′ ∈ T and any ∆ ∈ G

Pr[MAC(s′,K + ∆) = σ′ |MAC(s,K) = σ] ≤ δ

where the probability is taken over a uniformly random key K ∈R G.

Intuitively, the adversary get some message/tag pair (s, σ). The adversary wins if he can produce an offset
∆ and a message s′ 6= s along with a tag σ′ such that the pair (s′, σ′) veri�es correctly under the key K +∆.
The above de�nition guarantees that such an attack succeeds with probability at most δ. In fact, the de�nition
is slightly stronger than required, since we quantify over all possible tags σ of the message s (rather than
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just looking at a randomly generated one). However, since the above de�nition is achievable and simpler to
state, we will consider this stronger notion only. We can also think of a KMS-MAC as a generalization of a
standard message authentication code, which only guarantees security for ∆ = 0.

As with AMD codes, we will consider the notion of a KMS-MAC family. For ef�ciency, we are inter-
ested in minimizing the tag size log(T ) and the key size log(G). The following well known lower bounds
on standard message authentication codes (e.g., see [27]) obviously also apply to the stronger notion of a
KMS-MAC.

Lemma 1. For any authentication code with security δ ≤ 2−κ, the key size log(G) must be at least 2κ, and
the tag size log(T ) must be at least κ.

We now give a construction of a KMS-MAC out of any systematic AMD code.

Theorem 4. Let E : S → S × G1 × G2, s 7→ (s, x, f(x, s)) be a systematic
(|S|, |S|||G1||G2|, δ)-AMD code. Then the function MAC : S×(G1×G2) → G2 yields a (|S|, |G1||G2|, |G2|, δ)-
KMS-MAC:

MAC(s, (x1, x2)) = f(x1, s) + x2

Proof. Assume K = (x1, x2) ∈ G1 × G2 is chosen uniformly at random, and consider arbitrary ∆ =
(∆1,∆2) ∈ G1 × G2, σ, σ′ ∈ G2, and s, s′ ∈ S, where s 6= s′.

The event MAC(s,K) = σ is the event f(x1, s)+x2 = σ, which is the same as x2 = −f(x1, s)+σ. Let
us call this event E1. Similarly, the event MAC(s′,K+∆) = σ′ is the event f(x1+∆1, s

′)+(x2+∆2) = σ′,
which is the same as f(x1 + ∆1, s

′) = −x2 + σ′ −∆2. Let us call this event E2. Thus, we need to bound
Pr[E2 | E1].

Let us denote ∆f = −σ +σ′−∆2 and de�ne an auxiliary event E′
2 as f(x1 +∆1, s

′) = f(x1, s)+∆f .
We claim that Pr[E2 | E1] = Pr[E′

2 | E1]. Indeed, if x2 = −f(x1, s) + σ, then

−x2 + σ′ −∆2 = −(−f(x1, s) + σ) + σ′ −∆2 = f(x1, s) + (−σ + σ′ −∆2) = f(x1, s) + ∆f

Finally, notice that E′
2 and E1 are independent. Indeed, since E′

2 does not depend on x2, and x2 is chosen at
random from G2, whether or not x2 is equal to −f(x1, s) + σ does not affect any other events not involving
x2. Thus, Pr[E′

2 | E1] = Pr[E′
2]. Therefore, we have

Pr[MAC(s′,K + ∆) = σ′ |MAC(s,K) = σ] = Pr[f(x1 + ∆1, s
′) = f(x1, s) + ∆f ] ≤ δ

where the last inequality follows directly from the security of the AMD code, since s 6= s′. ut

Using the systematic AMD code family constructed in Section 2.1, we get a nearly optimal KMS-MAC
family. In particular, plugging in the systematic AMD code family from Theorem 2 and using the parameters
obtained in Corollary 1, we get:

Corollary 2. There is a KMS-MAC family such that, for any κ, u ∈ N, the family contains an (S,G, T, δ)-
KMS-MAC (with respect to XOR operation) with δ ≤ 2−κ, S ≥ 2u and

log(G) ≤ 2κ + 2 log (u/κ + 3) + 2
log(T ) ≤ κ + log (u/κ + 3) + 1
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5 Application to Robust Fuzzy Extractors

We start by reviewing the some basic de�nitions needed to de�ne the notion of fuzzy extractors from [10].
MIN-ENTROPY. The min-entropy of a random variable X is
H∞(X) = − log(maxx PrX [x]). Following [10], we de�ne the (average) conditional min-entropy of X
given Y as H̃∞(X | Y ) = − log(Ey←Y (2−H∞(X|Y =y))) (here the expectation is taken over y for which
Pr[Y = y] is nonzero). This de�nition is convenient for cryptographic purposes, because the probability
that the adversary will predict X given Y is 2− eH∞(X|Y ). Finally, we will use [10, Lemma 2.2], which states
that H̃∞(X | Y ) ≥ H∞((X, Y ))− λ, where 2λ is the number of elements in Y .
SECURE SKETCHES. LetM be a metric space with distance function dis. Informally, a secure sketch enables
recovery of a string w ∈M from any �close� string w′ ∈Mwithout leaking too much information about w.

De�nition 6. An (m, m′, t)-secure sketch for a metric space M is a pair of ef�cient randomized proce-
dures (SS,Rec) s.t.:

1. The sketching procedure SS on input w ∈ M returns a bit string s ∈ {0, 1}∗. The recovery procedure
Rec takes an element w′ ∈M and s ∈ {0, 1}∗.

2. Correctness: If dis(w, w′) ≤ t then Rec(w′, SS(w)) = w.
3. Security: For any distribution W over M with min-entropy m, the (average) min-entropy of W condi-

tioned on s does not decrease very much. Speci�cally, if H∞(W ) ≥ m then H̃∞(W | SS(W )) ≥ m′.

The quantity m−m′ is called the entropy loss of the secure sketch.

As already mentioned in Footnote 6, we will concentrate on the Hamming metric over {0, 1}n, later
extending our results to several related metrics. For this metric we will make use of the syndrome construc-
tion from [10], which we review in Appendix E (this construction appeared as a component of protocols
earlier, e.g., in [1]). For our current purposes, though, we only need to know that this construction is a linear
transformation over Fn

2 .
STATISTICAL DISTANCE. Let X1, X2 be two probability distributions over some space S. Their statistical
distance is SD (X1, X2)

def= 1
2

∑
s∈S |PrX1 [s]− PrX2 [s]|. If

SD (X1, X2) ≤ ε, we say they are ε-close, and write X1 ≈ε X2. Note that ε-close distributions cannot
be distinguished with advantage better than ε even by a computationally unbounded adversary. We use the
notation Ud to denote (fresh) uniform distribution over {0, 1}d.
RANDOMNESS EXTRACTORS FOR AVG. MIN ENTROPY. A randomness extractor, as de�ned in [18], ex-
tracts a uniformly random string from any secret with high enough entropy using some randomness as a
seed. Here we include a slightly altered de�nition to ensure that we can extract randomness from any secret
with high enough average min-entropy.
De�nition 7. A function Ext : {0, 1}n × {0, 1}d → {0, 1}` is called a (m, `, ε)-extractor if for all random
variables X and Y such that X ∈ {0, 1}n and H̃∞(X | Y ) ≥ m, and I ← Ud, we have

SD ( (Y,Ext(X; I), I) , (Y, U`, Ud) ) ≤ ε

It was shown by [10, Lemma 2.4] that universal hash functions are good extractors in the above sense. In
particular, the construction Ext : {0, 1}n × {0, 1}n → {0, 1}`, de�ned by Ext(x, i) def= [x · i]`1 is a (m, `, ε)-
extractor for any ` ≤ m − 2 log(1/ε). Here the multiplication x · i is performed in the �eld F2n and the
notation [z]`1 denotes the �rst ` bits of z.
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FUZZY EXTRACTORS. A fuzzy extractor extracts a uniformly random key from some secret w in such a
way that the key can be recovered from any w′ close to w. The notion was �rst de�ned in [10]. Here we alter
the de�nition to allow for a public common reference string (CRS).

De�nition 8. An (m, `, t, ε)-fuzzy extractor for a metric space M is de�ned by randomized procedures
(Init, Gen, Rep) with the following properties:

1. The procedure Init takes no inputs and outputs a string CRS ∈ {0, 1}∗.
2. The generation procedure Gen, on input w ∈ M, CRS ∈ {0, 1}∗, outputs an extracted string R ∈
{0, 1}` and a helper string P ∈ {0, 1}∗. The reproduction procedure Rep takes w′ ∈M and P, CRS ∈
{0, 1}∗ as inputs. It outputs w̃ ∈M∪ {⊥}.

3. Correctness: If dis(w, w′) ≤ t and (R, P ) ← Gen(w,CRS), then Rep(w′, P, CRS) = R.
4. Privacy: For any distribution W with min-entropy m over the metricM , the string R is close to uniform

even conditioned on the value of P . Formally, if H∞(W ) ≥ m and (R, P ) ← Gen(W,CRS), then
(R,P,CRS) ≈ε (U`, P, CRS).

Composing an (m,m′, t)-secure sketch with a (m′, `, ε)-extractor Ext : M × {0, 1}d → {0, 1}` (as
de�ned in Def. 7) yields a (m, `, t, ε)-fuzzy extractor [10]. The construction of [10] has an empty CRS and
sets P = (SS(w), i) and R = Ext(w; i) for a random i. However, it is easy to see that the construction
would remain secure if the extractor seed i was contained in the CRS and P was just SS(w). One advantage
of such approach would be that the Gen and Rep algorithms are then deterministic which might make them
easier to implement in hardware. Another advantage is that it would eventually allow us to overcome the
impossibility barrier of robust fuzzy extractors (de�ned next) in the plain model.

5.1 De�nition of Robust Fuzzy Extractor in CRS Model

Fuzzy extractors allow one to reveal P publicly without sacri�cing the security of the extracted randomness
R. However, there are no guarantees when an active attacker modi�es P . To prevent such attacks, robust
fuzzy extractors were de�ned and constructed in [5, 11]. Here we de�ne robust fuzzy extractors in the CRS
model.

For two (correlated) random variables W,W ′ over a metric space M, we say
dis(W,W ′) ≤ t if the distance between W and W ′ is at most t with probability one. We call (W,W ′) a
(t,m)-correlated pair if dis(W,W ′) ≤ t and H∞(W ) ≥ m. It will turn out that we can get more ef�cient
constructions if we assume that the random variable ∆ = W − W ′ indicating the errors between W and
W ′ is independent of W (this was the only case considered by [5]). However, we do not want to make this
assumption in general since it is often unlikely to hold. We de�ne the family Fall

t,m to be the family of all
(t,m)-correlated pairs (W,W ′) and the family F indep

t,m to be the family of (t,m)-correlated pairs for which
∆ = W −W ′ is independent of W .

De�nition 9. An (m, `, t, ε, δ)-robust fuzzy extractor for a metric space M and a family F of (t,m)-
correlated pairs is an (m, `, t, ε)-fuzzy extractor overM such that for all (W,W ′) ∈ F and all adversaries
A

Pr
[
Rep(P̃ , w′, CRS) 6= ⊥

P̃ 6= P

∣∣∣∣
CRS ← Init(), (w,w′) ← (W,W ′)

(P, R) ← Gen(w, CRS), P̃ ← A(P, R,CRS)

]
≤ δ

We call the above notion post-application robustness and it will serve as our main de�nition. We also con-
sider a slightly weaker notion, called pre-application robustness where we do not give R to the adversary
A.
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The distinction between pre-application and post-application robustness was already made in [5, 11]. In-
tuitively, when a user Alice extracts a key using a robust fuzzy extractor, she may use this key for some
purpose such that the adversary can (partially) learn the value of the key. The adversary can then mount an
attack that modi�es P based on this learned value. For post-application security, we insist that robustness
is preserved even in this setting. For pre-application security, we assume that the adversary has no partial
information about the value of the key.

5.2 Construction

We are now ready to construct robust fuzzy extractors in the CRS model. First, let us outline a general idea
for the construction using an extractor Ext, a secure sketch (SS, Rec) and a one-time (information-theoretic)
message authentication code MAC. A pictorial representation of the construction is shown in Figure 1 and
pseudo-code is given below.

Init() outputs a random seed i for the extractor Ext as a shared CRS.
Gen(w, i) does the following:

R ← Ext(w, i) which we parse as R = (Rmac, Rout).
s ← SS(w), σ ← MAC(s, Rmac), P := (s, σ).
Output (P, Rout).

Rep(w′, P̃ , i) does the following:
Parse P̃ = (s̃, σ̃). Let w̃ ← Rec(w′, s̃). If d(w̃, w′) > t then output ⊥.
Using w̃ and i, compute R̃ and parse it as R̃out, R̃mac.
Verify σ̃ = MAC(s̃, R̃mac). If equation holds output R̃out, otherwise output ⊥.

The idea is fairly intuitive. First, we extract randomness from w using the public extractor seed i. Then
we use part of the extracted randomness Rout as the output, and the remaining part Rmac as the key for the
one-time information-theoretic MAC to authenticate the secure sketch s of w.

However, in arguing robustness of the reconstruction phase, we notice that there is a problem. When an
adversary modi�es s to some value s̃ then this will force the user to incorrectly recover w̃ 6= w, which in
turn leads to the reconstruction of R̃ 6= R and R̃mac 6= Rmac. So the key R̃mac, which is used to verify the
authenticity of s, will itself be modi�ed when s is!

To break the circularity, we will need to us special linearity properties of the secure sketch and extractor
constructions, which we specify in section 5.3. We will argue in that an adversary who modi�es s to s̃ will
know the offset ∆ such that R̃mac = Rmac + ∆. Although R̃mac is derived from w′, s̃ and the CRS, we can
think of Rmac as being stored in an abstract device Σ(G) which is private but only weakly robust in that the
adversary can specify an additive offset by modifying s. We can then use a KMS-MAC to get security even
when the key is stored on such a device. Hence, the adversary will not be able to come up with a valid pair
(s̃, σ̃) where s̃ 6= s.

5.3 Linearity of modifying P

In this section, we specify the properties of our secure sketch and extractor constructions to ensure that an
adversary who knows ∆ = w′ − w and modi�es s to s̃, will know the offset R∆̃ = R̃ − R between the
original extracted key and the recovered key.
Secure Sketch Linearity Property: Let (SS,Rec) be an (m,m′, t)-secure-sketch and w, w′ be values such
that dis(w, w′) ≤ t. Let ∆ = w′−w and s = SS(w). For any s̃, let w̃ := Rec(w′, s̃) and ∆̃ = w̃−w. Then,
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Fig. 1. Construction of Robust Fuzzy Extractor

we say that the secure sketch is linear if ∆̃ is completely determined by ∆, s and s̃. Formally ∆̃ = f(∆, s, s̃)
where f is a deterministic function.

Lemma 2. The syndrome based construction of a secure sketch meets the above linearity property.

This lemma follows easily from the properties of the syndrome construction and we give a proof in Appendix
F. It was also implicitly used in [11].
Extractor Linearity Property: The extractor Ext is linear if for any a, b and i, we have Ext(a − b, i) =
Ext(a, i)− Ext(b, i).

It is easy to see that the extractor de�ned by Ext(w, i) def= [w · i]`1 has the required linearity property. We
also notice that several other extractors (e.g., [29, 25]) with shorter seed lengths also satisfy this property.
As it turns out, it is precisely this property of extractors, not useful in the plain model setting of [11], that
would allow us to obtain the following key Lemma what we will use in the CRS model.

Lemma 3. Assume a secure sketch (SS,Rec) and an extractor Ext meet the respective linearity properties
above. Consider any w,w′, i, s̃ and let s = SS(w), R = Ext(w, i), w̃ = Rec(w′, s̃), R̃ = Ext(w̃, i). Finally,
denote ∆ = w′−w and R∆̃ = R̃−R. Then, there is a deterministic function g such that R∆̃ = g(∆, s, s̃, i).
Namely, one can compute R∆̃ by knowing only the difference ∆ between w and w′, the sketch s, the modi�ed
sketch s̃ and the public CRS i.

Proof. Using Lemma 2, there is a deterministic function f(∆, s, s̃) = ∆̃ = w̃ −w. If we let g(∆, s, s̃, i) def=
Ext(f(∆, s, s̃), i) then

g(∆, s, s̃, i) = Ext(f(∆, s, s̃), i) = Ext(w̃ − w, i) = Ext(w̃, i)− Ext(w, i)

= R̃−R = R∆̃

ut

5.4 Security of Construction and Parameters

We are now show that the construction outlined in Section 5.2 indeed satis�es the de�nition of a robust
fuzzy extractor.

Let (SS, Rec) be a (m,m′, t)-secure sketch satisfying the secure sketch linearity property and let u be
an upper bound on the size of SS(w). Let MAC be a (S, G, T, δ)-KMS-MAC, such that S ≥ 2u. Assume
that the keys come from a group G = {0, 1}k under the XOR operation so that G = 2k. Let F be a class of
(t,m)-correlated variables (W,W ′) and let m̂ be the largest value such that m̂ ≤ H̃∞(W |SS(W ),W−W ′)
for any (W,W ′) ∈ F . Lastly, let Ext be a (m̂, `, ε)-strong randomness extractor satisfying the extractor
linearity property and seeded by randomness i of length d.
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Theorem 5. When instantiated with the primitives Ext, MAC and (SS,Rec), our construction yields a
(m, `− k, t, 2ε, δ + ε)-robust-fuzzy extractor for the family F .

Proof. The correctness property of the fuzzy extractor is guaranteed by the correctness of the secure sketch.
The privacy property follows from the security of the randomness extractor. Recall, that the adversary can
observe i, s, σ. Since, by de�nition, m̂ ≤ H̃∞(W |SS(W )), the distribution (i, s, Rmac, Rout) can be distin-
guished from (i, s, Uk, U`−k) with probability at most ε. In particular,

(i, s, Rmac, Rout) ≈ε (i, s, Uk, U`−k) ≈ε (i, s, Rmac, U`−k)

and so (i, s, Rmac, Rout) ≈2ε (i, s, Rmac, U`−k) by the triangle inequality. An adversary given i, s, σ is
weaker than an adversary given i, s, Rmac and even this latter adversary can distinguish Rout from R`−k

with probability at most 2ε.
For robustness, consider any pair (W,W ′) ∈ F and any adversary A attacking the robustness of the

scheme. Then

Pr[A succeeds] = Pr


Rep(P̃ , w′, CRS) 6= ⊥

and P̃ 6= P

∣∣∣∣∣∣

CRS ← Init(), (w, w′) ← (W,W ′)
(P, R) ← Gen(w, CRS)

P̃ ← A(CRS, P, R)




= Pr




MAC(s̃, R̃mac) = σ̃

(s̃, σ̃) 6= (s, σ)

∣∣∣∣∣∣∣∣∣∣

i ← Ud, (w,w′) ← (W,W ′)
(Rmac, Rout) := Ext(w, i)

s := SS(w), σ := MAC(s,Rmac)
(s̃, σ̃) ← A(i, s, σ,Rout)

w̃ := Rec(w′, s̃), (R̃mac, R̃out) := Ext(w̃, i)




Now we use Lemma 3 which de�nes the deterministic function g such that

Pr[A succeeds] = Pr




MAC(s̃, R̃mac) = σ̃
(s̃, σ̃) 6= (s, σ)

∣∣∣∣∣∣∣∣∣∣

i ← Ud, (w,w′) ← (W,W ′)
(Rmac, Rout) := Ext(w, i)

s := SS(w), σ := MAC(s,Rmac)
(s̃, σ̃) ← A(i, s, σ,Rout)

∆ := w′ − w, R̃mac := Rmac + g(∆, s, s̃, i)




On the right hand side of the inequality, the pair (w, w′) and the value i determine the values ∆, s,Rmac, Rout.
But the distributions (∆, s, i, Rmac, Rout) and (∆, s, i, U`) can be distinguished with probability at most ε,
by the security of the extractor and the fact that m̂ ≤ H̃∞(W |SS(W ), ∆).

Hence we have:

Pr[A succeeds]

≤ ε + Pr




MAC(s̃, R̃mac) = σ̃

(s̃, σ̃) 6= (s, σ)

∣∣∣∣∣∣∣∣

i ← Ud, Rmac ← Uk, (w,w′) ← (W,W ′)
s := SS(w), σ := MAC(s,Rmac)

(s̃, σ̃) ← A(i, s, σ, U`−k)
∆ ← w′ − w, R̃mac := Rmac + g(∆, s, s̃, i)


 (3)

≤ ε + max
R∆

mac,s̃6=s,σ,σ̃
Pr


MAC(s̃, R̃mac) = σ̃

∣∣∣∣∣∣

Rmac ← Uk

σ := MAC(s,Rmac)
R̃mac := Rmac + R∆

mac




≤ ε + δ

Where the last inequality follows from the security of the KMS-MAC. ut
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The above theorem is stated with generality in mind. We now examine the parameters we get when
plugging in the optimal implementation of a KMS-MAC and using the �multiplication� extractor
Ext(x, i) def= [x · i]v1.

Corollary 3. Using given constructions of strong randomness extractors and KMS-MACs, we get a (m, `, t, ε, δ)-
robust fuzzy extractor for the family F and for any m, t, ε and δ ≥ ε. The extracted key length is

` ≈ m̂− 2 log
(

2(u + 3)
ε(δ − ε)

)
− 2

Recall, that u is the length of the secure sketch, n is the length of the secret w, and m̂ ≤ H̃∞(W |SS(W ),W−
W ′) for any (W,W ′) ∈ F .

Moreover, for the family Fall
(t,m) of all (t,m) correlated pairs,

m̂ ≥ m− u− t
(
log

(n

t

)
+ log e

)

For the family F indep
(t,m) of all (t,m)-correlated pairs for which ∆ = W − W ′ and W are independent

m̂ = m′ ≥ m− u.

Proof. The strong randomness extractor construction we looked at previously, extracts (Rmac, Rout) of
length m̂ − 2 log(1/ε′) to achieve security ε′. We want ε′ = ε/2. This implies ` ≈ m̂ − 2 log(2/ε) − k
where k is the size of Rmac. By the bounds on key-lengths of the KSM-MAC construction given in 2, if
we want to get security δ − ε and authenticate messages of length u, we can use a key of length k ≤
2 log(1/(δ − ε)) + 2 log(u + 3) + 2 Putting these together we see

` ≥ m̂− 2[log(2/ε) + log(1/(δ − ε)) + log(u + 3)]− 2 ≥ m̂− 2 log
(

2(u + 3)
ε(δ − ε)

)
− 2

This proves the �rst part of the corollary. To bound m̂, we notice H̃∞(W |SS(W ),W −W ′) ≥ H∞(W )−λ
where 2λ is the number of possible values of the pair SS(W ),W −W ′. The number of possible values of
SS(W ) is 2u, since u is a bound on the size of SS(W ). The number of possible values of ∆ = W ′ − W
of a (t,m) correlated pair (W,W ′) is the volume of the ball of elements of length n that are at a distance t
from each other. The log of this volume is derived in [11] and is t

(
log

(
n
t

)
+ log e

)
. This gets us the �rst

bound on m̂. When ∆ and W are independent then H̃∞(W |SS(W ),W −W ′) = H̃∞(W |SS(W )) = m′ ≥
H∞(W )− u which derives the second bound. ut

So far, all of our bounds are for post-application robustness. We now show that for pre-application robustness
the bounds for the families Fall

(t,m) and F indep
(t,m) are essentially equivalent. This is because, for pre-application

robustness, the adversary does not get to see Rout when mounting a key-manipulation attack. Hence, for
robustness, we no longer need to ensure that there is enough residual min entropy left over in w after the
adversary sees ∆ and s to extract Rout as well as Rmac.

Corollary 4. For pre-application robustness only, we get a (m, `, t, ε, δ)-robust fuzzy extractor for any
(t,m)-correlated family F and for any m, t, ε and δ ≥ ε with

` ≈ m′ − 2 log
(

2(u + 3)
ε(δ − ε)

)
− 2
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as long as
m̂ ≥ 2 log

(
u + 3

ε(δ − ε)

)
− 2

Proof. The �rst condition on the size of the extracted key follows from Theorem 5 and bounds on the length
k of the KMS-MAC key. In Theorem 5, inequality 3, for pre-application robustness the adversary does not
get Rout. This means that inequality 3 holds as long as (∆, s, i, Rmac) and (∆, s, i, Uk) can be distinguished
with probability at most ε. Now we notice that the extractor Ext(w, i) def= [w ·i]v1 has the property that the �rst
H∞(W )− 2 log(1/ε) bits of Ext(w, i) are ε close to random no matter how large v is. This means we only
need Rmac to be indistinguishable in this case, and hence we have the weaker condition k ≤ m̂−2 log(1/ε)
rather than ` ≤ m̂− 2 log(1/ε) in Theorem 5. Substituting the bounds on k we get

2 log((u + 3)/(δ − ε)) + 2 ≤ m̂− 2 log(1/ε)

which derives the condition stated in the corollary. This condition is very weak and likely to be satis�ed in
practice. Hence, for pre-application robustness, we can essentially ignore the fact that ∆ and W might not
be independent. ut

COMPARISON WITH PREVIOUS CONSTRUCTIONS: Recall that the �non-robust� construction of [10] ex-
tracts ` ≤ m′ − 2 log

(
1
ε

)
bits. On the other hand, the robust construction of [11] requires:

` ≤ 1
3

(
2m− n− u− 2t log

(en

t

)
− 2 log

( n

ε2δ

))
−O(1)

The bounds achieved in this paper are signi�cantly closer to the non-robust version. In essence we show that
the price of robustness can be cheap if we allow random public system parameters.

5.5 Extension to Other Metrics

We note that the above construction can be extended for other metric spaces and secure sketches. For ex-
ample, we can easily extend our discussion of the hamming distance over a binary alphabet to an alphabet
of size q where Fq is a �eld. The secure sketch simply uses an error correcting code for Fq (possibly even
allowing us to use the optimal Reed-Solomon codes if q ≥ n). For the extractor we work over the �eld Fqn

and the truncation function [x]`1 is de�ned as truncating symbols of F (where elements of Fqn are viewed as
n dimensional vectors over Fq) rather than bits.

Finally, we note that our construction extends to the set difference metric in exactly the same way as the
construction of [11].
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A Lower Bounds

Theorem 6. Any weak, respectively regular (strong), (S,G, δ)-AMD code satis�es

G ≥ S − 1
δ

+ 1 respectively G ≥ S − 1
δ2

+ 1 .

Let (E , D) be an (S, G, δ)-AMD code, with E : S → G and D : G → S ×{⊥}. For any s ∈ S, consider
the set D−1(s) = {e ∈ G : D(e) = s}. Clearly, D−1(s) ∩D−1(s′) = ∅ and |D−1(s)| ≥ 1 for any s 6= s′.

Consider �rst the case where the AMD code is weakly secure. Let s be uniformly distributed over S.
Sample ∆ 6= 0 at random from G, independently of s. The probability that D(E(s) + ∆) 6= {s,⊥} is upper
bounded by δ. This implies that

δ ≥ Pr
[E(s)+∆ ∈ ⋃

s′ 6=sD
−1(s′)

]
=

∣∣⋃
s′ 6=sD

−1(s′)
∣∣

G− 1
≥ S − 1

G− 1

where the �rst inequality follows by considering ∆ �xed, and the �rst equality follows by considering s
�xed, and realizing that if the (in)equality holds for any �xed value then it also holds for a random value.

Consider now the case where the AMD code is strongly secure. Then, for any s ∈ S, it holds that
|D−1(s)| ≥ 1/δ. This follows from the fact that if one guesses E(s) correctly (knowing s) then it is easy to
come up with a ∆ such that D(E(s) + ∆)) 6∈ {s,⊥}. Similar to above, it hence follows that

δ ≥ Pr
[E(s)+∆ ∈ ⋃

s′ 6=sD
−1(s′)

]
=

∣∣⋃
s′ 6=sD

−1(s′)
∣∣

G− 1
≥ (S − 1)/δ

G− 1

which implies the claimed bound. Note that here the probability is taken over a random ∆ and over the
randomness used by the encoding function E for a given s. ut

Note that similar bounds were found in [20] for robust secret sharing schemes. This is no coincidence,
since we show in the paper that AMD codes can be used to construct robust secret sharing schemes. The
following bounds on the tag size now follow quite easily. It shows that it is unavoidable that the message
grows by κ respectively 2κ bits if one wants to have weak respectively strong 2−κ-security.

Corollary 5. The effective tag size of a weak, respectively strong, AMD code is lower bounded by

$∗(κ, u) ≥ κ− 2−u+1 ≥ κ− 1 respectively $∗(κ, u) ≥ 2κ− 2−u+1 ≥ 2κ− 1

Proof. For any weak (S,G, δ)-AMD code with with S ≥ 2u and δ ≤ 2−κ

log(G)− u ≥ log(G)− log(S) ≥ log
(G− 1

S − 1
S − 1

S

)
= log

(G− 1
S − 1

)
+ log

(
1− 1

S

)
≥ κ− 2

S

where the last inequality follows from Theorem 6 and the bound log(1 − x) ≥ −2x for 0 ≤ x ≤ 1
2 .9

Similarly, for a strongly secure AMD code, the argument proceeds analogously but the last inequality is
replaced by log

(
G−1
S−1

)
+ log

(
1− 1

S

)
≥ 2κ− 2

S . ut
9 The bound follows from the fact that the two sides coincide when evaluated at x = 0 and at x = 1

2
, and that −2x has constant

slope whereas log(1− x) has strictly decreasing slope (as can be seen from its second derivative) i.e. makes a �right turn�.
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B An Insecure AMD code

Consider the systematic AMD code E : Fd → Fd × F × F, s → (s, x, f(x, s)) with x ∈R F, where
f(x, s) = s1x + · · · + sdx

d. This AMD code, respectively the resulting robust secret sharing scheme, was
proposed and �proven� to be secure in [19]. However, it is easy to see that this AMD code is not secure.
This can easily be seen by observing that

f(x + ∆x, s) =
d∑

i=1

si(x + ∆x)i =
d∑

i=1

s′ix
i + ∆f = f(x, s′) + ∆f

for some s′ = (s1, . . . , sd) and some ∆f ∈ F, where both s′ and ∆f can (ef�ciently) be computed when
given s and ∆x. Recall that when considering strong security, the adversary is assumed to know s. Hence,
adding ∆x to x, ∆f to f(x, s), and replacing s by s′ allows the adversary to break the AMD code with
probability 1. The �proof� given in [19] is very complicated, and thus it is dif�cult to point to what exactly
was argued incorrectly. We note that this mistake was later noted and �xed by the authors independently of
our work. However, we feel that the error nicely highlights the advantage of the abstract notion of an AMD
code: it allows for a much simpler (in the above case we may even say trivial) analysis than, for instance,
when considering fully-�etched robust secret sharing schemes.

C The Combinatorics of AMD Codes

C.1 Weakly Secure AMD Codes

Let G be a group of �nite order G.

De�nition 10. A subset V ⊆ G of size S is a (S, G, t)-bounded difference set if the list of differences vi−vj ,
where vi, vj ∈ V , contains every non-zero element of G at most t times.

Note that the standard notion of a difference set requires the list of differences to contain every non-zero
element exactly t times. We call an AMD code (E , D) deterministic if the (in general probabilistic) mapping
E is deterministic. The following equivalence holds.

Theorem 7. If V ⊂ G is a (S, G, t)-bounded difference set then the AMD-code

E : V → G, s 7→ s , and D(s) =
{

s if s ∈ V
⊥ otherwise

is a (deterministic) weakly secure (S,G, δ)-AMD code with δ = t/S. And, vice versa, for an arbitrary
deterministic weak (m,n, δ)-AMD code (E , D), the subset V = E(S) = {E(s) : s ∈ S} ⊂ G is a (S,G, t)-
bounded difference set with t = δS.

Proof. It is clear that (E , D) as constructed is a weak (S, G, δ)-AMD code. It remains to argue the value of δ.
By the property of V , for every non-zero ∆ ∈ G, there exist at most t elements s ∈ V such that s + ∆ ∈ V .
For a uniformly distributes s ∈ V , and for ∆ chosen independent of s, this means that s + ∆ ∈ V holds at
most with probability t/S. The other implication is argued similarly. ut
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C.2 Strongly Secure AMD Codes

Let G be a �nite group of order G. Let S be a �nite set of cardinality S. For simplicity write S = {1, . . . , S}.
Let V1, . . . , VS be disjoint non-empty subsets of G.

De�nition 11. We call (G, V1, . . . , VS) a differential structure.

The parameters of interest related to a differential structure are as follows. For any i we write ti for the
maximal overlap between any translation of Vi and the union of the other Vj's:

ti = max
∆∈G

∣∣∣∣(Vi+∆) ∩
⋃

j 6=i

Vj

∣∣∣∣ .

For a given differential structure (G, V1, . . . , VS) consider the following AMD code.

E : {1, . . . , S} → G, s 7→ s̃

with
s̃ ∈R Vs ,

i.e., s̃ is chosen with uniform distribution on Vs and independently of anything else, and

D(s̃) =
{

s if ∃ s : s̃ ∈ Vs

⊥ otherwise .

This AMD code is with uniform selection in that for every s ∈ S, the encoding E(s) is uniformly distributed
over D−1(s) = {e ∈ G : D(e) = s}. All natural AMD codes we are aware of are with uniform selection.

Theorem 8. If (G, V1, . . . , VS) is a differential structure with parameters t1, . . . , tS , then the above code
(E , D) is a (strong) (S, G, δ)-AMD code (with uniform selection) where δ = maxi ti/|Vi|. And, vice versa,
for any (S, G, δ)-AMD code with uniform selection, the sets Vs = D−1(s) for s ∈ S form a differential
structure where ts ≤ δ|Vs|.

Proof. Let s be an arbitrary �xed source. Let s̃ be its probabilistic encoding, uniformly distributed in Vs, and
let ∆ be the difference added to s̃ by the adversary, independent of s̃. Then, s̃ + ∆ is uniformly distributed
in Vs + ∆, and thus the probability that it lies in a Vj with j 6= s is at most ts/|Vs|. The other implication is
argued similarly. ut

An AMD code is systematic if the source set S is a group and the encoding is of the form

E : S → S × G1 × G2, s 7→ (s, x, f(x, s))

for some function f , and where x ∈R G1. All our new constructions are systematic, and thus in particular
with uniform selection. The decoding function of a systematic AMD code is naturally given by

D(s, x, e) =
{

s if e = f(x, s)
⊥ otherwise

and we usually leave it implicit. The following lemma is trivial.
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Lemma 4. For a systematic AMD code, the underlying differential structure (G, V1, . . . , VS), we have
ti = max∆∈G

j 6=i
|(Vi+∆) ∩ Vj | for i = 1 . . . S.

Our results above can be viewed as supporting the view that combinatorics that is �ugly and non-smooth
or non-symmetric� from a combinatorics point of view may sometimes lead to �stronger cryptography�.
Indeed, by requiring only certain relevant bounds on the parameters of a combinatorial construct with cryp-
tographic relevance (like the bounded compared to the ordinary �strict� notion of a difference set), a much
wider class of mathematical approaches to its construction may become available. Note that there are other
areas in cryptography that have seen this phenomenon as well, e.g., authentication codes.

C.3 Relation to Earlier Work

Our combinatorial approach must be discussed with respect to earlier work by Ogata and Kurosawa [20] and
Ogata, Kurosawa, Stinson and Saido [21]. In [20] the idea of using the classical notion of planar difference
sets is introduced, and applications to (in our terminology) weakly secure AMD codes are given. The con-
struction is based on the following AMD code. Let q be a prime so that p = q2 + q + 1 is a prime as well,
and let B ⊂ {0, . . . , p − 1} be a planar difference set of size q + 1. This means that the (q + 1)q = p − 1
pairwise differences modulo p of the elements in B are exactly the numbers 1, . . . , p − 1. It is known that
such a difference set exists (see e.g. [20] and the references therein). Then, E : B → Zp, s 7→ s is a weak
(q +1, q2 + q +1, 1/(q +1))-AMD code. The tag size equals $ = log(q2 + q +1)− log(q +1), which lies
between log(q) and log(q + 1). See also [21] for a more general approach. As before, the error probability
is determined by the source space and hence the approach is not �exible.

Motivated by this, the above approach is extended in [21] to using external difference families (EDF),
as introduced there. A (G, c, λ) S-EDF consists consists of a group G of order G and S disjoint non-empty
subsets V1, . . . , VS , each of size c, such that every non-zero element of G occurs exactly λ times as the
difference between some vi and some vj where vi and vj come from different sets Vi and Vj , respectively.
This abstract notion of an EDF (with λ = 1) leads to a weakly secure AMD code with a minimal tag size
for a source space of size S and with δ = 1

cS . However, no general construction has been proposed to design
EDF's, and thus it is not clear how fruitful this approach is, and in particular how good it is with respect
to the effective tag size, i.e., when u and κ are given and a weakly secure (S,G, δ)-AMD code needs to be
found with m ≥ 2u and δ ≤ 2−κ. Furthermore, we feel that the case that is more important for practice is
the case where the size of the source space is larger than the inverse of the allowed error probability.

As to strongly secure AMD codes, with this notion of a (G, c, λ) m-EDF one could at best guarantee
an error of at most λ

c , since it seems that one cannot rule out that there is a ∆ ∈ G and a Vi such that the
intersection between Vi + ∆ and some other Vj has cardinality λ.

In conclusion, our notion of differential structures, though somewhat related to external difference fam-
ilies, captures exactly the case of strongly secure AMD codes and it also paves the way for a wider class of
mathematical constructions due to its relaxed conditions.

D From Weak AMD Codes to Strong AMD Codes

We show how to construct a strong AMD code from any weak AMD code and a (standard) message authen-
tication code MAC. Consider a systematic10 message authentication code A : S × K → T where we may
10 The restriction to systematic codes is not crucial, but it allows to simplify the exposition.
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assume, without loss of generality, that S and T are groups (e.g. sets of bitstrings of a given length with xor).
In the standard setting, such a code is used to authenticate a source s ∈ S by appending the tag σ = A(k, s)
with a randomly sampled secret key k ∈ K (known to sender and receiver); integrity of a (possibly modi-
�ed) pair (s̃, σ̃) is then checked by verifying if σ̃ = A(k, s̃) holds. Let pS be the success probability of the
substitution attack, i.e., the maximum over all s 6= s′ ∈ S of the probability of successfully substituting
the authenticated s by s′.11 Furthermore, let E ′ : S ′ → G′ be a weakly secure (S′, G′, δ′)-AMD code with
S ′ = K. Consider the following AMD code.

E : S → S × G′ × T , s 7→ (
s,E′(k), A(k, s)

)
.

for k ∈R K. The decoding function D is obvious: D(s, e′, σ) outputs s if and only if D′(e′) 6= ⊥ and
σ = A(D′(e′), s).

Theorem 9. The code E is a (S, G, δ)-AMD code with S = |S|, G = |S||G′||T | and δ = δ′ + pS . If the
underlying AMD code E ′ is systematic, then δ = max{δ′, pS}.

Proof. Obviously, the sizes of the domain and range of E are as claimed. It remains to determine δ. Fix
an arbitrary s ∈ S, and an arbitrary translation ∆ = (∆s,∆e′ ,∆σ) ∈ S × G′ × T with ∆s 6= 0. Let
e = (s, e′, σ) = E(s) = (s, E ′(k), A(k, s)) for a random k. By assumption on E ′, the probability that
D′(e′+∆e′) 6∈ {k,⊥} is at most δ′. Furthermore, by assumption on the authentication code, the probability
that σ + ∆σ = A(k, s + ∆s) is at most pS . It follows that D(e) = s + ∆s with probability at most δ′ + pS .

In case of a systematic E ′, the encoding e′ has k as �rst component, and we can make a case distinction
of whether the corresponding �rst component ∆k of ∆e′ is zero or not: if ∆k 6= 0 then D′(e′) = ⊥ except
with probability δ′, and if ∆k = 0 then σ + ∆σ 6= A(k, s + ∆s) except with probability pS . ut

We now show that this approach is still doomed to give a sub-optimal AMD code with an effective tag
size separated from the lower bound by essentially 2κ.

Proposition 1. For any strongly secure AMD code obtained via Theorem 9, the effective tag size satis�es
$∗(κ, u) ≥ 4κ− 2−2κ+1.

Proof (of Proposition 1). In order to achieve an error probability δ ≤ 2−κ, by Lemma 1, the tag σ must be
of bit-size at least κ and the key k of at least 2κ. But then, by Corollary 5, the elements in G′ must be of
bit-size at least 3κ − 2−2κ+1 (namely 2κ bits for the source k plus κ − 2−2κ+1 for the tag size of E ′). This
adds up to the claimed bound. ut

E Syndrome Based Construction of Secure Sketch

For completeness, we review the secure sketch construction below.
Recall that an ef�ciently decodable [n, k, 2t + 1]-error-correcting (binary) code C over {0, 1}n consists

of 2k codewords C = {z | Hz = 0}, where H is the (n − k) × n parity check matrix of C (addition and
multiplication over GF (2)). Namely, H de�nes (n − k) linear constraints which are satis�ed precisely by
the codewords in C. Moreover, H is chosen in such a way that the Hamming distance between any two
distinct codewords z1, z2 ∈ C is at least 2t + 1 (recall, the Hamming distance between a, b ∈ {0, 1}n is the
11 We would like to point out that there is some ambiguity in how pS may be precisely de�ned, with regard to the attacker's control

over the source s to be substituted and over the source s′ with which he substitutes s. The de�nition used here, which controls
the worst case, is necessary for our application.
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number of symbols i such that ai 6= bi). This means, in principle, that any codeword z ∈ C can be recovered
from any �corrupted� string z′ within Hamming distance at most t from z. In an ef�ciently decodable code
C, this procedure of recovering z from z′ can be done ef�ciently.

As it turns out, for our purposes we will only need to know the following well known fact about such
ef�ciently decodable [n, k, 2t + 1]-codes: if z ∈ C and dis(z, z′) ≤ t, then there is an ef�cient procedure
Decode that can determine the �error vector� z′− z from the (n− k)-bit quantity Hz′. This quantity Hz′ is
also called the syndrome of z′ and denoted syn(z′).

Coming back to the syndrome construction of the secure sketches from [10], the sketch s = SS(w) of
w ∈ {0, 1}n consists of the k-bit syndrome of w with respect to some (ef�ciently decodable) [n, n−k, 2t+
1]-error-correcting code C: SS(w) = syn(w) = s. Notice, s is a (deterministic) linear function of w, and
that the entropy loss of this construction is at most |s| = n− k. To see the correctness of this cosntruction,
we notice that the recovery function Rec of w from the sketch s and any w′ of Hamming distance at most t
from w is computed as follows:

Rec(w′, s) = w′ − Decode(syn(w′)− s)

We should also note that this construction extends to the set difference metric through sublinear-time encod-
ing and decoding [10] .

F Proof of Lemma 2

Recall that the secure sketch for hamming distance is given by two function syn, Decode

SS(w) = syn(w) = s
Rec(w′, s) = w′ − Decode(syn(w′)− s)

and that syn is linear. Hence

∆̃ = w̃ − w = Rec(w′, s̃)− w

= w′ − Decode(syn(w′)− s̃)− w

= ∆− Decode(syn(w + ∆)− s̃)
= ∆− Decode(s + syn(∆)− s̃)
= f(∆, s, s̃)

where f is deterministic.
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