
Anonymous Consecutive Delegation of Signing Rights:

Unifying Group and Proxy Signatures

Georg Fuchsbauer David Pointcheval

ENS, CNRS, INRIA, Paris, France
www.di.ens.fr/{~fuchsbau,~pointche}

January 2008

Abstract

We define a general model for consecutive delegations of signing rights with the following
properties: The delegatee actually signing and all intermediate delegators remain anonymous.
As for group signatures, in case of misuse, a special authority can open signatures to reveal
the chain of delegations and the signer’s identity. The scheme satisfies a strong notion of non-
frameability generalising the one for dynamic group signatures. We give formal definitions
of security and show them to be satisfiable by constructing an instantiation proven secure
under general assumptions in the standard model. Our model is a proper generalisation of
both group signatures and proxy signatures.

1 Introduction

The concept of delegating signing rights for digital signatures is a well studied subject in cryptog-
raphy. The most basic concept is that of proxy signatures, introduced by Mambo et al. [MUO96]
and group signatures, introduced by Chaum and van Heyst [CvH91]. In the first, a delegator
transfers the right to sign on his behalf to a proxy signer in a delegation protocol. Now the latter
can produce proxy signatures that are verifiable under the delegator’s public key. Security of
such a scheme amounts to unforgeability of proxy signatures, in that an adversary cannot create
a signature without having been delegated, nor impersonate an honest proxy signer.

On the other hand, in a group signature scheme, an authority called the issuer distributes
signing keys to group members, who can then sign on behalf of the group, i.e. there is one single
group signature verification key. The central feature is anonymity, meaning that from a group
signature one cannot tell which one of the group members actually signed. In contrast to ring
signatures [RST01], to preclude misuse, there is another authority holding an opening key by
which anonymity of the signer can be revoked. Generally, one distinguishes static and dynamic
groups, depending on whether the system and the group of signers are set up once and for all
or members can join dynamically. For the dynamic case, a strong security notion called non-
frameability is conceivable: Nobody—not even the issuer—is able to produce a signature that
opens to a member who did not sign. The two other requirements are anonymity (no one except
the opener can distinguish signatures of different users) and traceability (every valid signature
can be traced to its signer).

It is of central interest in theoretical cryptography to provide formal definitions of primitives
and rigorously define the notions of security they should achieve. Only then can one prove

1

instantiations of the primitive to be secure. Security of group signatures was first formalised by
Bellare et al. [BMW03] and then extended to dynamic groups in [BSZ05]. The model of proxy
signatures and their security were formalised by Boldyreva et al. [BPW03].1

The goal of this paper is to bridge the gap between the two above-mentioned concepts,
establishing a general model which encompasses the primitives of proxy and group signatures.
We define security notions which imply the ones for both primitives. Moreover, we consider
consecutive delegations where all delegators (except the first of course) remain anonymous. As
for dynamic group signatures, there is an opening authority which we separate from the issuer
and which in addition might even be different for each user (for proxy signatures, a plausible
setting would be for every user to be his own opener). We call our primitive anonymous proxy
signatures, because it best reflects the intuitive notion, although the term already appeared in
the literature (see e.g. [SK02])—without defining a formal model nor giving rigorous security
proofs. Note also, that our concept resembles hierarchical group signatures, introduced by Trolin
and Wikström [TW05] for the static setting. As it is natural for proxy signatures, we consider
a dynamic setting which allows to define non-frameability : Not even the issuer nor the opener
can create signatures that open to a user if this user has not signed the respective message or
delegation.

The most prominent example of a proxy signature scheme is “delegation-by-certificate”: The
delegator signs a document called the warrant containing the public key of the proxy and passes
it to the latter. A proxy signature then consists of a regular signature by the proxy on the
message to sign and the signed warrant which together can by verified using the delegator’s
verification key only. Although clearly not adaptable to the anonymous case, a virtue of the
scheme is the fact that the delegator can transmit signing rights exclusively for specific tasks
specified in the warrant. Since our model supports re-delegation, it is conceivable that a user
wishes to re-delegate only a reduced subset of tasks, he has been delegated for. We therefore
represent the tasks by natural numbers and allow delegations for any set TList of them, whereas
re-delegation can be done for any subset of TList.

After defining the scheme and modelling its security, in order to show that the definitions are
actually satisfiable, we give an instantiation and prove it secure under the (standard) assumption
that families of trapdoor permutations exist. We insist on the fact that our scheme is all but
practical and should rather be regarded as a purely theoretical feasibility result.

We emphasize however that our scheme has the following features: first, delegation is non-
interactive; the delegator simply sends a warrant he computed w.r.t. the delegatee’s public key.
Second, we require no secure channels between the parties: in the attack games, we allow the
adversary to see all communication between user, issuer and opener.

2 Algorithm Specification

We describe an anonymous proxy signature scheme by giving the algorithms it consists of. First
of all, running algorithm Setup with the security parameter λ creates the public parameters
of the scheme, as well as the issuing key ik given to the issuer in order to register users and
the opener’s certification key ock given to potential openers. When a user registers, he and his

1Their scheme has later been attacked by [TL04]. Note, however, that our definition of non-frameability pre-
vents this attack, since an adversary querying PSig(·, warr, ·) and then creating a signature for task′ is considered
successful (cf. Section 3.3).

2

.

Issuer (ik) ← → Reg ← → Opener (ock)← →
pk ↑ pk, ok... pk, sk

↓ ↓

User

λ → Setup → pp, ik, ock

skx, [warr→x,] TList,pky → Del → warr[→]x→y

sky,warrx→...→y, task,M → PSig → σ

pkx, task,M, σ → PVer → b ∈ {0, 1}
okx, σ, task,M and registry-data → Open → a list of users or ⊥ (failure)

Figure 1: Inputs and outputs of the algorithms

opening authority run the interactive protocol Reg with the issuer. In the end, all parties hold
the user’s public key pk, the user is the only one to know the corresponding signing key sk, and
the opener possesses ok, the key to open signatures on the user’s behalf.

Once a user U1 is registered and holds his secret key sk1, he can delegate his signing rights to
user U2 holding pk2 for the tasks task ∈ TList by running Del(sk1,TList,pk2) to get a warrant
warr1→2 which enables U2 to proxy sign on behalf of U1. Now if U2 wishes to re-delegate the
received signing rights for a possibly reduced set of tasks TList′ ⊆ TList to user U3 holding
pk3, he runs Del(sk2,warr1→2,TList′,pk3), that is, with his warrant as additional argument, to
produce warr1→2→3. Every user in possession of a warrant valid for a task task can produce
proxy signatures σ for messages M corresponding to task by running PSig(sk,warr, task,M).2

The signature can then be verified under the public key pk1 of the first delegator (sometimes
called “original signer” in the literature) by anyone: run PVer(pk1, task,M, σ).

Finally, using the opening key ok1 corresponding to pk1, a signature σ can be opened by run-
ning Open(ok1, task,M, σ), which returns the list of users that have delegated and re-delegated
including the proxy signer.3 Note that for simplicity, we identify users with their public keys.
Figure 1 gives an overview of the algorithms constituting an anonymous proxy signature scheme.

Consider a warrant established by executions of Del with correctly registered keys. Then for
any task and message we require that the signature produced with it pass verification.

Remark 1 (Differences to the model for proxy signatures). The specification deviates from the
one in [BPW03] in the following points: First, dealing with anonymous proxy signatures there
is no general proxy identification algorithm. Second, in contrast to the above specifications,
the proxy-designation protocol in [BPW03] is a pair of interactive algorithms and the proxy
signing algorithm takes a single input, the proxy signing key skp. By defining the proxy part

2Note that it depends on the concrete application to check whether M lies within the scope of task.
3We include task and M in the parameters of the opening to enable the opener verification of the signature

before opening it.

3

of proxy-designation protocol as skp := (sk,warr), any scheme satisfying our specifications may
be adapted to theirs.

3 Security Definitions

3.1 Anonymity

Anonymity ensures that signatures do not leak information on the identities of each intermediate
delegator and the proxy signer. While this holds even in the presence of a corrupt issuer, the
number of delegations may however not remain hidden.

A quite “holistic” approach to define anonymity is the following experiment in the spirit
of CCA2-indistinguishability: The adversary A, who may control the issuer and all users, is
provided with an oracle to communicate with an opening authority—who is assumed to be
honest for obvious reasons. He may also query opening keys and the opening of signatures.
Eventually, A outputs a public key, a message, a task and two secret key/warrant pairs under
one of which he is given a signature. Now A must decide which pair has been used to sign.

Figure 2 shows the experiment, which might look more complex than expected, as there are
several checks necessary to prevent the adversary from trivially winning the game by either

(1) returning a public key he did not register with the opener,

(2) returning an invalid warrant, that is, signatures created with it fail verification, or

(3) having different lengths of delegation chains.

Expanon-b
PS,A (λ)

(pp, ik, ock)←− Setup(1λ)
(st,pk, (sk0,warr0), (sk1,warr1), task,M)←− A1(pp, ik : SndToO,OK,Open)
if pk /∈ OReg, return 0
for c = 0 . . 1

σc ←− PSig(skc,warrc, task,M)
if PVer(pk, task,M, σ0) = 0, return 0
(pkc

2, . . . ,pkc
kc

)←− Open(OK(pk), task,M, σ)
if opening succeeded and k0 6= k1, return 0
d←− A2(st, σb : Open)
if A1 did not query OK(pk) and A2 did not query Open(pk, task,M, σb), return d,
else return 0

Figure 2: Experiment for anonymity

The experiment simulates an honest opening authority keeping a list OReg of the open-
ing keys created. The adversary can communicate with the opener via the SndToO-oracle.
OK, called with a public key, returns the corresponding opening key and when Open is called
on (pk′, task′,M ′, σ′), the experiment looks up the corresponding opening key ok′ and returns
Open(ok′,M ′, task′, σ′) if pk′ has been registered and ⊥ otherwise.4

4We do not further detail the oracles at the adversary’s disposal as their functionality depends necessarily on
the scheme’s concrete implementation—in particular, SndToO depends crucially on the Reg protocol.

4

Definition 2 (Anonymity). A proxy signature scheme PS is anonymous if for any p.p.t.
adversary A = (A1, A2), we have∣∣ Pr

[
Expanon-1

PS,A (λ) = 1
]
− Pr

[
Expanon-0

PS,A (λ) = 1
]∣∣ = negl(λ).

Remark 3 (Hiding the number of delegations). A feature of our scheme is that users are able to
delegate themselves. It is because of this fact—useful per se to create temporary keys for oneself
for use in hostile environments—that one could define the following variant of the scheme:

Suppose there is a maximum number of possible delegations and that before signing, the
proxy extends the actual delegation chain in his warrant to this maximum by consecutive self-
delegations. The scheme would then satisfy a stronger notion of anonymity where even the
number of delegations remains hidden. Moreover, defining standard (non-proxy) signatures as
self-delegated proxy signatures, even proxy and standard signatures become indistinguishable.

Since, in addition, we aim at constructing a generalisation of group signatures, we split
the definition of what is called security in [BPW03] into two parts, i.e. traceability and non-
frameability, analogously to the definitions in [BSZ05].

3.2 Traceability

Consider a coalition of corrupt users and openers (the latter however following the protocol)
trying to forge signatures. Then traceability guarantees that whenever a signature passes veri-
fication it can be opened.5

In the game for traceability we let the adversary A register corrupt users and see the commu-
nication between issuer and opener. To win the game, A must output a signature and a public
key for which it is valid such that opening of the signature fails.

Exptrace
PS,A(λ)

(pp, ik, ock)←− Setup(1λ)
(pk, task,M, σ)←− A(pp : SndToI)
if PVer(pk, task,M, σ) = 1 and Open(OK(pk), task,M, σ) = ⊥

return 1, else return 0

Figure 3: Experiment for traceability

Figure 3 shows the experiment for traceability, where the oracle SndToI simulates issuer and
opener, and returns a transcript of the communication between them. The experiment main-
tains a list of generated opening keys, so OK returns the opening key associated to the public
key it is called with, or ⊥ in case the user is not registered—in which case Open returns ⊥, too.

Definition 4 (Traceability). A proxy signature scheme PS is traceable if for any p.p.t.
adversary A, we have

Pr
[
Exptrace

PS,A(λ) = 1
]

= negl(λ).

5The issuer is assumed to behave honestly as he can easily create unopenable signatures by registering dummy
users and sign in their name. The openers are partially corrupt, otherwise they could simply refuse to open or
not correctly register the opening keys.

5

3.3 Non-Frameability

Non-frameability essentially ensures that no user is wrongfully accused of delegating or signing.
In order to give a strong definition of non-frameability, we accord the adversary as much liberty
as possible in his oracle queries; unfortunately, this entails introduction of an auxiliary function-
ality of the proxy signature scheme: Function OpenW applied to a warrant returns the list of
delegators involved in creating it.

In the non-frameability game, the adversary can impersonate the issuer and the opener as
well as corrupt users. He is given all keys created in the setup, and oracles to register honest
users and query delegations and proxy signatures from them. To win the game, the adversary
must output a task, a message and a valid signature on it, such that the opening reveals either

1. a second delegator or proxy signer who was never delegated by an honest original delegator
for the task,

2. an honest delegator who was not queried the respective delegation for the task, or

3. an honest proxy signer who did not sign the message for the task and the respective
delegation chain.

We emphasise that querying re-delegation from user U2 to U3 with a warrant from U1 for U2 and
then producing a signature that opens to (U ′

1, U2, U3) is considered a success. Note furthermore
that it is the adversary that chooses the opening key to be used. See Figure 4 for the experiment
for non-frameability.

Expn-frame
PS,A (λ)

(pp, ik, ock)←− Setup(1λ)
(ok,pk, task,M, σ)←− A(pp, ik, ock : ISndToU,OSndToU,SK,Del,PSig)
if PVer(pk, task,M, σ) = 0 or Open(ok, task,M, σ) = ⊥, return 0
(pk2, . . . ,pkk) = Open(ok, task,M, σ)
if pk1 ∈ HU and no queries Del(pk1,TList,pk2) with TList 3 task made (Case 1)
if for some i ≥ 2, pki ∈ HU and no queries Del(pki,warr,TList,pki+1) with

TList 3 task and OpenW(warr) = (pk1, . . . ,pki) made, return 1 (Case 2)
if pkk ∈ HU and no queries PSig(pkk,warr, task,M) made

with OpenW(warr) = (pk1, . . . ,pkk−1) made, return 1 (Case 3)
return 0

Figure 4: Experiment for non-frameability

Oracles for non-frameability: ISndToU (OSndToU) enables the adversary impersonating
a corrupt issuer (opener) to communicate with an honest user. When first called without
arguments, the oracle simulates a user starting the registration procedure and makes a new
entry in HU , the list of honest users. Oracles Del, PSig are called with a user’s public key,
which the experiment replaces by the user’s secret key from HU before executing the respective
function; e.g. calling Del with parameters (pk1,TList,pk2) returns Del(sk1,TList,pk2). Oracle
SK takes a public key pk as argument and returns the corresponding private key after deleting
pk from HU .

6

Definition 5 (Non-frameability). A proxy signature scheme PS is non-frameable if for any
p.p.t. adversary A we have

Pr
[
Expn-frame

PS,A (λ) = 1
]

= negl(λ).

Remark 6. In the experiment Expn-frame
PS,A , the opening algorithm is run by the experiment,

which by definition behaves honestly. To guard against a corrupt opener, it suffices to add a
(possibly interactive) zero-knowledge proof to the system and have the opener prove correctness
of decryption.

4 An Instantiation of the Scheme

4.1 Building Blocks

To construct the generic scheme, we will use the following cryptographic primitives (cf. Ap-
pendix A for the formal definitions) whose existence is implied by assuming trapdoor permuta-
tions [Rom90, DDN00, Sah99].

• DS = (Kσ,Sig,Ver), a digital signature scheme secure against existential forgeries under
chosen-message attack [GMR88].

• PKE = (Kε,Enc,Dec), a public-key encryptions scheme with indistinguishable encryptions
under adaptive chosen-ciphertext attack (CCA2) [RS92].

• Π = (P,V,Sim), a non-interactive zero-knowledge proof system for an NP-language to be
defined later which is simulation sound [BdSMP91, Sah99].

4.2 Algorithms

The algorithm Setup establishes the public parameters and outputs the issuer’s and the opener’s
certification key. The public parameters consist of the security parameter, a common random
string for non-interactive zero-knowledge proofs and the two signature verification keys corre-
sponding to the issuer’s and the opener’s key:

Setup

1λ → (pkα, skα)←− Kσ(1λ); (pkω, skω)←− Kσ(1λ); crs←− {0, 1}p(λ)

pp, ik, ock← pp := (λ, pkα, pkω, crs); ik := skα; ock := skω

When a user joins the system, he creates a pair of verification/signing keys (pkσ, skσ) and
signs pkσ (possibly via an external PKI) in order to commit to it. He then sends pkσ and the
signature sig to the issuer. The latter, after checking sig, signs pkσ with his certificate issuing
key skα and writes the user data to IReg , the registration table.

In addition, the issuer sends pkσ to the authority responsible for opening the user’s signa-
tures. The opener creates an encryption/decryption key pair (pkε, skε) and a certificate on pkε,
which he sends together with pkε to the issuer, who forwards it to the user.6 See Figure 5.

6In practice, our protocol would allow for the opener to communicate directly with the user—consider for
example the case where each user is his own opener. We define the protocol this way to simplify exposition of the
security proofs.

7

Reg public: pp = (λ, pkα, pkω, crs)

User x Authority (holds skα)

• (pkσ, skσ)←− Kσ(1λ)
• produce sig, pkσ, sig

a signature on pkσ → • if sig invalid for pkσ, return ⊥
• cert←− Sig(skα, pkσ)

cert,pkε, certω • write (pkσ, sig) to IReg
• verify cert and certω ←

pk := (pkσ, pkε, cert, certω, pp) ↑
sk := (pk, skσ) pkσ pkε, certω

↓

Opener for x (holds skω)

• (pkε, skε)←− Kε(1λ)
• certω ←− Sig(skω, (pkσ, pkε))
• write (pkσ, pkε, skε) to OReg

Figure 5: Registration protocol

Note that it is by having users create their own signing keys skσ that a corrupt authority is
prevented from framing users. The user is however required to commit to his verification key
via sig, so that he cannot later repudiate signatures signed with the corresponding signing key.

Algorithm Del enables user x to pass his signing rights to user y (called with no optional
argument warr), or to re-delegate the rights represented in warr for the tasks in TList. User
x, being the kth delegator first creates a new entry warrnew[k], in position 0 of which he writes
his public key, later used by an eventual delegator or signer. For every task to delegate, he
copies all respective entries of a possible warrant and then signs the task, the public keys of the
delegators, his and the delegatee’s public key.

Del

skx, [warr] parse skx (pkx, skσ); k := |warr|+ 1 // k = 1 if no warr

TList,pky → warrnew[k][0] := pkx

for all 1 ≤ i ≤ k, parse warr[i][0] (pkσi,pkεi, certi, certωi,pp)
for all task ∈ TList

for all 1 ≤ i < k do
warrnew[i][task] := warr[i][task]

warrnew ← warrnew[k][task]←− Sig
(
skσ, (task,pkσ1, . . . ,pkσk,pkσy)

)

8

For every k, let Πk := (Pk,Vk,Simk) be a non-interactive zero-knowledge proof system for
the following NP-relation:

Rk

[
(pkα, pkω, pkσ1,pkε1, certω1, task,M,C), (pkσ2, . . . ,pkσk, cert2, . . . , certk,warr1, . . . ,warrk−1, s, ρ)

]
:⇔ Ver

(
pkω, (pkσ1,pkε1), certω1

)
= 1 ∧ (1)∧

2≤i≤k Ver
(
pkα, pkσi, certi

)
= 1 ∧ (2)∧

1≤i≤k−1 Ver
(
pkσi, (task,pkσ1, . . . ,pkσi+1),warri

)
= 1 ∧ (3)

Ver
(
pkσk, (task,pkσ1, . . . ,pkσk,M), s

)
= 1 ∧ (4)

Enc
(
pkε1, (pkσ2, . . . ,pkσk, cert2, . . . , certk,warr1, . . . ,warrk−1, s), ρ

)
= C (5)

Note that for every k, the above relation R defines indeed an NP-language LRk
, since given a

witness, membership of a candidate theorem is efficiently verifiable and furthermore the length
of a witness is polynomial in the length of the theorem.
Basically, a theorem (pkα, pkω, pkσ1,pkε1, certω1, task,M,C) is in LRk

if and only if

(1) pkε1 is correctly certified w.r.t. pkω,

(2) there exist verification keys pkσ2, . . . ,pkσk that are correctly certified w.r.t. pkα,

(3) there exist warrant entries warri for 1 ≤ i < k, s.t. pkσi verifies the delegation chain
pk1 → · · · → pki+1,

(4) there exists a signature s on the delegation chain and M valid under pkσk,

(5) C is the encryption of all the verification keys, certificates, warrants and the signature s.

Now to produce a proxy signature, it suffices to sign the delegation chain and the message,
encrypt it together with all the signatures from the warrant and prove that everything was done
correctly, that is, prove that Rk is satisfied:

PSig

sk,warr, task,M → k := |warr|+ 1, parse sk (pkk, skσ)
parse pkk

(
pkσk,pkεk, certk, certωk, (λ, pkα, pkω, crs)

)
for 1 ≤ i < k: parse pki := warr[i][0] (pkσi,pkεi, certi, certωi,pp)

set warri := warr[i][task]
s←− Sig

(
skσ, (task,pkσ1, . . . ,pkσk,M)

)
; ρ←− {0, 1}pε(λ,k)

W := (pkσ2, . . . ,pkσk, cert2, . . . , certk,warr1, . . . ,warrk−1, s)
C ←− Enc(pkεx,W ; ρ)
π ←− Pk

(
1λ, (pkα, pkω, pkσ1,pkε1,warrω1, task,M,C),W ‖ρ, crs

)
σ ← σ := (C, π)

Verifying a proxy signature amounts to merely verifying the proof it contains:

PVer

pkx, task,M, σ → parse pkx
(
pkσx,pkεx, certx, certωx, (λ, pkα, pkω, crs)

)
, σ (C, π)

b← b := Vk

(
1λ, (pkα, pkω, pkσx,pkεx, certωx, task,M,C), π, crs

)
9

To open a signature, after checking its validity, decrypt the ciphertext contained in it:

Open

okx, task,M, σ → parse okx (pkx, skεx); σ (C, π)
parse pkx

(
pkσx,pkεx, certx, certωx, (λ, pkα, pkω, crs)

)
if Vk

(
1λ, (pkα, pkω, pkσx,pkεx, certωx, task,M,C), π, crs

)
= 0

return ⊥
(pkσ2, . . . ,pkσk, cert2, . . . , certk,warr1, . . . ,warrk−1, s) := Dec(skεx, C)

(pk2, . . . ,pkk)← if for some i, pki is not in IReg , return ⊥

4.3 Security Results

From the definition of the algorithms, it should be apparent that running PSig with a warrant
correctly produced by correctly registered users, returns a signature which is accepted by PVer.
Moreover, the defined scheme satisfies all security notions defined in Section 3:

Lemma 7. The proxy signature scheme PS is anonymous, i.e. for every p.p.t. A:∣∣ Pr
[
Expanon-1

PS,A (λ) = 1
]
− Pr

[
Expanon-0

PS,A (λ) = 1
]∣∣ = negl(λ).

See Appendix B.2 for the proof.

Lemma 8. The proxy signature scheme PS has the property of traceability, i.e. for every
p.p.t. A:

Pr
[
Exptrace

PS,A(λ) = 1
]

= negl(λ).

See Appendix B.1 for the proof.

Lemma 9. The proxy signature scheme PS has the property of non-frameability, i.e. for
every p.p.t. A:

Pr
[
Expn-frame

PS,A (λ) = 1
]

= negl(λ).

Proof. Figure 6 shows experiment Expn-frame
PS,A rewritten with the code of the respective algo-

rithms. Note that we can dispense with the OSndToU-oracle, because in our scheme the user
communicates exclusively with the issuer.

We construct an adversary B against the signature scheme DS having input a verification
key pk and access to a signing oracle OSig. B simulates Expn-frame

PS for A, except that for one
random user registered by A via SndToU, B sets pkσ to his input pk, hoping that A will frame
this very user. If B guesses correctly and A wins the game, a forgery under pk can be extracted
from the proxy signature returned by A. Let n(λ) be the maximal number of SndToU queries
A makes. Figure 7 details adversary B and how he answers A’s SndToU and SK oracle queries.

To answer oracle calls Del and PSig with argument pk∗ = (pk, ··), B replaces the line with
Sig(skσ, (task,pkσ1, . . .)) in the respective algorithms by a query to his own signing oracle. For
all other pulic keys, B holds the secret keys and can thus answer all queries.

10

Expn-frame
PS,A (λ)

1 (pkα, skα)←− Kσ(1λ); (pkω, skω)←− Kσ(1λ); crs←− {0, 1}p(λ)

2 pp := (λ, pkα, pkω, crs)

3 (ok,pk, task,M, σ)←− A(pp, skα, skω : SndToU,SK,Del,PSig)

4 parse ok ((pkσ1,pkε1, cert1, certω1,pp), skε1); σ (C, π)

5 if Vk

(
1λ, (pkα, pkω, pkσ1,pkε1, certω1, task,M,C), π, crs

)
= 0 then return 0

6 (pkσ2, . . . ,pkσk, cert2, . . . , certk,warr1, . . . ,warrk−1, s) := Dec(skε1, C)

7 if pk1 ∈ HU and no queries ODel(pk1, {··, task, ··},pk2) then return 1

8 if ∃i : pki ∈ HU and no queries ODel(pki,warr, {··, task, ··},pki+1)
with warr[j][0][1] = pkσj for 1 ≤ j ≤ i then return 1

9 if pkk ∈ HU and no queries OPSig(pkk,warr, task,M)
with warr[j][0][1] = pkσj for 1 ≤ j ≤ k then return 1

10 return 0

OSndToU(∅)
1 (pkσ, skσ)←− Kσ(1λ)

2 HU := HU ∪ {(pkσ, skσ)}
3 return pkσ

OSK((pkσ, ··))
1 if (pkσ, skσ) ∈ HU ,

2 delete the entry and return skσ

3 otherwise, return ⊥

Figure 6: Instantiated experiment for non-frameability

Adversary B(pk : Sig(sk, ·))
0 j∗ ←− {1, . . . , n}; j := 0

...

7 if pkσ1 = pk and no queries ODel((pk1, ··), {··, task, ··}, (pkσ2, ··))
then return

(
(task,pkσ1,pkσ2),warr1

)
8 if ∃i : pkσi = pk and no queries ODel((pkσi, ··),warr, {··, task, ··}, (pkσi+1, ··))

with warr[j][0][1] = pkσj for 1 ≤ j ≤ i

then return
(
(task,pkσ1, . . . ,pkσi+1),warri

)
9 if pkσk = pk and no queries OPSig((pkσk, ··),warr, task,M) with

warr[j][0][1] = pkσj for 1 ≤ j ≤ k, then return
(
(task,pkσ1, . . . ,pkσk,M), s

)
10 return 0

OSndToU(∅) by B

1 j := j + 1; if j = j∗, return pk

2 (pkσ, skσ)←− Kσ(1λ)

3 HU := HU ∪ {(pkσ, skσ)}
4 return pkσ

OSK((pkσ, ··)) by B

1 if pkσ = pk then abort

2 else if ∃ skσ : (pkσ, skσ) ∈ HU

3 delete entry, return skσ

4 return ⊥

Figure 7: Adversary B against DS simulating Expn-frame
PS,A

11

Let S denote the event
[
(pkα, pkω, pkσ1,pkε1, certω1, task,M,C) ∈ LR

]
and E1, E2, E3

denote the union of S and the event that Expn-frame returns 1 in line 7, 8, 9, respectively. Then
the following holds:

Advn-frame
PS,A (λ)) ≤ Pr[E1] + Pr[E2] + Pr[E3] + Pr[Expn-frame

PS,A (λ) = 1 ∧ S̄]

We now show that the four summands are negligible:

1. Consider the event E∗
1 := [E1 ∧ pkσ1 = pk]. Then Ver

(
pk, (task,pkσ1,pkσ2),warr1

)
= 1,

by S. So, B returns a valid message/signature pair. The forgery is valid, since B did
not query its signing oracle for (task,pkσ1,pkσ2) as this only happens when A queries
ODel((pkσ1, ··), {··, task, ··}, (pkσ2, ··)), which by E1 is not the case. Moreover, B simulates
perfectly, for E1 implies OSK((pk, ··) was not queried. All in all, we have

Adveuf-cma
DS,B ≥ Pr[E∗

1] = Pr[pk∗ = pk1] · Pr[E1] = 1
n(λ) Pr[E1]

2. Consider the event [E2 ∧ pkσi = pk]: Then S implies

Ver(pk,
(
(task,pkσ1, . . . ,pkσi+1),warri

)
= 1

So, B returns a valid signature on a message he did not query its signing oracle:
Only if A queries ODel((pkσi, ··),warr, {··, task, ··}, (pkσi+1, ··)) with warr[j][0][1] = pkσj

for 1 ≤ j ≤ i + 1, B queries (task,pkσ1, . . . ,pkσi+1). Moreover, B simulates perfectly, as
there was no query OSK((pk, ··). As for 1., we have 1

n(λ) Pr[E2] ≤ Adveuf-cma
DS,B .

3. Consider the event [E3 ∧ pkσk = pk]: There were no OSK((pk, ··) queries and by S, B
outputs a valid pair. B did not query (task,pkσ1, . . . ,pkσk,M) (as A made no query
OPSig(pk∗,warr, task,M) with warr[j][0][1] = pkσj for 1 ≤ j ≤ k). Again, we have

1
n(λ) Pr[E3] ≤ Adveuf-cma

DS,B

4. The event Pr[Expn-frame
PS,A (λ) = 1] implies

Vk(1λ, (pkα, pkω, pkσ1,pkε1, certω1, task,M, C), π, crs) = 1,

which, together with S̄ contradicts soundness of Π: based on Expn-frame
PS,A , we could con-

struct an adversary Bs against soundness of Π which after receiving crs (rather than
choosing it itself), runs along the lines of the experiment until line 4 and subsequently
outputs

(
(pkα, pkω, pkσ1,pkε1, certω1, task,M,C), π

)
. We have thus

Pr[Expn-frame
PS,A (λ) = 1 ∧ S̄] ≤ Advss

Π,Bs

Theorem 10. Assuming trapdoor permutations, there exists an anonymous traceable non-
frameable proxy signature scheme.

Proof. Follows from Lemmata 7, 8 and 9.

We have thus defined a new primitive unifying the concepts of group and proxy signatures
and given strong security definitions for it. Moreover, Theorem 10 shows that these definitions
are in fact satisfiable in the standard model, albeit by a nonpractical scheme. We are nonetheless
confident that more practical instantiations of our model will be proposed, as it was the case for
group signatures; see e.g. [BW07] for an instantiation of a variation of the model by [BMW03].

12

5 Acknowledgements

This work was partially funded by EADS, CELAR and ECRYPT.

References

[BMW03] M. Bellare, D. Micciancio and B. Warinschi. Foundations of group signatures: Formal
definitions, simplified requirements, and a construction based on general assumptions.
EUROCRYPT ’03 , LNCS 2656, pp. 614–629. Springer-Verlag, 2003.

[BSZ05] M. Bellare, H. Shi and C. Zhang. Foundations of group signatures: The case of dynamic
groups. In CT-RSA 2005, LNCS 3376, pp. 136–153. Springer-Verlag, 2005.

[BdSMP91] M. Blum, A. De Santis, S. Micali, and G. Persiano. Non-interactive zero-knowledge
proof systems. SIAM Journal on Computing, 20(6):1084–1118, 1991.

[BPW03] A. Boldyreva, A. Palacio and B. Warinschi. Secure proxy signature schemes for dele-
gation of signing rights. IACR ePrint Archive: Report 2003/096, 2003.

[BW07] X. Boyen and B. Waters. Full-domain subgroup hiding and constant-size group signa-
tures. PKC ’07, LNCS 4450, pp. 1–15. Springer-Verlag, 2007.

[CvH91] D. Chaum and E. van Heyst. Group signatures. EUROCRYPT ’91, LNCS 547, pp.
257–265. Springer-Verlag, 1991.

[DDN00] D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM Journal on
Computing, 30(2):391–437, 2000.

[GMR88] S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281–308, 1988.

[MUO96] M. Mambo, K. Usuda and E. Okamoto. Proxy signatures for delegating signing op-
eration. Proceedings of the 3rd ACM Conference on Computer and Communications
Security (CCS). ACM, 1996.

[RS92] C. Rackoff and D. Simon. Non-interactive zero-knowledge proof of knowledge and chosen
ciphertext attack. CRYPTO ’91, LNCS 576, pp. 433–444, Springer-Verlag, 1992.

[RST01] R. Rivest, A. Shamir, and Y. Tauman. How to leak a secret. In Proceedings of Asiacrypt
2001, LNCS 2248, pp. 552–565. Springer-Verlag, 2001.

[Rom90] J. Rompel. One-way functions are necessary and sufficient for secure signatures. 22nd
Annual Symposium on Theory of Computing, pp. 387–394. ACM, 1990.

[Sah99] A. Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext
security. 40th Symposium on Foundations of Computer Science, pp. 543–553, IEEE,
1999.

[SK02] K. Shum and Victor K. Wei. A strong proxy signature scheme with proxy signer privacy
protection. 11th IEEE International Workshops on Enabling Technologies: Infrastruc-
ture for Collaborative Enterprises (WETICE ’02), pp. 55–56. IEEE, 2002.

13

[TL04] Z. Tan and Z. Liu. Provably secure delegation-by-certification proxy signature schemes.
IACR ePrint Archive: Report 2004/148, 2004.

[TW05] M. Trolin and D. Wikström. Hierarchical group signatures. Automata, Languages and
Programming, 32nd International Colloquium (ICALP’05), LNCS 3580, pp. 446–458.
Springer-Verlag, 2005.

A Formal Definitions of the Employed Primitives

A.1 Signature Scheme DS = (Kσ, Sig, Ver)

DS is a digital signature scheme, that is

∀λ ∈ N ∀m ∈ {0, 1}∗ ∀ (pk, sk)← Kσ : Ver
(
pk,m, Sig(sk,m)

)
= 1

We assume DS is secure against existential forgery under chosen-message attack, that is

∀ p.p.t. A : Pr
[
Expeuf-cma

DS,A (λ) = 1
]

= negl(λ) with

Expeuf-cma
DS,A (λ)

(pk, sk)←− Kσ(1λ)
(m,σ)←− A(pk : Sig(sk, ·))
if Ver(pk,m, σ) = 1 and A never queried m, return 1, else return 0

A.2 Public-key Encryption Scheme PKE = (Kε, Enc, Dec)

PKE is a public-key encryption scheme, that is

∀λ ∈ N ∀m ∈ {0, 1}∗ ∀ (pk, sk)← Kε(1λ) : Dec(sk,Enc(pk,m)) = m

We assume that PKE satisfies indistinguishability under adaptive chosen-chiphertext attacks, i.e.

∀ p.p.t. A = (A1, A2) :
∣∣ Pr

[
Expind-cca-1

PKE,A (λ) = 1
]
− Pr

[
Expind-cca-0

PKE,A (λ) = 1
]∣∣ = negl(λ) with

Expind-cca-b
PKE,A (λ)

(pk, sk)←− Kε(1λ)
(m0,m1, st)←− A1(pk : Dec(sk, ·))
y ←− Enc(pk,mb)
d←− A2(st, y : Dec(sk, ·))
if |m0| = |m1| and A2 never queried y return d, else return 0

A.3 Non-interactive Zero-knowledge Proof System Π = (P, V, Sim) for LR

We require that Π satisfy the following properties:

• Completeness

∀λ ∈ N ∀ (x,w) ∈ R with |x| < `(λ) ∀ r ∈ {0, 1}p(λ) : V
(
1λ, x,P(1λ, x, w, r), r

)
= 1

14

• Soundness

∀ p.p.t. A : Pr
[
r ← {0, 1}p(λ); (x, π)← A(r) : x /∈ L ∧ V(1λ, x, π, r) = 1

]
= negl(λ)

• Adaptive Single-Theorem Zero Knowledge

∀ p.p.t. A : Advzk
Π,A(λ) :=

∣∣ Pr
[
Expzk

Π,A(λ) = 1
]
−Pr

[
Expzk-S

Π,A(λ) = 1
]∣∣ = negl(λ) with

Expzk
Π,A(λ)

r ←− {0, 1}p(λ)

(x,w, stA)←− A1(r)
π ←− P(x,w, r)
return A2(stA, π)

Expzk-S
Π,A(λ)

(r, stS)←− Sim1(1λ)
(x,w, stA)←− A1(r)
π ←− Sim2(stS , x)
return A2(stA, π)

• Simulation Soundness

∀ p.p.t. A : Pr
[
Expss

Π,A(λ) = 1
]

= negl(λ) with

Expss
Π,A(λ)

(r, stS)←− Sim1(1λ)
(y, stA)←− A1(r)
π ←− Sim2(stS , y)
(x, π′)←− A2(stA, π)
if π 6= π′ and x /∈ LR and V(1λ, x, π′, r) = 1 return 1, else return 0

B Further Proofs of Security Results

B.1 Proof of Lemma 8

First, note that the requirement to have pkε certified by the opener prevents the adversary from
trivially winning the game by using a different pkε′ to encrypt which would lead to a signature
that is not openable with the opener’s key. Figure 8 shows the experiment Exptrace

PS,A including
the SndToI-oracle rewritten with the code of the respective algorithms.

We construct two adversaries B1, B2 against existential unforgeability of DS that simulates
Exptrace

PS,A, while using its input pk as either the opener’s certifying key (B1) or the issuer’s
signing key (B2). When answering the A’s SndToI queries, B1 and B2 use their oracle for the
respective signature.

Adversary B1(pk : Sig)

1 (pkα, skα)←− Kσ(1λ); pkω := pk
...

6 if no entry pk in OReg , return ((pkσ∗,pkε∗), certω∗)

7 return ⊥

Adversary B2(pk : Sig)

1 pkα := pk; (pkω, skω)←− Kσ(1λ)
...

8 if for some i, pkσi not in IReg , return (pkσi, certi)

9 return ⊥

15

Exptrace
PS,A(λ)

1 (pkα, skα)←− Kσ(1λ); (pkω, skω)←− Kσ(1λ)

2 crs←− {0, 1}p(λ); pp := (λ, pkα, pkω, crs)

3 (pk, task,M, σ)←− A(pp : SndToI)

4 parse pk (pkσ∗,pkε∗, cert∗, certω∗,pp); σ (C, π)

5 if Vk(1λ, (pkα, pkω, pkσ∗,pkε∗, certω∗, task,M,C), π, crs) = 0, return 0

6 if no entry pk in OReg , return 1 // opening fails
otherwise look up the corresponding skε∗.

7 (pkσ2, . . . ,pkσk, cert2, . . . , certk,warr1, . . . ,warrk−1, s) := Dec(skε∗, C)

8 if for some i, pkσi not in IReg , return 1

9 return 0

OSndToI(pkσ, sig)

1 if verification of sig on pkσ fails then return ⊥
2 cert←− Sig(skα, pkσ); write (pkσ, sig) to IReg

3 (pkε, skε)←− Kε(1λ); certω ←− Sig(skω, (pkσ, pkε))

4 write (pkσ, pkε, skε) to OReg

5 return (cert,pkε, certω)

Figure 8: Experiment for traceability

Let E1, E2 and S denote the following events:

E1 . . . Exptrace
PS,A(λ) returns 1 in line 6

E2 . . . Exptrace
PS,A(λ) returns 1 in line 8

S . . . (pkα, pkω, pkσ∗,pkε∗, certω∗, task,M, C) ∈ LR

We have Advtrace
PS,A(λ) = Pr[E1 ∧ S] + Pr[E2 ∧ S] + Pr[(E1 ∨ E2) ∧ S̄]. We show that the three

summands are negligible, which completes the proof.

E1 ∧ S: We have (pkα, pkω, pkσ∗,pkε∗, certω∗, task,M,C) ∈ LR, so

Ver
(
pkω, (pkσ∗,pkε∗), certω∗) = 1.

On the other hand, E1 implies that (pkσ∗,pkε∗) is not in OReg , thus B1 never queried
it its signing oracle and returns thus a valid forgery. Consequently we have

Pr[E1 ∧ S] ≤ Pr[Expeuf-cma
DS,B1 (λ) = 1].

E2 ∧ S: Again, (pkα, pkω, pkσ∗,pkε∗, certω∗, task,M, C) ∈ LR, so for all 2 ≤ j ≤ k we have
Ver(pkα, pkσj , certj) = 1, but pkσi being not in IReg means B2 returns a valid forgery,
thus

Pr[E2 ∧ S] ≤ Pr[Expeuf-cma
DS,B2 (λ) = 1].

(E1 ∨ E2) ∧ S̄: E implies Vk(1λ, (pkα, pkω, pkσ∗,pkε∗, certω∗, task,M, C), π, crs) = 1, so the
event (E1 ∨ E2) ∧ S̄ contradicts soundness of Π and happens thus only with negligible
probability (cf. the proof of Lemma 9 for non-frameability).

16

B.2 Proof of Lemma 7

The natural way to prove anonymity is a reduction to indistinguishability of the underlying en-
cryption scheme: if the adversary can distinguish between two signatures (C1, π1) and (C2, π2),
then he can distinguish C1 from C2, as the proofs πi do not facilitate distinction because they
are zero-knowledge—simulating the proofs does not alter the experiments in any computation-
ally distinguishable manner and can be performed by the adversary himself. The only case that
needs special treatment in the reduction is when the PS adversary, after receiving σ = (C, π),
queries (C, π′)—which is legitimate, but C cannot be forwarded to his decryption oracle by the
PKE-adversary.

Expanon-b
PS,A (λ)

1 crs←− {0, 1}p(λ)

2 (pkα, skα)←− Kσ(1λ); (pkω, skω)←− Kσ(1λ); pp := (λ, pkα, pkω, crs)

3

(
st,pk, (warr0, sk0), (warr1, sk1), task,M

)
←− A1(pp, ik : SndToO,OK,Open)

4 if pk /∈ OReg, return 0, else parse pk (pkσ∗,pkε∗, cert∗, certω∗,pp)

5 if |warr0| 6= |warr1|, return 0, else k := |warr|+ 1

6 for c = 0 . . 1

7 parse skc
(
(pkσc

k,pkεc
k, certc

k, certωc
k,pp), skσc

)
8 for i = 1 . . k − 1

9 pkc
i := warrc[i][0] (pkσc

i ,pkεc
i , cert

c
i , certω

c
i ,pp)

10 sc ←− Sig(skσc, (task,pkσc
1, . . . ,pkσc

k,M)

11 mc := (pkσc
2, . . . ,pkσc

k, certc
2, . . . , cert

c
k,

warrc[1][task], . . . ,warrc[k − 1][task], s)

12 if R∗
k(pkα, pkω, pkσ∗,pkε∗, certω∗, task,M),mc) = 0, return 0

13 ρ←− {0, 1}pε(λ); C ←− Enc(pkε∗,mb; ρ)

14 π ←− Pk

(
1λ, (pkα, pkω, pkσ∗,pkε∗, certω∗, task,M,C), (mb, ρ), crs

)
15 d←− A2

(
st, (C, π) : Open

)
16 if no oracle calls

(
pk, task,M, (C, π)

)
, return d, otherwise return 0

Oracle OSndToO(pkσ)
(pkε, skε)←− Kε(1λ)
certω ←− Sig

(
skω, (pkσ, pkε)

)
save (pkσ, pkε, certω, skε) in OReg

return (pkε, certω)

Oracle OOK((pkσ∗, ··))
if (pkσ∗, ·, ·, skε) ∈ OReg

for some skε

delete the entry from OReg

return skε

Figure 9: Experiment for anonymity

Figure 9 shows the experiment for anonymity after plugging in the algorithm definitions,
and some simplifications, with R∗ being R restricted to the first 4 terms, i.e. there is no check of
encryption. Note that this does not alter the experiment, since encryption is performed correctly
by the experiment anyway.

We define a first variant of the original experiment by substituting the zero-knowledge proof
π by a simulated one:

17

Expanon-b
PS,A (λ)(1)

1 (crs, stS)←− Sim1(1λ)
...

14 π ←− Sim2(stS , (pkα, pkω, pkσ∗,pkε∗, cert∗, task,M,C)
...

Since Π is a zero-knowledge proof system, we have:

Claim 11. ∣∣ Pr[Expanon-b
PS,A (λ) = 1]− Pr[Expanon-b

PS,A (λ)(1) = 1]
∣∣ ≤ Advzk

Π,D(λ)

where D is a p.p.t. algorithm that in the first stage, on input crs, simulates Expanon-b
PS,A (λ) from

line 2 to 13 and outputs (pkα, pkω, pkσ∗,pkε∗, cert∗, task,M, C),mb ‖ρ); after receiving π in the
second stage, D continues simulating lines 15 and 16.

Proof. The claim follows from equivalence of the following random variables:

Expzk
Π,D(λ) = Expanon-b

PS,A (λ) and Expzk-S
Π,D(λ) = Expanon-b

PS,A (λ)(1)

Next, we define a second variant that can then be perfectly simulated by a PKE adversary:

Expanon-b
PS,A (λ)(2)

...

16 if no queries
(
pk, task,M, (C, π)

)
and no valid queries

(
pk, task,M, (C, π′)

)
return d, otherwise return 0

Claim 12. ∣∣ Pr[Expanon-b
PS,A (λ)(1) = 1]− Pr[Expanon-b

PS,A (λ)(2) = 1]
∣∣ = negl(λ)

(See below for the proof.) Due to the above claims, in order to proof Lemma 7, it suffices to
relate Pr[Expanon-b(2) = 1] to Pr[Expind-cca b = 1]. Let n be the maximal number of SndToO
queries performed by A. We construct an adversary against the encryption scheme that, on
guessing the right user, perfectly simulates Expanon-b

PS,A (λ)(2):

Adversary B1(pk : Dec)

1 j∗ ←− {1, . . . , n}; j := 0; (crs, stS)←− Sim1(1λ)
...

12 if R∗
k(pkα, pkω, pkσ∗,pkε∗, certω∗, task,M),mc) = 0, return 0

13 return (m0,m1, status)

18

Adversary B2(status, C : Dec)

1 π ←− Sim2(stS , (pkα, pkω, pkσ∗,pkε∗, certω∗, task,M,C)

2 d←− A2(st, (k, C, π) : Open)

3 if no queries (pk, task,M, (C, π)) and no valid queries (pk, task,M, (C, π′))
return d, otherwise return 0

Oracle OSndToO(pkσ) by B1

j := j + 1
if j = j∗ then pkε := pk

else (pkε, skε)←− Kε(1λ)
certω ←− Sig

(
skω, (pkσ, pkε)

)
; save (pkσ, pkε, certω) in OReg

return (pkε, certω)

When A calls its Open oracle with a public key containing pk, B uses his own Dec oracle to
decrypt the ciphertext in the signature.

Consider the experiment, when A returns pk containing pk (which happens with probability
at least 1

n(λ)): first, note that m0 and m1 are of equal length, for R∗ guarantees that the
warrants are formed correctly. Moreover, B makes an illegal C query if and only if line 16 of
Expanon-b

PS,A (λ)(2) is violated (an invalid query (C, π′) by A does not provoke an oracle call by B).
We have thus

Pr[Expind-cca-b
PKE,B (λ) = 1] ≥ 1

n(λ) Pr[Expanon-b
PS,A (λ)(2) = 1] (6)

On the other hand, by indistinguishability of PKE , we have:∣∣ Pr[Expind-cca-1
PKE,B (λ) = 1]− Pr[Expind-cca-0

PKE,B (λ) = 1]
∣∣ = negl(λ)

which, because of (6) and Claims 11 and 12 yields:∣∣ Pr[Expanon-1
PS,A (λ) = 1]− Pr[Expanon-0

PS,A (λ) = 1]
∣∣ = negl(λ)

We conclude by proving the second claim:

Proof of Claim 12. We show that after receiving (C, π), A is very unlikely to make a valid open
query (C, π′), i.e. create a different proof π′ for the statement

(pkα, pkω, pkσ∗,pkε∗, certω∗,M, task, C) =: X.

If X was not in LR, then due to simulation soundness of Π, such a query happens only with
negligible probability. However, indistinghuishability implies that the same holds for X ∈ LR,
otherwise based on Expanon-b(1)

PS,A we could build a distinguisher Bb for PKE as follows:

Adversary Bb
1(pk : Dec)

...

13 return (0|m
b|,mb, status)

19

Adversary Bb
2(status, C : Dec)

1 π ←− Sim2

(
stS , (pkα, pkω, pkσ∗,pkε∗, certω∗,M, task, C)

)
2 d←− A2(st, (C, π) : Open)

3 if at some point A queries (C, π′) with π′ 6= π and
Vk(1λ,

(
pkα, pkω, pkσ∗,pkε∗, certω∗,M, task, C), π′, R

)
= 1 then return 1

4 return 0

and a simulation-soundness adversary Sb,c that runs Expind-c
PKE,Bb , except for having crs and π

as input from the experiment instead of creating them itself. Now when when A first makes
a valid query (C, π′), it outputs

(
X := (pkα, pkω, pkσ∗,pkε∗, certω∗,M, task, C), π′

)
, and fails

otherwise. We have∣∣ Pr[Expanon-b
PS,A (λ)(1) = 1]− Pr[Expanon-b

PS,A (λ)(2) = 1]
∣∣ ≤ Pr[Eb],

where Eb denotes the event that in Expanon-b
PS,A , A makes a valid query (C, π′). It remains to

bound the probability of event Eb:

Pr[Expind-1
PKE,Bb(λ) = 1] = Pr[Expind-1

PKE,Bb(λ) = 1 ∧ pkε∗ = pk] +

Pr[Expind-1
PKE,Bb(λ) = 1 ∧ pkε∗ 6= pk]

= 1
n(λ) Pr[Eb] +

(
1− 1

n(λ)

)
Pr[Expss

Π,Sb,1(λ) = 1],

since Sb,1 succeeds, for X /∈ LR by pkε∗ 6= pk. On the other hand, we have

Pr[Expind-0
PKE,Bb(λ) = 1] = Pr[Expss

Π,Sb,0(λ) = 1].

Combining the above, we get

Pr[Eb] ≤ n(λ)Advind
PKE,Bb(λ) +

(
n(λ)− 1

)
Advss

Π,Sb,1(λ) + n(λ)Advss
Π,Sb,0(λ),

which proves the claim, for the right hand side of the equation is negligible.

20

