
Threshold RSA for Dynamic and Ad-Hoc Groups

Rosario Gennaro, Shai Halevi, Hugo Krawczyk, Tal Rabin

IBM T.J.Watson Research Center
Hawthorne, NY USA

Abstract. We consider the use of threshold signatures in ad-hoc and dynamic groups such as MANETs
(“mobile ad-hoc networks”). While the known threshold RSA signature schemes have several properties
that make them good candidates for deployment in these scenarios, none of these schemes seems prac-
tical enough for realistic use in these highly-constrained environments. In particular, this is the case of
the most efficient of these threshold RSA schemes, namely, the one due to Shoup. Our contribution is
in presenting variants of Shoup’s protocol that overcome the limitations that make the original protocol
unsuitable for dynamic groups. The resultant schemes provide the efficiency and flexibility needed in
ad-hoc groups, and add the capability of incorporating new members (share-holders) to the group of
potential signers without relying on central authorities. Namely, any threshold of existing members can
cooperate to add a new member. The schemes are efficient, fully non-interactive and do not assume
broadcast.

1 Introduction

A distributed signature scheme is a protocol where the ability to sign is distributed among a
group of entities, so that a sufficiently large subset can produce valid signatures while a “small”
subset cannot generate such a signature. These schemes are often referred to as t-out-of-n threshold
signatures where n is the total number of entities and t is the “threshold”. Namely, t+1 cooperating
parties can produce a valid signature, but t or less cannot (even if they depart maliciously from the
protocol). Threshold signature schemes are known for standard signatures such as RSA and DSS.
One major appeal of these schemes is that the verification of a signature uses a regular public key
and a standard verification procedure; hence the verifier of a signature does not need to be aware of
the form (centralized or distributed) in which the signature was generated, or who were the parties
involved, nor does the signature increase in size as a function of the number of signers.

Typically, in these systems each signing entity holds a share of the signing key, that it uses
to produce a “fragment” of a signature on a given message. When a sufficient number of such
fragments are collected (i.e., a threshold), the fragments are combined in some prescribed manner
to generate the resultant (standard) signature on the given message.

Threshold signature were traditionally motivated by applications requiring the protection of
highly-valuable signature keys, such as in the cases of a certification authority signing public-key
certificates or a bank minting electronic coins. In such applications, threshold signatures increase
the security of the key by preventing “a single point of failure”, and also increase the reliability and
availability of the service (since disabling some nodes does not disrupt the service as long as there
are t+1 good functioning nodes). A substantial body of work has been devoted to designing efficient
threshold signature schemes [3, 5, 9], especially for standard algorithms such as RSA [11, 8, 19, 14, 13,
24] and DSS [6, 17]. Given this motivation, prior works were mostly concerned with scenarios with
a small number of nodes, with static configuration and tight coordination. (Typically the protocol
would be implemented by a small set of nodes, all of which are governed by one administrative
entity.)

A more recent application of threshold signatures has emerged in the area of networking and
distributed computing, such as in the setting of mobile and ad-hoc networks (MANETs). In these
cases, relatively small subsets of very large (and dynamic) groups report data, that is aggregated
and “certified” by means of a signature. Examples include vehicular networks where cars report
traffic conditions, sensor networks that report aggregate data such as temperature or radiation
levels, military devices transmitting information to be reported to various commands, and more.
Threshold signatures provide a robust, flexible and secure way for the nodes to report and certify
data that can be verified by third parties regardless of the specific reporters. All that is needed is
the assurance that a large enough subset of authorized reporters agreed on the data.

In these environments the set of parties is formed in dynamic and ad-hoc manners. Nodes may
be dynamically added to the system, their share of the secret key can be either installed by trusted
authorities before deployment, or added “on-the-fly” by a qualified subset of nodes already in the
network. Large numbers of nodes may be deployed in the network, and yet at a given time a
node may be in the communication range of only a few other nodes. In many such applications,
communication bandwidth may be constrained (e.g., due to energy limitations), transmitting large
amount of data or heavy interaction may be infeasible, and expensive communication primitives like
broadcast may not be available. Adapting threshold signature schemes to work in such environments
is challenging. In principle, threshold RSA signatures [11, 8, 24] are appealing in this case due to
two important properties:

Standard signatures. They implement standard RSA signatures. Namely, the end-result of running
these protocols is a standard RSA signature on the given message, and anyone can verify that
signature as if it was generated by a standard centralized signer.

Non interactive. Given a message and its share of the secret key, each party locally computes a
“signature fragment” without any interaction with the other parties. Then there is a public
combination function that takes all these signature fragments (together with the message and
public key) and turns them into a standard RSA signature.

Note that we would like the scheme to remain non-interactive even when misbehaving parties
provide wrong signature fragments. For these cases, techniques from [19, 18] can be used to obtain
fragment verifiability without losing the non-interactive nature of the protocols.

From the existing protocols with the above properties, the most practical is the one due to
Shoup [24], which is very efficient in scenarios with static, relatively small sets of parties. But
Shoup’s protocol has a parameter n, which is a global upper-bound on the number of (potential)
parties in the protocol, and the computation of signature fragments and the combining function
use the number n! in the calculations (specifically as an exponent in a modular exponentiation
operation). This means that the parameter n must be fixed and known to all parties, and the
computation takes time at least linear in n. As the parameter n grows, as is likely in the dynamic
applications that we mentioned, these computations become expensive or even infeasible.

This problem is even more serious, since in Shoup’s protocol n is an upper bound on the
identities of parties in the protocol, namely it is assumed that no party has an identity whose value
(as an integer) is larger than n. For example, if the identities are arbitrary 32-bit numbers, the
protocol must use n = 232 so n! is a 237-bit number! (Clearly, using network addresses or serial
numbers of 64 bits or 160-bit hash values is incompatible with this protocol.) The range of identities
can be reduced via tight coordination of the identity name space, but such tight coordination flies
in the face of the flexibility that is expected in dynamic groups. Further, tight coordination may

2

be impossible in applications that need flexible addition of nodes, either by loosely-coordinated
“trusted authorities” or even by completely un-coordinated groups of members within the group
itself.

This work. We describe two results that extend Shoup’s protocol to dynamic ad-hoc groups:

– We present a variant of Shoup’s protocol that keeps all the appealing properties of the original
scheme but frees the protocol from any dependency on the total number of parties. Technically,
the dependency on n as discussed before is replaced with a dependence on t (where t + 1 is the
number of parties that needed to generate a signature).

– We show the practicality of our scheme in the dynamic group scenarios by extending our thresh-
old scheme to support the addition of new members without the need to centrally coordinate
this join operation. Basically, we allow any set of t + 1 or more parties to cooperate (non-
interactively!) in order to add a new member into the group, without having to invoke any
“trusted authority”. This is done by adapting to our case the elegant non-interactive solution
of Saxena et al. [25].

We believe that the combination of both results leads to the first practical solution for dynamic
and communication-constrained scenarios described above.

2 Background

2.1 Signature schemes

A signature scheme is a triple of efficient randomized algorithms (Key-Gen, Sig, Ver). Key-Gen is
the key generator algorithm: on input the security parameter, it outputs a pair (pk, sk), such that
pk is the public key and sk is the secret key of the signature scheme. Sig is the signing algorithm:
on input a message M and the secret key sk, it outputs sig, a signature of the message M . Ver is
the verification algorithm. On input a message M , the public key pk, and a string sig, it checks
whether sig is a proper signature of M .

The notion of security for signature schemes was formally defined by Goldwasser, Micali and
Rivest [20] using various security flavors. The following definition captures the strongest of these
notions: existential unforgeability against adaptively chosen message attack.

Definition 1. We say that a signature scheme (Key-Gen,Sig,Ver) is (T, ε) secure if no adversary
who runs in time T , when given the public key pk generated by Key-Gen, and the signatures on
adaptively chosen messages M1,M2, . . ., can produce a valid signature on a new message M with
probability ε.

2.2 The RSA Function and RSA Signatures

In this work we use RSA moduli of special form, namely, the product of safe primes: N = pq such
that p = 2p′ +1 and q = 2q′ +1 with p′, q′ also primes. We assume that |p| = |q| = k, where k is the
security parameter. With Z∗

N we denote the set of non-negative integers smaller than N which are
relatively prime to N . This is a group with respect to multiplication mod N . Define λ(N) def= 2p′q′

(the Carmichael function of N). We also denote m
def= p′q′.

3

The RSA function [21] is defined by an integer e which is relatively prime to λ(N):

∀x ∈ Z∗
N RSAN,e(x) = xe mod N

Since e is relatively prime to λ(N) this is a permutation over Z∗
N . It is believed that for a randomly-

generated composite N (which is a product of two large enough safe primes), inverting the RSA
function on random inputs is infeasible. On the other hand, inverting this function is easy given
some trapdoor information. The trapdoor could be the prime factorization of N , since it would
allow to compute d = e−1 mod λ(N) and hence

if y = xe mod N then x = yd mod N

Assumption 1 (RSA) Consider a generation procedure Gen for generating pairs (N, e) as above.
The RSA Assumption (with parameters (T, ε)) says that for any algorithm A that runs in time T :

Pr[(N, e)← Gen, x ∈R Z∗
N ; A(N, e, y = xe mod N) = x] ≤ ε

RSA Signatures. We recall the Full Domain Hash RSA (FDH-RSA) signatures. The public key is
(N, e), the secret key is d = e−1 mod λ(N), and a hash function H which maps arbitrary messages
to Z∗

N is also part of the public key. To sign a message M , the signer computes y = H(M) and
the signature σ = yd mod N . To verify a message/signature pair (M,σ) under public key (N, e),
the receiver checks if σe = H(M) mod N . It is well known that the security of FDH-RSA can be
reduced to the RSA Assumption if we model H as a random oracle [4, 7].

2.3 Threshold Cryptography

In a threshold cryptographic scheme, the secret key of a cryptographic scheme is stored in a shared
form among several parties [3, 5, 10]. The goal is to prevent compromise of the secret key by an
attacker who breaks into parties and reads their memory. Indeed if the secret key were stored in a
single party, then a single break-in would compromise the security of the entire scheme. The idea of
threshold cryptography is to share the key among several parties so that the attacker must break
into several of them before learning the secret key.

Threshold cryptography schemes are thus composed of two phases. The first is a sharing phase
in which the secret key is installed in this shared form among the parties; this part can be performed
by a trusted dealer who temporarily knows the secret key, and shares it among the parties, before
erasing it from its memory. (Alternatively the parties jointly generate the key directly in a shared
form.) The second phase is a computation phase, where the parties run some protocol to jointly
perform the cryptographic computations in which the secret key is employed.

Computational Model: We assume to have a set of upto n parties that can communicate with
each other. We do not assume physically secure channels or a broadcast channel among them. In
addition to the n parties, we also consider a dealer who will share the secret key among them (we
do assume that for this phase there are private channels between the dealer and the parties).

We assume a computationally bounded adversary, A, who can corrupt up to t of the n parties
in the network, where t is a parameter. (In our application domain we typically have t � n, but
the protocol that we describe works for any t < n.) We call an adversary that corrupts no more
than t parties a t-adversary. We say that the adversary is static if it corrupts all its parties at

4

the beginning of the protocol, otherwise we say it is adaptive. An adversary is honest-but-curious
if it does not modify the code of the corrupted parties, but just reads their memory. A malicious
adversary on the other hand may also cause corrupted parties to behave in any (possibly malicious)
way. Yet, the adversary can never corrupt the dealer.

Threshold Signature Schemes The following definitions of secure threshold signature schemes
are essentially taken from [17]. A threshold signature scheme is a pair of protocols (Thresh-Key-Gen,
Thresh-Sig) for a set of n parties and a dealer, and a verification algorithm Ver.

Thresh-Key-Gen is a key generation protocol carried out by a designated dealer to generate a
pair (pk, sk) of public/private keys. At the end of the protocol the private output of party Pi is a
value ski (related to the private key sk). The public output of the protocol contains the public key
pk, and possibly some additional verification information v.

Thresh-Sig is the distributed signature protocol. The private input of Pi is the value ski. The
public inputs for all parties consist of a message M , the public key pk, and the verification informa-
tion v (if any) . The output of the protocol is a signature sig on M (relative to the public key pk).
The verification algorithm Ver, on input M, sig, pk, checks if sig is a valid signature of M under
pk.

The definition of security is adapted from the centralized case. Specifically, we consider a t-
adversary that can interact with the honest parties and ask them to generate signatures on messages
M1,M2, . . . that the adversary chooses adaptively. In the malicious model the adversary can also
actively participate in these signature-generation protocols (via the set of t parties that it controls),
and in either model the adversary can choose the set of parties that would participate in the current
signature generation. As usual, the goal of the adversary is to produce a signature on any message
M that was not obtained via one of these runs of the protocol.

Definition 2. We say that a threshold signature scheme (Thresh-Key-Gen, Thresh-Sig, Ver) is t-
secure (with parameters (T, ε)), if no t-adversary A that runs in time T can produce a signature
on any message M without the participation of at least one honest party, except with probability ε.

In the semi-honest model this should hold even if A can watch the signature protocol being run
on messages M1,M2, . . . of A’s choosing (so long as M 6= Mi for all i), and in the malicious model
this should hold even if the adversary can actively participate in these protocol executions.

2.4 Secret Sharing vs. Threshold Cryptography

Notice the difference between threshold cryptography and the simpler task of secret sharing [22, 2].
In secret sharing, the secret is first shared among the parties who later reconstruct it. In threshold
cryptography, the secret is never reconstructed, but rather employed as a shared input into a
cryptographic computation. However the sharing mechanisms are usually similar in both areas.

Here we recall Shamir’s scheme for secret sharing [22]. Let q be a prime and the secret is an
integer s ∈ Zq. The goal is to share s among n parties in such a way that t or less of them have no
information about s, while t + 1 of them can easily reconstruct it.

The dealer chooses t random values at, . . . , a1 in Zq and considers the polynomial f(x) =
atx

t + . . . + a1x + s. Assume each party is given as a “name” an integer between 1 and n. Then
party i is given the share si = f(i) mod q. Notice how t shares give no information about s (for
every possible secret s′ there is a polynomial f ′ consistent with s′ and the t shares). On the other

5

hand t + 1 shares completely define s, via polynomial interpolation. Notice that if si1 , . . . , sit+1 are
t + 1 shares corresponding to the points in S = {i1, . . . , it+1}, then the secret can be computed
from S and these shares as

s = f(0) =
t+1∑
j=1

LS(0, ij)sij mod q

where LS(0, ij) are the appropriate Lagrangian coefficients, namely

LS(α, β) def=
∏

γ∈S,γ 6=β(α− γ)∏
γ∈S,γ 6=β(β − γ)

mod q (1)

Notice that Shamir’s secret sharing has an interesting homomorphic property that allows the
shares to be used to jointly compute exponentiations of the form ys where y is known, without
reconstructing the secret in the clear. Assume for example that y is an element in a cyclic group G
of known prime order q: then each party could publish the value γi = ysi in G and then

ys = y

(∑t+1

j=1
LS(0,ij)sij

mod q

)
=

t+1∏
j=1

γ
LS(0,ij)
ij

∈ G

2.5 Shoup’s Threshold RSA

The homomorphic property of Shamir’s secret sharing described above would seem ideal for the
setting of threshold RSA, as it would allow the parties to jointly compute RSA signatures with
secret key d, without recovering d itself (recall that to compute a signature on M , the parties have
to jointly compute σ = yd mod N where y = H(M)). However, a closer look reveals that this
approach does not immediately work in the case of threshold RSA.

The problem is that the sharing must be conducted modulo λ(N), which must be kept secret
from the parties themselves (since knowing λ(N) or a multiple of it would allow any single party
to factor N and compute the secret key d for itself). This issue arises in the computation of the
Lagrangian coefficients modulo λ(N), since they require the computation of inverses modulo λ(N)
(which are equivalent to knowing a multiple of λ(N)). This problem received considerable attention
in the threshold cryptography literature (e.g. [11, 8]) and various solutions were proposed. Shoup
in [24] presented the most efficient solution to date.

Shoup observed that if we denote ∆ = n! then the values ∆ · LS(0, j) for all S, j are integers
and no inverse computation modulo λ(N) is required if we compute the linear combination of
the shares using ∆ · LS(0, ij) instead of LS(0, ij). However doing so we will reconstruct the value
σ′ = y∆d mod N rather than σ = yd mod N . But if e relatively prime to ∆, we can apply the
extended Euclidean algorithm in the exponent [23] to recover σ from σ′. Details of Shoup’s scheme
follow.

Sharing Phase: Given the public key N, e, the dealer (who knows the factorization of N) computes
d = e−1 mod m. It also chooses t random values a1, . . . , at in Zm and defines the polynomial
f(z) = atz

t + . . . + a1z + d. Party i is given the share di = f(i) mod m. The (maximal) number n
of parties is fixed and public and with it the value ∆ = n!.

Signature Computation Phase: On input a message M , party i computes y = H(M) ∈ Z∗
N

and the signature fragment σi = y2∆·di mod N which it then publishes. (See the next section for an

6

explanation of the 2∆ factor in the exponent.) Then given any t + 1 of these values, σi1 , . . . , σit+1 ,
anybody can compute

σ′ =
t+1∏
j=1

σ
2∆·LS(0,ij)
ij

mod N (2)

By simple algebra we have that

σ′ =
t+1∏
j=1

y4∆2·LS(0,ij)·dij mod N = (y4∆2
)
∑t+1

j=1
LS(0,ij)dij

mod m mod N = y4∆2·d mod N

Notice that the operations (polynomial interpolation) “in the exponent” are performed mod m
because the value y4∆2

has order m.
At this point we need to show how to compute σ = y1/e, given σ′. If GCD(e, 4∆2) = 1 (which

we ensure by choosing e as a prime larger than n), we compute integers a, b such that ae+4b∆2 = 1
and set σ = ya(σ′)b mod N . To see that σ = y1/e mod N note the following equalities mod N :

σ = ya(σ′)b = (y1/e)ae · (y1/e)4b∆2
= (y1/e)ae+4b∆2

= y1/e.

3 Threshold RSA Signatures for Ad-Hoc Groups

As discussed in the Introduction, we are interested in constructing a threshold RSA signature for
“ad hoc” groups, that can be very large, dynamic, and decentralized, and where parties from very
different domains aggregate temporarily to perform a specific (“ad hoc”) task. In these networks,
because of the large number of parties and the loose coordination among them, it is impractical (if
not impossible) to maintain a coherent centralized naming scheme, i.e., one where if there are n
parties in the network their identities will be integers from 1 to n.

Consider for example the task of adding parties to the network and giving them shares of the
secret key. In Section 5 we describe a solution in which t+1 honest parties can provide a new party
with a new share of the secret key. To do that, the t + 1 parties must give this new party a unique
identity ID and its share f(ID), where f is the t degree polynomial such that f(0) = d. In a very
decentralized network, it is basically impossible to keep track of the IDs issued by various subsets
of parties in the network, and therefore it is infeasible to maintain these identities in a small subset
of integers.

What is most likely to happen in ad hoc networks is that parties have an ID already assigned to
them, probably a large integer (say a 32-bit or a 160-bit integer, e.g. their serial number, their IP
address or a hash of some other identity) and we would want to use that ID all across the board.
In the example above, when adding parties to the network, the subset of parties could use the ID
of the new party (if it has one) or generate a random one for it (if the ID are sufficiently long, it
will most likely be unique).

Now consider what happens in Shoup’s scheme when the IDs of parties are long integers say
between 1 and 2k for some parameter k. In this case the computation of the value ∆ = n! is
infeasible as one must set n = 2k in order for ∆ to remove all possible denominators in Eq. (2)
(note that 2k! > 22k

). There are two places where this factor ∆ is used in Shoup’s scheme:

(1) In the interpolation of partial signatures: Given the various shares σi = y2∆f(i), the
players reconstruct the value σ′ = y4∆2·f(0) via interpolation “in the exponent”. One of the two ∆

7

factors in the exponent is needed for the correct operation of the scheme, as it is exactly what lets
the parties replace the fractional Lagrangian coefficients with integers that they can compute.

Reducing this ∆ factor is straightforward. Indeed, given the set S of parties in the threshold
computation of the RSA signature, this factor can be easily replaced by

∆S
def= lcm

{(∏
j ∈ S
j 6= i

(i− j)
)

: i ∈ S

}
.

Note that if S has t + 1 elements, each a number between 0 and 2k, then ∆S is bounded by

∆S <
∏

i, j ∈ S
i 6= j

(i− j) < (2k)t2 = 2kt2 ,

so the bit-size of ∆S is linear in k and at most quadratic in t.

(2) In the computation of partial signatures: Given public input y and their private share
di, each party computes σi = y2∆di mod N . This additional ∆ factor in the exponent is introduced
to obtain a provably secure scheme. Indeed we need to show that the values transmitted by the
good parties do not help the adversary, beyond the computation of σ = y1/e. This is done by a
simulation argument in which we show that the adversary is able to compute the values transmitted
by the good parties from any t shares (belonging to the parties the attacker controls) and the value
σ = y1/e. Assume that the adversary knows t shares di1 , . . . , dit , and denote B = {i1, . . . , it} (where
B stands for “bad”) the set of corrupted parties. Denote B̃ = B ∪{0}. Notice that any other share
di for i > t can be computed as

di = LB̃(i, 0)d +
t∑

j=1

LB̃(i, ij)dij mod m

Thus the adversary given the value σ = y1/e can compute the value σi for i > t output by a good
party as follows:

σi = y2∆di = (y2)LB̃(i,0)d+
∑t

j=1
LB̃(i,ij)dij

mod m = σ2∆LB̃(i,0)
t∏

j=1

(y2dj)∆LB̃(i,j)

Notice that the products ∆LB̃(i, j) are all integer values and thus the adversary can perform
this computation (since it does not require computing inverses modulo m). However, this argument
would not hold if the parties transmitted just σi = ydi (in which case we do not know if a simulation
would be possible).

Eliminating this factor is not as easy as in case (1). The reason that we cannot replace ∆ with
some ∆S as above is that the relevant set S here is the set B̃ of “bad parties” (i.e., those that were
compromised by the adversary), and B̃ is not known to the honest parties. Fortunately, we show
below that the analysis can still be carried out when ∆ is replaced by the much smaller factor 2kt.
For this crucial reduction in the size of the exponent, we pay either by having to carry out the
analysis in the random-oracle model or by strengthening the hardness assumption. (Note however
that the basic Shoup scheme already relies on the random-oracle model for the non-interactive
verification of signature fragments.)

8

Remark: Shoup presented an alternative protocol for threshold RSA in [24], where the share of
party i is di = ∆−1f(i) mod m (rather than di = f(i)). Thereafter the parties do not have to raise
their partial signatures to a factor ∆, as it is already “factored in” in their shares. However the
dealer still needs to compute ∆−1 mod m, and the signature generation still needs to exponentiate
to the power of ∆ · LS(·, ·). Hence both the dealer and the “signature combiner” work in time at
least linear in n (which is exponential in settings where n = 2k).

3.1 Our Threshold RSA Protocol for Ad-Hoc Groups

We now describe the details of our new scheme, which we call TFDH-RSA. We first describe
a basic version that is only secure in the honest-but-curious attack model. The extension to the
malicious attack model is discussed in Section 6.

Sharing Phase: Given the public key N, e (where e is a prime larger than n = 2k) and the secret
key d (such that d = e−1 (mod m)), the dealer chooses t random values a1, . . . , at in Zm and
defines the polynomial f(x) = atx

t + . . .+a1x+d. Each party i is given the share di = f(i) mod m.

Signature Computation Phase: On input a message M , party i computes y = H(M) ∈ Z∗
N

and the signature fragment σi = y2ktdi mod N , which it then publishes.
Given t + 1 of these values σi1 , . . . , σit+1 the signature σ = yd mod N is computed as follows.

Let
∆S = lcm

{(∏
j ∈ S
j 6= i

(i− j)
)

: i ∈ S

}
(3)

where S = {i1, . . . , it+1}, and set

σ′ =
t+1∏
j=1

σ
∆S ·LS(0,ij)
ij

mod N. (4)

Using extended Euclidean algorithm find values a, b such that ae + b(2kt∆S) = 1. Finally, the
signature σ = yd mod N is computed as σ = ya · (σ′)b mod N .

Note that for any j, the quantity ∆S · LS(0, ij) is an integer that can be computed just by
knowing S and ij (no need to know m or any inverse mod m). Moreover, this integer is smaller
than 2kt2 and then the computation of σ′ is feasible. To see that the value σ we computed is indeed
yd mod N note that similarly to the case of Eq. (2)

σ′ = y∆S ·2kt·f(0) = y∆S ·2kt·d mod N (5)

and then
σ = ya · (σ′)b = (y1/e)ae · (y1/e)b2kt∆s = y1/e (mod N). (6)

Finally, note that the values a, b computed via the extended Euclidean algorithm exist since by
choice of e, GCD(e, 2kt∆S) = 1.

Remark: the choice of e. The value e must be chosen as a prime larger than any possible identity
(e.g., larger than 2k). Alternatively, if the identities are random k-bit integers, the value e can be
chosen somewhat smaller (but still a “large enough prime”) and then rely on the fact that with
high probability no two identities will have a difference that is divisible by e.

9

4 Security Analysis

Ideally, we would like to claim that the protocol above is as secure as the underlying signature
scheme. In particular, we want to claim that seeing the signature fragments σi does not gives the
adversary any more information than the signature σ itself, by presenting a simulator S that given
σ can generate the view of the adversary in the protocol (i.e., the signature fragments of the honest
parties σj = xf(j) mod N).

Unfortunately, as we explained above, we do not know how to generate this view without the
extra factor of ∆ in the signature generation. Specifically, the simulator can only compute the
related quantities σ′

j = σ
∆B̃
j , where ∆B̃ is as defined in Eq. (3) (with respect to the set B̃ that

consists of zero and the “bad parties”). The reason is that we can write

σ′
j = σ∆B̃ ·LB̃(j,0) ·

∏
i∈B

y∆B̃ ·LB̃(j,i)·di ,

and for all i, the quantity ∆B̃ · LB̃(j, i) is an integer that the simulator can efficiently compute
from B̃, i and j. However, in this case we do not know a way to “extract” the ∆B̃ root out. In
particular we do not know a “public exponent” corresponding to f(j) that would let us use the
GCD calculations in order to eliminate the extra factor of ∆B̃ in the exponent.

In dealing with this problem, we separate the treatment of the powers of two in ∆B̃ from the
odd factors of it.1 Write

∆B̃ = 2`(B̃)e(B̃)

with e(B̃) odd. Clearly, for any set B̃ of t + 1 elements in [1..2k], it must be that `(B̃) < kt.
Since in our protocol the parties compute signature fragments by raising y = H(m) to the power

2tkf(i), then the simulator does not need to take 2`(B̃) roots (see details below). On the other hand
the problem of taking e(B̃) roots remains.

We present two solutions for this problem. In Theorem 2 we show that when we model the
function H as a random oracle, our protocol can be proven t-secure (as per Definition 2) under the
standard RSA assumption. This is a strong assurance of security, especially since random-oracle
proofs are the only security assurance that is known for most standard RSA signatures. However,
this proof does not say much about the security of our signature protocol when instantiated with
any specific hash function. In particular, it still leaves open the possibility that there are hash
functions H for which centralized RSA signature are secure but our protocol is not. Therefore,
in Theorem 1 we provide a different analysis in the standard model, relating the security of our
protocol with any specific function H to a slightly modified centralized RSA signature that uses
the same function H. We argue informally that this “slightly modified” scheme is likely to be as
secure as the original one, hence providing yet other assurance of the security of our protocol.

4.1 Strengthening the Hardness Assumption

Consider the following signature scheme D-RSA: the public key is (N, e) where e is prime, and
relatively prime with λ(N). The secret key is the factorization of N . The public key contains a
hash function H which outputs elements of Z∗

N . Moreover we allow the adversary to specify an
additional parameter e′ that must be an odd integer co-prime with e.
1 See discussion after Theorem 1 about the reason for this separation.

10

On input a message M , the signer returns a pair (σ, σ′) such that σe = (σ′)e′ = H(M) mod N .
Given an alleged signature (σ, σ′) on M , however, the verifier only checks that σe = H(M) mod N .

We say that the D-RSA signature scheme using the hash function H is two-phase secure if no
feasible forger F can win the following game: first F is given as input N, e and it specifies an odd
integer e′, that must be co-prime with e (Phase 1). Then F conducts a traditional adaptive chosen-
message attack (i.e. F gets signatures on messages of its choice) and produces a valid signature on
a message that it did not request before (Phase 2).

Theorem 1. For any static, honest-but-curious, t-adversary A and for every hash function H,
then TFDH-RSA scheme using H is a secure threshold signature scheme against A if the D-RSA
signature scheme using the same H is two-phase secure.

Interpretation of Theorem 1. Although we cannot prove that the protocol TFDH-RSA does not
give the adversary any more power than just interacting with the underlying RSA signature scheme
(with the same hash function H), Theorem 1 tells us that it does not give it more power than what
it could get from the ability to get also e′-th roots (in addition to the e-th roots that it gets from
the signature scheme). It is generally believed that when e, e′ are co-primes, then extracting e′-th
roots does not help in extracting e-th roots. In this light, Theorem 1 can be interpreted as asserting
that any attack on the protocol TFDH-RSA must either break the underlying RSA signatures, or
find a way to use e′-th roots in order to extract e-th roots.

Proof. Assume by contradiction that TFDH-RSA is not secure. Then there exists an adversary A
that interacts with TFDH-RSA, statically corrupting at most t parties, such that A has a noticeable
chance ε of forging an RSA signature. We want to use this A as a subroutine to construct a forger
F that breaks the two-phase security of D-RSA. We want F to have a similar running time and
similar success probability as A.

The forger F basically simulates TFDH-RSA for the adversary A. It is given a public key (N, e),
and must run Phase 1. F starts by giving (N, e) to the adversary A. The latter responds by asking
to corrupt a set B = {i1, . . . , it} of parties. (A can compromise upto t parties, and we assume
w.l.o.g. that it compromises exactly t parties.) Then F chooses t values di1 , . . . , dit at random in
the interval [N/4] and gives to A the value dij as the secret-key share for party ij . As observed
above, the distributions of the shares given by F to A, is statistically close to the distributions of
the shares seen by A during a real execution of FDH-RSA.

With B the set of corrupted, parties, F sets B̃
def= B ∪ {0} and computes ∆B̃ as defined in

Eq. (3), namely

∆B̃ = lcm
{(∏

j ∈ B̃
j 6= i

(i− j)
)

: i ∈ B̃

}
.

It also lets `(B̃) be the largest integer ` such that 2` divides ∆B̃, and sets e(B̃) = ∆B̃/2`(B̃) and
ΓB̃ = 2kt · e(B̃) (so e(B̃) is odd and ∆B̃ divides ΓB̃). The forger F concludes Phase 1 by specifying
the value e′ = e(B̃). (Note that e′ is co-prime with e, since e is a prime larger than 2k and all the
identities in B̃ are k-bit integers).

Now F starts Phase 2, the adaptive chosen message attack, by running A’s attack. When A
asks for message M to be signed, the forger F asks its own signature oracle for a signature on M ,

11

therefore receiving the values σ, σ′ such that σe = (σ′)e′ = y = H(M) mod N . Notice that σ is the
signature on M that must be computed in the simulation of TFDH-RSA.

To complete the simulation for A, the forger F must now use σ to produce the signature
fragments of the good parties. Let f(x) be the polynomial (modulo m) of degree t that satisfies
f(i) = di for every i ∈ B and f(0) = d. Then, the value of σj for j /∈ B is

σj = y2ktf(j) mod N

Remember that
f(j) =

∑
i∈B̃

LB̃(j, i) · f(i) mod m

but because the values LB̃(j, i) are fractions we cannot compute this value directly or in the
exponent. But by multiplying the sum by ΓB̃ will remove all the denominators. By using σ′ the
forger can also bypass the problem of taking e(B̃)-roots:

Using Shamir’s method of “GCD in the exponent”, the forger F first computes a value w
such that we′·e = y mod N . Namely, since GCD(e, e′) = 1 then F can find integers a, b such that
ae + be′ = 1, and setting w = σb(σ′)a mod N yields the required value. Next, for each i ∈ B̃ the
forger F computes the integer λj,i

def= ΓB̃ ·LB̃(j, i). (These are indeed integers since the denominator
in each of the Lagrangian coefficients divides ∆B̃ and therefore also ΓB̃.) Finally, the forger computes
σj = wλj,0 ·

∏
i∈B(σ′)λj,idi (mod N). To see that this is the correct value, observe that:

wλj,0 ·
∏
i∈B

(σ′)λj,idi = wΓB̃LB̃(j,0) ·
∏
i∈B

(σ′)ΓB̃LB̃(j,i)di

(a)
= w(2kte′)LB̃(j,0) ·

∏
i∈B

(σ′)(2
kte′)LB̃(j,i)di

(b)
= (w2kt

)d·e·e′LB̃(j,0) ·
∏
i∈B

(σ′)2
kte′LB̃(j,i)di

= (we′·e)2
ktLB̃(j,0)d ·

∏
i∈B

((σ′)e′)2
ktLB̃(j,i)di

=
∏
i∈B̃

y2ktLB̃(j,i)f(i) = y2kt
∑

i∈B̃
LB̃(j,i)f(i)

= y2ktf(j) = σj (mod N)

where Equality (a) holds since 2kte′ = 2kte(B̃) = ΓB̃, and Equality (b) holds since w2kt
is a quadratic

residue modulo N and hence its order divides m, and since d = e−1 mod m then (w2kt
)d·e =

w2kt
mod N . (Note that since we set d = e−1 mod m and not d = e−1 mod λ(N), then zde = z does

not necessarily hold when z is not a quadratic residue modulo N .)
It follows from the description above that the simulated view that A sees in this run of F is

almost identical to its view in the interaction with the protocol (the only difference is the negligible
difference in the distribution of the dij ’s). Hence with probability negligibly close to ε, A outputs
a valid forgery σ̂ on some message M̂ . Namely, σ̂e = H(M̂) mod N . The forger F then chooses
an arbitrary value σ̂′ ∈ Z∗

N and the pair (M̂, 〈σ̂, σ̂′〉) is a valid forgery for D-RSA (recall that the
second “signature” is not verified in D-RSA).

12

Remark. Note the reason for separating the powers of two in ∆B̃ from the odd factors: For the
assumption that we make about security of D-RSA, it is crucial that the parameter e′ be odd (since
letting the adversary to extract even roots might allow it to factor the modulus N). Hence we must
limit the extra help that the simulator can get to only odd roots, and the even factors must be
handled in the protocol itself.

4.2 Reduction in the Random Oracle Model

Theorem 2. When the hash function H is modeled as a random oracle, then TFDH-RSA is a
t-secure threshold signature scheme against static, honest-but-curious adversaries, under the RSA
assumption.

One way to prove Theorem 2 is to observe that under the RSA assumption, the D-RSA signature
scheme is two-phase secure in the random-oracle model (where the proof is nearly identical to the
security proof for Full-Domain-Hash signatures), and so we can use Theorem 1 from above. A direct
proof is provided below.

Proof. Assume by contradiction that TFDH-RSA is not secure. Then there exists an adversary A
that interacts with TFDH-RSA, statically corrupting at most t parties, such that A has a noticeable
chance ε of forging an RSA signature (on an arbitrary message). We want to use this A as a
subroutine to construct an inverter F that inverts the RSA function on a random point z ∈ Z∗

N and
has a similar running time and similar success probability as A when interacting with a centralized
signer. If we construct such an F then we get our contradiction.

The inverter F is given a public key (N, e), and a random point z ∈ Z∗
N . The goal of F is to

compute w = zd mod N . To do so F will basically simulate TFDH-RSA for the adversary A and
use the forgery output by A to compute w. The simulation will be very similar to the simulation in
Theorem 1 except that we are going to use the random oracle to solve the problem of interpolation in
the exponent. Indeed the inverter F controls the random oracle, in that F is allowed to “program”
H, i.e. when A makes a random oracle query M , then F will choose the value of H(M).

The inverter F starts by giving (N, e) to the adversary A. The latter will respond by asking
to corrupt a set B = {i1, . . . , it} of parties. (A can compromise upto t parties, and we assume
w.l.o.g. that it compromises exactly t parties.) Then F chooses t value di1 , . . . , dit at random in the
interval [N/4] and give to A the value dij as the secret-key share for party ij . As observed above,
the distributions of the shares given by F to A, is statistically close to the distributions of the
shares seen by A during a real execution of FDH-RSA.

At this point A begins its attack, asking two types of queries: random oracle queries in which
she asks M and expects to receive the value H(M), and signature queries, where she asks M and
expects to receive σ such that σe = H(M) mod N . W.l.o.g. we assume that if A asks M on a
signature query, then A already asked M in a random oracle query. Let Q be a bound on the
number of random oracle queries A makes. For the set B of corrupted parties, define the values
∆B̃, `(B̃), e(B̃) and ΓB̃ as in the proof of Theorem 1.

We first show how F handles the random oracle queries. It chooses an index I at random in
[1..Q]. If J 6= I, it answers the J th random oracle query M by choosing a random value x ∈ Z∗

N

and setting H(M) = y = xe(B̃)·e mod N . For the Ith query M ′ the inverter F uses the target point
z, setting H(M ′) = ze(B̃) mod N .

13

We now show how to handle signature queries. If the adversary asks M ′ on a signature query then
F will stop and declare failure. We basically are going to hope that the adversary will generate its
forgery on the message M ′ queried in the Ith random oracle query. This will happen with probability
1/Q.

When a message M (which was asked on a J th oracle query with J 6= I) is asked on a signature
query then the inverter F can compute its signature σ as xe(B̃) mod N . Notice indeed that σe =
H(M) mod N because of the way F defined H. Moreover, F knows both an e-th root of H(M)
and an e′-th root of H(M), so it can apply the exact same strategy as in the proof of Theorem 1
to generate consistent signature shares for the honest parties.

As before, conditioned on not aborting, the simulated view that A sees in this run of F is
almost identical to its view in the interaction with the protocol (the only difference is the negligible
difference in the distribution of the dij ’s). Hence with probability negligibly close to ε/Q A will
produce a valid forgery on M ′, namely A outputs (M ′, σ′) such that σ′e = H(M ′) = ze(B̃) mod N .
This in turns implies that σ′ = we(B̃) mod N (recall that we = z mod N). We then use Shamir’s
GCD trick once again. Since GCD(e, e(B̃)) = 1 there exists integer a, b such that ae + be(B̃) = 1,
therefore

w = wae+be(B̃) = zaσ′b mod N

which concludes the proof.

Remark: Clearly, the proof above can be made somewhat tighter using the technique of Coron [7],
which improves the success probability of F from ε/Q to ε/S, where S is the number of signature
queries (which is smaller than Q).

5 Dynamic Additions of New Parties

We consider highly dynamic networks, where parties can join at any time and must be provided
with shares of the signature key when they join. In some cases it may be reasonable to assume that
such a share is installed by a trusted entity before the party is added to the network, but in other,
less centralized situations, the parties already deployed will have to cooperate in order to furnish
the new party with a share of the signing key.

In a generic secret sharing protocol, we define the problem of new party incorporation as follows.
There exists a set of parties P1, ..., Pn that hold a secret s in a distributed manner, i.e. each party
has a share si and the requirements are that every t shares have no information on the secret s
yet any set of t + 1 shares completely define the secret. Now a new party Pnew is added to the set
and the parties need to supply this party with the share snew so that the new set of shares would
satisfy the same requirements.

It is straightforward to see that in Shamir’s secret sharing scheme, the share of the new party
is simply a linear combination of the shares of any t + 1 parties. This allows for a relatively simple
solution where the set of t+1 parties will carry out a multi-party computation to calculate the share
of Pnew and reveal the result of the calculation to Pnew. Note, that the parties cannot give the new
party their shares as that would allow Pnew to compute the secret. Thus, each party would have
to perform a secret sharing of its own share and then these shares would be combined in a linear
combination in order to allow Pnew to reconstruct only its share. The resultant protocol would be an
inefficient solution, especially in terms of communication. In [25] an elegant method was introduced

14

to solve the problem of player addition in secret sharing. The advantage of their scheme is that it
is non-interactive, that is, each of the original t + 1 parties only needs to send a single message to
the new party Pnew. The key idea of their approach is to use a bivariate polynomial. Similarly to
the original Shamir’s scheme, their scheme works over a prime field.

In this section we show how to adapt their scheme to work for the purpose of a threshold RSA
scheme. The technical problems are the same at the ones we saw in the previous sections (the
interpolation happens modulo a secret number m). We use some similar techniques to those used
earlier, but the end result is somewhat different. When adding a new party Pnew to the network,
the new share given to it is not the same share as the one it would have received from the dealer
in the sharing phase, but rather some multiple of that original secret. Thus, we need to modify the
signature computation phase to incorporate these different shares. We show in the following that
we are still able to generate signatures in a threshold fashion.

We modify our description of the threshold RSA from the previous sections so that the sharing
of the secret is done via a bivariate polynomial. We note that if we do not consider newly added
shares then this modification only affects the format in which the shares are represented but leaves
the signature generation protocol exactly as it is in the case of the single-variate polynomial. The
details follow. Again, we describe the protocol in the case of a honest-but-curious adversary. The
details to add robustness (security against a malicious adversary) appear in Section 6.2

Sharing Phase: Given the public key N, e and the secret key d (such that d = e−1 (mod m)),
the dealer chooses (t + 1)2 values ai,j ∈ Zm (for i, j ∈ [0, t]), at random subject to ai,j = aj,i

and a0,0 = d. The dealer then defines the polynomial f(x, y) =
∑

i,j ai,jx
iyj . Note that since

ai,j = aj,i then the polynomial is symmetric, f(x, y) = f(y, x). The share of party i is the polynomial
di(x) = f(x, i). (We note that only the free term di(0) = f(0, i) will be used when computing the
signature fragments, so reconstructing the signature from the fragments is unchanged from before.)

For the design of our protocol we also need to define an additional value δi. Initially, for the
parties who receive shares from the dealer we have that δi = 1. Thus each party Pi holds a
polynomial di(x) and an integer δi. The system invariant that we maintain is that for every party i,
di(x) ≡ δif(x, i) mod m. Note that this trivially holds for all the original parties (for which δi = 1).
Incorporating a New Party: When a new party Pnew joins the group, it needs to receive its shares
dnew(x) and δnew, while maintaining the system invariant that dnew(x) ≡ δnewf(x, new) mod m.
This is done by having party Pnew:

1. Receive from every Pij , j = 1, . . . , t + 1, the values αij = dij (new) and δij .
2. Let δ = lcm(δi1 , . . . , δit+1) and recall the definition of ∆S (Eq. 3) for the set S = {i1, . . . , it+1}.

Compute its share as:

dnew(x) = δ∆Sfnew(x) =
t+1∑
j=1

∆SLS(x, ij)
δ

δij

αij (7)

3. Stores as its share this interpolated polynomial dnew(x) and the value δnew = δ ·∆S .

To see that this computation gives the new party its appropriate share preserving the invari-
ant and that it is feasible to compute this value consider the following. By definition fnew(x) =
2 We note that performing secret sharing via a bivariate polynomial has the added advantage, that it provides a

check that the dealer is actually sharing a unique secret. This is called verifiable secret sharing (VSS) [1]. We do
not discuss this feature in this paper, but we point out that it could be useful in some applications.

15

f(x, new). Note that due to the symmetry of f(x, y) and the system invariant, if Pi is a party
already in the network, then

fnew(i) = f(i, new) = f(new, i) =
di(new)

δi
mod m (8)

though we can’t explicitly compute the last fraction mod m.
Given δ = lcm(δi1 , . . . , δit+1) as defined in the protocol, multiplying both sides of Eq.8 by δ and

specifying i = ij for all j = 1, . . . , t + 1 we have:

δfnew(ij) =
δ

δij

di(new) mod m

Notice that now the fraction is an integer and can be computed even without knowing m.
Given the values αij = dij (new) and δij for j = 1, . . . , t + 1, we can interpolate the polynomial

δfnew(x) as

δfnew(x) def=
t+1∑
j=1

LS(x, ij)
δ

δij

αij mod m (9)

where LS(x, ij) is the appropriate Lagrangian coefficient (see Eq. 1). Yet, as this computation
needs to be computed mod m and requires the calculation of the Lagrangian coefficients mod m
this cannot be done directly. To enable the computation we employ the techniques described in
the previous sections. We multiply Eq.(9) by ∆S resulting in the computation of Eq. (7). Notice
that multiplying by ∆S removes all the denominators on the right-hand side of the equation.
Furthermore, setting δnew = δ ·∆S preserves the system invariant.

Signature Computation Phase: Assume that we want to compute the signature σ on a message
M . Let y = H(M), then we have σ = yd mod N .

Recall that each party Pi holds the polynomial di(x) and the integer δi such that di(x) =
δif(x, i) mod m. Thus each party Pi publishes as its signature fragment the pair (σi = y2ktdi(0), δi).

Given t+1 of these signature fragments published by parties Pi1 , . . . , Pit+1 , δ and ∆S as above,
set

σ′ =
t+1∏
j=1

σ

δ
δij

·∆S ·LS(0,ij)

ij
mod N (10)

Let e′ = 2kt · δ ·∆S , compute integers a, b such that ae + be′ = 1. Set the signature to:

σ = yaσ′b mod N

We show that the above computation generates a proper signature. First note that all the
exponents in Eq. (10) are integers (as ∆S removes the denominators from the Lagrangians, and δij

divides δ by definition). Furthermore,

σ′ = y

∑t+1

j=1
2kt· δ

δij
·∆S ·LS(0,ij)dij

(0)
mod N (11)

Let’s focus on the exponent of y in the above equation: by using the invariant dij (0) = δijf(0, ij)
we have that the exponent equals:

t+1∑
j=1

2kt · δ ·∆S · LS(0, ij)f(0, ij)

16

From the polynomial interpolation we have that
∑t+1

j=1 LS(0, ij)f(0, ij) = f(0, 0) = d therefore

σ′ = y2kt·δ·∆S ·d mod N (12)

Assuming that GCD(e, e′) = 1 we use the techniques from the previous section to extract the
signature σ out of σ′. Indeed σ′ = σe′ mod N and there exists integers a, b such that ae + be′ = 1.
Therefore

σ = σae+be′ = yaσ′b mod N

We remark that if we choose e as a prime larger than 2k (the largest possible identity), then
GCD(e, e′) is guaranteed to be 1 as the value e′ can only be the product of differences of identities.

The proofs follow directly from the proofs of the previous section while incorporating the extra
factor δ in the simulation.

Remark: Notice that the shares held by parties in this modified scheme are larger. Just because of
the bivariate polynomial technique, each party holds t + 1 values mod m rather than a single one.
Moreover the size of the shares of parties added later in the system grow with the additive factor
log δ + log ∆S (notice that Eq. (7) is computed over the integers by Pnew).

Remark: Fazio et al. in [12] consider Shoup’s original protocol and show how to add parties
without using bivariate polynomials. Their work is not directly applicable to “ad hoc” networks as
it requires all parties in the network to participate in assigning a share to a new party. On the other
hand their solution does not increase the share size by a factor of t and may have more enhanced
properties, such as proactive security.

6 Adding Robustness

The protocols described in the previous sections work only in the presence of an honest-but-
curious adversary. Here we show how to tolerate a malicious adversary. Because the protocol is
non-interactive, a malicious adversary is only limited in providing incorrect shares to a new party
during an addition, or incorrect signature fragments σi. We use techniques from [19, 18] to deal
with this problem.

For simplicity we describe our techniques for the protocol in Section 5 (the basic protocol in
Section 3.1 can be considered a special case of it).

During the sharing phase, the dealer chooses a random value g ∈ Z∗
N (with high probability g

has order m) and publishes the values Gi,j = gai,j mod N for all the coefficients ai,j of the sharing
polynomial f . Notice that this allows any party to compute gf(i,j) on any point (i, j) by “polynomial
evaluation in the exponent”.

Robustness during New Party Incorporation Protocol. When a new party Pnew joins the
network, it receives from an existing party Pi the values δi and αi = di(new) = δif(new, i).
Then Pnew checks that gαi = [gf(new,i)]δi mod N where gf(new,i) is computed using the values Gi,j

published by the dealer.

Robustness during Signature Computation Phase. When computing a signature on a mes-
sage M , where y = H(M), a party Pi publishes the values δi and σi = y2ktdi(0) mod N , where
di(0) = δif(0, i) and proves that

logg[g
f(0,i)]δi = log

y2kt+1 σ2
i mod m

17

(the extra squaring operation is needed to make sure that we are in the subgroup of order m in
Z∗

N). Only signature fragments that pass the above verification test will be accepted.
Efficient zero-knowledge proofs for this language were presented in [19] and [18]. The ZK proof

presented in [18] can be made non-interactive using the Fiat-Shamir heuristic in the random oracle
model.

Acknowledgment. We are grateful to Stas Jarecki and the anonymous Eurocrypt reviewers
for their helpful comments. Research was sponsored by US Army Research laboratory and the
UK Ministry of Defense and was accomplished under Agreement Number W911NF-06-3-0001. The
views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the US Army Research
Laboratory, the U.S. Government, the UK Ministry of Defense, or the UK Government. The US
and UK Governments are authorized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation hereon.

References

1. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness Theorems for Noncryptographic
Fault-Tolerant Distributed Computations. In Proc. 20th STOC, pages 1–10. ACM, 1988.

2. G. R. Blakley. Safeguarding cryptographic keys. In Proc. AFIPS 1979 National Computer
Conference, pages 313–317. AFIPS, 1979.

3. C. Boyd. Digital Multisignatures. In H. Baker and F. Piper, editors, Cryptography and Coding,
pages 241–246. Claredon Press, 1989.

4. M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for designing efficient
protocols. In 1st ACM Conference on Computer and Communications Security, pages 62–73,
1993.

5. R. A. Croft and S. P. Harris. Public-key cryptography and re-usable shared secrets. In H. Baker
and F. Piper, editors, Cryptography and Coding, pages 189–201. Claredon Press, 1989.

6. M. Cerecedo, T. Matsumoto, and H. Imai. Efficient and secure multiparty generation of digital
signatures based on discrete logarithms. IEICE Trans. Fundamentals, E76-A(4):532–545, 1993.

7. Jean-Sébastien Coron. On the Exact Security of Full Domain Hash. In Advances in Cryptology
- CRYPTO 2000, volume 1880 of Lecture Notes in Computer Science, pages 229–235. Springer,
2000.

8. Alfredo De Santis, Yvo Desmedt, Yair Frankel, and Moti Yung. How to share a function securely.
In Proc. 26th STOC, pages 522–533. ACM, 1994.

9. Y. Desmedt. Society and group oriented cryptography: A new concept. In Crypto ’87, pages
120–127, 1987. LNCS No. 293.

10. Y. G. Desmedt. Threshold cryptography. European Transactions on Telecommunications,
5(4):449–457, July 1994.

11. Y. Desmedt and Y. Frankel. Shared generation of authenticators and signatures. In Crypto
’91, pages 457–469, 1991. LNCS No. 576.

12. N. Fazio. Personal Communication. September 2007.
13. Y. Frankel, P. Gemmell, P. Mackenzie, and M. Yung. Proactive RSA. In Crypto ’97 , pages

440–454. LNCS No. 1294.
14. Y. Frankel, P. Gemmell, and M. Yung. Witness-based Cryptographic Program Checking and

Robust Function Sharing. In Proc. 28th STOC, pages 499–508. ACM, 1996.

18

15. R. Gennaro, S. Halevi, H. Krawczyk, and T. Rabin. Threshold RSA for Dynamic and Ad-Hoc
Groups. In EUROCRYPT’08, Springer, 2008.

16. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust and efficient sharing of RSA
functions. In Crypto ’96, pages 157–172, 1996. LNCS No. 1109.

17. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust Threshold DSS Signatures. In-
formation and Computation, 164(1):54–84, 2001. Extended abstract in EUROCRYPT’96.

18. R. Gennaro, H. Krawczyk, and T. Rabin. RSA-based Undeniable Signatures. In Crypto ’97 ,
pages 132–149. LNCS No. 1294. Final version in J. Cryptology 13(4): 397-416 (2000).

19. R. Gennaro, H. Krawczyk, and T. Rabin. Robust and Efficient Sharing of RSA Functions.
Journal of Cryptology, 13(2):273–300, 2000. Conference version [16].

20. Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A Digital Signature Scheme Secure
Against Adaptive Chosen-Message Attacks. SIAM J. Computing, 17(2):281–308, April 1988.

21. Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communication of the ACM, 21(2):120–126, 1978.

22. A. Shamir. How to Share a Secret. Communications of the ACM, 22:612–613, 1979.
23. A. Shamir. On the Generation of Cryptographically Strong Pseudorandom Sequences. ACM

Trans. Comput. Syst., 1(1):38–44, 1983.
24. V. Shoup. Practical threshold signatures. In Eurocrypt ’00, pages 207–220, 2000. LNCS No.

1807.
25. Nitesh Saxena, Gene Tsudik, and Jeong Hyun Yi. Efficient node admission for short-lived

mobile ad hoc networks. In ICNP, 13th IEEE International Conference on Network Protocols,
pages 269–278, 2005.

19

