
This manuscript is also available at http://patricklonga.bravehost.com/publications.html.
Patrick Longa is with the Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada (e-mail:
plonga@uwaterloo.ca). Ali Miri is with the School of Information and Technology Engineering (SITE), University of Ottawa,
Ottawa, Canada (e-mail: samiri@site.uottawa.ca).



Abstract. In this paper we present a new method for scalar multiplication that uses a generic
multibase representation to reduce the number of required operations. Further, a multibase NAF-like
algorithm that efficiently converts numbers to such representation without impacting memory or
speed performance is developed and showed to be sublinear in terms of the number of nonzero
terms. Additional representation reductions are discussed with the introduction of window-based
variants that use an extended set of precomputations. To realize the proposed multibase scalar
multiplication with or without precomputations in the setting of Elliptic Curve Cryptosystems
(ECC) over prime fields, we also present a methodology to derive fast composite operations such as
tripling or quintupling of a point that require less memory than previous point formulae. Point
operations are then protected against simple side-channel attacks using a highly efficient atomic
structure. Extensive testing is carried out to show that our multibase scalar multiplication is the
fastest method to date in the setting of ECC and exhibits a small footprint, which makes it ideal for
implementation on constrained devices.

Keywords: Scalar multiplication, multibase representation, multibase non-adjacent form, elliptic
curve cryptosystem, composite operation, side-channel attacks.

1 Introduction

Scalar multiplication is the central and most time-demanding operation in many public-key curve-based

systems such as Elliptic Curve (ECC), Hyperelliptic Curve (HECC) and Pairing-based cryptosystems. Its

algorithmic and computational structure has been the focus of extensive research in recent years in a

growing effort to reduce its time execution and power/memory requirements and, thus, make the

corresponding system suitable for implementation in the myriad of new applications using ubiquitous

devices such as PDAs, smartcards, cellphones, RFID tags and wireless sensor networks. Algorithms to

implement this operation have traditionally relied on the binary expansion of numbers (e.g., Non-

Adjacent Form (NAF) and Window-w Non-Adjacent Form (wNAF)) since the latter directly translates to

a successive execution of the basic point operations, namely doubling and addition. However, the

development of more complex operations has permitted the development of scalar multiplications using

radices different than 2 (radix-r NAF [TYW04], generalized NAF [JY02]) or combinations of different

bases (ternary/binary [CJL+06], Double-Base (DB) [DIM05],[DIM07], Triple-Base (TB) [MD07]

methods) that permit a reduction in the length of the scalar expansion and, consequently, if the complex

operations are efficient enough in a given setting, a reduction in the time required to execute the scalar

multiplication. Throughout this work, we refer to these complex operations as composite operations,

New Multibase Non-Adjacent Form Scalar Multiplication
and its Application to Elliptic Curve Cryptosystems

(extended version)

Patrick Longa, and Ali Miri

2

since they are typically built on top of the basic doubling and addition.

In this work, we narrow our spectrum of applications to ECC over prime fields using standard curves

[IEEE]. Elliptic curve cryptography, independently introduced by Koblitz and Miller in 1985, is

becoming a major player in public-key infrastructures due to its shorter key length requirement in

comparison with other cryptosystems such as RSA. It has been established that 160-bit ECC gives

equivalent security to 1024-bit RSA, which highlights the potential increment in computing performance

and savings in power/memory that can be achieved with this cryptosystem.

In this setting, the recent development of efficient composite operations [DIM05],[MD07],[LM07b]

has permitted algorithms to surpass the performance of traditional scalar multiplications based solely on

radix 2 by using DB and TB methods that mix bases 2 and 3, and 2, 3 and 5, respectively, to build

shorter scalar expansions. Although the use of DB and TB has already been shown to reduce the

computing cost of the scalar multiplication following a sublinear complexity of less than

(log / log log)k k additions [DIM05],[DI06],[MD07], where k is the secret scalar, conversion to DB and

TB has some shortcomings.

First, conversion of any scalar k to DB or TB representations can be relatively slow since it is based

on an exhaustive search of all possible combinations of powers of (2,3) or (2,3,5), respectively (referred

to as “Greedy” algorithm by [DIM05]). Some increase in speed can be obtained by applying a smart

search, such as the method proposed in [DI06] using lexicographic-ordered tables. However, this method

requires extra memory to store such tables, which can be prohibitive in some constrained environments.

Refer to Table 1 in [DI06] for precise amounts of extra memory that would be required. Notice that if

one stores only part of the precomputed data, then some delays potentially could be introduced during

DB/TB conversions.

Second, the efficiency of DB/TB-based scalar multiplications depend heavily on the maximum bounds

pre-established for exponents in bases 2, 3 and 5. Heuristic approximations have been proposed to

estimate the values that would yield short expansions [DIM05],[DIM07]. However, in ECC scalar

multiplication, the density of nonzero terms (i.e., the number of additions) is not the only parameter to

take into account to achieve cheaper computations. In fact, since additional point operations (namely,

tripling of a point 3P, and quintupling of a point 5P, for any point P on the curve) are included in the

expansion, the right balance between point operations should be considered to reach a minimum

computing cost. The complexity of this estimate is greatly increased if one needs to consider settings

with different cost ratios among point operations.

Finally, there is no theoretical bound for the length or density of the expansion. This fact increases the

difficulty of finding optimal values for the maximum bounds of exponents in the DB/TB-based scalar

multiplication.

In this work, we generalize the idea of combining several radices to represent numbers and, then,

solve the problem of finding short multibase representations in an efficient manner by proposing a

multibase NAF-like representation (denoted by mbNAF) with no restriction in the number or selection of

bases, that overcomes all the previous problems found in DB/TB. This is, to our knowledge, the first

effort in the area to apply a generic multibase representation of the scalar k to reduce computational

costs. Also, we show that our methods are sublinear with complexity of approximately (log / log log)k k

point additions.

To realize the scalar multiplication using the new multibase NAF representation in the ECC setting, in

the first part of this work we introduce a generic methodology to build composite operations of the form

3

dP for standard ECC curves over prime fields, where d is an odd prime ≥ 3 and P is a point on the

elliptic curve. Additionally, we present an optimized quintupling formula that achieves the lowest cost

reported in the literature. Further, we protect our operations against Simple-Side Channel Attacks

(SSCA) using a variation of the efficient atomic structure presented in [LM07a] based on side-channel

atomicity. We show that our unprotected and SSCA-protected composite operations reduce costs in

comparison with previous formulae, and most remarkably, present reduced memory requirements. In

particular, new tripling (3P), quintupling (5P) and septupling (7P) operations are made efficient enough

to implement mbNAF scalar multiplications using radices 3, 5 and 7 besides 2. It will turn out that our

new scalar multiplication is the fastest method known to date on generic curves over prime fields that

simultaneously allows a highly efficient ECC implementation with reduced footprint.

It is important to remark that, even though we are focusing on ECC over prime fields using standard

curves, the proposed mbNAF representations are generic and can be applied to other areas, or

specifically, to any cryptosystem based on scalar multiplication. For the latter, the only requirement is to

have efficient formulae to compute operations with radices other than 2.

For the rest of this work, M, S and A, in italics, stand for the computing costs of field multiplication,

squaring, and addition or subtraction, respectively. Similarly, to denote the costs of point operations

(typically expressed in terms of field operations), we use A, D, T and Q for point addition, doubling,

tripling and quintupling, respectively.

To simplify our cost analyses in the different sections, we will consider two possible scenarios:

 Software-based implementations where squaring is usually faster than multiplication. In this case,

we consider 1S = 0.8M [BHL+01],[GAS+05],[GG03], which is widely accepted in the literature.

 Implementations on hardware platforms or when some built-in hardware is used to accelerate EC-

operations (e.g., using a modular hardware multiplier [XB01]). In this case, a multiplier executes

both squaring and multiplication, and consequently, the ratio S/M is fixed at 1.

Although A/M ratios vary widely from application to application, to simplify comparisons we consider

a low ratio for applications where multiplications are not favoured by a fast hardware multiplier. In such

cases, we use 1A  0.05M, as achieved by [Ber06]. Where this is not the case, the cost of an addition can

be non-negligible. We will then use the ratio achieved in [ITT+99], 1A  0.2M.

This paper is organized as follows. In Section 2, we introduce some basic concepts about ECC and

summarize, for comparison purposes, the costs of the state-of-the-art point operation formulae. In

Section 3, we present our innovative methodology that relies on the special addition operation using

identical z-coordinate developed by [Mel06] to yield new composite operations: tripling (3P),

quintupling (5P), septupling (7P), and so on. Our new atomic structure to protect against SSCA is

introduced in the subsequent section and applied to the development of SSCA-protected formulae. In

Section 5, we present new scalar multiplications that use multiple bases to represent scalars, including a

discussion about their theoretical bounds in terms of density. Results of extensive tests with 160-bit

random numbers showing the superiority of our scalar multiplication methods in SSCA-protected and

unprotected scenarios are presented in Section 6. We end with some conclusions about the work

presented.

4

2 Preliminaries

In this section we summarize basic notions about ECC. The reader is referred to [HMV04],[ACD+05] for

further details. In general, ECC can be defined over different finite fields. Here we work with a prime

field containing p elements, generically denoted by
p

 , where p is a large prime. In this case, the

simplified Weierstrass equation is as follows

 2 3:E y x ax b   , (1)

where: a , b 
p

 and  4a3 + 27b2  0 ( is the discriminant of E).

ECC computations are performed over the abelian group constituted by the set of pairs (x, y) that

solves (1) and the point at infinity . The latter acts as the identity for the Group Law and can be

geometrically defined as the point “lying far out on the y-axis such that any line x  c, for some constant

c, parallel to the y-axis passes through it” [ACD+05].

If we denote the elliptic curve over
p

 by ()
p

E  , the central operation in ECC, known as scalar or

point multiplication, can be represented by kP, where P is a point in ()
p

E  and k is the secret scalar. In

the following, we assume that # () .
p

E h q (q prime and h  q, and hence p  q) and P and Q are

points of order q [HMV04]. If k is a scalar randomly chosen in the range [1, q 1] and 2logn q , then

the average length of k is l  n – 1. We refer indistinctly as density or Hamming weight to the number of

nonzero elements of a given scalar representation. In particular, for scalar multiplication, the latter

directly translates to the number of point additions required to compute kP using such representation.

In the following, we first summarize relevant methods for scalar multiplication, and then the point

operations that allow the realization of these methods in ECC.

2.1 Previous Scalar Multiplication Methods

Considerable effort has been invested during the past two decades to developing fast algorithms to

compute kP. The main idea is to use short representations for k that translate to efficient scalar

multiplication methods. To this end, radix 2 or binary representations have been traditionally used

because the expansion translates directly into a given sequence of point doubling (2P) and addition (P

Q), the basic ECC point operations. For instance, the binary method using elements {0,1} is known to

achieve a density of 1/2, which fixes the cost of the scalar multiplication to about (1)D (/ 2)An n  ,

where D and A represent the computing cost of doubling and addition, respectively. The density of the

binary expansion can be effectively reduced with a signed representation that uses elements in the set {-

1,0,1}, taking advantage of the fact that the cost of computing inverses of points (e.g., P) in additive

groups as ()
p

E  is negligible. Among different signed radix2-based representations, NAF is a canonical

representation with the fewest number of nonzero digits for any scalar k. The NAF representation of k,

denoted by NAF(k), contains at most one nonzero digit among any two successive digits.

Algorithm 2.1 computes the NAF of a scalar k using w = 2. Similarly, Algorithm 2.2 uses NAF for

scalar multiplication when w  2 [HMV04].

5

Algorithm 2.1 Computing the wNAF (NAF) of a positive integer

INPUT: window w (w = 2 for NAF), scalar k

OUTPUT: NAFw(k)

 1. I = 0

 2. While k ≥ 1 do

 2.1. If k is odd, then mods 2 ,w

i i
k k k k k  

 2.2. Else 0
i

k 

 2.3. k = / 2k , I = I + 1

 3. Return
1 1 0 NAF

(, , ,)
w

l
k k k




Algorithm 2.2 wNAF (NAF) method for scalar multiplication

INPUT: Window w (w = 2 for NAF), scalar
1 1 0 NAF

(, , ,) , ()
w

l p
k k k k P E


  

OUTPUT: kP

 1. Compute Pi  iP for  11, 3, 5, , (2 1)wi  

 2. Q O

 3. For 1i l  downto 0 do

 3.1. 2Q Q

 3.2. If 0
i

k  , then:

 If 0
i

k  , then
i

k
Q Q P 

 Else
i

k
Q Q P 

 4. Return (Q)

The function mods in Algorithm 2.1 represents the next computation (w = 2 for NAF):

 
If mod 2 2 / 2 , then:

mod 2 2

Else,

mod 2

w w

w w

i

w

i

k

k k

k k



 










 (2)

The expected number of doublings and additions using Algorithm 2.2 (w = 2) is approximately (n – 1)

and n/3, respectively. Thus, the cost of the NAF method is:

  (1)D A
3
n

n   . (3)

If there is memory available, one can make use of precomputations to reduce the computing time for

scalar multiplication. In such case, wNAF is the natural expansion of NAF. It basically exploits the

availability of precomputed values to “insert” windows of width w, which permits the consecutive

6

execution of several doublings to reduce the density of the expansion. The wNAF representation of k,

denoted by NAFw(k), contains at most one nonzero digit among any w successive digits.

Algorithm 2.1 computes the wNAF representation of a scalar k when w > 2. Similarly, Algorithm 2.2

uses wNAF for scalar multiplication with w > 2. It can be observed directly from these algorithms that

wNAF is simply a generalization of NAF to any window value, and that NAF is the only variant in such

generalization that does not require precomputations Pi (hereafter we refer to non-trivial points not

including {O, P} as precomputed points).

The average density of nonzero digits in wNAF for a window of width w is 1
1w , and the number of

required precomputed points is 2(2 1)w  . The cost of the wNAF method is approximately:

  (1)D A
1

n
n

w
 


. (4)

Recently, new methods using other radices beside 2 were introduced. [DIM05] proposed to

representing scalar k using mixed powers of 2 and 3, as follows:

1

2 3i i

m

i

i

b ck k


  , (5)

where m is the length of the expansion, ki is the sign (i.e., ki {1,1}), and bi and ci form decreasing

sequences max 1 2 0mb b b b     and max 1 2 0mc c c c     , respectively.

This Double-Base (DB) representation is highly sparse and, consequently, permits to reduce the

Hamming weight of the expansion for the scalar. With the introduction of efficient tripling formulae

[DIM05],[DIK06], these representations using ternary bases greatly reduce the execution time of scalar

multiplication.

Later, [DI06] extended this approach, called Extended DB, to applications that can afford

precomputations. In this case, ki in (5) is allowed to have any value from a set of precomputed digits Ki,

where the elements are prime numbers other than 3. For instance, Ki = {±1, ±5, ±7, ±11}.

Finding short expansions using {2 3 }-i ib c
terms has been defined as a difficult problem on its own.

[DIM05] proposed to solve that problem by establishing “efficient” maximum bounds bmax and cmax for

the powers of 2 and 3, respectively, and then executing an exhaustive search for closest terms

2 3i ib c
(referred to as “Greedy” algorithm).

An extension of the previous work (referred to as Triple-Base or TB) was presented in [MD07] by

adding radix 5 to the previous approach. It is also based on a “Greedy” algorithm to find a scalar

representation, and hence, exhibits the same shortcomings as DB.

2.2 Previous Point Operation Formulas

Since the representation of points on the curve E with two coordinates (,)x y , namely affine coordinates,

introduces expensive field inversions into the computation of point operations, in this work we will only

consider the case of projective coordinates (, ,)X Y Z to represent points. The latter solves the

aforementioned problem by adding the third coordinate Z to replace inversions with a few other field

operations. In particular, we focus on Jacobian coordinates, a special case of projective coordinates that

has yielded very efficient point formulae [Elm06],[HMV04].

7

The foundation of these inversion-free coordinate systems can be explained by the concept of

equivalence classes, which are defined in the following in the context of Jacobian coordinates.

Given a prime field
p

 , there is an equivalence relation  among nonzero triplets over
p

 , such that

[ACD+05]:

1 1 1 2 2 2
(, ,) (, ,)X Y Z X Y Z  2

1 2X X , 3
1 2Y Y and 1 2Z Z , for some *

p   .

Thus, the equivalence class of a (Jacobian) projective point, denoted by (X : Y : Z), is:

 2 3 *(: :) {(, ,) : }pX Y Z X Y Z      . (6)

It is important to remark that any (, ,)X Y Z in the equivalence class (6) can be used as a

representative of a given (Jacobian) projective point.

In Table 1, we summarize computational and memory costs of previous formulae in Jacobian

coordinates by different authors (referred to as previous operations) and improvements that we

introduced in [LM07a] (referred to as fast operations). It is important to note that it has been suggested

that the parameter a in equation (1) is fixed at 3 for efficiency purposes [IEEE], which has been shown

not to impose significant restrictions to the cryptosystem [BJ03]. In this work, we will refer to the special

case when a 3, and the general case when the parameter is not fixed and can be any value in the field.

For complete details about previous and fast point formulae the reader is referred to [LM07a]. Also, we

have gathered the most efficient point operation formulas in Jacobian coordinates in an online database

accessible at http://patricklonga.bravehost.com/jacobian.html.

To simplify comparisons, it is widely accepted that the computational cost of a point operation be

expressed in terms of its required number of field multiplications and squarings. Regarding memory, the

costs in Table 1 are expressed by the number of registers needed to store input/output point coordinates

and intermediate computations (excepting mixed addition, these numbers correspond to the special case

a = 3). Note that in this work we have developed very efficient memory allocation using low resources

for the fast formulae by [LM07a]. The reader is referred to Appendices A1, A2 and B for complete

details.

In addition, we present a new quintupling formula, detailed in Appendix C, which has been further

accelerated by applying the technique of replacing multiplications by squarings used in [LM07a] to

derive fast operations. This quintupling introduces significant reductions in comparison with the best

previous formula due to [MD07]. For instance, if 1S = 0.8M, the new quintupling costs 21.2M and

19.8M in contrast to 23M and 21.4M [MD07] for the general and special cases, respectively.

Operation costs in Table 1 will be used as a reference point for comparison with our new composite

operations (Section 3). The improved fast operations with reduced memory requirements will be used to

boost the performance of the mbNAF scalar multiplication (Section 5).

3 Composite Operations dP

If we add two points 1 1(, ,)P X Y Z and 2 2(, ,)Q X Y Z containing the same z-coordinate in

Jacobian coordinates, the result 3 3 3(, ,)P Q X Y Z  can be obtained as follows [Mel06]:

8

Table 1. Cost of point operations

Operation general a 3 # reg.

Fast doubling [LM07a] 2M + 8S 3M + 5S 6
Previous doubling 4M + 6S 4M + 4S 6 (a)

Fast general addition [LM07a] 11M + 5S - N/A
Previous general addition 12M + 4S - N/A
Fast mixed addition [LM07a] 7M + 4S - 6
Previous mixed addition 8M + 3S - 7 (a)

Fast tripling [LM07a] 6M + 10S 7M + 7S 8
Previous tripling [DIM05] 10M + 6S - 10 (b)

Fast quintupling (this work) 10M + 14S 11M + 11S 10
Previous quintupling [MD07] 15M + 10S 15M + 8S N/A

 (a) From [HMV04, pp. 91-92]
(b) SSCA-protected tripling from [DIM05],[DIM07]

     2 3 2

3 2 1 2 1 1 2 1
2X Y Y X X X X X      .

      2 3

3 2 1 1 2 1 3 1 2 1
Y Y Y X X X X Y X X      .

 
3 2 1

Z Z X X  . (7)

The cost of formula (7) is only 5M + 2S, which represents a significant reduction in comparison with a

traditional mixed Jacobian-affine addition (8M + 3S), or even in comparison with the fast mixed addition

(7M + 4S) (see Table 1). Obviously, it is not possible to directly replace traditional additions with this

more efficient operation since it is expected that point additions are performed over operands with

different z coordinates during scalar multiplication. Nevertheless, in [LM07b] we noticed that this

special operation (referred to as addition with identical z-coordinate) can be used to generate composite

operations of the form dP+Q when using generic scalar multiplication methods over prime fields.

In the following, we extend the work presented in [LM07b] and introduce efficient composite

operations of the form dP, where d is an odd prime integer ≥ 3 and P is any point on the elliptic curve

()
p

E  , by exploiting the advantages of this special addition (7).

3.1 Generalization to Composite Operations dP

We propose the following sequence to compute operations of the form dP, for any odd prime d ≥ 3:

 dP = 2P + (… + (2P + (2P + (2P + P))) …), (8)

which is executed backwards using only one doubling and  1

2

d 
additions with identical z-coordinate

(7).

First, for the general case (random a), the doubling    
1 1 1 2 2 2

2 2 , , , ,P X Y Z X Y Z  is computed

using the fast formulae developed in [LM07a], which has a cost of only 2M + 8S:

   2 22 4 2 2 4

2 1 1 1 1 1 1
3 4X X aZ X Y X Y        .

    22 4 2 2 4 4

2 1 1 1 1 1 1 2 1
3 2 8Y X aZ X Y X Y X Y       

  .

9

 2 2 2

2 1 1 1 1
Z Y Z Y Z    . (9)

If we consider a = 3, then the doubling 2P is instead performed with the formulae due to [Ber01] and

later revisited in [LM07a]:

   22 2 2

2 1 1 1 1 1 1
3 8X X Z X Z X Y      .

     2 2 2 4

2 1 1 1 1 1 1 2 1
3 4 8Y X Z X Z X Y X Y       .

 2 2 2

2 1 1 1 1
Z Y Z Y Z    . (10)

The cost of (10) is only 3M + 5S. If we now fix 12Y  in the equivalence class (6) to have the

following new representation for P:           (1) (1) (1) 2 3

1 1 1 1 1 1 1 1 1 1 1 1
, , 4 , 8 , 2 , ,X Y Z X Y Y Y Z Y X Y Z  , we

can use (7) for the addition of 2P and P following (8) since  (1) (1) (1)

1 1 1
, ,X Y Z , which is equivalent to the

original point  
1 1 1
, ,P X Y Z , has the same z-coordinate as  

2 2 2
, ,X Y Z . Remarkably, computation of

the equivalent point  (1) (1) (1)

1 1 1
, ,X Y Z does not introduce any extra cost because its coordinates have

already been computed in (9) or (10).

Thus, we obtain the tripling of a point 3 2P P P        (1) (1) (1)

2 2 2 1 1 1 3 3 3
, , , , , ,X Y Z X Y Z X Y Z 

with the following:

     2 3 2(1) (1) (1)

3 1 2 1 2 2 1 2
2X Y Y X X X X X      .

      2 3(1) (1) (1)

3 1 2 2 1 2 3 2 1 2
Y Y Y X X X X Y X X      .

 (1)

3 1 2
Z Z X X  . (11)

By fixing (1)

1 2
X X   in (6), point  2 2 22 , ,P X Y Z becomes equivalent to

      2 3(1) (1) (1)

2 1 2 2 1 2 2 1 2
, ,X X X Y X X Z X X   , which has the same z-coordinate as  

3 3 3
, ,X Y Z in

formula (11) and, thus, allows us to perform the next addition 2 3P P in (8) using the special addition

(7) to obtain the quintupling of a point. We can repeat the same procedure for extra additions with 2P

and yield 7P, 9P, 11P, and so on. In fact, we observe that every extra addition to 3P in (8) adjusts to the

next generic formulae for 1 to (3) / 2j d  having d as an odd prime > 3:

            2 2 2 2 2 2 3 3 3

(1)

2 2 2 (3) , , , , , ,j j j

j j j j j j

j terms

P P P P X Y Z X Y Z X Y Z
     



       :

          2 3 2

3 2 2 2 2 2 2 2
2j j j j

j j j j
X Y Y X X X X X         ,

             2 3

3 2 2 2 2 2 3 2 2 2

j j j j j

j j j j j
Y Y Y X X X X Y X X

    
      ,

    3 2 2 2

j j

j j
Z Z X X   , (12)

where
      2 2 2

, ,j j jX Y Z denotes the equivalent point to 2P for the jth addition. As we can see in (12), it

holds that one always gets an equivalent point to 2P for the following addition by fixing:

                      2 31 1 1

2 2 2 2 2 2 2 2 2 2 2 2
, , , ,j j j j j j j j j

j j j
X Y Z X X X Y X X Z X X  

      , which is

10

equivalent to
      2 2 2

, ,j j jX Y Z according to (6), and has the same z coordinate as (12).

The cost of our methodology (8) is given by:

1D +  1

2

d 
A’, (13)

where d ≥ 3 is an odd prime integer for efficiency reasons, and D and A’ denote the cost of doubling (as

given by (9) or (10)) and addition with identical z-coordinate, respectively.

For instance, the cost of the quintupling (d = 5) is estimated as (2M + 8S) + 2(5M + 2S) = 12M + 12S,

if a is randomly chosen. If a 3, the cost of the new quintupling is reduced to (3M + 5S) + 2(5M + 2S)

= 13M + 9S. Similar results are achieved for d = 7 and 11. Cost details for these cases are discussed in

Section 3.2.

In Appendix A1, we present the pseudocode of the new composite operations of form dP, for d ≥ 3

and a = 3, including memory allocation. An important feature of the new operations is that they present

a reduced memory requirement fixed to only 6 registers, including registers to store input/output

coordinates.

It is important to remark that the strategy presented in (8) is efficient for d = 3, 5, 7, 11 (tripling,

quintupling, septupling and eleventupling, respectively). For computations with d greater than those

values, it is more efficient to use the already efficient operations aforementioned. For instance, it is better

to compute 13P as 22(3P) + P, which requires two doublings, one tripling and one general addition. That

represents a cost of 24M + 22S (cost has been further reduced by using fast point operations introduced

in [LM07a]; see Table 1).

3.2 Performance comparison

Cost estimates of composite operations of the form dP using the proposed methodology are summarized

in Table 2. Our results are compared with the best previous formulae summarized in Table 1.

We could not find formulae in the literature to compute dP for d ≥ 7 in Jacobian coordinates over

prime fields. Thus, for comparison purposes, in that case each “traditional” composite operation has

been computed by combining available point operations from other works (i.e., traditional doubling and

addition (Table 1; [HMV04]), tripling [DIM05] and quintupling [MD07]) in the most efficient way.

Thus, 7P is computed by one doubling, one tripling and one general addition; and 11P by two doublings,

one tripling and one general addition. The traditional approach has been slightly improved in the general

case with a method to compute repeated doublings [IT99]. In that case, the cost of w successive

doublings is expressed by 4wM + 2(2w + 1)S. Also, we consider that performing a tripling after a

doubling saves 2S in the general case.

In our case, composite operations are obtained following the proposed methodology (8). For tripling

and quintupling, we show performance of an additional case: when these operations are computed with

the fast formulas in [LM07a] (Appendix B) and Appendix C, respectively. We also include the cost of

the doubling-addition operation (denoted by DA) introduced in [LM07b]. Note that we have extended

the scope of the previous work and developed the memory allocation for this operation using minimum

resources (see Appendix A3 for complete details).

11

Table 2. Cost and memory performance of composite operations

Our work Previous workComposite
Operation general a 3 # reg. general a 3 # reg.

 Tripling
 (1) 6M + 10S 7M + 7S 8
 (2) 7M + 10S 8M + 7S 6

(5) 10M + 6S - 10

 Quintupling
 (3) 10M + 14S 11M + 11S 10
 (2) 12M + 12S 13M + 9S 6

(6) 15M + 10S 15M + 8S N/A

 Septupling (2) 17M + 14S 18M + 11S 6 26M + 14S 26M + 14S N/A

 Eleventupling (2) 27M + 18S 28M + 15S 6 30M + 18S 30M + 18S N/A

 Doubling-
Addition

 (4) 11M + 7S 11M + 7S 6 (7) 12M + 9S 12M + 7S 7

 (1) Fast tripling formula from [LM07a]; (2) Using methodology (8); (3) New quintupling (Appendix C);
 (4) Doubling-addition from [LM07b]; (5) SSCA-protected tripling by [DIM05]; (6) Quintupling by [MD07];
 (7) Using formulas by [HMV04, pp. 91-92]

After comparing the costs given in Table 2, we can conclude that our composite operations

outperform the best previous formulae in both the general and special cases. It is important to note that

the tripling from [LM07a] (Appendix B) and the new quintupling presented in Appendix C achieve the

lowest computing costs, but with higher memory requirements in comparison with composite operations

(8) presented in this section. Using the latter, it is possible to achieve a highly compact implementation

with only 6 registers to perform operations.

In comparison with previous formulae, the fast tripling [LM07a] and the new tripling based on (8) are

significantly superior to the one due to [DIM05]. Further, the memory requirement is also reduced. In

particular, tripling in our second case is one multiplication more expensive but requires 2 fewer registers.

Similarly, the new quintupling (Appendix C) and the quintupling based on (8) outperform the formula

due to [DM07] not only in computing cost but also in memory usage. Significant improvements are also

observed for 7P and 11P. In the case of DA, we already showed its advantage in terms of costs by

reducing 1 multiplication and up to 2 squarings (refer to [LM07b]). However, we have extended that

advantage in this work by observing that our DA operation is not only faster but also requires less

memory than the traditional execution using algorithms from [HMV04, pp. 91-92].

Our record of point operation formulas at http://patricklonga.breavehost.com/jacobian.html has been

updated with these new composite operations.

These fast and memory-efficient composite operations will allow us to efficiently implement new

mbNAF algorithms for the scalar multiplication presented in Section 5.

4 SSCA-Protected Point Arithmetic using Atomicity

Side-channel analysis is a real threat that has been proven to be highly useful for revealing sensitive

information from crypto-operations running in electronic devices [Koc96],[KJJ99]. Through them,

timing, faults, power, electromagnetic emissions and others are cleverly exploited, individually or in

conjunction, to develop attacks that challenge the security of mathematically powerful cryptosystems,

including ECC. In general, these attacks can be classified into two main strategies: Simple (SSCA) and

12

Differential (DSCA) Side-Channel Analysis attacks. Our work focuses on SSCA, which uses a single

execution trace of an ECC scalar multiplication to distinguish the different point operations that are

being executed and, thus, directly reveal the bits of the secret scalar.

Among several efforts to propose effective countermeasures to deal with these attacks (the reader is

referred to [Ava04] for a complete survey, and to [LM07a, Section 1.1] for a discussion about the topic),

side-channel atomicity [CCJ04] has been shown to give effective protection at reduced overhead. This

method builds point operations on top of small homogenous blocks, known as atomic blocks, which

contain the same structure of field operations and, consequently, cannot be distinguished from one

another through SSCA. Since the attacker is only capable of seeing a sequence of homogenous blocks,

he/she is not able to distinguish point operations. We assume here that transitions between blocks are

carefully implemented to avoid any leakage that could reveal in which moment a point operation is

beginning or ending.

The traditional atomic structure M-A-N-A (Multiplication-Addition-Negation-Addition) as proposed

by [CCJ04] and later used by [DIM05],[Mis06] has three main drawbacks: parameter a in the elliptic

curve equation (1) is not fixed to , the number of operations per atomic block is not optimal and the

memory requirements (especially from previous tripling and quintupling operations) are high. To tackle

these problems, a new atomic structure denoted by M-N-A-M-N-A-A is introduced to develop new atomic

formulae for doubling, addition, doubling-addition, quintupling and the new composite operations

introduced in Section 3.

4.1 New Atomic Formulae

The new atomic doubling and addition have been implemented with the proposed atomic structure using

the formulae by [LM07a] detailed in Appendices A1 and A2. Four and six M-N-A-M-N-A-A blocks are

required, which give total costs of 8M + 12A and 12M + 18A for the case of doubling and addition,

respectively (note that the structure M-N-A-M-N-A-A contains 2M + 3A per block). The details are shown

in Appendices D1 and D2. The number of registers required in both cases is limited to only 6 registers.

For the case of DA, by using the new structure we have developed atomic formulae based on the

formula due to [LM07b] (see Appendix A3) with 9 blocks (18M + 27A) and 7 registers. The details are

shown in Appendix D2.

Finally, efficient composite operations from Section 3 have also been protected with our atomic

structure as shown in Appendix D3. Atomic tripling, quintupling and septupling require 8, 11 and 15

blocks, which translates to 16M + 24A, 22M + 33A and 30M + 45A, respectively. In terms of memory,

the former operation requires only 6 registers, and the two latter, 7.

Table 3 summarizes costs and memory requirements for the new atomic operations and compares

them with previous M-A-N-A-based operations. To the best of our knowledge, this is the first effort to

develop atomic formulae for higher order operations such as quintupling, septupling, and so on. Hence,

“traditional” composite operations shown in Table 3 are built by using the best atomic doubling, tripling

and addition formulae found in the current literature. For instance, the cost of a “traditional” quintupling

is estimated as 5P = 22P + P (two doublings and one general addition), and septupling as 7P = 2(3P) + P

(one doubling, one tripling and one general addition). Note that the atomic formulae for general addition

was developed by [CCJ04] with a cost of 16M + 32A, and 9 registers.

For tripling, we present two cases: when using the fast formulae introduced in [LM07a] (see Appendix

13

E), and when applying the methodology (8) (Appendix D3). Similarly, for quintupling we present the

SSCA-protected version for the new fast formula detailed in Appendix C and for the formula based on

the methodology (8) (Appendix D3).

Table 3. Cost of atomic operations

Previous work This workMethod
Cost # reg. Cost # reg.

 Doubling
10M + 20A

[CCJ04]
7 8M + 12A 5

 w-doubling
(8w + 2)M + 2(8w + 2)A

[DIM05][DIM07]
7 8wM + 12wA 6

 Mixed addition 11M + 22A [Mis06] 8 12M + 18A 6

 Tripling
16M + 32A

[DIM05][DIM07]
10

(1) 14M + 21A
(2) 16M + 24A

9
6

 w-tripling
(15w + 1)M + 2(15w + 1)A

[DIM05][DIM07]
10

(1) 14wM + 21wA
(2) 16wM + 24wA

9
6

 Quintupling 34M + 68A 9
(3) 22M + 33A
(2) 22M + 33A

9
7

 Septupling 42M + 84A 9 (2) 30M + 45A 7

 Doubling-addition(DA) 21M + 42A 8 18M + 27A 7

 (1) Using fast tripling from [LM07a]; (2) Using methodology (8); (3) New quintupling (Appendix C)

As we can see in Table 3, our atomic operations based on the new structure are significantly more

efficient in terms of cost and memory than previous atomic operations using M-A-N-A, including cases

where some savings can be achieved by successive execution of doublings or triplings [DIM05].

Regarding the latter, although our operations do not introduce any extra saving by repeated execution,

they still present a performance superior to previous efforts.

Point addition is still one multiplication more expensive than the traditional formulae. However, we

expect this disadvantage is minimized because this operation is rare during efficient scalar

multiplications. Moreover, if every doubling followed by an addition is otherwise replaced by the new

DA, then we gain 3M + 15A per nonzero term in the scalar expansion using one fewer register.

4.2 Performance Comparison

In the following, we compare performance for the case of scalar multiplications based on radix 2 (i.e.,

using only point doubling and addition). Performance achieved by scalar multiplications that use

composite operations are discussed in Section 5 with the introduction of multibase algorithms, which

take advantage of the efficiency of those operations.

To have a more precise idea of the improvement that can be achieved with our new atomic operations,

we theoretically compare performance when using a traditional scalar multiplication with NAF method

and scalar k of length n  160 bits. Using (3), the cost is estimated in 159D + 53A. If we express the

latter in terms of DA operations, then NAF has a estimated cost of (15953)D+53DA = 106D+53DA.

14

The operation counting when using the proposed M-N-A-M-N-A-A atomic structure and the traditional

approach is detailed in Table 4. The costs of atomic operations corresponding to each atomic structure

have been taken from Table 3. Also, we include the performance of the new atomic structure when using

the proposed atomic DA.

Table 4. Performance of proposed atomic operations (NAF method, n = 160 bits)

PerformanceMethod
Cost # reg.

Traditional atomic operations 2173M + 4346A 8

Proposed atomic operations 1908M + 2862A 6

With proposed atomic DA 1802M + 2703A 7

As expected, the new M-N-A-M-N-A-A structure has reduced significantly the cost of the scalar

multiplication in terms not only of field multiplications but also (and more significantly) of field

additions. In particular, our atomic structure in combination with the proposed atomic DA yields the

highest performance since the disadvantage of having a slower point addition has been completely

cancelled by the efficient DA operation. Remarkably, the increment in performance is achieved with

even fewer registers than the M-A-N-A-based approach.

For comparison purposes, let the ratio A/M be 0.2. Then, the new M-N-A-M-N-A-A structure presents

a reduction of 18.5% in comparison with a scalar multiplication using previous atomic operations. When

using DA with the M-N-A-M-N-A-A structure the reduction is further increased to 23%.

The fast, memory-efficient atomic formulae introduced in this section will be used to efficiently

implement SSCA-protected scalar multiplication using the mbNAF method, presented in the following

section.

5 New Multibase Scalar Multiplication Methods

In the following, we introduce our multibase scalar multiplication based on new NAF-like

representations that generalize the use of several bases.

5.1 Multibase Non-Adjacent Form (mbNAF)

We propose the following signed multibase representation for the scalar k to construct the scalar

multiplication:

 ()

1 1

ji

Jm

i

i j

c
jk k a

 

   , (14)

where: bases a1 ≠ a2 ≠ … ≠ aJ are positive prime integers.

m is the length of the expansion.

ki are signed digits from a given set Di.

15

()i jc are monotonically decreasing exponents, s.t. 1 2() () () 0mj j jc c c    , for each j from 1

to J.

The last condition guarantees that an expansion of the form (14) is efficiently executed by a scalar

multiplication scanning the digits from left to right.

It is important to note that there are no restrictions on the number of bases. This parameter is

determined according to a specific application. In the case studied (i.e., ECC on standard curves over

prime fields), we will show that for most of the cases the following parameter selection gives the highest

performance: J ≤ 4, with a1  2, a2  3, a3  5, a4  7.

Notice that the signed multibase representation (14) is not unique. In fact, the “Greedy” algorithm by

[DIM05] yields an expansion with similar conditions, although limiting the number of bases to only two,

namely J  2, with a1  2, a2  3.

We now define a multibase NAF-like representation that is unique for every positive integer.

Although it does not yield a canonical representation in all cases (representations with minimal number

of terms using more than one radix are not necessarily efficient for scalar multiplication in all cases), it

makes conversion to multibase a trivial task, and guarantees a short expansion for scalar multiplication.

Definition 5.1 Given a set of bases   {a1,a2,…,aJ}, where +
ja  are positive primes for 1 j J  ,

a multibase non-adjacent form (mbNAF) of a positive integer k, denoted by
        1 2 1

1 2 1, , , ,m ma a a a
m mk k k k

  , where m is the length of the expansion,  ia
ik is the ith digit and the

superscript ia A denotes the base associated to the respective digit, has the following properties:

 Every positive integer k has a unique mbNAF representation for a given set of bases .

 No consecutive digits are nonzero.

    2
1 1

1 1 11 , 2 , ,
1 1

0, 1, 2, , \
2 2i i a a a

a a
k D   

 
            , for 1 ≤ i ≤ m.

 The leftmost nonzero digit is positive, i.e., km  0.

It is important to note that for the set of bases  = {2}, the previous definition is identical to the

traditional binary NAF.

According to the previous definition, the set of precomputed digits Di works solely on base a1, called

the main base, to guarantee a minimal number of precomputations.

We propose Algorithm 5.1 to efficiently convert any positive integer to mbNAF representation.

Notice that the proposed algorithm is a generalization of the traditional NAF to multibase digit

representations.

16

Algorithm 5.1 Computing the mbNAF of a positive integer

INPUT: scalar k, bases   {a1,a2,…,aJ}, where +
ja  are primes for 1 j J 

OUTPUT: the   2 1() ()
1 2 2 1, , ..., NAF() = (..., ,)a a

Ja a a k k k

 1. i = 0

 2. While k  0 do

 2.1. If 1mod 0k a  or 2mod 0k a  or … or mod 0jk a  , then 0ik 

 2.2. Else:

 2.2.1 2
1modsik k a

 2.2.2 ik k k 

 2.3

 2.3.1 If 1mod 0k a  , then  1

1/ , a
i ik k a k k 

 2.3.2 elseif 2mod 0k a  , then  2

2/ , a
i ik k a k k 

 

 2.3.J elseif mod 0Jk a  , then  / , Ja
J i ik k a k k 

 2.4 i  i  1

 3. Return 2 1() ()
2 1(... , ,)a ak k

The function mods in Algorithm 5.1 represents the next computation (w = 2):

 

1 1

1 1

1

If mod / 2 , then:

mod

Else,

mod

w w

w w

w

i

i

k a a

k k a - a

k k a














 (15)

Algorithm 5.1 approximates every computation to the closest number divisible by the square of the

main base, namely a1. Thus, two consecutive operations by a1 are guaranteed before the next addition. In

this sense, it closely follows the structure of the expansion given by rNAF [TYW04]. The analogy is

quite interesting since our main base a1 acts as the radix r, using a similar construction for the table of

precomputed points. However, the nonzero density of the expansion is further reduced in our case as the

number of bases is increased since the algorithm looks for extra divisions by the remainder bases.

Consequently, the nonzero density decreases with the number and size of the bases.

Following Definition 5.1, this method requires

 1 1
(2)(1)

2

a a 
 (16)

precomputed points without considering {0, 1}. Further, preliminary analysis shows that the expected

average nonzero density is asymptomatically

17

 1

1

1

2 1

a
D

a





 (17)

with regard to the main base.

It is important to note that if a12, no more precomputed points are required in comparison with the

binary NAF representation, where the point at infinity and P must be stored.

Also, a1  2 is expected to yield the most efficient scalar multiplication in terms of speed on EC

standard curves, where point doubling is highly efficient in comparison with other operations. However,

in new EC-based cryptosystems of characteristic 3 or pairing-based cryptosystems where triplings (or

other composite operations) are more efficient, the expectation is that the case with a1  2 provide a

better performance.

5.2 Window-w Multibase Non-Adjacent Form (wmbNAF)

Similarly to NAF, it is possible to further reduce the density of the expansion of the proposed mbNAF by

allowing additions by an extended set of precomputed digits Di.

In the following, we define the window-w Non-Adjacent Form for multibase representations

(wmbNAF).

Definition 5.2 Given a set of bases   {a1,a2,…,aJ}, where +
ja  are positive primes for

1 j J  , the window-w multibase non-adjacent form (wmbNAF) of a positive integer k using window

of width w ≥ 2, denoted by         1 2 1

1 2 1, , , ,m ma a a a
m mk k k k

  , where m is the length of the expansion,  ia
ik

is the ith digit and the superscript ia A denotes the base associated to the respective digit, has the

following properties:

 Every positive integer k has a unique wmbNAF representation for a given set of bases  and window

w.

 w adjacent digits contain at most one nonzero digit.

    1
1 1

1 1 1

1 1
0, 1, 2, , \ 1 , 2 , ,

2 2

w w

i i
a a

k D a a a
 

          
     , for 1 ≤ i ≤ m.

 The leftmost nonzero digit is positive, i.e., km  0.

Notice that for the set of bases  = {2}, the previous definition is identical to the traditional wNAF.

Similarly to mbNAF, the set of precomputed digits Di are derived from the main base a1, limiting the

required number of precomputations.

We propose Algorithm 5.2 to efficiently convert the scalar k to the wmbNAF representation.

Function mods in Algorithm 5.2 is a generalization of function (15) to w > 2. Similarly to the relation

between wNAF and NAF, wmbNAF is equivalent to mbNAF if we fix w  2. Thus, Algorithm 5.2

defines windows of size w (only for the main base a1) to which it approximates every computation. In

this way, w consecutive operations by a1 are guaranteed before the next addition.

Following Definition 5.2, this method requires

1

1 1
2

2

w wa a  
 (18)

18

Algorithm 5.2 Computing the wmbNAF of a positive integer

INPUT: scalar k, bases   {a1,a2,…,aJ}, where +
ja  are primes for 1 j J  ,

 window 2w  , where w 

OUTPUT: the   2 1() ()
1 2 2 1, , ..., NAF () = (... , ,)a a

J wa a a k k k

 1. i = 0

 2. While k  0 do

 2.1. If 1mod 0k a  or 2mod 0k a  or … or mod 0jk a  , then 0ik 

 2.2. Else:

 2.2.1 1mods w
ik k a

 2.2.2 ik k k 

 2.3

 2.3.1 If 1mod 0k a  , then  1

1/ , a
i ik k a k k 

 2.3.2 elseif 2mod 0k a  , then  2

2/ , a
i ik k a k k 

 

 2.3.J elseif mod 0Jk a  , then  / , Ja
J i ik k a k k 

 2.4 i  i  1

 3. Return 2 1() ()
2 1(... , ,)a ak k

precomputed points without considering {0, 1}. Further, preliminary analysis shows that the expected

average nonzero density is asymptomatically

 

1

1

1

1 1

a
D

w a




 
. (19)

As happens with mbNAF, defining a1  2 is expected to yield the fastest scalar multiplication on EC

standard curves, given the high efficiency of point doubling. In settings where tripling (or another

composite operation) is more efficient, a1  3 (or the value corresponding to the efficient composite

operation) may achieve the highest performance.

5.3 Extended Window–w Multibase Non-Adjacent Form (extended wmbNAF)

In mbNAF and wmbNAF, we have restricted the internal approximation to numbers divisible by the base

a1, which has been referred to as the main base. However, curve-based cryptosystems other than ECC on

standard curves offer different cost ratios among their point operations. To exploit the efficiency of

different point operations in a given setting, we extend the proposed multibase representations by

allowing internal approximations to numbers based on combinations of radices.

Definition 5.3 Given a set of bases   {a1,a2,…,aJ}, where +
ja  are positive primes for

1 j J  , the extended multibase non-adjacent form (extended mbNAF) of a positive integer k using

19

window set   {w1, w2, …, wJ}, where exponents wj are positive integers ≥ 0 for all j from 1 to J, is

denoted by         1 2 1

1 2 1, , , ,m ma a a a
m mk k k k

  , where m is the length of the expansion,  ia
ik is the ith digit

and the superscript ia A denotes the base associated to the respective digit. The extended mbNAF has

the following properties:

 Every positive integer k has a unique extended mbNAF representation for a given set of bases  and

windows .

 There is at most one nonzero digit among (w1  w2  …  wJ) adjacent digits.

  1
0, 1, 2, , \

2
i i

a
k D


      

  

 1 1 1 2 2 2

1 2

1 1 1
1 , 2 , , 1 , 2 , , 1 , 2 , ,

2 2 2
, , ,

J J J

J

a a a
a a a a a a a a a

a a a

  
             

         
    , for 1 ≤ i ≤ m.

 The leftmost nonzero digit is positive, i.e., km  0.

We propose Algorithm 5.3 to efficiently convert the scalar k to extended wmbNAF representation.

Algorithm 5.3 Computing the extended wmbNAF of a positive integer

INPUT: scalar k, bases   {a1,a2,…,aJ}, where +
ja  are primes for 1 j J  ;

 1 2

1 2
Jw w w

Ja a a a  , using window set   {w1,w2,…,wJ}, where 0jw 
 for1 j J 

OUTPUT: the    
2 1

1 2

() ()
1 2 , , , 2 1, , ..., NAF () = (..., ,)

J

a a
J w w wa a a k k k

 1. i = 0

 2. While k  0 do

 2.1. If 1mod 0k a  or 2mod 0k a  or … or mod 0jk a  , then 0ik 

 2.2. Else:

 2.2.1 modsik k a

 2.2.2 ik k k 

 2.3

 2.3.1 If 1mod 0k a  , then  1

1/ , a
i ik k a k k 

 2.3.2 elseif 2mod 0k a  , then  2

2/ , a
i ik k a k k 

 

 2.3.J elseif mod 0Jk a  , then  / , Ja
J i ik k a k k 

 2.4 i  i  1

 3. Return 2 1() ()
2 1(... , ,)a ak k

The function mods in Algorithm 5.3 involves the next computation:

20

 

If mod / 2 , then:

mod

Else,

mod

i

i

k a a

k k a a

k k a



 









 (20)

Algorithm 5.3 guarantees that there is at most one nonzero digit among (w1  w2  …  wJ)

consecutive digits. In contrast to Algorithm 5.2, this method establishes windows for different bases

instead of limiting the window solely to base a1. Thus, every computation is approximated to an

extended value a, which we refer to as the global base, guaranteeing a given number of operations per

radix before the next addition happens.

Notice that wmbNAF is in fact a particular case of the extended wmbNAF when the set of windows is

limited to the main base, i.e.,  {w1}, where 2iw  .

This extended representation is ideal for settings where more than one point operation is efficient.

Moreover, its flexibility to define different window sizes for different bases allows us to determine

windows according to specific cost ratios between point operations. For instance, for multibase

representations using bases  {2,3} on cryptosystems that have highly efficient tripling, it is more

beneficial to use a relatively bigger window w2 for the base 3 than to window w1 for base 2.

Extended wmbNAF requires the next set of precomputed points:

 1

2
0, 1, 2, , \

i

a
k


     

  

  1 1 1 2 2 2

1 2

1 1 1

2 2 2
1 , 2 , , 1 , 2 , , 1 , 2 , ,, , ,

J J J

J

a a a

a a a
a a a a a a a a a

  
             

         
   

For instance, if we fix the number of bases to 3, we obtain the following expression to compute the

number of required precomputed points:

1 2 3 1 2 1 2 3

1 (2)
2 2 2 2 2 2

a a a a a a
n

a a a a a a a a
      

         
                  

 (21)

Notice that expression (21) only requires bases aj that are present in the global base a. In other words,

a given base aj is not used in computation of (21) if wj  0.

Algorithm 5.3 searches for the closest number divisible by the window established by the global base

a. Therefore, our approach’s density is determined by every base in the global base. In fact:

  #
j j

a a
D D O  , (22)

for any base aj found in the global base a (i.e., wj  0 for a given j).
j

a
D and  #

j
a

O represent density

and number of operations associated to a given base aj, respectively.

Extending the analysis of mbNAF and wmbNAF to this case, the following expression can be derived

for the density
j

a
D :

 

1

1 1j

j

a

j j

a
D

w a




 
. (23)

21

5.4 Multibase Scalar Multiplication

Following, we propose a general multibase scalar multiplication for our three studied NAF-like

expansions: mbNAF, wmbNAF and extended wmbNAF.

In Algorithm 5.4,  ia
ik is the ith digit and the superscript ia A (the set of bases) denotes the base

associated to the respective digit. Thus, the operation ()
i

Q a Q in step 3.1 is any point operation with

exception of addition (i.e., doubling, tripling, quintupling, and so on). In step 3.2, point addition is

performed when a nonzero element is found in the multibase expansion. The operation is performed with

a precomputed point Pi according to Definitions 5.1, 5.2 and 5.3, corresponding to mbNAF, wmbNAF

and extended wmbNAF, respectively.

In the following section, we detail our extensive tests to determine the efficiency of this new multibase

scalar multiplication and compare to the best previous efforts.

Algorithm 5.4 Extended wmbNAF (mbNAF or wmbNAF) method for scalar multiplication

INPUT: set  {w1,w2,…,wJ}, where 0jw  (w1 = 2 , wj = 0 for mbNAF, and w1  2, wj = 0

 for wmbNAF; j  1), scalar 1 2 1
() () ()

1 2 1
(, ... , ,)l

a a a

l
k k k k


 from Alg. 5.1, 5.2 or 5.3, ()

p
P E 

OUTPUT: kP

 1. Compute Pi  iP for ii D (see Definitions 5.1, 5.2 or 5.3)

 2. Q O

 3. For 1i l  downto 0 do

 3.1. ()
i

Q a Q

 3.2. If
() 0i
a

i
k  , then:

 If
() 0i
a

i
k  , then ()ai

ik
Q Q P 

 Else ()ai
ik

Q Q P 

 4. Return (Q)

6 Testing Results

The following algorithms have been implemented and run for 10000 random numbers with maximum

bitlength n  160 with the objective of estimating the average number of operations required by each of

them:

 Algorithm 2.2 for the case w  2 and w ≥ 2, corresponding to NAF and wNAF, respectively.

 Algorithms 5.1, 5.2 and 5.3, corresponding to mbNAF, wmbNAF and extended wmbNAF, respectively.

The number of point operations required to compute scalar multiplication using mbNAF with different

sets of bases  is displayed in Table 5, and compared with NAF. It can be seen that the nonzero density

(i.e., number of point additions) strictly decreases with the number of bases (as well as the total number

22

of required operations), highlighting the potential increase in speed introduced by multibase

representations. In fact, we can observe the sublinear nature of multibase expansions, which exhibit

densities even below (log / log log)k k additions, in contrast to linearity in (log k) observed for NAF.

Nevertheless, the decrease in density rapidly slows down for expansions using high number of bases.

Ultimately, the efficiency of a given composite operation corresponding to each base will “decide” if it is

beneficial to include it in the expansion of the scalar.

Next, using our test results we evaluate the performance of scalar multiplication using the mbNAF

methods for two possible scenarios: unprotected implementations where SSCA is not a concern, and

SSCA-protected implementations using side-channel atomicity as developed in Chapter 4.

Results are compared with performance reported by [DIM05] and [MD07] using the DB and TB

methods, which show the previously fastest scalar multiplications on the standard curve (1).

Table 5. Performance of mbNAF and NAF in terms of point operations (10000 random numbers, n = 160 bits)

Method Point operation cost (1)

 NAF 158.7D + 52.8A

 (2,3)NAF 113.5D + 28.4T + 37.7A

 (2,3,5)NAF 96.7D + 24.3T + 10.1Q + 32.0A

 (2,3,5,7)NAF 86.8D + 21.9T + 9.1Q + 5.7S + 28.7A

 (2,3,5,7,11)NAF 81.1D + 20.4T + 8.5Q + 5.4S + 3.0E + 26.8A

 (2,3,5,7,11,13)NAF 76.58D + 19.24T + 8.05Q + 5.16S + 2.83E + 2.31TH + 25.23A

(1) A: addition, D: doubling, T: tripling, Q: quintupling, S: septupling, E: eleventupling (11P), TH: thirteentupling (13P)

6.1 Unprotected Implementations

We have evaluated the performance of our multibase scalar multiplication methods for the following

cases: {2,3}, {2,3,5}, {2,3,5,7}, {2,3,5,7,11} and {2,3,5,7,11,13}, with windows 2 ≤ w

≤ 6. For the extended wmbNAF, we have considered a window set   {w1,w2,…,w6}, where wi 
{0,1,2,3}.

We have further improved the performance of our scalar multiplication by using the efficient point

operations introduced in [LM07a] and Sections 2 and 3 of this work (see Tables 1 and 2).

Table 6 details the performance of our new mbNAF method using bases {2,3}, {2,3,5} and

{2,3,5,7}, which achieved the best results, and compares them to the traditional NAF, DB and TB. It

can be seen that all our variants outperform previous scalar multiplications for a wide margin. In

particular, (2,3,5)NAF and (2,3,5,7)NAF offer comparable performance with reductions of 11.9%,

10.8% and 9.4% in comparison with NAF, DB and TB, respectively. Hence, we can state that these are

the fastest methods to compute scalar multiplications on standard curves over prime fields without

precomputations. On the other hand, if memory is a primary concern, the performance of our algorithms

using the composite operations derived from methodology (8) (see Section 3) is very competitive (still

faster than any previous method) with the additional advantage of requiring only 6 registers, including

storage for input/output point coordinates and intermediate computations.

23

Table 6. Performance of different scalar multiplications methods (n = 160, no precomputations)

PerformanceMethod
Cost # reg.

 (2,3)NAF
1514M
1542M

 8 (1)

 6 (2)

 (2,3,5)NAF
1490M
1518M

 10 (1)

 6 (2)

 (2,3,5,7)NAF
1491M
1517M

 10 (1)

 6 (2)

 NAF 1691M 7 (3)

 TB [MD07] 1645M 10

 DB [DIM05] 1671M 10

 (1) Using fast tripling from [LM07a] and new quintupling from Appendix C;
 (2) Using methodology (8); (3) Using traditional point formulae [HMV04].

Table 7. Performance of different scalar multiplication methods using precomputations (n = 160)

Method
Cost (1 point)

w = 3
Cost (3 point)

w = 4
Cost (7 points)

w = 5
Cost (15 points)

w = 6
reg.

 (2,3)NAFw
(1) 1460M
(2) 1473M

1384M
1399M

1344M
1355M

1307M
1318M

R + 8
R + 6

 (2,3,5)NAFw
(1) 1444M
(2) 1459M

1383M
1400M

1345M
1358M

1311M
1323M

R + 10
R + 6

 (2,3,5,7)NAFw
(1) 1449M
(2) 1463M

1394M
1410M

1358M
1369M

1323M
1334M

R + 10
R + 6

 NAFw (3) 1549M 1463M 1405M 1362M R + 7

 TB [MD07] 1569M 1515M 1552M N/A R + 10

 R: number of registers to store precomputed points
 (1) Using fast tripling from [LM07a] and new quintupling from Appendix C; (2) Using methodology (8);
 (3) Using traditional point formulae [HMV04].

Similarly, in Table 7 we show performance of the wmbNAF method using bases {2,3}, {2,3,5}

and {2,3,5,7} for cases w  3, 4, 5 and 6, and compare them to wNAF and TB. In this case,

(2,3,5)NAFw achieves the lowest computing cost, outperforming wNAF and TB methods. For instance,

for w = 3, our method surpasses NAF3 and TB by 6.8% and 8%, respectively. We can also observe that

composite operations derived from (8) allow efficient implementations in terms of memory consumption.

The memory requirement in this case is limited to only 6 registers in addition to the R registers necessary

to store the precomputed points.

In addition, we have analyzed the performance of our method when applied to other families of curves

where different composite operations are very efficient. As an example, we evaluate the computing costs

for the special ECC curves with degree 3 isogenies presented by [DIK06]. In such scenario, costs of

doubling, tripling and addition are 2M + 7S, 6M + 6S and 7M + 4S, respectively.

Given the efficiency of tripling and its particular ratio T/D, it can be expected to achieve the highest

performance with our extended wmbNAF as this method allows us to flexibly fix window sizes for every

24

base. Table 8 details results of our tests, and compare them with results using NAF and the new mbNAF

and wmbNAF methods.

Table 8. Performance of different scalar multiplications using ECC curves with degree 3 isogenies [DIK06] (n =
160 bits, 1S = 0.8M)

Method Points Cost

Extended wmbNAF: (2,3)NAF1,1 0 1505M

mbNAF: (2,3)NAF 0 1554M

NAF 0 1744M

Extended wmbNAF: (2,3)NAF2,1 1 1446M

wmbNAF: (2,3)NAF3 1 1540M

NAF3 1 1605M

Extended wmbNAF: (2,3)NAF1,2 2 1386M

Extended wmbNAF: (2,3)NAF2,2 5 1356M

wmbNAF: (2,3)NAF5 7 1421M

NAF5 7 1462M

Extended wmbNAF: (2,3)NAF1,3 8 1316M

As we can see in the table above, extended wmbNAF achieves the highest performance in all the

studied cases. For instance, it achieves a significant reduction of about 13.7% in comparison with the

NAF method without pre-computations. It is interesting to note that in most cases, our method achieves

the lowest cost using windows relatively larger for radix 3 than for radix 2. As was previously discussed,

this is due to the efficiency of the tripling on these curves. Also, comparing Tables 6, 7 and 8, we

observe that the extended wmbNAF method allows the special curves proposed by [DIK06] to achieve

comparable or even superior performance to the best cases with Jacobian coordinates (standard curves).

6.2 SSCA-Protected Implementations

We have evaluated the performance of SSCA-protected mbNAF scalar multiplications for the following

cases: {2,3}, {2,3,5} and {2,3,5,7}, with windows 2 ≤ w ≤ 6. For the extended wmbNAF, we

have considered the window set   {w1,w2,…,w4}, where wi  {0,1,2,3}.

From our tests, we conclude that M-N-A-M-N-A-A-based formulae using atomic DA achieves the

highest performance when assuming 1S = 1M. In that case, Tables 9 and 10 compare our best

implementation cases using mbNAF and wmbNAF, respectively, with bases {2,3}, {2,3,5} and

{2,3,5,7}.

We can see in Table 9 that (2,3,5)NAF and (2,3,5,7)NAF again offer comparable costs and

outperform the best previous approaches with protection against SSCA, reducing not only the number of

field multiplications but also significantly reducing the number of additions. For instance, if we consider

the ratio A/M = 0.2, (2,3,5)NAF presents reductions in terms of computing time of 29.1% and 15.6%

25

over NAF and DB, respectively.

If memory is scarce, then our methods using the SSCA-protected composite operations developed in

Section 4 also outperform previous methods and offer reduced memory requirement, fixed at only 7

registers.

Table 9. Performance of different SSCA-protected scalar multiplication methods (n = 160, no precomputations)

PerformanceMethod
Cost (1S = 1M) 1A = 0.05M 1S = 0.2M # reg.

 (2,3)NAF
1682M + 2524A
1739M + 2609A

1808M
1869M

2187M
2261M

 9 (1)

 7 (2)

 (2,3,5)NAF
1655M + 2483A
1704M + 2556A

1779M
1832M

2152M
2215M

 9 (1)

 7 (2)

 (2,3,5,7)NAF
1658M + 2487A
1702M + 2553A

1782M
1830M

2155M
2213M

 9 (1)

 7 (2)

 NAF 2167M + 4334A 2384M 3034M 8 (3)

 DB [DIM05] 1822M + 3645A 2004M 2551M 10 (3)

 (1) Using fast tripling from [LM07a] and new quintupling from Appendix C; (2) Using methodology (8);
 (3) Using previous atomic formulae [CCJ04],[Mis06],[DIM05].

Table 10. Performance of different SSCA-protected scalar multiplication methods using precomputations (n = 160)

Method
Cost (1 point)

w = 3
Cost (3 point)

w = 4
Cost (7 points)

w = 5
Cost (15 points)

w = 6
reg.

 (2,3)NAFw
(1) 2119M
(2) 2153M

2015M
2054M

1961M
1990M

1912M
1940M

R + 9
R + 7

 (2,3,5)NAFw
(1) 2094M
(2) 2123M

2013M
2049M

1962M
1989M

1916M
1942M

R + 9
R + 7

 (2,3,5,7)NAFw
(1) 2103M
(2) 2130M

2029M
2063M

1978M
2003M

1932M
1956M

R + 9
R + 7

 NAFw (3) 2823M 2693M 2605M 2540M R + 8

 R: number of registers to store precomputed points
 (1) Using fast tripling from [LM07a] and new quintupling from Appendix C; (2) Using methodology (8);
 (3) Using previous atomic formulae [CCJ04],[Mis06].

In the case of methods using pre-computations (Table 10), we observe that (2,3,5)NAF3 surpasses

NAF3 by 25.8%, and that (2,3,5)NAF4 outperforms NAF4 by 25.3%. Also, (2,3)NAF5 and (2,3)NAF6 are

the fastest for windows w = 5 and 6, and show reductions of 24.7%. A slightly slower performance can

be achieved when using the composite operations derived from (8), although in this case the memory

requirement is limited to only 7 registers in addition to the R registers necessary to store the

precomputed points.

26

8 Conclusions

We have presented a sublinear scalar multiplication that uses the new multibase non-adjacent form

method to reduce the number of required terms in the scalar expansion. Three variants are developed that

differ in window size (and number of precomputations), and apply to different settings according to the

availability of efficient composite operations. The algorithms presented to convert numbers to mbNAF,

wmbNAF and extended wmbNAF representations solve the problem of finding short multibase

expansions without consuming memory and/or degrading speed. Furthermore, to realize the new scalar

multiplication in the ECC setting over prime fields, new composite operations (tripling, quintupling,

septupling, and so on) that are faster and consume less memory are developed and protected against

simple side-channel attacks using atomicity. Extensive tests with thousands of random numbers show

that scalar multiplication using the multibase method is the fastest approach found in the current

literature. Remarkably, this method is expected to achieve similar results in other settings such as

Pairing-based cryptosystems, ECC over binary fields, ECC using Edwards curves or extended Jacobi

quartics, and many others.

References

[ACD+05] R. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange, K. Nguyen and F. Vercauteren,
“Handbook of Elliptic and Hyperelliptic Curve Cryptography,” CRC Press, 2005.

[Ava04] R. Avanzi, “Aspects of Hyperelliptic Curves over Large Prime Fields in Software
Implementations,” in Workshop on Cryptographic Hardware and Embedded Systems
(CHES’04), LNCS Vol. 3156, pp. 148-162, Springer-Verlag, 2004.

[Ber01] D. Bernstein, “A Software Implementation of NIST P-224,” presentation in Elliptic Curve
Cryptography (ECC’01), 2001.

[Ber06] D. Bernstein, “Curve25519: New Diffie-Hellman Speed Records,” in Public Key
Cryptography (PKC’06), LNCS Vol. 3958, pp. 229-240, Springer-Verlag, 2006.

[BHL+01] M. Brown, D. Hankerson, J. Lopez and A. Menezes, “Software Implementation of the NIST
elliptic curves over prime fields,” in Progress in Cryptology CT-RSA 2001 , LNCS Vol.
2020, pp. 250-265, Springer-Verlag, 2001.

[BJ03] O. Billet and M. Joye, “Fast Point Multiplication on Elliptic Curves through Isogenies,” in
Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, LNCS Vol. 2643, pp.
43–50, Springer-Verlag, 2003.

[CCJ04] B. Chevallier-Mames, M. Ciet and M. Joye, “Low-Cost Solutions for Preventing Simple
Side-Channel Analysis: Side-Channel Atomicity,” in IEEE Transactions on Computers,
Vol. 53, No 6, pp. 760-768, 2004.

[CJL+06] M. Ciet, M. Joye, K. Lauter and P. L. Montgomery, “Trading Inversions for Multiplications
in Elliptic Curve Cryptography,” in Designs, Codes and Cryptography, Vol. 39, No 2,
pp.189-206, 2006.

[DI06] C. Doche and L. Imbert, “Extended Double-Base Number System with Applications to
Elliptic Curve Cryptography,” in Progress in Cryptology (INDOCRYPT’06), LNCS Vol.
4329, pp 335-348, Springer-Verlag, 2006.

[DIK06] C. Doche, T. Icart and D. Kohel, “Efficient Scalar Multiplication by Isogeny
Decompositions,” in Public Key Cryptography (PKC’06), LNCS Vol. 3958, pp. 191-206,
Springer-Verlag, 2006.

27

[DIM05] V. Dimitrov, L. Imbert and P.K. Mishra, “Efficient and Secure Elliptic Curve Point
Multiplication using Double-Base Chains,” Advances in Cryptology (ASIACRYPT’05),
LNCS Vol. 3788, pp. 59–78, Springer-Verlag, 2005.

[DIM07] V. Dimitrov, L. Imbert and P.K. Mishra, “The Double-base Number System and its
Application to Elliptic Curve Cryptography”, to appear in Mathematics of Computation,
2007.

[DM07] V. Dimitrov and P.K. Mishra, “Efficient Quintuple Formulas for Elliptic Curves and
Efficient Scalar Multiplication Using Multibase Number,” in International Conference on
Information Security (ISC’04), LNCS Vol. 4779, pp. 390–406, Springer-Verlag, 2007.

[Elm06] L. Elmegaard-Fessel, “Efficient Scalar Multiplication and Security against Power Analysis
in Cryptosystems based on the NIST Elliptic Curves over Prime Fields,” Master Thesis,
University of Copenhagen, 2006.

[GAS+05] J. Großschädl, R. Avanzi, E. Savaş and S. Tillich, “Energy-Efficient Software
Implementation of Long Integer Modular Arithmetic,” in Workshop on Cryptographic
Hardware and Embedded Systems (CHES’05), LNCS Vol. 3659, pp. 75-90, Springer-
Verlag, 2005.

[GG03] C.H. Gebotys and R.J. Gebotys, “Secure Elliptic Curve Implementations: An Analysis of
Resistance to Power-Attacks in a DSP Processor,” in Workshop on Cryptographic
Hardware and Embedded Systems (CHES’03), LNCS Vol. 2523, pp. 114-128, Springer-
Verlag, 2003.

[HMV04] D. Hankerson, A. Menezes and S. Vanstone, “Guide to Elliptic Curve Cryptography,”
Springer-Verlag, 2004.

[IEEE] IEEE Std 1363-2000. IEEE Standard Specifications for Public-Key Cryptography. The
Institute of Electrical and Electronics Engineers (IEEE), 2000.

[ITT+99] K. Itoh, M. Takenaka, N. Torii, S. Temma and Y. Kurihara, “Fast Implementation of
Public-Key Cryptography on a DSP TMS320C6201,” in Workshop on Cryptographic
Hardware and Embedded Systems (CHES’99), LNCS Vol. 1717, pp. 61-72, Springer-
Verlag, 1999.

[JY02] M. Joye and S.-M. Yen, “New Minimal Modified Radix-r Representation with Applications
to Smart Cards,” in Public Key Cryptography (PKC’02), LNCS Vol. 2274, pp. 375-384,
Springer-Verlag, 2002.

[Koc96] C. Kocher, “Timing Attacks on Implementations of Diffie−Hellman, RSA, DSS, and Other
Systems,” in CRYPTO’96, LNCS Vol. 1109, pp.104−113, Springer-Verlag, 1996.

[KJJ99] C. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” in CRYPTO’99, LNCS Vol.
1666, pp. 388−397, Springer-Verlag, 1999.

[LM07a] P. Longa and A. Miri, “Fast and Flexible Elliptic Curve Point Arithmetic,” to appear in
IEEE Transactions on Computers, 2007. Also available at
http://doi.ieeecomputersociety.org/10.1109/TC.2007.70815.

[LM07b] P. Longa and A. Miri, “New Composite Operations and Precomputation Scheme for Elliptic
Curve Cryptosystems over Prime Fields,” accepted to Public Key Cryptography (PKC’08),
2007.

[MD07] P. K. Mishra and V. Dimitrov, “Efficient Quintuple Formulas for Elliptic Curves and
Efficient Scalar Multiplication using Multibase Number Representation,” Cryptology ePrint
Archive, Report 2007/040, 2007.

[Mel06] N. Meloni, “Fast and Secure Elliptic Curve Scalar Multiplication over Prime Fields using
Special Addition Chains,” Cryptology ePrint Archive, Report 2006/216, 2006.

[Mis06] P. K. Mishra, “Pipelined Computation of Scalar Multiplication in Elliptic Curve
Cryptosystems,” in IEEE Transactions on Computers, Vol. 25, No. 8, pp. 1000-1010, 2006.

[TYW04] T. Takagi, S-M. Yen and B-C. Wu, “Radix-r Non-Adjacent Form,” in International
Conference on Information Security (ISC’04), LNCS Vol. 3225, pp. 99-110, Springer-
Verlag, 2004.

28

[XB01] S.B. Xu and L. Batina, “Efficient Implementation of Elliptic Curve Cryptosystems on an
ARM7 with Hardware Accelerator,” in Int. Conf. on Information and Communications
Security (ICICS’01), LNCS Vol. 2200, pp. 266-279, Springer-Verlag, 2001.

29

APPENDIX A1: COMPOSITE OPERATIONS OF THE FORM dP

In this section, we present the pseudocode to compute the doubling of a point and the composite
operations of the form dP introduced in Section 3. The doubling uses the fast formula by [LM07a] for

the special case a = 3.

Algorithm 1: Composite Operation dP, where d is an odd prime ≥ 2, (d)→ ,
2 3: 3E y x x b  

INPUT: point 1 1 1(, ,)P X Y Z on ()
p

E  , T1  X1, T2  Y1, T3  Z1

OUTPUT: if d = 2 : point 2 2 22 (, ,)P X Y Z ; if d ≥ 3 : (3) /2 (3)/ 2 (3)/ 2(, ,)d d ddP X Y Z  

 1. If P = O, then return (O) 29. 5 5 6T T T  (1) (1) 3
2 2 1 2{ () }Y Y X X 

 2. 2
4 3T T 2

1{ }Z 30. 4 1 4T T T  (1) (1) 2
2 2 1 2{ () }X X X X 

 3. 5 1 4T T T  2
1 1{ }X Z 31. 2

1 2T T (1) 2
1 2{() }Y Y

 4. 6 1 4T T T  2
1 1{ }X Z 32. 1 1 6T T T  (1) 2 (1) 3

1 2 1 2{() () }Y Y X X  

 5. 5 5 6T T T  2 2
1 1 1 1{()({ })}X Z X Z  33. 6 42T T (1) 2

2 1 2{2 () }X X X

 6. 5 53T T 2 2
1 1 1 1{ 3()()}X Z X Z    34. 1 1 6T T T  3{ }X

 7. 3 2 3T T T  1 1{ }Y Z 35. 6 4 1T T T  (1)
2 3{ }X X

 8. 2
3 3T T 2

1 1{() }Y Z 36. 2 2 6T T T  (1) (1)
1 2 2 3{()()}Y Y X X 

 9. 2
2 2T T 2

1{ }Y 37. 2 2 5T T T  (1) (1) (1)
3 1 2 2 3 2{ ()() }Y Y Y X X Y   

 10. 2 2 4T T T  2 2
1 1{ }Y Z 38. If d = 3, then return 1 2 3 3 3 33 (, ,) (, ,)P T T T X Y Z 

 11. 3 3 4T T T  2 2 2
2 1 1 1 1{ () }Z Y Z Y Z   

 12. 1 14T T 1{4 }X 39. For j = 1 to (d3)/2 do:

 13. 4 1 2T T T  (1) 2
1 1 1{ 4 }X X Y 40. If 2 2 2(, ,)j j jX Y Z   = O, then return () () ()

2 2 2(, ,)j j jX Y Z

 14. 1 42T T 2
1 1{8 }X Y 41. If () () ()

2 2 2(, ,)j j jX Y Z = O, then return 2 2 2(, ,)j j jX Y Z  

 15. 2
6 5T T 2{ } 39. 6 6T T  ()

2 2{ }j
jX X 

 16. 1 6 1T T T  2 2
2 1 1{ 8 }X X Y  40. 3 1 3T T T  3{ }jZ 

 17. 6 4 1T T T  (1)
1 2{ }X X 41. 2 2 5T T T  ()

2 2{ }j
jY Y 

 18. 5 5 6T T T  (1)
1 2{ ()}X X  42. 2

6 1T T () 2
2 2{() }j

jX X 

 19. 2
2 2T T 4

1{ }Y 43. 1 1 6T T T  () 3
2 2{() }j

jX X 

 20. 2 28T T (1) 4
1 1{ 8 }Y Y 44. 4 4 6T T T  (1) () () 2

2 2 2 2{ () }j j j
jX X X X
 

 21. 5 5 2T T T  (1) 4
2 1 2 1{ () 8 }Y X X Y   45. 6 42T T () () 2

2 2 2{2 () }j j
jX X X 

 22. If d = 2, then return 1 2 3 2 2 22 (, ,) (, ,)P T T T X Y Z  46. 5 1 5T T T  (1) () () 3
2 2 2 2{ () }j j j

jY Y X X
 

 47. 1 1 6T T T  () 3 () () 2
2 2 2 2 2{() 2 () }j j j

j jX X X X X   

 23. If 2P = O, then return (1) (1)
1 1 2(, ,)X Y Z 48. 2

6 2T T () 2
2 2{() }j

jY Y 

 24. If (1) (1)
1 1 2(, ,)X Y Z = O, then return 2 2 2(, ,)X Y Z 49. 1 6 1T T T  3{ }jX 

 25. 3 3 4T T T  (1)
3 2 1 2{ ()}Z Z X X  50. 6 4 1T T T  (1)

2 3{ }j
jX X


 26. 2 2 5T T T  (1)
1 2{ }Y Y 51. 6 2 6T T T  () (1)

2 2 2 3{()()}j j
j jY Y X X
  

 27. 2
4 6T T (1) 2

1 2{() }X X 52. 2 2 5T T T  3{ }jY 

 28. 6 4 6T T T  (1) 3
1 2{() }X X 53. Return 1 2 3 (3) / 2 (3) / 2 (3) / 2(, ,) (, ,)d d ddP T T T X Y Z   

The cost of performing a doubling with Algorithm 1 is 3M + 5S + 8A + 1(x2) + 1(x3) + 1(x4) + 1(x8).
It requires only 6 registers to perform operations, including permanent registers to allocate input
coordinates.

In the case of tripling, the cost is fixed to 8M + 7S + 13A + 2(x2) + 1(x3) + 1(x4) + 1(x8). Each extra
addition with 2P to yield quintupling (5P), septupling (7P) and higher order operations, requires 5M +

30

2S + 5A + 1(x2). For instance, the cost of quintupling is given by [8M + 7S + 13A + 2(x2) + 1(x3) + 1(x4)
+ 1(x8)] + [5M + 2S + 5A + 1(x2)] = 13M + 9S + 18A + 3(x2) + 1(x3) + 1(x4) + 1(x8). Similarly to
doubling, composite operations have a requirement of only 6 registers in total.

APPENDIX A2: POINT MIXED ADDITION

The following pseudocode to compute a mixed addition uses the fast formula presented in [LM07a].

Algorithm 2: Point Mixed Addition,  + → ,
2 3:E y x ax b  

INPUT: points 1 1 1(, ,)P X Y Z and 2 2(,)Q x y on ()
p

E  , T1  X1, T2  Y1, T3  Z1, Tx x2, Ty y2

OUTPUT: point 3 3 3(, ,)P Q X Y Z 

 1. If Q = O, then return 1 1 1(, ,)X Y Z 15. 3 3 6T T T  3{ }Z

 2. If P = O, then return 2 2(, ,1)x y 16. 6 68T T 2{8 }

 3. 2
4 3T T 2

1{ }Z 17. 5 5 6T T T  3{8 }

 4. 5 4xT T T  2
1 2{ }Z x 18. 6 1 6T T T  2

1{8 }X 

 5. 5 5 1T T T  2
1 2 1{ }Z x X   19. 2 2 5T T T  3

1{8 }Y 
 6. 6 3 5T T T  1{ }Z  20. 5 5 / 2T T 3{4 }

 7. 2
6 6T T 2

1{() }Z  21. 5 5 6T T T  3 2
1{4 8 }X 

 8. 6 6 4T T T  2 2
1 1{() }Z Z  22. 2

1 4T T 2{ }

 9. 4 3 4T T T  3
1{ }Z 23. 1 1 5T T T  3{ }X

 10. 4 4yT T T  3
1 2{ }Z y 24. 6 6 / 2T T 2

1{4 }X 

 11. 4 4 2T T T  3
1 2 1{ }Z y Y 25. 6 6 1T T T  2

1 3{4 }X X 

 12. 4 42T T 3
1 2 1{ 2()}Z y Y   26. 4 4 6T T T  2

1 3{ (4)}X X  

 13. 3 6T T 2 2
1 1{() }Z Z  27. 2 4 2T T T  3{ }Y

 14. 2
6 5T T 2{ } 28. Return 1 2 3 3 3 3(, ,) (, ,)P Q T T T X Y Z  

The total cost of the mixed addition as given by Algorithm 2 is 7M + 4S + 9A + 1(x2) + 1(x8) + 2(2).
It requires only 6 registers to perform operations without considering storage for precomputed points (x2,
y2).

31

APPENDIX A3: POINT DOUBLING-ADDITION

The following pseudocode corresponds to the doubling-addition (DA) formula presented in [LM07b].

Algorithm 3: Point Doubling-Addition,  + → ,
2 3:E y x ax b  

INPUT: points 1 1 1(, ,)P X Y Z and 2 2(,)Q x y on ()
p

E  , T1  X1, T2  Y1, T3  Z1, Tx x2, Ty y2

OUTPUT: point 3 3 32 (, ,)P Q X Y Z 

 1. If Q = O, then compute Algorithm 1 (d = 2) 23. 3 3 1T T T  2 3 (1)
1{4 4 2 }X  

 2. If P = O, then return Q 24. 3 3 1T T T  { }

 3. 2
4 3T T 2

1{ }Z 25. 4 3 4T T T  { } 

 4. 5 4xT T T  2
1 2{ }Z x 26. 2

4 4T T 2{() } 
 5. 5 5 1T T T  { } 27. 4 5 4T T T  2 2{ () }   
 6. 6 3 5T T T  1{ }Z  28. 4 4 2T T T  2 (1) 2

1{ () }Y    

 7. 2
6 6T T 2

1{() }Z  29. 4 4 2T T T  2 (1) 2
1{ 2 () }Y    

 8. 6 6 4T T T  2 2
1 1{() }Z Z  30. 2

5 3T T 2{ }

 9. 4 3 4T T T  3
1{ }Z 31. 4 4 5T T T  { }

 10. 4 4yT T T  3
1 2{ }Z y 32. 1 1 5T T T  (1) 2

1{ }X 
 11. 4 4 2T T T  { } 33. 5 3 5T T T  3{ }

 12. 2
3 5T T 2{ } 34. 3 3 6T T T  3{ }Z

 13. 6 6 3T T T  (1)
1{ }Z 35. 2 2 5T T T  (1) 3

1{ }Y 

 14. 1 1 3T T T  2
1{ }X  36. 5 13T T (1) 2

1{3 }X 

 15. 1 14T T (1)
1{ }X 37. 2

6 4T T 2{ }

 16. 3 3 5T T T  3{ } 38. 6 6 5T T T  2 3{ } 

 17. 2 2 3T T T  3
1{ }Y  39. 5 5 6T T T  (1) 2 2 3

1{3 }X    

 18. 2 28T T (1)
1{ }Y 40. 4 4 5T T T  (1) 2 2 3

1{ [3]}X    

 19. 2
5 4T T 2{ } 41. 2 4 2T T T  3{ }Y

 20. 3 5 3T T T  2 3{ }  42. 1 1 5T T T  3{ }X

 21. 3 34T T 2 3{4 4 }  43. Return 1 2 3 3 3 32 (, ,) (, ,)P Q T T T X Y Z  

 22. 3 3 1T T T  2 3 (1)
1{4 4 }X  

The doubling-addition according to Algorithm 3 costs 11M + 7S + 18A + 1(x3) + 2(x4) + 1(x8), and
requires only 6 registers to perform operations without considering storage for precomputed points (x2,
y2).

32

APPENDIX B: POINT TRIPLING

The following pseudocode corresponds to the fast tripling formula presented in [LM07a].

Algorithm 4: Point Tripling (Jacobian Coordinates),
2 3: 3E y x x b  

INPUT: point
1 1 1

(, ,)P X Y Z on ()
p

E  , T1  X1, T2  Y1, T3  Z1

OUTPUT: point
3 3 3

3 (, ,)P X Y Z
 1. If P = O, then return (O)

 2. 2
4 3T T 2

1{ }Z

 3. 5 1 4T T T  2
1 1{ }X Z

 4. 6 1 4T T T  2
1 1{ }X Z

 5. 5 5 6T T T  2 2
1 1 1 1{()()}X Z X Z 

 6. 5 53T T 2 2
1 1 1 1{ 3()()}X Z X Z   

 7. 2 22T T 1{2 }Y

 8. 2
6 2T T 2

1{4 }Y

 9. 7 1 6T T T  2
1 1{4 }X Y

 10. 7 73T T 2
1 1{12 }X Y

 11. 2
8 5T T 2{ }

 12. 7 7 8T T T  2 2
1 1{ 12 }X Y  

 13. 5 5 7T T T  { } 

 14. 2
5 5T T 2{() } 

 15. 5 5 8T T T  2 2{() }   

 16. 3 3 7T T T  1{ }Z 

 17. 2
3 3T T 2

1{() }Z 

 18. 3 3 4T T T  2 2
1 1{() }Z Z 

 19. 2
4 7T T 2{ }

 20. 3 3 4T T T  3{ }Z

 21. 5 5 4T T T  {2 }

 22. 1 1 4T T T  2
1{ }X 

 23. 4 4 7T T T  3{ }

 24. 2
7 6T T 4

1{2 16 }Y 
 25. 5 7 5T T T  {2 2 } 

 26. 6 5 6T T T  2
1{4 (2 2)}Y  

 27. 1 1 6T T T  2 2
1 1{4 (2 2) }Y X   

 28. 1 14T T 3{ }X

 29. 7 5 7T T T  {4 2 } 

 30. 5 7 5()T T T   {(2 2)(4 2)}    

 31. 5 5 4T T T  3{(2 2)(4 2) }      

 32. 2 24T T 1{8 }Y

 33. 2 2 5T T T  3{ }Y

 34. Return 1 2 3 3 3 3(, ,) (, ,)T T T X Y Z

The total cost of the tripling as given by Algorithm 4 is 7M + 7S + 13A + 1(x2) + 2(x3) + 2(x4). It
requires 8 registers to perform operations.

33

APPENDIX C: NEW POINT QUINTUPLING

The following formula allows the computation of the quintupling
5 5 5

5 (, ,)P X Y Z of a point

1 1 1
(, ,)P X Y Z :

2

5 1
4()X X    , 3 2 4 3

5 1
8 [(3) ()]Y Y          , 2 2 2

5 1 1
()Z Z Z     ,

where 2 2 2() ()          , 4

1
16Y  , 2 2

1 1 1 1
3()()X Z X Z    , 2 2

1 1
12X Y    ,

 3    , 2    , .   , 2 2 4 2

1 1
2[()]Y Y      .

The validity of this formula has been verified with Magma. Its cost is 11M + 11S when considering

the special case a = 3. The general case (parameter a with any value in the field) can be easily derived

from the formula above. In this case, the cost is fixed at 10M + 14S.

Following, we present the pseudocode for the quintupling formula (special case a = 3), including

memory allocation.

Algorithm 5: Point Quintupling, (5) → ,
2 3: 3E y x x b  

INPUT: point 1 1 1(, ,)P X Y Z on ()
p

E  , T1  X1, T2  Y1, T3  Z1

OUTPUT: point 5 5 55 (, ,)P X Y Z

 1. If P = O, then return 1 1 1(, ,)X Y Z 26. 6 62T T { }

 2. 2
4 3T T 2

1{ }Z 27. 5 5 10T T T  { . } 

 3. 5 1 4T T T  2
1 1{ }X Z 28. 10 5 8T T T  { }

 4. 6 1 4T T T  2
1 1{ }X Z 29. 3 3 10T T T  1{ }Z 

 5. 5 5 6T T T  2 2
1 1 1 1{()()}X Z X Z  30. 2

3 3T T 2
1{() }Z 

 6. 5 53T T { } 31. 3 3 4T T T  2 2
1 1{() }Z Z 

 7. 2
6 2T T 2

1{ }Y 32. 4 10 9T T T  { }

 8. 7 1 6T T T  2
1 1{ }X Y 33. 7 7 4T T T  { }

 9. 7 712T T 2
1 1{12 }X Y 34. 6 6 7T T T  { . } 

 10. 2
8 5T T 2{ } 35. 2

4 10T T 2{ }
 11. 7 7 8T T T  { } 36. 3 3 4T T T  5{ }Z

 12. 5 5 7T T T  { }  37. 1 1 4T T T  2
1{ }X 

 13. 2
5 5T T 2{() }  38. 1 1 6T T T  2

1{ . }X   

 14. 5 5 8T T T  2 2{() }    39. 1 14T T 5{ }X

 15. 2
8 7T T 2{ } 40. 5 5 8T T T  3{ . }  

 16. 5 5 8T T T  2 2 2{() }      41. 2
4 9T T 4{ }

 17. 8 7 8T T T  3{ } 42. 4 4 5T T T  4 3{ (.)}   

 18. 2
9 6T T 4

1{ }Y 43. 9 93T T 2{3 }

 19. 10 916T T 4
1{ 16 }Y  44. 9 9 10T T T  2{3 } 

 20. 5 5 10T T T  { } 45. 9 8 9T T T  3 2{ (3)}  

 21. 6 5 6T T T  2
1{ }Y  46. 9 9 10T T T  3 2{ (3)}  

 22. 2
6 6T T 2 2

1{() }Y  47. 4 9 4T T T  3 2 4 3{ (3) (.)}        

 23. 6 6 9T T T  2 2 4
1 1{() }Y Y  48. 2 28T T 1{8 }Y

 24. 2
9 5T T 2{ } 49. 2 2 4T T T  5{ }Y

 25. 6 6 9T T T  2 2 4 2
1 1{() }Y Y    50. Return 1 2 3 5 5 55 (, ,) (, ,)P T T T X Y Z 

34

The cost of performing a quintupling with Algorithm 5 is 11M + 11S + 19A + 1(x2) + 2(x3) + 1(x4) +
1(x8) + 1(x12) + 1(x16). It requires 10 registers to perform operations, including permanent registers to
allocate input/output coordinates.

35

APPENDIX D1: ATOMIC POINT DOUBLING

(M-N-A-M-N-A-A-BASED)

Input: P (X1 , Y1 , Z1) Output: 2P (X3 , Y3 , Z3) T1 X1, T2 Y1, T3 Z1

1 2 3 4
2

4 3T T 2
1()Z 2

2 2T T 2
1()Y 2

1 4T T 2() 2
2 2T T 4

1(4)Y

 * * * 2 2T T  4
1(4)Y

5 1 4T T T  2
1 1()A X Z  2 2 2T T T  2

1(2)Y 5 5 5T T T  1(2)X 5 1 5T T T  3()X 

3 2 3T T T  1 1()Y Z 4 4 5T T T  (.)A B 5 2 5T T T  () 5 4 5T T T  3(())X 

4 4T T  2
1()Z 5 1T T  1()X * 5 5T T  3(())X  

4 1 4T T T  2
1 1()B X Z  4 4 4T T T  (2 .)A B

1 1 5T T T  2()  2 2 2T T T  4
1(8)Y

3 3 3T T T  3()Z 4 4 4T T T  () 1 1 5T T T  3()X 2 2 5T T T  3()Y

For the remainder of this paper, “*” represents a dummy field operation that depends on the step it is
placed. For instance, the three “*” symbols in the second step of blocks 1 – 3 of the table given above
represent dummy negations.

The cost of performing an atomic doubling is 8M + 12A. It only requires 5 registers to perform
operations, including permanent registers to allocate input/output coordinates.

APPENDIX D2: ATOMIC MIXED ADDITION AND DOUBLING-ADDITION

(M-N-A-M-N-A-A-BASED)

 Input:
1 1 1

(, ,)P X Y Z and Q (x2 , y2)

 Output: in the case of mixed addition,
3 3 3

(, ,)P Q X Y Z  ; in the case of DA,
4 4 4

2 (, ,)P Q X Y Z 
 T1 X1, T2 Y1, T3 Z1, Tx X2, Ty Y2

1 2 3 4 5
2

4 3T T 2
1()Z 4 3 4T T T  3

1()Z 3 3 5T T T  3()Z
6 5 6T T T  3() 5 2 5T T T  (1) 3

1 1()Y Y   

 * * * 1 1T T  1()X
1 1T T  2 3

1(2)X   

 * * * * *

5 4xT T T  2
1 2()Z X 4 4yT T T  3

1 2()Z Y 2
6 5T T 2() 6 1 6T T T  (1) 2

1 1()X X  2
2 4T T 2()

1 1T T  1()X 2 2T T  1()Y 4 4T T  () * 6 6T T  (1) 2
1 1()X X   

5 1 5T T T  2
1 2 1()Z X X   4 2 4T T T  () * 1 6 6T T T  2

1(2)X  1 1 2T T T  3()X

 * * * 1 1 5T T T  2 3
1(2)X   2 1 6T T T  (1)

3 1()X X

6 7 (a) 8 (a) 9 (a)

2 2 4T T T  (1)
1 3(())X X  2

1 4T T 2() 6 1 6T T T  (1) 2
1()X  5 4 5T T T  (1) 3

1()Y 

 * * * 7 1T T  4()X

4 1 6T T T  (1)
3 1()X X   (a) * 7 6 6T T T  (1) 2

1(2)X  4 6 7T T T  (1) 2
1 4()X X 

3 3 4T T T  4()Z (a) 4 1 4T T T  3() 2
1 2T T 2()

2 2 4T T T  (1) 2
1 4(())X X  

 * * 7 7T T  (1) 2
1(2)X  *

2 2 5T T T  3()Y * 1 1 7T T T  2 (1) 2
1(2)X  2 2 5T T T  4()Y

2 2 5T T T  (1)
3 1()Y Y   (a) * 1 1 4T T T  4()X *

(a) Field operations are computed for the atomic doubling-addition.

The atomic mixed addition consists of atomic blocks 1 – 6. To perform an atomic doubling-addition,
operations marked with (a) in 6 and atomic blocks 7 – 9 should be also included.

36

The costs of performing an atomic mixed addition and doubling-addition are 12M + 18A and 18M +
27A, respectively. For the former, we require only 6 registers to perform computations. One extra
register is necessary for the doubling-addition version, making a total requirement of 7 registers in this
case.

The previous register counting considers registers to allocate input/output coordinates but does not
include registers for storing precomputed points (x2, y2).

APPENDIX D3: ATOMIC COMPOSITE OPERATIONS OF THE FORM dP

(M-N-A-M-N-A-A-BASED)

 Input: P (X1 , Y1 , Z1) Output: (3) /2 (3)/ 2 (3)/ 2(, ,)d d ddP X Y Z  

 T1 X1, T2 Y1, T3 Z1

1 2 3 4
2

4 3T T 2
1()Z 4 4 5T T T  ()A B 1 1 6T T T  2

1 1(2)X Y
2

6 6T T 4
1(4)Y

 * * * 5 1T T  2()X

3 3 3T T T 
1(2)Z 5 4 4T T T  (2)A B 2 1 1T T T  (1) 2

1 1 1(4)X X Y 5 2 5T T T  (1)
1 2()X X

3 2 3T T T  2()Z 2
6 2T T 2

1()Y 2
1 4T T 2(3)A B 4 4 5T T T  (1)

1 2((3)())A B X X 

5 4T T  2
1()Z * 5 2T T  (1)

1()X 6 6T T  4
1(4)Y

5 1 5T T T  2
1 1()A X Z  4 4 5T T T  (3)A B 5 5 5T T T  (1)

1(2)X 6 6 6T T T  (1)
1()Y

4 1 4T T T  2
1 1()B X Z  6 6 6T T T  2

1(2)Y 1 1 5T T T  2()X
2 4 6T T T  2()Y

5 6 7 8
3 3 5T T T  3()Z 5 4 5T T T  (1) 3

1 2(())X X 5 2 5T T T  (1)
2()Y 2 2 6T T T  (1) (1)

1 2 2 3(()())Y Y X X 

 * * 4 4T T  (1)
2()X *

6 2 6T T T  (1)
2 1()Y Y * * *

2
4 5T T (1) 2

1 2(())X X 4 1 4T T T  (1)
2()X 2

2 6T T (1) 2
1 2(())Y Y *

 * * 1 1T T  (1) 3 (1)
1 2 2(() 2)X X X   6 5T T  (1)

2()Y

 * 1 4 4T T T  (1)
2(2)X 1 1 2T T T  3()X 2 2 6T T T  3()Y

 * 1 1 5T T T  (1) 3 (1)
1 2 2(() 2)X X X  2 1 4T T T  (1)

3 2()X X *

1 2 3 4
 * 2

6 1T T () 2
2 2()j

jX X  6 1 6T T T  () 3
2 2()j

jX X  2 2 7T T T  () (1)
2 2 3 2(()())j j

j jY Y X X 
  

 * * 6 6T T  () 3
2 2(())j

jC X X   2 2T T  () (1)
2 2 2 3(()())j j

j jY Y X X
  

1 1 4T T T  ()
2 2()j

jX X  * 1 6 7T T T  (1)
2(2)jC X   *

3 1 3T T T  3()jZ  4 4 6T T T  (1)
2()jX  2

7 2T T () 2
2 2()j

jY Y  6 5 6T T T  (1)
2()jY 

 * * * 5 6T T  (1)
2()jY 

 * 7 4 4T T T  (1)
2(2)jX  1 1 7T T T 

3()jX  2 2 6T T T 
3()jY 

2 2 6T T T  ()
2 2()j

jY Y  * 7 1 4T T T  (1)
3 2()j

jX X 
  *

The atomic tripling consists of blocks 1 – 8. To perform atomic composite operations dP with d  3,
we should execute blocks 1 – 4 for j = 1 to (d3)/2.

The atomic tripling costs 16M + 24A and requires 6 registers to perform computations, including
registers to allocate input/output coordinates. In the case of higher order composite operations, it is
possible to reduce the cost further by merging blocks 8 and 1 for j = 1. For instance, quintupling
requires 11 blocks (i.e., 22M + 33A); and septupling, 15 (i.e., 30M + 45A). The memory requirement for
these atomic composite operations is fixed to 7 registers to perform computations.

37

APPENDIX E: ATOMIC POINT TRIPLING

(M-N-A-M-N-A-A-BASED)

 Input: P (X1 , Y1 , Z1) Output: 3P (X3 , Y3 , Z3)

 T1 X1, T2 Y1, T3 Z1

1 2 3 4
2

4 3T T  2
1Z

7 1 9
T T T   2

1 1
4X Y 2

4 5
T T  2 5 5 9

T T T   

5 4
T T   2

1
Z * *

5 5
T T   

5 1 5
T T T   2

1 1
B X Z 

4 1 4
T T T   2

1 1
A X Z 

8 7 7
T T T   2

1 1
8X Y 6 6 6

T T T   
2

6 2
T T  2

1
Y 4 4 5

T T T   .A B 2

6 6
T T  4

1
4Y 3 3 7

T T T   3
Z

 * *
4 4

T T   2 *

6 6 6
T T T   2

1
2Y

5 4 4
T T T   2 .A B

7 7 8
T T T   2

1 1
12X Y

5 6 5
T T T    

9 6 6
T T T   2

1
4Y

5 4 5
T T T   3 .A B 

7 4 7
T T T   

6 6 5
T T T   2C   

5 6 7
2

4 7
T T  2 1 1 4

T T T   2

1
X  6 6 5

T T T   4 .C D

 * *
6 6 4

T T T   34 .C D 

9 9 9
T T T   2

1
8Y 1 1 9

T T T   3
X

2 2 6
T T T   

3
Y

9 5 9
T T T    2

1
8Y   4 4 7

T T T   3 *

5 5
T T   D   

4 4
T T   3 *

5 5 5
T T T   2D * *

5 5 5
T T T   4D * *

The atomic structure given above corresponds to the following tripling formulae given in [LM07a]:

 2 2

3 1 1
8X Y X     ,    3

3 1
4 2Y Y           ,

3 1
Z Z  ,

where   , 4

1
8Y  ,   2 2

1 1 1 13 X Z X Z    , 2 2

1 1
12X Y   .

In this case, the atomic tripling costs 14M + 21A and requires 9 registers to perform computations,
including registers to allocate input/output coordinates.

