
Variants of the Distinguished Point Method
for Cryptanalytic Time Memory Trade-offs

(Full version)

Jin Hong†, Kyung Chul Jeong‡, Eun Young Kwon†,
In-Sok Lee?,‡, and Daegun Ma?,†

Department of Mathematical Sciences and ISaC-RIM,
Seoul National University, Seoul, 151-747, Korea

{jinhong,white483,madgun7}@snu.ac.kr†

{jeongkc,islee}@math.snu.ac.kr‡

Abstract. The time memory trade-off (TMTO) algorithm, first intro-
duced by Hellman, is a method for quickly inverting a one-way function,
using pre-computed tables. The distinguished point method (DP) is a
technique that reduces the number of table lookups performed by Hell-
man’s algorithm.
In this paper we propose a new variant of the DP technique, named
variable DP (VDP), having properties very different from DP. It has
an effect on the amount of memory required to store the pre-computed
tables. We also show how to combine variable chain length techniques like
DP and VDP with a more recent trade-off algorithm called the rainbow
table method.

Key words: time memory trade-off, Hellman trade-off, distinguished
points, rainbow table

1 Introduction

In many cases, cryptanalysis of a cryptographic system can be interpreted as the
process of inverting a one-way function. Unlike most approaches that depend on
the specific target system, time memory trade-off (TMTO) is a generic approach
that can be used on any one-way function.

Let f : X → Y be any one-way function. For example, this could be a map
sending a key to the encryption of a specific fixed plaintext. A way to efficiently
invert this map would imply total breakdown of the encryption system. There
are two trivial ways to invert f that do not involve the inner workings of f .
Given a target y ∈ Y to invert, one may go about the time consuming process

The short version of this paper will appear under the same title in the proceedings
of the 4th Information Security Practice and Experience Conference (ISPEC 2008),
LNCS, Springer.
All authors supported in part by BK 21

? Partially supported by KRF Grant]2005-070-C00004

2 J. Hong, K. Jeong, E. Kwon, I. Lee, D. Ma

of computing f(x) for every x ∈ X , until a match f(x) = y is found. The
other method is to do this exhaustive process in a pre-computation phase and
to store the resulting pairs (x, f(x)) in a table, sorted according to the second
components. Then, when a target y ∈ Y is given, it can be searched for in the
table among the second components and the corresponding first component is
simply read off as the answer. Whereas the exhaustive search method takes a long
time, the table lookup method requires a large storage space. TMTO is a method
that comes between these two extremes and can invert a one-way function in
time shorter than the exhaustive search method using memory smaller than the
table lookup method.

Cryptanalytic TMTO was firstly introduced by Hellman [11]. If the one-way
function f to be inverted is defined on a set of size N , under typical parameters,
the pre-computation phase of his algorithm takes time O(N) in creating certain
one-way chains, after which a digest of this exhaustive computation is stored
in a table of size O(N

2
3). This table is used during the online phase to recover

the pre-image x of a given target f(x) in time O(N
2
3). Soon after Hellman’s

work, the idea of distinguished points (DP), attributed to Rivest in [9], was
introduced. When applied to Hellman’s algorithm, it reduces the number of
table lookups required during the online phase. This is useful when the table
is so large that table lookups become expensive. More recently, Oechslin [14]
suggested a different way of creating the one-way chain. It is called the rainbow
table method and a reduction in online time by a factor of two was claimed. It
is known that, asymptotically, these algorithms are the best one can hope for if
the structure of f is not to be used [5].

The contributions of this paper are two-folds. The first is the introduction of
a new technique which we shall call variable DP (VDP). As with the original DP
idea, VDP is a technique that can be used with the Hellman method and also
with the multi-target versions of the trade-off algorithms [3, 6, 10, 12]. Simply
put, a DP is a point in the one-way chain that satisfies a preset condition.
Whereas the original DP idea had this condition fixed for all chains, VDP allows
this condition to depend on the chain’s starting point.

While VDP is a variant of the original DP, the two methods show very dif-
ferent characteristics. The simple idea of allowing the chain stopping condition
to vary with the chains brings about unexpected consequences. It leads to the
removal of the sorting procedure that was needed in the Hellman method’s pre-
computation phase. Another surprising characteristic is that, whereas all previ-
ous trade-off algorithms stored both ends of the one-way chains in the table, our
method completely removes the need to store the starting point. This is because
the chain end contains information about the chain beginning.

The second contribution of this paper is in successfully applying the DP (and
VDP) idea to the rainbow table method. A combination of the DP technique
with a variant of the rainbow table method was suggested in [4, 5], but there
is a natural barrier to its combination with the original rainbow table method.
The one-way chain created during the pre-computation phase is re-traced in
the online phase in the opposite direction, and with rainbow tables, this is not

Variants of DP for Cryptanalytic TMTO 3

possible unless the chain length is known. So techniques like DP that disturb
the length of chains were thought to be incompatible with the rainbow table
method. We have overcome this difficulty by employing a sorting that takes the
chain lengths into account. Our new technique VDP can also be combined with
the rainbow table method in a similar way.

The rest of the paper is organized as follows. We start by briefly reviewing
some of the previous TMTO works. Then, in Section 3, the new VDP technique
is presented. In Section 4, we show how to apply the DP and VDP ideas to
rainbow table method. This is followed by Section 5, giving a rough comparison
between various TMTO methods and explaining the issues involved in such a
comparison. We summarize this paper in Section 6.

2 Previous works

In this section we will quickly review the theory of the time memory trade-offs,
recalling the basic concepts and fixing notation. Readers new to the trade-off
technique should refer to the original papers. For example, we shall not explain
matters related to the success probability of these methods [11, 13, 14].

Throughout this paper, we fix a finite set ZN = {0, 1, . . . , N − 1} of size N
and we shall use f : ZN → ZN to denote the target one-way function that is to be
inverted. The amount of memory needed to store a digest of the pre-computation
is denoted by M and the online attack time is denoted by T .

All trade-off algorithms will involve parameters t,m ∈ ZN , satisfying mt2 =
N , known as the matrix stopping rule. We shall not be concerned with the
exact choice of these numbers, which depends on the resources available to the
attacker and also on his needs. All trade-off algorithms will involve a family of
permutations, ri : ZN → ZN , called the reduction functions. The range of i will
vary with each trade-off algorithm. Each of these defines an iterating function
fi : ZN → ZN through the equation fi(x) = ri ◦ f(x).

All trade-off algorithms consist of a pre-computation phase, in which tables
are prepared, and an online phase. In the online phase, an inversion target f(x0)
is given, to which the trade-off algorithm will return an X such that f(X) =
f(x0). As f is not injective, there is no guarantee that X = x0, and this has to
be checked outside the trade-off algorithm. If X is found to be an unsatisfactory
answer, a situation referred to as a false alarm, the trade-off algorithm is simply
resumed.

2.1 Hellman trade-off

Hellman’s original work [11] was presented as an attack on block ciphers, but we
shall describe his trade-off algorithm as a generic inversion technique, applicable
to any one-way function.

Pre-computation phase What is explained below shall be repeated t times,
once for each i in the range 0 ≤ i < t, to build t tables. We start by choosing,

4 J. Hong, K. Jeong, E. Kwon, I. Lee, D. Ma

preferably distinct, m starting points, labeled SPi
0 ,SPi

1 , . . . ,SPi
m−1. For each 0 ≤

j < m, we set Xi
j,0 = SPi

j and compute

Xi
j,k = fi(Xi

j,k−1) (1 ≤ k ≤ t),

recursively. This is said to be the Hellman chain. The ending point is written
as EPi

j , so that EPi
j = f t

i (SPi
j). All intermediate points of the Hellman chains

are discarded and just the ordered pairs {(SPi
j ,EPi

j)}m−1
j=0 are stored as the i-th

Hellman table HTi, after they have been sorted with respect to the ending points.
A set of Hellman chains that was used to create a single table is referred to as
the Hellman matrix, and this is depicted in Figure 1. Note that we have t tables,
each containing m entries, so that the total storage cost is M = mt.

SPi
0 = Xi

0,0
fi−−→ Xi

0,1
fi−−→ · · · · · · fi−−→ Xi

0,t−1
fi−−→ Xi

0,t = EPi
0

SPi
1 = Xi

1,0
fi−−→ Xi

1,1
fi−−→ · · · · · · fi−−→ Xi

1,t−1
fi−−→ Xi

1,t = EPi
1

...
...

SPi
m−1 = Xi

m−1,0
fi−−→ Xi

m−1,1
fi−−→ · · · · · · fi−−→ Xi

m−1,t−1
fi−−→ Xi

m−1,t = EPi
m−1

Fig. 1. The i-th Hellman Matrix

Online phase Given a target point f(x0), the process below is repeated for
each i. We first compute Y i

0 = ri(f(x0)) = fi(x0) and check if this appears as
an ending point in the i-th Hellman table HTi. This table lookup is done for each
recursively computed Y i

k = fi(Y i
k−1), where k = 1, 2, . . . , t − 1. To distinguish

this chain from the Hellman chain, in this paper, we shall refer to this Y i
k -chain

as the i-th online chain.
Whenever a match Y i

k = EPi
j is found, we compute X = Xi

j,t−k−1 =
f t−k−1

i (SPi
j). Since

fk
i (fi(X)) = fk+1

i (X) = f t
i (SPi

j) = EPi
j = Y i

k = fk
i (Y i

0),

there is a large chance that fi(X) = Y i
0 , which is equivalent to f(X) = f(x0),

due to ri being injective. In such a case, the algorithm returns X. But, as fk
i

is not injective, there could be a merge between the Hellman and online chains,
and it is possible to have f(X) 6= f(x0). This is also referred to as a false alarm,
in which case the next k is processed. Disregarding the time taken to process
false alarms, it takes t iterations of fi to process each of the t tables, so the
online time is T = t2.

Application of the matrix stopping rule to the online time T = t2 and storage
size M = mt brings out the Hellman trade-off curve TM2 = N2. Conversely, any
T and M satisfying the trade-off curve lead to parameters m and t appropriate
for the Hellman trade-off algorithm.

Variants of DP for Cryptanalytic TMTO 5

2.2 Distinguished points

The distinguished point method was suggested by Rivest and issues concerning
its practical use were investigated in [8, 15]. Rather than fixing the length of
each Hellman chain, the iteration Xi

j,k = fi(Xi
j,k−1) is continued until an Xi

j,k

satisfying a certain condition is found, and we obtain chains of varying lengths.
For example, if one wants the average chain length to be t = 2d, DP are typically
defined to be points whose first d bits are all zero.

In practice, some of the chains created in this way could be too long for
practical use, and some chains may even fall into a loop and never reach a
DP. So we throw away chains longer than a preset t̂ = tmax. If needed, the
shortened average length can be adjusted by discarding chains shorter than a
preset ť = tmin. The effects of t̂ and ť are discussed in more detail in [15]. The
length of each chain is usually recorded in the Hellman table so that they can
be used when resolving false alarms.

The main advantage of using the DP method is in the reduction of table
lookups made during the online phase. The generated point Y i

k = fk
i (Y i

0) can
appear as an endpoint in the Hellman table only if it is a DP. So it suffices to do
a search of the table only when the online chain reaches a DP, and the number
of table lookups is reduced by a factor of 2d.

As the ending point is the only DP in any Hellman chain, when a certain Y i
k

is found to be a DP, but not in HTi, the target cannot be in the i-th Hellman
matrix, and one can move onto the next table. So the average length of chains
generated online is expected to be about 2d. In this paper, we shall refer to this
trade-off method as Hellman+DP.

2.3 Rainbow table

The rainbow table method was introduced by Oechslin [14]. Instead of using a
single reduction function for each table, t different reduction functions are se-
quentially used in each chain of length t to generate a single table. Explicitly, the
j-th rainbow chain is generated by iterating Xj,k+1 = fk+1(Xj,k), and we allow
j to run in the range1 0 ≤ j < mt. As with the Hellman method, {(SPj ,EPj)}
is stored in the rainbow table RT, after sorting.

In the online phase, for each 0 ≤ k < t, the k-th online chain

rt−k(f(x0))
ft−k+1−−−−→ ◦ ft−k+2−−−−→ · · · · · · ◦ ft−1−−−−→ ◦ ft−−−−→ Y k

is computed and Y k is searched for among the second component of the rainbow
table. Thus the online time of the rainbow table method is T = 1

2 t
2, and this

is one half of the original Hellman method, when the two are storing the same
number of entries. The rainbow table contains M = mt entries, and the rainbow
trade-off curve is given by TM2 = 1

2N
2.

1 This is non-restrictive choice that allows a direct comparison between Hellman and
rainbow methods.

6 J. Hong, K. Jeong, E. Kwon, I. Lee, D. Ma

2.4 Checkpoints

Experiments show that a considerable fraction of the online time is spent in
resolving false alarms. The checkpoint method [2] was introduced to solve this
problem. It allows recognition of false alarms without the costly regeneration of
the Hellman/rainbow chains.

A small number of positions in the Hellman/rainbow chain are designated
as checkpoints. During the pre-computation phase, a simple checksum2 of the
points at these checkpoints are additionally stored. During the online phase,
when a matching Y i

k ∈ HTi or Y k ∈ RT is found, checkpoint checksums from the
online chain are compared with the stored values, and the match is taken to be
a false alarm if there are any discrepancies. The checkpoint method is applicable
to all three trade-off algorithms we have described.

3 Variable distinguished points

In this section, we propose a new technique, named the variable distinguished
point (VDP) method, which is a variant of the DP method, but with very dif-
ferent properties.

3.1 The basic idea

As with the original DP method, our VDP method terminates a Hellman chain
when a point satisfying a certain relation is reached. The crucial difference is
that, unlike DP, we allow this condition to depend on the starting point of the
chain. This results in the ending point containing information about the starting
point, so that by using information which is common to the table, one may be
able to recover the starting point from the ending point.

While the main objective of the original DP method was to reduce the number
of table searches, the VDP method aims to eliminate the need to store the
starting points so as to lessen storage requirements.

3.2 Applying VDP to Hellman trade-offs

Let us show how we may apply the VDP technique to the original Hellman
trade-off algorithm. To simplify our discussion, we shall restrict to the typical
parameters m = t = N

1
3 and set d = 1

3 log2N . Ways to use more general
parameters will be dealt with in Section 3.4.

When creating the j-th Hellman chain of the i-th table, we take our starting
point to be

SPi
j = (0 || i || j),

where each of the three concatenated components are of d bits. The Hellman
chain is created as usual through iterated computation of Xi

j,k = fi(Xi
j,k−1),

2 In practice, the checksum is a single bit from the point. With k such checkpoints,
the probability of having an undetected false alarm could be as low as 1

2k .

Variants of DP for Cryptanalytic TMTO 7

starting from Xi
j,0 = SPi

j , but it is terminated only when the most significant
d bits of some Xi

j,k is found to be j. Chains longer than a preset t̂ = tmax are
discarded. The ending point EPi

j we have reached in the j-th chain is stored at
HTi[j], the j-th position of the i-th Hellman table. There is no table sorting in-
volved. Since the chain length is variable, storing chain length information would
reduce online time spent dealing with false alarms, but this is not mandatory.
We remark that if we take the first d bits of an ending point as its hash3 value,
then the Hellman+VDP table we have created can be seen as a perfect hash
table.

Notice that since the storage position index j is equal to the first d bits of
EPi

j and also to the most meaningful part of SPi
j , neither the starting point

nor the first d bits of the ending point need to be stored. The pre-computation
phase of Hellman trade-off with VDP, under restricted parameters m = t = N

1
3 ,

is summarized in Algorithm 1.

Algorithm 1 Pre-computation Phase of Hellman+VDP
Require:

(1) parameters m, t, and t̂ = tmax.
(2) functions fi = ri ◦ f (i = 0, . . . , t− 1).
(3) empty tables HT0, HT1, · · · , HTt−1.

Ensure:
(1) m = t = N

1
3 = 2d.

1: for i = 0, . . . , t− 1 and j = 0, . . . ,m− 1 do
2: X ← (0 || i || j) . X = SPi

j

3: for k = 1 to t̂ do
4: X ← fi(X) . iterate Hellman chain
5: if j == (significant d bits of X) then . check for DP
6: HTi[j]← (less significant (n− d) bits of X)||k

. HTi[j] = (lower part of EPi
j)||(chain length)

7: break . process next chain if DP is reached
8: end if
9: end for . leave HTi[j] empty if t̂ is reach before a DP

10: end for
11: return HT0, HT1, · · · , HTt−1.

The online phase of the simplified version of VDP is given in Algorithm 2.
When we want to check whether a point from the online chain is an ending point,
we can look up the table entry at the position given by the point’s first d bits.
There is no searching involved. If we find a match, the corresponding starting
point can be recovered using the table number and the position index.

3 We are referring to the data structuring method and not to cryptographic hash
functions.

8 J. Hong, K. Jeong, E. Kwon, I. Lee, D. Ma

Algorithm 2 Online Phase of Hellman+VDP
Require:

(1) target f(x0)
(2) parameters t, t̂ = tmax and functions fi = ri ◦ f (i = 0, . . . , t− 1)
(3) pre-computed Hellman+VDP tables HT0, HT1, · · · , HTt−1

Ensure:
(1) m = t = N

1
3 = 2d.

1: for i = 0, . . . , t− 1 do
2: Y ← ri(f(x0))
3: for k = 1 to t̂ do
4: j ← (significant d bits of Y)
5: EP || l← HTi[j] . HTi[j] = (lower bits of EPi

j)||(chain length)
6: if k < l and EP == (less significant (n− d) bits of Y) then
7: X ← f l−k−1

i (0 || i || j) . X = f l−k−1
i (SPi

j)
8: if f(X) == f(x0) then . check for false alarm
9: return X . return pre-image of f(x0)

10: end if
11: end if
12: Y ← fi(Y) . iterate online chain
13: end for
14: end for
15: return ‘failure’

3.3 Technical details of Hellman+VDP

To maintain the success probability provided by the original Hellman trade-
off, we need to ensure that our Hellman+VDP method results in average chain
length of approximately t = 2d and that not too many of the Hellman table
entries are left empty.

When the VDP is defined using d bits, the average chain length would natu-
rally become t = 2d, except that we are throwing away some of the longer chains.
The first issue can be approached, as with the original Hellman+DP method,
by setting an appropriate lower bound ť = tmin in addition to the upper bound
t̂ = tmax for chain lengths. But whereas the DP method may simply throw away
chains not falling within these bounds and generate more chains from other
starting point, with the VDP method, there are no other starting points that
can be used, and every discarded chain would imply an empty Hellman table
entry.

A solution to the empty table entry problem is to use starting points of the
form

SPi
j = τ || i || j ,

where τ is a counter that is incremented every time creation of the j-th chain
fails. Now, for reconstruction of SPi

j during the online phase to be possible, the
τ value will need to be stored, so we place a restriction on the size of τ . We allow
at most 2s trials to be done for the j-th chain, and if all trials fail, we use the

Variants of DP for Cryptanalytic TMTO 9

longest chain among those shorter than ť. The entry HTi[j] is left empty only if
all the 2s chains were longer than t̂.

For the parameters t = 2d and t̂ = c · t, the probability of generating a chain
longer than t̂ is (

1− 1
2d

)t̂

≈ exp
(
− t̂

2d

)
= exp(−c).

With the use of s-many extra bits per table entry, the probability of a table
position HTi[j] being left empty would become as small as exp(−c ·2s). When
m = N

1
3 chains are used for each Hellman table, by choosing s to satisfy m ·

exp(−c·2s) < 1, or equivalently,

log logN − log 3c
log 2

< s,

we can expect to find less than a single empty entry from each table, resulting in
a minimal perfect hash table. Note that the above bound on s is certainly small
and asymptotically negligible when compared to the number of bits needed for
the other major parts. Also, the attacker may choose to use an even smaller s
according to his needs.

The small number of empty entries can be marked by writing zero as the
chain length, or through use of one additional bit, when the chain length is not
recorded. One may even choose to fill it with random value and let it generate
false alarms at the worst. A typical Hellman+VDP table is depicted in Figure 2.

SPi
0 = (τ0 || i|| 0)

f
l0
i−−−−→ (0 ||R0) = EPi

0 HTi[0] = {R0, τ0, l0}

SPi
1 = (τ1 || i|| 1)

f
l1
i−−−−→ (1 ||R1) = EPi

1 HTi[1] = {R1, τ1, l1}
...

...
(EPi

j generation failure) HTi[j] = {− , − , 0 }
...

...

SPi
m−1

= (τm−1||i||m−1)

f
lm−1
i−−−−−→ (m−1||Rm−1)

= EPi
m−1
 HTi[m-1] = {Rm−1, τm−1, lm−1}

Fig. 2. Typical i-th Hellman Table for Hellman+VDP

Note that the ending point is the only DP within that chain. So if an online
chain reaches a DP for the j-th Hellman chain and EPi

j is found to be a non-
match, the inversion target f(x0) cannot belong to the j-th Hellman chain. There
is no reason to refer to the j-th chain any further, even if the online chain reaches
another DP for the same chain. So by keeping track of which ending points have
been processed, one may reduce the number of table lookups and the chance of
false alarms.

10 J. Hong, K. Jeong, E. Kwon, I. Lee, D. Ma

One undesirable property of the VDP method concerns its online time. We
need to go through t tables with each table costing t̂ iterations of fi, so that
the online time is T = t · t̂. Hence, one would wish to choose t̂ to be as small as
possible. But reducing t̂ must be paired with an increase in ť, and this has the
effect of increasing the pre-computation time, if the success probability is to be
maintained.

There is one trick that can be used to reduce online time, with no change given
to the pre-computation phase, and at a very small cost in success probability.
One can simply move onto the next Hellman table a little before the online chain
length reaches t̂. The effect of this on the inversion success probability will be
small due to two reasons. As was mentioned before, after the first lookup of the
ending point EPi

j , the whole j-th chain may be disregarded. The second reason is
that all chains shorter than the online chain generated so far may be disregarded.
So, only the long chains that have not yet been referred to has any chance of
containing the inversion target. Even for these chains, points that are closer to
the ending point than the length of currently generated online chain cannot be
the target of our inversion. Thus once the online chain reaches a certain length,
most of the Hellman matrix has already been searched for and skipping the rest
should have only a small effect on the success probability.

The above argument shows that the online phase of Hellman+VDP is much
more efficient at the start of each table processing than at the end. This is
somewhat similar to a characteristic of the rainbow table method and can be very
advantageous when the online phase of Hellman+VDP is carefully scheduled.

3.4 Using general parameters

So far, we have only worked with parameters m = t = N
1
3 . Even though the

average length of the Hellman chains can be slightly adjusted by changing the
bounds ť = tmax and t̂ = tmin, other measures are needed when we want param-
eters m and t to differ by a large factor.

Suppose the parameters m and t obtained from the matrix stopping rule
mt2 = N satisfy t = 2rm. To explain how to use these parameters, let us write
m = 2d and t = 2d+r. As before, we can set SPi

j = (0 || i || j) for the i-th table,
where 0 and i are of d + r bits and j is of d bits. It only remains to bring the
average chain length to t = 2d+r. This is easily done by defining the DP for the
j-th chain to be those points starting with j||0, where j is of d bits and 0 is of r
bits. In a way, this can be seen as a combination of the DP and VDP methods.

We next consider the opposite m = 2rt case. Let us write m = 2d+r and t =
2d. The starting point for the j-th chain in the i-th table is set to SPi

j = (0 || i || j),
where 0 and i are of d bits and j is of d + r bits. A point in the j-th chain is
regarded as a DP if its most significant d bits are equal to the most significant
d bits of j. Since this distinguisher does not contain enough information to fully
distinguish between the possible j, ending points corresponding to the same
significant j parts are sorted before storage, and r bits of the starting point are
also stored. This is not as satisfactory as the previous case, but still reasonable
unless r is large.

Variants of DP for Cryptanalytic TMTO 11

To deal with m and t that are not powers of 2, one can use their closest
powers and also utilize t̂ and ť for fine adjustments.

4 Applying DP and VDP to the rainbow table method

The rainbow table method applies a different function fi to every column in its
chain creation. During the online phase, creation of the online chain proceeds
in a backward direction, and having a fixed chain length is crucial in knowing
which fi to use. In this section, we show that by sorting the table in a slightly
different way, it is possible to use rainbow chains of variable lengths.

4.1 Rainbow+DP

As with the Hellman+DP situation, we can use t̂ = tmax and ť = tmin to adjust
the average chain length. With these numbers fixed, we choose t̂ reduction func-
tions defining the iterating functions fi. The rainbow chains are generated as
was with the original rainbow table method, setting Xj,0 = SPj and iteratively
computing Xj,k = fk(Xj,k−1). The chain is terminated when a DP is reached,
and the starting point, the ending point, and the chain length are stored. So far,
we have simply combined the rainbow table method with the DP technique.

Now, the rainbow table is sorted first with respect to chain lengths and then
with respect to the ending points within those chains of same length. If collisions
are found among those of the same length, one may optionally discarding all but
one of them and generating more chains to take their places. Note that collision
of ending points between chains of different lengths have minimal effect as they
do not correspond to collision within a rainbow matrix column. Also, no collision
within a rainbow matrix column is undetected, since any such colliding chains
would end at the same length.

The sorted data is stored in separate tables RTť, RTť+1, . . . , RTt̂, indexed by
the length of chains they correspond to and the length data within each entry
are discarded. It is also possible to store the whole data as one table together
with an index file containing the starting positions for each length. The resulting
rainbow+DP matrix of sorted rainbow chains is depicted in Figure 3.

During the online phase, we search through this matrix from right to left, and,
within each column, from top to bottom. Given a target f(x0), we first compute
Y 1

t̂
= rt̂(f(x0)). If this is a DP, it is searched for among the ending points of

RTt̂. In the next step, we search for Y 2
t̂−1

= rt̂−1(f(x0)) and Y 2
t̂

= ft̂(Y
2
t̂−1

) in
RTt̂−1 and RTt̂, respectively, if any of them are DP.

In the j-th iteration, starting from Y j

t̂−j+1
= rt̂−j+1(f(x0)), the online chain

Y j

t̂−j+1

ft̂−j+2−−−−→ Y j

t̂−j+2

ft̂−j+3−−−−→ · · · · · ·
ft̂−1−−−→ Y j

t̂−1

ft̂−−→ Y j

t̂

is computed. While computing, if we come across a Y j

t̂−j+k
, which is a DP and

we have t̂ − j + k ≥ ť, it is searched for among the ending points of RTt̂−j+k.

12 J. Hong, K. Jeong, E. Kwon, I. Lee, D. Ma

RTť

SP̌t,0
f1−−−−→ ◦ f2−−−−→ · · · · · · ◦

fť−−→ EP̌t,0

SP̌t,1
f1−−−−→ ◦ f2−−−−→ · · · · · · ◦

fť−−→ EP̌t,1

...
...

...
...

. . .

RTt̂−1

SP̂t−1,0

f1−−−−→ ◦ f2−−−−→ · · · · · · ◦
fť−−→ · · · · · · ◦

ft̂−1−−→ EP̂t−1,0

SP̂t−1,1

f1−−−−→ ◦ f2−−−−→ · · · · · · ◦
fť−−→ · · · · · · ◦

ft̂−1−−→ EP̂t−1,1

...
...

RTt̂

SP̂t,0

f1−−−−→ ◦ f2−−−−→ · · · · · · ◦
fť−−→ · · · · · · ◦

ft̂−1−−→ ◦
ft̂−−→ EP̂t,0

SP̂t,1

f1−−−−→ ◦ f2−−−−→ · · · · · · ◦
fť−−→ · · · · · · ◦

ft̂−1−−→ ◦
ft̂−−→ EP̂t,1

...
...

Fig. 3. Sorted Rainbow Matrix for Rainbow+DP

Whenever a DP is reached, the rest of that online chain is skipped and we proceed
with the next iteration.

Our j-th iteration requires j − 1 function iterations at the worst, and we go
through t̂ iterations. So the worst case online time is approximately T = t̂2

2 and
the number of table searches will be t̂ at the most. On average, for t̂ = c·t, we
can expect t̂− (1− 1

ec)t table searches and online time of t · (t̂− (1− 1
ec)t). This

is explained in Appendix A.

4.2 Rainbow+VDP

To simplify discussion, we take parameters m = t = 2d = N
1
3 . We fix ť and t̂,

and choose t̂ reduction functions. We take mt = N
2
3 starting points of the form

SPi,j = (0 || i || j), where both i and j run over all d-bit values. The distinguished
points for the SPi,j-chain are defined to be points with most significant d bits
equal to i. So, chains can be split into groups of size 2d according to their
definition of DP.

Sorting is done within each DP group with respect to chain lengths.4 We
write them in 2d tables indexed by their DP definition, which is also equal to
the center d bits of the starting points they contain and also to the first d bits
of ending points. Unlike rainbow+DP, the chain length may not be discarded.

The online phase proceeds as with rainbow+DP, except that every computed
Y j

k is now a DP for some definition of DP. So after each computation of Y j
k , the

corresponding table is checked for a chain of correct length and matching ending

4 It is also possible to sort exactly as with rainbow+DP and obtain similar results.

Variants of DP for Cryptanalytic TMTO 13

point. The worst case online time of rainbow+VDP is about t̂2

2 and this is also
the number of table searches needed.

5 Trade-off curves and storage issues

In this section, we make a very rough comparison of the various trade-off algo-
rithms and look into some storage optimization techniques, which can complicate
any serious attempt at comparison.

5.1 Trade-off curves

Let us make a very rough comparison of the trade-off algorithms we have dis-
cussed in this paper. The relevant facts are summarized in Table 1.

Table 1. Comparison of trade-off algorithms (mt2 = N , t̂ = c·t)

table entries
table lookups

function
trade-off curve

(M) evaluations (T)

Hellman mt t2 t2 TM2 = N2

Rainbow mt t 1
2
t2 TM2 = 1

2
N2

Hellman+DP mt t t2 TM2 = N2

Hellman+VDP mt t · t̂ t · t̂ TM2 = cN2

Rainbow+DP mt t̂ 1
2
t̂2 TM2 = c2

2
N2

Rainbow+VDP mt 1
2
t̂2 1

2
t̂2 TM2 = c2

2
N2

The table assumes that the parameters m and t satisfy the matrix stopping
rule and that we have t̂ = tmax = c · t. We have listed the total number of
pre-computed table entries M and the number of online fi iterations T . The
presented time complexity T disregards false alarms, and corresponds to the
worst case, rather than the average case. In any real world use of a trade-off
algorithm, there is a practical limit to how much can be loaded onto fast memory,
and with bigger tables, access speed of the cheaper and slower storage becomes
an important factor of the online time. So we have also given the number of
online table searches.

The last column contains the trade-off curves satisfied by T and M . A hasty
conclusion from this column alone would be that the rainbow method is the best
and that the three algorithms we have introduced are inferior. But this does not
seem to be the correct picture. For example, it is argued in [5] that each entry
of a rainbow table demands about twice as many bits than that of a Hellman
table. So, with equal amount of storage, the Hellman method would be faster

14 J. Hong, K. Jeong, E. Kwon, I. Lee, D. Ma

by a factor of two, contrary to the näıve interpretation. This shows that finding
the optimum number of bits to use for each table entry is crucial in comparing
these algorithms.

Another issue in interpreting the above table concerns success probability,
which is believed to be somewhat higher than 50% for all of the above algorithms.
There are arguments giving lower bounds or expected values for the success rate,
but this is not a very well understood subject, and a fair comparison of the
algorithms should compare them at the same success rate. A related issue is
how much pre-computation is needed to achieve this success rate.

For now, we can only state that the algorithms we have suggested are roughly
the same in performance to the previous trade-off algorithms. There will be
situations where one of the above algorithms is more suitable than the others,
but any difference of performance between them will be by a small multiplicative
factor.

Deferring a more exact and fair comparison between trade-off algorithms to a
future work, in the next subsection, we will take a closer look into the complexity
of finding the optimum number of bits to be allocated to a single entry.

5.2 Table optimization

When using the Hellman trade-off, by setting the starting point to (0 || i || j),
one may store just j, and not i, which is common to HTi. There are many other
techniques for reducing storage that need to be considered. But, as these have
side effects, such as more false alarms, their use is not simple.

We have tested some of the techniques discussed below, using Hellman+VDP,
and the result is given in Appendix B. Although the tests are not conclusive
about the optimum choice, it shows that the following techniques should be
considered.

Hash table Hash table is a way of structuring data in such a way that table
searches take constant time. The idea is to use a simple function of the data as
the address in which to store a given data. As explained in [7] and [2], this can
also make ending point storage more efficient. One can save up to log(m) bits
per entry from a table containing m entries. When seen as a hash table, our
VDP method reaches this limit.

Ending point truncation If a table contains m entries, we need at least log(m)
bits to distinguish between the entries. If we expect to do l table lookups, we
would want log(l) additional bits to filter out most of the accidental matches.
Hence, simply leaving only log(ml) bits from the ending point could be an op-
tion. Depending on the trade-off algorithm, this method may or may not give
additional savings, when used in conjunction with the hash table savings.

Variants of DP for Cryptanalytic TMTO 15

Storing chain lengths With trade-off algorithms producing chains of variable
length, as indicated in [15], storage of chain lengths reduces effort spent on false
alarms. On the other hand, this requires log(tmax−tmin) additional bits per table
entry and we believe this may not be as cost effective as believed.

By storing only a few significant bits of the lengths or by simply not storing
the lengths, we may increase the time spent on each false alarm, but the saved
memory could be use to hold more (EP,SP) pairs and lead to smaller online fi

iterations. Moreover, proper use of the checkpoint method [2] may resolve the
false alarm issue with just few extra bits per entry.

6 Conclusion

In this paper we suggested a new time memory trade-off technique named vari-
able distinguished points (VDP), and showed how to combine the rainbow table
method with the DP and VDP ideas.

The original Hellman trade-off terminated a pre-computation chain when it
reached a certain fixed length, whereas chain termination in the DP method was
taken when a chain element satisfied some preset condition. Our VDP method
generalizes DP by allowing the termination condition itself to vary with each
chain. The properties of VDP are very different from those of DP, requiring no
sorting and aiming to reduce storage, rather than the number of table lookups.

Our combination of the rainbow method and DP or VDP, though simple, is
also a nontrivial result. The changing reduction function of the rainbow method
and varying chain length of the DP method presented a barrier to this combi-
nation, and the only known successful attempt [4, 5] was on a rainbow variant
that uses repeating patterns of reduction functions. We have shown that it is
possible to overcome this barrier through a different sorting.

The performance of our algorithms are on a par with previous trade-off algo-
rithms, and thus there are more candidates to be considered with time memory
trade-offs, than what was known before.

References

1. 3GPP TS 35.202 V7.0.0 (2007-06), Kasumi specification. Available from
http://www.3gpp.org .

2. Gildas Avoine, Pascal Junod, and Philippe Oechslin. Time-Memory Trade-Offs:
False Alarm Detection Using Checkpoints. Progress in Cryptology, proceedings of
Indocrypt 2005, LNCS 3797, Springer-Verlag, pp. 183–196, 2005.

3. Steve Babbage. Improved “Exhaustive Search” Attacks on Stream Ciphers. ‘Euro-
pean Convention on Security and Detection’, Conference publication No. 408, pp.
161–166, IEE, 1995.

4. Elad Barkan. Cryptanlysis of Ciphers and Protocols, Ph. D. Thesis.
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-info.cgi?2006/PHD/

PHD-2006-04, 2006.

16 J. Hong, K. Jeong, E. Kwon, I. Lee, D. Ma

5. Elad Barkan, Eli Biham, and Adi Shamir. Rigorous Bounds on Cryptanalytic
Time/Memory Tradeoffs. Advances in Cryptology, proceedings of Crypto 2006,
LNCS 4117, Springer-Verlag, pp. 1–21, 2006.

6. Alex Biryukov and Adi Shamir. Cryptanalytic Time/Memory/Data Tradeoffs for
Stream Ciphers. Advances in Cryptology, proceedings of Asiacrypt 2000, LNCS
1976, Springer-Verlag, pp. 1–13, 2000.

7. Alex Biryukov, Adi Shamir, and David Wagner. Real Time Cryptanalysis of A5/1
on a PC. Fast Software Encryption, proceedings of FSE 2000, LNCS 1978, Springer-
Verlag, pp. 1–18, 2001.

8. Johan Borst, Bart Preneel, and Joos Vandewalle. On the Time-Memory Tradeoff
Between Exhaustive Key Search and Table Precomputation. proceedings of the
19th Symposium in Information Theory in the Benelux, WIC, 1998, pp.111–118.

9. Dorothy E. Denning. Cryptography and Data Security, p.100. Addison-Wesley,
1982.

10. Jovan Dj. Golic. Cryptanalysis of Alleged A5 Stream Cipher. Advances in Cryp-
tology, proceedings of Eurocrypt 1997, LNCS 1233, Springer-Verlag, pp. 239–255,
1997.

11. Martin E. Hellman. A Cryptanalytic Time-Memory Trade-Off. IEEE Transactions
on Information Theory, Vol. IT-26, No. 4, pp. 401–406, 1980.

12. Jin Hong and Palash Sarkar. New Applications of Time Memory Data Tradeoffs.
Advances in Cryptology, proceedings of Asiacrypt 2005, LNCS 3788, Springer-
Verlag, pp. 353–372, 2005.

13. Il-Jun Kim and Tsutomu Matsumoto. Achieving Higher Success Probability in
Time-Memory Trade-Off Cryptanalysis without Increasing Memory Size. IEICE
Transactions on Fundamentals, Vol. E82-A, No. 1, pp. 123–129, 1999.

14. Philippe Oechslin. Making a Faster Cryptanalytic Time-Memory Trade-Off. Ad-
vances in Cryptology, proceedings of Crypto 2003, LNCS 2729, Springer-Verlag,
pp. 617–630, 2003.

15. François-Xavier Standaert, Gaël Rouvroy, Jean-Jacques Quisquater, and Jean-
Didier Legat. A Time-Memory Tradeoff Using Distinguished Points: New Anal-
ysis & FPGA Results. In Workshop on Cryptographic Hardware and Embedded
Systems, proceedings of CHES 2002, LNCS 2523, Springer-Verlag, pp. 593–609,
2003.

A The online complexity of rainbow+DP

We shall compute the expected number of table lookups and also the number of
one-way function iterations needed during the online phase of rainbow+DP. We
are referring to the average values, and not the worst case situations.

Let us write t̂ = tmax = c · t. We know that the approximation

(
1− 1

t

)t̂

≈ 1
ec

holds true for any large t. Below, we shall also approximate (1 − 1
t)t̂−1 and

(1− 1
t)t̂−2 by 1

ec .

Variants of DP for Cryptanalytic TMTO 17

The expected number of table searches for rainbow+DP can be calculated
as follows.

t̂∑
j=1

j∑
k=1

(
1− 1

t

)k−1

· 1
t

=
t̂∑

j=1

(
1−

(
1− 1

t

)j
)

≈ t̂− t
(

1− 1
t

)(
1− 1

ec

)
= t̂− t

(
1− 1

ec

)
+
(

1− 1
ec

)
.

Neglecting the small constant term, the expected number of table searches can
be written as

t̂−
(

1− 1
ec

)
t. (1)

In fact, the above argument does not take into account the fact that DP appear-
ing during the online phase is searched for in the corresponding table only when
t̂ − j + k + 1 > tmin. So equation (1) is a good upper bound for the expected
number of table searches.

The expected number of one-way function iterations taken during the cre-
ation of the j-th online chain of rainbow+DP can be computed as

0 · 1
t

+ 1 ·
(

1− 1
t

)
· 1
t

+ · · ·+ (j − 2)
(

1− 1
t

)j−2

· 1
t

+ (j − 1)
(

1− 1
t

)j−1

.

The expected number of total online one-way function iterations is a sum of this
over the range j = 1, 2, . . . , t̂. Let us first approximate the sum over the last
term.

t̂∑
j=1

(j − 1)
(

1− 1
t

)j−1

≈
(

1− 1
ec

)
t2 − 1

ec
· t̂ · t+

(2
ec
− 1
)
t. (2)

The remaining terms can be approximated as follows.

t̂∑
j=3

j−2∑
k=1

k ·
(

1− 1
t

)k

· 1
t

=
t̂∑

j=3

[
(t− 1)

{
1−

(
1− 1

t

)j−2
}
− (j − 2)

(
1− 1

t

)j−1
]

≈ (t̂− 2)(t− 1)− (t− 1)2
(

1− 1
ec

)
− t2

(
1− 1

t

)2(
1− 1

ec

)
+ t(t̂− 2)

1
ec
.

Recalling t̂ = ct, we collect the terms of highest order in t, from this and equa-
tion (2), to write the expected online time as

T = t ·
{
t̂−
(

1− 1
ec

)
t
}
. (3)

We remark that, as can be seen by comparing (1) and (3), by applying DP
to the rainbow table method, we have decreased the number of table searches
by a factor of t.

18 J. Hong, K. Jeong, E. Kwon, I. Lee, D. Ma

B VDP Test Result

We implemented Hellman+VDP algorithm and analyzed the worst case perfor-
mance. The worst case is when we carry through the online phase to the end,
regardless of whether we have found the correct inverse.

Our one-way function f is built from a reduced version of KASUMI [1], a 64-
bit block and 128-bit key block cipher, used in the 3rd generation GSM phones.
The 3GPP specification gives the 128-bit key CK = k||k as a double copy of a
64-bit key. We set our search space size to N = 236 by fixing the first 28 bits of
k to zero. Our one-way function maps a 36-bit key to the 36-bit truncation of
the KASUMI encryption corresponding to the fixed all-zero plaintext.

The parameters are set to m = t = 212 with tmax = 2t and tmin = 1
2 t. The

pre-computation phase for Hellman+VDP required 1.7N iterations of our one-
way function and the average length of chains was 4147, which is approximately
t. Two bits were allocated to the τ value, and out of the 212 entries for each
table, 1.38 entries were left empty on average.

We experimented with four different ways of storing the entries in a table.
Tests were done with and without the chain length information in the table,
and also with different bits allocated to storing ending point information. That
is, we compared the performance of algorithm as explained in Section 3.2 and
Section 3.3, which allocates 24 bits to ending point information storage, against
when 8 bits were simply removed from this ending point information. We did
not use checkpoints. The results are summarized in Table 2.

Table 2. Hellman+VDP test (N = 236,m = t = 212)

with length without length

24-bit EP 16-bit EP 24-bit EP 16-bit EP

number of FA 3,013 3,232 3,010 3,232

f iterations due to FA 3,341,590 3,779,138 8,995,406 9,771,395

total f iterations 36,891,926 37,329,474 42,545,742 43,321,731

memory 81.78 MB 65.01 MB 56.62 MB 39.84 MB

As was expected, the removal of length information increased total computa-
tion through the increased effort in resolving false alarms (FA), and the ending
point truncation did increase f iterations by a small amount. But, for both of
these actions, the increase in total computation was minimal in comparison to
the reduction in storage. This is even more evident when the trade-off curve
TM2 = N2 is considered, as we can see that any small amount of spare memory
can return as a large reduction in online time.

