Software Implementation of Genus-2 Hyperelliptic Curve Cryptosystems Over Prime Fields

Vladislav Kovtun ${ }^{1}$, Jan Pelzl ${ }^{2}$, and Alexandr Kuznetsov ${ }^{3}$
${ }^{1}$ Telecommunication and Information Security Research Lab, Kharkiv Air Force University, str. Sumska 77/79, Kharkiv, Ukraine
vladyslav.kovtun@nrjetix.com
${ }^{2}$ Escrypt, Lise-Meitner Allee 444803 Bochum, Germany
jpelzl@escrypt.com
${ }^{3}$ Telecommunication and Information Security Research Lab, Kharkiv Air Force University, str. Sumska 77/79, Kharkiv, Ukraine
olexandr.kuznatsov@nrjetix.com

Abstract

This paper describes the set-up and an efficient software realization of an HECDSA cryptosystem based on genus- 2 hyperelliptic curves over prime fields. We show how to decrease the computational complexity for special cases and compare the given cryptosystem with the well-known ECDSA cryptosystem based on elliptic curves.

Keywords: Hyperelliptic curve, divisor addition, efficient implementation, HECDSA.

Introduction

With the recent boost of information technology in modern society, the problem of information security becomes of special urgency. The most difficult task is to provide a secure handling and storage of critical and confidential data for government and private companies, banks and other systems. A solution to this problem is to implement systems which provide information confidentiality, integrity, authenticity and accessibility by means of cryptographic software and cryptographic hardware.

At the same time cryptanalytical methods, multiplied by the progress in capabilities of modern computers, puts high requirements on the security parameters of modern cryptosystems. Moreover, the increased data amount processed in modern information systems requires a high performance of modern cryptosystems. Hence the timing requirements to cryptographical applications have increased dramatically. I.e., prospective cryptoalgorithms must provide efficient processing of bulk data and, at the same time, a high level of security. Under this circumstances, the most urgent direction is the development of public key cryptosystems which are efficient in software and hardware and allow for setting up a PKI.

In recent decades, elliptic curve cryptosystems (ECC) have been widely exploited which can be seen by recent standardization efforts [1,2]. However, this is not the last frontier of the research focused on algebraic curve application in cryptography. The authors of [3] have shown that elliptic curves have a worthy alternative, namely hyperelliptic curves (HEC) [4]. The standardization of ECC gave rise to intensive investigation of HEC properties. The biggest advantage of HEC over EC lies in its richer source of finite Abelian groups and the use of smaller finite fields.

Till now, however, most research has been done on several theoretical aspects of hyperelliptic curve cryptosystems (HECC), including many improvements of the underlying arithmetic on HEC. On the implementational side, improvements for specific processors and hardware platforms have been analyzed. With this contribution, we are providing a very important step towards the practical implementation of HECC by showing how to build an efficient HECDSA implementation and provide cryptographically suitable curves. Unfortunately, published results on practical implementation of HECC are rare [5, 6]. This paper is intended to provide very practical facts for the implementation of an HECDSA system with all its necessary details. There are a lot of modern articles dealing with HECC; but they describe no validated system parameters for the efficient implementation of a workable cryptosystem.

The lack of publications dedicated to exactly this topic gave us the motivation to carefully summarize all results for efficient HECC implementation, and compare HECC (HECDSA) with the existent ECC (ECDSA).

Finite Field Arithmetic

Arithmetic in the Jacobian is based on the arithmetic in a polynomial function ring over a finite field, i.e., all the transformations in the Jacobian consist of manipulation over finite field elements. In accordance with the introductory part, this paper does not focus on the finite field arithmetic and its efficient implementation. The implementation was based on results published in [7, 8]. The resulting timings of arithmetic in the finite field is comparable to [8] and is summarized in Table 1. In Table 2, information about the platform, set-up and compiler can be found.

Table 1. Experimental valuations of prime base fields arithmetics timings

	$\log _{2} p$	+	-	$*$, comb	\bmod	()2	()$^{-1}$
$1[\mathrm{mks}]$	192	0.097	0.094	0.823	0.203	0.823	66.30
	224	0.114	0.112	1.074	0.261	1.074	88.26
	256	0.123	0.125	1.568	0.522	1.358	115.90
$2[\mathrm{mks}]$	192	0.045	0.047	3.44	0.142	2.34	50.62
	224	0.048	0.060	5.00	0.218	3.28	64.22
	256	0.058	0.073	7.03	0.632	4.84	82.19

Table 2. General set-up of the implementation of the finite field arithmetic

Col \#	Source	CPU	Implementation features
1	$[8]$	Intel, Pentium II 400 MHz	MS VC++6.0 (with asm)
2	authors	AMD, Athlon XP $2500+\mathrm{MHz}$	$\mathrm{MS} \mathrm{VC++} \mathrm{2005} \mathrm{(w/o} \mathrm{asm)}$

All finite fields in Table 1 are taken from the recommended elliptic curve list [9].
Table 3 provides base fields for HEC. In Table 4, fields with Jacobian order for HECDSA are given.

Table 3. Experimental results of prime base field arithmetic [mks]

| Field name and description | + | $*$, comb | \bmod | ()2 | ()$^{-1}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| BF1, GF $\left(p_{80}\right): p_{1}=1208925819614629175095961$ | 0.031 | 1.09 | 0.95 | 0.8 | 11.0 |
| BF2, GF $\left(p_{88}\right): p_{2}=1208925819614629174708801$ | 0.031 | 1.09 | 0.95 | 0.8 | 11.0 |
| BF3, GF $\left(p_{81}\right): p_{3}=2417851639229258349419161$ | 0.031 | 1.09 | 0.93 | 0.8 | 14.1 |
| BF4, GF $\left(p_{81}\right): p_{4}=4835703278458516698822641$ | 0.031 | 1.09 | 0.93 | 0.8 | 12.5 |
| BF5, GF $\left(p_{161}\right): p_{5}=292300327466180583640736$ | 0.047 | 3.09 | 2.5 | 2.9 | 39.1 |
| 9665432566039311865180529 | | | | | |
| BF6, GF $\left(p_{84}\right): p_{6}=5000000000000000008503491$ | 0.032 | 1.09 | 0.92 | 0.8 | 12.5 |

As we can see from Table 3, most of the time spent for multiplication and squaring is consumed by the modular reduction. This is related to the classical modular reduction algorithm which we applied in this case. For a speed-up, the classical algorithm will be replaced with special algorithms for Mersenne and pseudoMersenne primes that allow for a very efficient reduction in these fields.

Table 4. Experimental results for prime order fields arithmetic

Field name and description	+	$*$, comb mod	()2	()$^{-1}$	
OF1, GF $\left(p_{159}\right): p_{7}=730750818666480869498570 ~$	0.047	2.32	1.95	1.6	31.2
026461293846666412451841					

For the purpose of comparison of HECC and ECC, we shell indicate experimental results of ECC timings.

Elliptic Curves

For experimental results of timings of operations in the group of points on an elliptic curve, we used curves as listed [9]. For the implementation, we used Jacobi projective coordinates [2]. In table 5, SM - Scalar multiplication, DS - Digital signature.

Table 5. Experimental results of the arithmetic on elliptic curves

Operation	P-192 $[\mathrm{ms}]$	P-224 $[\mathrm{ms}]$	P-256 $[\mathrm{ms}]$	P-384 $[\mathrm{ms}]$	P-521 $[\mathrm{ms}]$
SM, Lim-Lee method	0.92	1.67	1.59	4.51	7.67
SM, left to right method, intermediate computations in Jacobi projective coordinates	4.56	13.56	4.29	10.21	19.67
SM, left to right method, intermediate computations in Affine coordinates	9.25	26.01	7.23	15.42	26.62
Pre-computations for the Lim-Lee SM	1500	2390	3859	12906	32094
DS generation, Lim-Lee method	1.359	2.11	3.34	11.23	28.25
DS verification, Lim-Lee method and left to right method	10.5	16.87	29.83	98.83	248.89

The results are to be in accordance with the results published in [7, 8]. This allows us to use these for a comparison to the HECC transformation.

In the next section, we will describe the HECC transformations.

Hyperelliptic Curves

We analyze the transformations in the Jacobian of genus 2 HEC in affine coordinates; this allows us to select a curve type and a transformation which provides for the least computational complexity.

Table 6. Complexity of arithmetic in the Jacobian of genus 2 HEC according to Harley's method (expressed in field operations inversion, squaring, and multiplication)

Conditions	Addition			Doubling		
	I	S	M	I	S	M
$h(x)=0[12]$	2		27	2		30
$h_{2}=1[13]$	2	3	24	2	6	26
$h(x)=0[16]$	2		25	2		27
$h(x)=0, f_{4}=0[17]$	1		26	1		27
$h(x)=0[18]$	1		25	1		29
$f_{4}=0[13]$	1	3	22	1	5	22

For the software implementation of the transformations in the Jacobian, we used Harley's [12] method and Lange's [13] method for HEC over prime fields. All algorithms are given in pseudo code. A detailed functional description is commented.

Divisor Addition

In the software implementation we made suppositions that made no contradiction to [12, 13]:

- curve parameters h_{2}, h_{1}, h_{0} from $\{0,1\}$;
- curve parameters $f_{4}, f_{3}, f_{2}, f_{1}, f_{0} \in \mathbf{G F}(p), f_{5}=1$.

The add divisor addition algorithm, by Harley's method and Lange's method has a complex hierarchical structure. In the nodes of this structure, there are algorithms used for addition in special cases. Such architecture provides for comfortable debugging and further support. A detailed description of transformation in Jacobian can be found in [12,13]. During paper writing, authors have found a number of mistakes in formulae deduction and their continued and careless re-publication from paper to paper dedicated to Jacobian arithmetics. Below, in represented algorithms, there are used only both theoretically and practically proven (validated) algorithms and expressions.

In the case of divisor addition, we considered several cases: The first case occurs when the first divisor has weight 2 (addw2wN algorithm). The second case occurs when the first divisor has weight 1 (addw1wN algorithm), else - the first divisor is copied.

```
Algorithm add. Divisor addition. Algorithms addw2wN. Divisor addition with
Input: divisors d1 and d2 first divisor weight equal 2.
Output: divisor res Input: divisors d1 and d2, where weight(d1) = 2
Output: divisor res
1. if \((\) weight \((\mathrm{d} 1)=2)\) then
    res \(=\) addw \(2 \mathrm{wN}(\mathrm{d} 1, \mathrm{~d} 2)\)
2. else if \((\) weight \((\mathrm{d} 1)=1)\) then
    res \(=\operatorname{addw} 1 w N(d 1, d 2)\)
3. else res \(=\mathrm{d} 2\)
return (res)
```

The algorithm for weight 2 divisor addition is addw2w2. This algorithm is called most frequently. In different cases for the addition, the addw2wN algorithm considers the second divisor of weight 2,1 or 0 .

We will consider the case of both divisors having weight 2 , which is the most frequent case.
Algorithm addw2w2.Addition weight 2 divisors.
Input: divisors d1 and d2, where weight $(\mathrm{d} 1)=\operatorname{weight}(\mathrm{d} 2)=2$. ad1, ad2, ad3, ad4, ad5 - temporary divisors.
Output: divisor res

1. if $(\mathrm{d} 1 . \mathrm{u} 0=\mathrm{d} 2 . \mathrm{u} 0)$ and (d1.u1 $=\mathrm{d} 2 . \mathrm{u} 1)$ and (d1.u2 $=\mathrm{d} 2 . \mathrm{u} 2)$ then
$1.1 \operatorname{if}(\mathrm{~d} 1 . \mathrm{v} 0=\mathrm{d} 2 . \mathrm{v} 0)$ and ($\mathrm{d} 1 . \mathrm{v} 1=\mathrm{d} 2 . \mathrm{v} 1)$ then
1.1.1. res $=$ dualw $2(\mathrm{~d} 1)$
return (res)
1.2. if (d1.v0 = -d2.v0) and (d1.v1 = -d2.v1) then
1.2.1 res $=0$
```
    return (res)
1.3. else
    1.3.1. ad1.u0 = (d2.v0 - d1.v0) * (d2.v1 - d1.v1) -1
    1.3.2. ad1.u1 = 1; ad1.u2 = 0
    1.3.3. ad1.v0 = d1.v0-d1.u0 * d1.v1; ad1.v1 = 0
    1.3.4. res =dualw1rw2(ad1)
    return (res)
2. else
    2.1. z1 = d1.u1 - d2.u1
    2.2. z2 = d2.u0-d1.u0
    2.3. z3 = d1.u1 * z1 + z2
    2.5. r= z2 * z3 + z1^2 * d1.u0
    2.6. if(r <> 0) then
    2.6.1. res = addw2w2_i(d1, d2)
    return (res)
    2.7. else
        2.7.1. xP1 = (d1.u0-d2.u0)*(d1.u1-d2.u1)}\mp@subsup{)}{}{-1
        2.7.2. yP1 = xP1 * d1.v1 + d1.v0
        2.7.3. z2 = xP1 * d2.v1 + d2.v0
        2.7.4. ad1.u2 = 0; ad1.u1 = 1; ad1.u0 = -xP1
        2.7.5. ad1.v1 = 0; ad1.v0 = yP1
        2.7.6. ad3.u2 = 0; ad3.u1 = ; ad3.u0 = d1.u1 - xP1
        2.7.7. ad3.v1 = 0; ad3.v0 = d1.v0 - ad3.u0 * d1.v1
        2.7.8. ad5.u2 = 0; ad5.u1 = 1; ad5.u0 = d2.u1 - xP1
        2.7.9. ad5.v1 = 0; ad5.v0 = d1.v0 - ad5.u0* d1.v1
        2.7.10. if(yP1 = z2) then
            2.7.10.1. ad2 = dualw1rw2(ad1)
            2.7.10.2. ad4 = addw1w2(ad3, ad2)
            2.7.10.3. res = addw1w2(ad4, ad5)
        2.7.11. else res = addw1w1(ad3, ad5)
return (res)
```

We will consider the case of the first divisor having weight 1 . Further branching is done as per second divisor weight. We will now consider the case of the first divisor having weight 1 and the second divisor having weight 2.

Algorithm addw1wN. Addition weight 1	Algorithm addw1w2. Addition weight 1
divisor and divisor with unknown weight	and weight 2 divisors
Input: divisors d1 and d2, where weight $(\mathrm{d} 1)=1$	Input: Divisors d1 and d2, where weight $(\mathrm{d} 1)=1$, weight $(\mathrm{d} 2)=2$ Output: divisor res
Output: divisor res	

Now, the most common case is considered when adding divisors with weight 1 and 2. In this case the second divisor support has either point P_{1} or point $-P_{1}$ of the first divisor support.

```
Algorithms addw1w2Cmn. Addition weight 1 and weight 2 divisors in common
case.
Input: divisors d 1 and d 2 , where weight \((\mathrm{d} 1)=1\) and weight \((\mathrm{d} 2)=2\)
Output: divisor res
1. r = d2.u0 - (d2.u1-d1.u0) * d1.u0
2. if \((r<>0)\) then
    2.1. res = addw1w2_i(d1, d2)
    return (res)
3. if \(((\mathrm{d} 2 . \mathrm{v} 0-\mathrm{d} 1 . \mathrm{u} 0 * \mathrm{~d} 2 . \mathrm{v} 1)=\mathrm{d} 1 . \mathrm{v} 0)\) then
    3.1. res. \(\mathrm{u} 2=0\); res. \(\mathrm{u} 1=1\); res. \(\mathrm{u} 0=\mathrm{d} 2 . \mathrm{u} 1-\mathrm{d} 1 . \mathrm{u} 0\)
    3.2. res. \(\mathrm{v} 0=\mathrm{d} 2 . \mathrm{v} 0-\) res. \(\mathrm{u} 0 * \mathrm{~d} 2 . \mathrm{v} 1 ;\) res. \(\mathrm{v} 1=0\)
4. else
    4.1. if ( \(\mathrm{d} 2 . \mathrm{u} 1=2 * \mathrm{~d} 1 . \mathrm{u} 0\) ) then
                            4.1.1. ad2 = dualw2_i(d2)
            4.1.2. ad \(=-\mathrm{d} 1\)
            4.1.3. res \(=\) addw \(1 \mathrm{w} 2(\mathrm{ad} 1, \mathrm{ad} 2)\)
    4.2. else
            4.2.1. ad1 = dualw1rw2(d1)
            4.2.2. \(\mathrm{ad} 2 . \mathrm{u} 2=0 ; \mathrm{ad} 2 . \mathrm{u} 1=1 ; \mathrm{ad} 2 \cdot \mathrm{u} 0=\mathrm{d} 2 . \mathrm{u} 1-\mathrm{d} 1 . \mathrm{u} 0\)
            4.2.3. ad2.v1 \(=0 ; \mathrm{ad} 2 . \mathrm{v} 0=\mathrm{d} 2 . \mathrm{v} 0-(\mathrm{ad} 2 . \mathrm{u} 0 * \mathrm{~d} 2 . \mathrm{v} 1)\)
            4.2.4. res \(=\) addw1w2_i(ad2, ad1)
return (res)
```

We consider the case of a divisor addition having weight 1 in algorithm addw1w1 while we consider algorithm addw1w2_i of divisor addition with weight 1 and 2 in the most frequent case.

We consider the addw2w2_i algorithm of divisor addition having weight 2 in the most frequent case [15].

Algorithm addw1w1. Weight divisor addition Input: weight 1 divisors d1 and d2 Output: res	Addition addw1w2_i. Weight 1 divisor and weight 2 divisor addition in most frequent case Input: weight 1 divisor d1 and weight 2 divisor d2 Output: res
1. if (d1.u0 = d2.u0) then	1. r $=\mathrm{d} 2 . \mathrm{u} 0-(\mathrm{d} 2 . \mathrm{u} 1-\mathrm{d} 1 . \mathrm{u} 0) * \mathrm{~d} 1 . \mathrm{u} 0$
1.1. if (d1.v0 = d2.v0) then	2. $\mathrm{inv}=(\mathrm{r})^{-1}$
res = dualw1rw2(d1)	3. s0 = inv*(d2.v1*d1.u0 + d1.v0-d2.v0)
1.3. if(d1.v0 $=-\mathrm{d} 2 . \mathrm{v} 0)$ res $=\mathrm{O}$	4. $11=\mathrm{s} 0 * \mathrm{~d} 2 . \mathrm{u} 1 ; 10=\mathrm{s} 0 * \mathrm{~d} 2 . \mathrm{u} 0$
2. else	5. $\mathrm{k} 2=$ curve.f4-d2.u1

```
2.1. top \(=(\mathrm{d} 1 . \mathrm{u} 0-\mathrm{d} 2 . \mathrm{u} 0)^{-1}\)
2.2. res.v1 \(=\mathrm{d} 2 . \mathrm{v} 0-\mathrm{d} 1 . \mathrm{v} 0\)
2.3. res.v1 \(=\) res.v1 \(*\) top
2.4. top \(1=\mathrm{d} 2 . \mathrm{v} 0\) * d1. u0
2.5. top2 \(=\mathrm{d} 1 . \mathrm{v} 0 * \mathrm{~d} 2 . \mathrm{u} 0\)
2.6. res.v0 \(=\) top \(1-\) top 2
2.7. res.v0 \(=\) res.v0 * top
2.8. res.u2 \(=1\);
2.9. res.u1 \(=-(\mathrm{d} 1 . \mathrm{u} 0+\mathrm{d} 2 . \mathrm{u} 0)\)
2.10. res.u0 \(=\mathrm{d} 1 . \mathrm{u} 0 * \mathrm{~d} 2 . \mathrm{u} 0\)
```

return (res)

```
Algorithm addw2w2_i. Weight 2 divisor addition in most frequent case
Input: Weight 2 divisors d1 and d2
Output: res
1. \(\mathrm{z} 1=\mathrm{d} 1 . \mathrm{u} 1-\mathrm{d} 2 . \mathrm{u} 1 \quad\) continuation
2. \(\mathrm{z} 2=\mathrm{d} 2 . \mathrm{u} 0-\mathrm{d} 1 . \mathrm{u} 0\)
3. \(\mathrm{z} 3=\mathrm{d} 1 . \mathrm{u} 1 * \mathrm{z} 1+\mathrm{z} 2\)
4. \(\mathrm{r}=\mathrm{z} 2 * \mathrm{z} 3+\mathrm{z} 1 \wedge 2 * \mathrm{~d} 1 . \mathrm{u} 0\)
5. inv1 \(=z 1 ;\) inv0 \(=z 3\)
6. \(\mathrm{w} 1=\mathrm{d} 1 . \mathrm{v} 0-\mathrm{d} 2 . \mathrm{v} 0\)
14. \(\mathrm{w} 1=(\mathrm{r} * \mathrm{~s} 1 \mathrm{~s})^{-1} ; \mathrm{w} 2=\mathrm{w} 1 * \mathrm{r}\)
15. \(\mathrm{w} 3=\mathrm{s} 1 \mathrm{~s}^{\wedge} 2 * \mathrm{w} 1 ; \mathrm{w} 4=\mathrm{r} * \mathrm{w} 2\)
7. \(w 2=\) d1.v1 - d2.v1
16. \(\mathrm{w} 5=\mathrm{w} 4 \wedge 2 ; \mathrm{s} 0 \mathrm{ss}=\mathrm{s} 0 \mathrm{~s} * \mathrm{w} 2\)
8. \(\mathrm{w} 3=\operatorname{inv} 0 * \mathrm{w} 1 ; \mathrm{w} 4=\mathrm{inv} 1 * \mathrm{w} 2\)
17. 12s = s0ss \(+\mathrm{d} 2 . \mathrm{u} 1\)
9. \(\mathrm{s} 1 \mathrm{~s}=\mathrm{inv} 1+\mathrm{inv} 0\)
10. \(\mathrm{w} 1=\mathrm{w} 1+\mathrm{w} 2\)
\(18.11 \mathrm{~s}=\mathrm{s} 0 \mathrm{ss} * \mathrm{~d} 2 . \mathrm{u} 1+\mathrm{d} 2 . \mathrm{u} 0\)
10. \(\mathrm{w} 1=\mathrm{w} 1+\mathrm{w} 2\)
19. \(10 \mathrm{~s}=\mathrm{s} 0 \mathrm{ss} * \mathrm{~d} 2 . \mathrm{u} 0\)
11. \(\mathrm{s} 1 \mathrm{~s}=\mathrm{s} 1 \mathrm{~s}\) * w1-w3-w4- w4 * d1.u1
\(20 . \operatorname{inv} 0=s 0 s s-d 1 . u 1\)
12. \(\mathrm{s} 0 \mathrm{~s}=\mathrm{w} 3-\mathrm{w} 4 * \mathrm{~d} 1 . \mathrm{u} 0\)
21. res.u0 \(=(12 \mathrm{~s}-\mathrm{d} 1 . \mathrm{u} 1) * \operatorname{inv} 0-\mathrm{d} 1 . \mathrm{u} 0+11 \mathrm{~s}\)
13. \(\mathrm{if}(\mathrm{s} 1 \mathrm{~s}=0)\) then
22. res.u0 \(=\) res.u0 +2 * d2.v1 \({ }^{*} \mathrm{w} 4\)
13.1. \(\mathrm{s} 0=\mathrm{s} 0 \mathrm{~s} *(\mathrm{r})^{-1}\)
23. top \(=(\mathrm{d} 1 . \mathrm{u} 1+\mathrm{d} 2 . \mathrm{u} 1-\) curve.f4 \() *\) w5
13.2. res.u0 \(=\) curve.f4 - d2.u1
24. res.u0 \(=\) res.u0 + top
13.3. res.u0 \(=\) res.u0 - d1.u1
25. res.u1 \(=(\mathrm{s} 0 \mathrm{ss}+12 \mathrm{~s})-\mathrm{d} 1 . \mathrm{u} 1-\mathrm{w} 5\)
13.4. res.u0 \(=\) res.u0 \(-\mathrm{s} 0^{\wedge} 2\)
26. res.u2 \(=1\)
13.5 res.u1 \(=1\); res.u2 \(=0\)
27. \(\mathrm{w} 1=12 \mathrm{~s}\) - res.u1
13.6. \(\mathrm{w} 1=(\mathrm{d} 2 . \mathrm{u} 1+\) res.u0 \() * \mathrm{~s} 0\)
28. w2 \(=\) res.u \(1 * \mathrm{w} 1+\) res.u \(0-11 \mathrm{~s}\)
13.7. \(\mathrm{w} 1=\mathrm{w} 1+\mathrm{d} 2 . \mathrm{v} 1\)
29. res.v1 \(=\mathrm{w} 3 * \mathrm{w} 2-\mathrm{d} 2 . \mathrm{v} 1\)
13.11. \(\mathrm{w} 2=\mathrm{s} 0+\mathrm{d} 2 . \mathrm{v} 0\)
30. w4 = res.u 0 * w1-10s
13.12. res.v0 \(=\) res.u0 \(*\) w1
31. res.v0 \(=\mathrm{w} 3\) * w4 - d2.v0
return (res)
```

Continued in the next column

Furthermore, we will describe a dual divisor doubling algorithm. In this algorithm, the branching is depending on the weight of the doubled divisor. Algorithm dualw1 is called when a divisor with weight 1 is doubled.

Algorithm dual. General case of divisor doubling	Algorithm dualw1. Weight 2 divisor doubling.
Input: divisor d	Input: weight 1 divisor d
Output: divisor res	Output: divisor res
1. if (weight $(d)=2)$ then res = dualw2(d)	$\begin{gathered} \text { 1. if }(\mathrm{d} . \mathrm{v} 0=0) \text { then } \\ \text { res }=0 \end{gathered}$
2. else if $(\operatorname{weight}(d)=1)$ then res = dualw1(d)	2. else res = dualw1rw2(d)
$\begin{aligned} & \text { 3. else res }=\mathrm{O} \\ & \text { return (res) } \end{aligned}$	return (res)

Algorithm dualw1rw2. Weight 1 divisor doubling and resulting divisor has weight 2 Input: weight 1 divisor d Output: weight 2 divisor res	Algorithm dualw2. Weight 2 divisor doubling in general case Input: weight 2 divisor d Output: weight 2 divisor res
1. $\mathrm{u} 10=\mathrm{d} . \mathrm{u} 0$	1. if $(\mathrm{d} . \mathrm{v} 0=0)$ and (d.v1 $=0$) then
2. res.u2 $=1$; res.u1 $=2$ * u10	res $=0$
3. res.u0 $=\mathrm{u} 10^{\wedge} 2$	return (res)
4. $\mathrm{ft} 0=3$ * curve.f3-4* curve.f4 * u10	2. $\mathrm{vt} 1=2$ d. d v ; $\mathrm{vt} 0=2 *$ d.v0
5. $\mathrm{ft} 0=\mathrm{ft} 0+5 *$ res.u0	3. $\mathrm{w} 0=\mathrm{d} . \mathrm{v} 1 \wedge 2 ; \mathrm{w} 1=\mathrm{d} . \mathrm{u} 1^{\wedge} 2$
6. $\mathrm{ft} 0=\mathrm{ft} 0$ * res.u0	4. $\mathrm{w} 2=\mathrm{vt} 1 \wedge 2$; w3 $=$ d.u1 ${ }^{*} \mathrm{vt} 1$
7. ft0 $=\mathrm{ft0}-2$ * curve.f2 * u10 + curve.f1	5. r $=\mathrm{d} . \mathrm{u} 0$ * w2 + (vt0 - w 3$) * \mathrm{vt} 0$
8. res.v1 $=\mathrm{ft0} 0 *(2 * \text { d.v0 })^{-1}$	6. $\mathrm{if}(\mathrm{r}=0)$ then
9. res.v0 = d.v0 + res.v1*u10	6.1. xP2 $=$ d.v1 * (d.v0) ${ }^{-1}$ - d.u1
return (res)	6.2. yP2 = xP2 * d.v1 + d.v0
	6.3. ad1.u0 $=-x$ P2
	6.4. $\mathrm{ad} 1 . \mathrm{u} 1=1 ; \mathrm{ad} 1 . \mathrm{u} 2=0$
	6.5. ad1.v0 $=\mathrm{yP} 2 ; \mathrm{ad} 1 . \mathrm{v} 1=0$
	6.6. res = dualw1rw2(ad1)
	7. else res = dualw2_i(d)
	return (res)

Algorithm dualw2 is called when a divisor with weight 2 is doubled. The dualw1rw2 algorithm is worth for a separate consideration since it doubles divisors with weight 1 and produces the resulting divisor with weight 2 [12].

Let us describe algorithm dualw2_i for doubling weight 2 divisors which is the most frequent case [13].
Algorithm dualw2_i. Weight 2 divisor doubling in most frequent case.
Input: weight 2 divisor d
Output: divisor res

1. $\mathrm{vt1}=2$ * d.v1; vt0 $=2$ * d.v0	continuation
2. $\mathrm{w} 0=\mathrm{d} . \mathrm{v} 1^{\wedge} 2 ; \mathrm{w} 1=\mathrm{d} . \mathrm{u} 1^{\wedge} 2$	14.5. res.v0 $=$ res.u0 * w1-w2
3. $\mathrm{w} 2=\mathrm{vt} 1 \wedge 2 ; \mathrm{w} 3=\mathrm{d} . \mathrm{u} 1 * \mathrm{vt} 1$	14.6. res.v1 $=0$
4. inv0 = vt0 - w3; inv1 = -vt1	14.7. res.u1 $=1$; res.u2 $=0$
5. r $=\mathrm{d} . \mathrm{u} 0$ * w $2+\mathrm{inv} 0$ * vt0	return (res)

6. w3 = w1 + curve.f3	15. $\mathrm{w} 1=(\mathrm{r} * \mathrm{~s} 1 \mathrm{~s})-1 ; \mathrm{w} 2=\mathrm{r} * \mathrm{w} 1$
7. w4 $=2$ * d.u0	16. $\mathrm{w} 3=\mathrm{s} 1 \mathrm{~s}^{\wedge} 2 * \mathrm{w} 1 ; \mathrm{w} 4=\mathrm{r} * \mathrm{w} 2$
8. top $=$ curve.f4 $*$ d.u1	17.; $\mathrm{w} 5=\mathrm{w} 4 \wedge 2$; $\mathrm{s} 0 \mathrm{ss}=\mathrm{s} 0 \mathrm{~s} * \mathrm{w} 2$
9. $\mathrm{k} 1=2$ ($\mathrm{w} 1-\mathrm{top}$) $+\mathrm{w} 3-\mathrm{w} 4$	$18.12 \mathrm{~s}=\mathrm{d} . \mathrm{u} 1+\mathrm{s} 0 \mathrm{ss}$
10. $\mathrm{k} 0=\left(2^{*} \mathrm{w} 4+\mathrm{top}-\mathrm{w} 3\right)$ * d.u1 + curve.f2 - w0 - 2 * curve.f4 * d.u0	$\begin{aligned} & 19.11 \mathrm{~s}=\mathrm{d} . \mathrm{u} 1 * \mathrm{~s} 0 \mathrm{ss}+\mathrm{d} . \mathrm{u} 0 \\ & 20.10 \mathrm{~s}=\mathrm{d} . \mathrm{u} 0 * \mathrm{~s} 0 \mathrm{ss} \end{aligned}$
11. $\mathrm{w} 0=\mathrm{k} 0 * \operatorname{inv} 0 ; \mathrm{w} 1=\mathrm{k} 1 *$ inv1	21. res.u0=s0ss^2+(2*d.u1-curve.f4)* w5
12. $\mathrm{s} 1 \mathrm{~s}=(\mathrm{k} 1+\mathrm{k} 0) *(\mathrm{inv} 1+\mathrm{inv} 0)-\mathrm{w} 0-$	22. res.u0 $=$ res.u0 0 2 $*$ d.v1 $*$ w 4
$(\mathrm{d} . \mathrm{u} 1+1) *$ w1	23. res.u1 $=2 *$ s0ss -w 5 ; res.u2 $=1$
13. $\mathrm{s} 0 \mathrm{~s}=\mathrm{w} 0-\mathrm{w} 1 * \mathrm{~d} . \mathrm{u} 0$	24. $\mathrm{w} 1=12 \mathrm{~s}$ - res.u1
14. if $(\mathrm{s} 1 \mathrm{~s}=0)$ then	25. $\mathrm{w} 2=$ res.u1 $* \mathrm{w} 1+$ res.u0-11s
14.1. $\mathrm{s} 0=\mathrm{s} 0 \mathrm{~s} *(\mathrm{r})^{-1}$	26. res.v1 = w $2-\mathrm{w} 3-\mathrm{d} . \mathrm{v} 1$
$14.2 \mathrm{w} 2=\mathrm{s} 0$ * d.u0 + d.v0	27. w $4=$ res.u0 * w $1-10 \mathrm{~s}$
14.3.res.u0=curv.f4-s0^2-2*d.u1	28. res.v0 = w4 * w3 - d.v0
14.4. w1=s0*(d.u1-res.u0)+ d.v1	return (res)

Complexity Analysis

In this section, we will provide an analysis of the complexity of the transformations of divisor addition considering different input data given in Table 7. For the sake of a compact representation, in Table 7 the input divisors were given without point at infinity P_{∞}.

Table 7. Complexity of divisor addition algorithms in relation to input divisors

Input data	$D_{2}=\left(P_{1}\right)$		$D_{2}=\left(2 P_{1}\right)$		$D_{2}=\left(P_{1}+P_{2}\right)$	
$D_{1}=\left(P_{1}\right)$	7A,1S,5M,1I	1	31A,5S,22M,3I	2	28A,2S,17M,2I	3
$D_{1}=\left(-P_{1}\right)$	1A	4	5A,3M	5	5A,3M	5
$D_{1}=\left(P_{2}\right)$	6A,5M,1I	6	18A,1S,10M,1I	7	28A,2S,17M,2I	3
$D_{1}=\left(2 P_{1}\right)$	31A,5S,22M,3I	2	$\begin{aligned} & \text { 25A,4S,17M,1I/ } \\ & 23 \mathrm{~A}, 7 \mathrm{~S}, 17 \mathrm{M}, 1 \mathrm{I} \end{aligned}$	8	58A,4S,33M,4I	9
$D_{1}=\left(P_{1}+P_{2}\right)$	28A,2S,17M,2I	3	58A,4S,33M,4I	9	$\begin{aligned} & 25 \mathrm{~A}, 4 \mathrm{~S}, 17 \mathrm{M}, 1 \mathrm{I} / \\ & 23 \mathrm{~A}, 7 \mathrm{~S}, 17 \mathrm{M}, 1 \mathrm{I} \end{aligned}$	8
$D_{1}=\left(-P_{1}+P_{2}\right)$	5A,3M	5	16A,6S,13M,2I	10	12A,1S,7M,2I	11
$D_{1}=\left(P_{1}+P_{3}\right)$	28A,2S,17M,2I	3	58A,4S,33M,4I	9	58A,4S,33M,4I	9
$D_{1}=\left(-P_{1}+P_{3}\right)$	5A,3M	5	16A,6S,13M,2I	10	16A,6S,13M,2I	10
$D_{1}=\left(P_{3}+P_{4}\right)$	18A,1S,10M,1I	7	$\begin{aligned} & \text { 34A, } 5 \mathrm{~S}, 25 \mathrm{M}, 1 \mathrm{I} / \\ & 22 \mathrm{~A}, 5 \mathrm{~S}, 14 \mathrm{M}, 1 \mathrm{I} \end{aligned}$	12	$\begin{aligned} & \text { 34A, } 5 \mathrm{~S}, 25 \mathrm{M}, 1 \mathrm{I} / \\ & 22 \mathrm{~A}, 5 \mathrm{~S}, 14 \mathrm{M}, 1 \mathrm{I} \end{aligned}$	12

The entries of this table show the complexity of the algorithms according to the input values at the respective column and row. Furthermore, the entries are enumerated with an ID and entries of similar computational complexity are assigned the same ID.

The second term after the slash sign provides the complexity of weight 2 divisor addition algorithms which are given for the case of the resulting divisor of weight 1.

We will now compare the results given in Table 7 and the results given in Table 8 obtained from [16]. With these tables, we get a more exact picture of complexity of the algorithms than before. Furthermore, these exact values are characterized by the decreased complexity for the most frequent cases. Authors propose optimized execution ways for the general case divisor addition which allows for an increase in Jacobian arithmetic performance.

Table 8. Divisor addition algorithms complexity in relation to input divisors obtained from [16]

Input data	$D_{2}=P_{1}$		$D_{2}=2 P_{1}$		$D_{2}=P_{1}+P_{2}$	
$D_{1}=P_{1}$	$1 \mathrm{I}+5 \mathrm{M}$	1	$1 \mathrm{I}+11 \mathrm{M}$	2	$2 \mathrm{I}+17 \mathrm{I}$	3
$D_{1}=-P_{1}$	0	4	3 M	5	3 M	5
$D_{1}=P_{2}$	$1 \mathrm{I}+3 \mathrm{M}$	6	$1 \mathrm{I}+10 \mathrm{M}$	7	$2 \mathrm{I}+17 \mathrm{M}$	3
$D_{1}=2 P_{1}$	$1 \mathrm{I}+11 \mathrm{M}$	2	$2 \mathrm{I}+25 \mathrm{M}$	8	$4 \mathrm{I}+33 \mathrm{M}$	9
$D_{1}=P_{1}+P_{2}$	$2 \mathrm{I}+17 \mathrm{M}$	3	$4 \mathrm{I}+33 \mathrm{M}$	9	$2 \mathrm{I}+25 \mathrm{M}$	8
$D_{1}=-P_{1}+P_{2}$	$5 \mathrm{~A}+3 \mathrm{M}$	5	$2 \mathrm{I}+13 \mathrm{M}$	10	$2 \mathrm{I}+7 \mathrm{M}$	11
$D_{1}=P_{1}+P_{3}$	$2 \mathrm{I}+17 \mathrm{M}$	3	$4 \mathrm{I}+33 \mathrm{M}$	9	$4 \mathrm{I}+33 \mathrm{M}$	9
$D_{1}=-P_{1}+P_{3}$	3 M	5	$2 \mathrm{I}+13 \mathrm{M}$	10	$2 \mathrm{I}+13 \mathrm{M}$	10
$D_{1}=P_{3}+P_{4}$	$1 \mathrm{I}+10 \mathrm{M}$	7	$2 \mathrm{I}+23 \mathrm{M}$	12	$2 \mathrm{I}+23 \mathrm{M}$	12

Experimental Results

To be able to provide practical results, we executed the experimental evaluation of Jacobian arithmetic and direct cryptographic transformations. In Table 9, we provide the respective parameters. All the experiments were executed in accordance to the conditions described in Table 1, column 2.

Table 9. List of parameters that have been evaluated in the experimental timing evaluation while operations were executed in the Jacobian of genus 2 HEC in affine representation

$\#$	Operation
1	Weight 2 divisor addition, $D_{1}=\left(P_{1}+P_{2}\right), D_{2}=\left(P_{3}+P_{4}\right)$, different points in support
2	Weight 1 divisor addition, $D_{1}=\left(P_{1}\right), D_{2}=\left(P_{2}\right)$, different points in divisors support
3	Weight 2 divisor doubling, $D_{1}=\left(P_{1}+P_{2}\right)$, different points in divisors support
4	Weight 1 divisor doubling, $D_{1}=\left(P_{1}\right)$, different points in divisors support
5	Pre-computations for Lim-Lee SM of weight 2 divisor, $D_{1}=\left(P_{1}+P_{2}\right)$
6	Weight 2 divisor SM, $D_{1}=\left(P_{1}+P_{2}\right)$, Lim-Lee method
7	Weight 2 divisor SM, $D_{1}=\left(P_{1}+P_{2}\right)$, left to right (l-to-r) method
8	Pre-computations for Lim-Lee SM of weight 1 divisor, $D_{1}=\left(P_{1}\right)$
9	Weight 1 divisor SM, $D_{1}=\left(P_{1}\right)$, Lim-Lee method
10	Weight 1 divisor SM, $D_{1}=\left(P_{1}\right)$, left to right method

The performance estimation for HECDSA was executed for curves from different sources. For each curve, the prime group order and base divisors of different weight
are specified. Table 10 could be used for building a workable cryptosystem. It summarizes all required system parameters from the latest publications dedicated to system parameters generation. These base divisors are generated using authors' Jacobian arithmetics library.

Table 10. Curves used in the experiments

	Curve and Jacobian description
K1	Curve: $y^{2}=x^{5}+3 x$, [19]. Base field: BF2. Base divisor order: OF2. Cofactor: 2. \#J: 2*191561942 608242456073498418252108663615312031512914969. Base divisor weight 2 (different points in support): $u_{0}=0 \times 00007 \mathrm{cc} 90 \times 4 \mathrm{c} 35 \mathrm{~d} 2 \mathrm{c} 6$ 0xe53c9f13; $u_{1}=0 x 0000 a 263$ 0xe5badea0 0x63324a19; $u_{2}=1 ; v_{0}=0 \times 00006147$ $0 x 46 \mathrm{c} 02932$ 0xdb6db227; $v_{1}=0 \times 0000082 \mathrm{e} 0 \times 403 \mathrm{~d} 11700 \times 8401 \mathrm{e} 93 \mathrm{f}$. Base divisor weight 1: $u_{0}=0 \times 0000 \mathrm{c} 5250 \mathrm{xe} 1 \mathrm{e} 33 \mathrm{bf} 90 \mathrm{x} 1 \mathrm{~d} 5 \mathrm{c} 9 \mathrm{e} 4 \mathrm{~b} ; u_{1}=1 ; u_{2}=0$; $v_{0}=0 x 00003 \mathrm{a} 360 \mathrm{x} 0 \mathrm{e} 120 \mathrm{f} 580 \mathrm{x} 9 \mathrm{e} 493 \mathrm{e} 65 ; v_{1}=0$.
K2	
K3	Curve: $y^{2}=x^{5}+16807 x$, [21]. Base field: BF4. Base divisor order: OF4. Cofactor: 2. \#J: 5846006549324650191248125613942200572806220552962. Base divisor weight 2 (different points in support): $u_{0}=0 \times 0001659 \mathrm{c} 0 \times 5$ ba76be 1 0x8af27c0a; $u_{1}=0 x 000176090 x f 7 c 364630 x 73 \mathrm{~b} 67 \mathrm{~d} 70 ; u_{2}=1 ; v_{0}=0 \times 00005856$ $0 x 10 \mathrm{c} 73 \mathrm{f} 7 \mathrm{~d} 0 \mathrm{xcd} 44 \mathrm{faa} 0 ; v_{1}=0 \mathrm{x} 0000 \mathrm{f} 61 \mathrm{a} 0 \times \mathrm{xa} 0 \mathrm{e} 690 \mathrm{e} 60 \times 8 \mathrm{c} 039702$. Base divisor weight 1: $u_{0}=0 \times 000131570 \times f 93044870 \times \mathrm{xfe} 61 \mathrm{a} 03 \mathrm{e} ; u_{1}=1 ; u_{2}=0$; $v_{0}=0 x 0000$ efc8 $0 \times 0 \mathrm{aeb} 6 \mathrm{ba} 20 \mathrm{xd53d517f} ; v_{1}=0$.
K4	Curve: $y^{2}=x^{5}+243 x$, [21]. Base field: BF5. Base divisor order: OF5. Cofactor: 2. \#J: 23384026197286693734683162559398770155678059933602. Base divisor weight 2 (different points in support): $u_{0}=0 \times 000353 \mathrm{e} 60 \mathrm{xdbf41c} 47$ $0 x c 36 \mathrm{~b} 70 \mathrm{c} 0 ; u_{1}=0 \times 0002$ feb4 0x900ecb40 0x0f9e9749; $u_{2}=1 ; v_{0}=0 \times 0003470 \mathrm{~d}$ 0x58c98d55 0x7250290f; $v_{1}=0 x 00017$ bee 0x333ebe25 0x9d608242. Base divisor weight 1: $u_{0}=0 \times 0003$ ddfa 0 xe $82 \mathrm{dd} 75 \mathrm{f} 0 \mathrm{xfdbb} 6 \mathrm{c} 76 ; u_{1}=1 ; u_{2}=0$; $v_{0}=0 x 0001243 \mathrm{a} 0 \mathrm{x} 5 \mathrm{fba} 40 \mathrm{fb} 0 \mathrm{xe} 0 \mathrm{a} 0628 \mathrm{a} ; \mathrm{v}_{1}=0$.
K5	Curve: $y^{2}=x^{5}+371293 x$, [21]. Base field: BF6. Base divisor order: OF6. Cofactor: 2. \#J: 8543948143683640329580084318401338115672828124663448 275867130387651937273152534160174163969676194. Base divisor weight 2 (different points in support): $u_{0}=0 \times 000000000 \times 0 \mathrm{a} 666 \mathrm{ced}$

	0x9e3224f6 0x94fdac4a 0xa1694f53 0x4e67b73a; $u_{1}=0 x 00000001$ 0xfc7689a3 0xf3f58c91 0xf7d4367f 0xf8a69ba3 0xf8ac347e; $u_{2}=1 ; \quad v_{0}=0 x 00000000$ 0x9348b4a9 0x15fbaea2 0x100be54d 0x90a91887 0x71600c09; $v_{1}=0 x 00000000$ 0x1427f768 0x2888c86a 0x5aaf4273 0xd9bf0b9e 0x336ccd43. Base divisor weight 1: $u_{0}=0 x 000000010 x f 11030 \mathrm{ad} 0 x f a b 1 a f d f 0 x d a d 8 b 1 b d$ 0xf716f596 0x31eea096; $u_{1}=1 ; u_{2}=0 ; v_{0}=0 x 000000000 x 186 \mathrm{e} 086 \mathrm{c} 0 \times \mathrm{xa} 0 \mathrm{f} 1 \mathrm{~d} 327$ 0x6fbced02 0x1e77e117 0x412efc16; $v_{1}=0$.
K6	Curve: $y^{2}=x^{5}+2682810822839355644900736 x^{3}+226591355295993102902$ $116 x^{2}+2547674715952929717899918 x+4797309959708489673059350$, [22]. Base field: BF7. Base divisor order: OF6. Cofactor: 1. \#J: 24999999999994130438600999402209463966197516075699. Base divisor weight 2 (different points in support): $u_{0}=0 \times 0001 \mathrm{f} 0860 \times 14077642$ 0x85553ac5; $u_{1}=0 \times 0001 \mathrm{f} 0310 \mathrm{x} 4761 \mathrm{f} 58 \mathrm{~d} 0 \mathrm{xa} 0 \mathrm{c} 1 \mathrm{db} 51 ; u_{2}=1 ; v_{0}=0 \mathrm{x} 0000 \mathrm{af} 4 \mathrm{~b}$ $0 x 71 \mathrm{adc} 1 \mathrm{da} 0 \times 67827 \mathrm{fe} 6 ; v_{1}=0 \mathrm{x} 0000304 \mathrm{c} 0 \mathrm{x} 013 \mathrm{ba} 45 \mathrm{f} 0 \mathrm{xc} 74 \mathrm{e} 75 \mathrm{ca}$. Base divisor weight 1: $u_{0}=0 \times 0000 \mathrm{eae} 90 \mathrm{xd} 24 \mathrm{~b} 61 \mathrm{c} 00 \mathrm{x} 776 \mathrm{e} 2 \mathrm{f} 95 ; u_{1}=1 ; u_{2}=0$; $v_{0}=0 \times 0003860 \mathrm{~b} 0 \times 367445760 \mathrm{xb} 26 \mathrm{dd} 538 ; v_{1}=0$.

In Table 11, we provide the experimental timing estimates of group operations for the curves from Table 9 and the parameters from Table 8.

From Table 11, one can see that the time of addition and doubling for weight 1 divisors is about 2 times less than for weight 2 divisors. The time for doubling is 2 times larger than the addition time of weight 2 and weight 1 divisors.

Co-factors with large Hamming weight obviously reflect on the pre-computation time for curves K1 and K2.

Table 11. Experimental results of operations in the Jacobian of genus 2 HEC in affine representation

	$1, \mathrm{~s}$	$2, \mathrm{~s}$	$3, \mathrm{~s}$	$4, \mathrm{~s}$	$5, \mathrm{~s}$	$6, \mathrm{~s}$	$7, \mathrm{~s}$	$8, \mathrm{~s}$	$9, \mathrm{~s}$	$10, \mathrm{~s}$
K1	0.042	0.018	0.057	0.026	1984	0.78	3.64	1903	0.73	3.43
K2	0.0438	0.0203	0.0594	0.0281	2422	0.85	3.73	2407	0.81	3.50
K3	0.0422	0.0187	0.0562	0.0266	2375	0.82	3.64	2359	0.80	3.43
K4	0.0422	0.0188	0.0563	0.0281	2391	0.84	3.65	2375	0.81	3.43
K5	0.121	0.562	1.59	0.797	12344	3.0	10.14	12235	2.82	9.46
K6	0.0421	0.0188	0.0562	0.0281	2391	1.26	11.98	2359	1.26	10.89

An essential influence on the required time for a scalar multiplication is exerted by the non-optimized modulo reduction algorithms. This optimization will be taken into account in the next work.

The next step is the estimate of performance of an HECDSA implementation. In Table 12, we show the parameters which are of particular interest, SM - Scalar multiplication, DS - Digital signature.

Weight 1 divisors are the most interesting ones since they allow to decrease the computational complexity. This result was presented in [23]. Furthermore, we will emphasize the optimized transformation implementation based on weight 1 base divisors.

Table 12. Parameters for the timing analysis of operations in the Jacobian of genus 2 HEC in affine representation
\# Operation
1 Pre-computations for the weight 2 divisor SM by Lim-Lee method, $D_{1}=\left(P_{1}+P_{2}\right)$
2 DS generation, weight 2 base divisor, $D_{1}=\left(P_{1}+P_{2}\right)$, Lim-Lee method
3 DS verification, weight 2 base divisor, $D_{1}=\left(P_{1}+P_{2}\right)$, Lim-Lee and 1-to-r methods
4 Pre-computations for the weight 1 divisor SM by Lim-Lee method, $D_{1}=\left(P_{1}\right)$
5 DS generation, weight 1 base divisor, $D_{1}=\left(P_{1}\right)$, Lim-Lee method
6 DS verification, weight 1 base divisor, $D_{1}=\left(P_{1}\right)$, Lim-Lee and l-to-r methods
Table 13. Table 13. Experimental timings for HECDSA cryptographic transformations in the Jacobian of genus 2 HEC in affine divisor representation for curves listed in Table 9

Curve	$1, \mathrm{~ms}$	$2, \mathrm{~ms}$	$3, \mathrm{~ms}$	$4, \mathrm{~ms}$	$5, \mathrm{~ms}$	$6, \mathrm{~ms}$
K1	9547.0	6.92	69.12	9391.0	6.22	68.17
K2	12953.0	7.53	78.51	12797.0	7.15	76.85
K3	11531.0	6.95	70.17	11391.0	6.42	68.37
K4	11437.0	6.96	67.00	11282.0	6.03	65.13
K5	79437.0	50.28	509.78	78844.0	48.97	500.65
K6	11531.0	7.015	68.86	11437.0	6.88	67.72

Digital signature verification time is much influenced by operations in the field of prime group order module. In this case, specialized algorithms using pseudoMersenne and Mersenne primes are not applicable.

Summary

In this work, the results of the efficient HECDSA implementation on genus 2 HEC over prime fields are demonstrated. The obtained results indicate the commensurable performances when generating and verifying digital signatures over elliptic and hyperelliptic curves under the DSA scheme, see Tables 5 and 13. Despite of extended further HECC optimizations, we can speak boldly of HEC as a practical alternative to EC in modern cryptosystems.

This contribution does provide detailed information of algorithms, curves, and underlying arithmetic algorithms for the implementation of HECC in applications. With this paper, we hope to bring HECC a major step towards practical applications.

Acknowledgements

Authors would like to express their thanks to Dr. Colm O'hEigeartaigh for overcoming our difficulties in software implementation and Oksana Lyutikova in paper translation.

Bibliography

1. ISO/IEC FCD 15946: Information technology - Security techniques - Cryptographic techniques based on elliptic curves, Final Committee Draft. -2001.
2. IEEE P1363-2000: Standard Specifications for Public Key Cryptography. -2000. -206p.
3. Koblitz N. Hyperelliptic cryptosystems // Journal of cryptology. -1989. -No.1. -pp.139-150.
4. Menezes A.J., Wu Y., Zuccherrato R.J. An elementary introduction to hyperelliptic curves // Technical report CORR96-19, Department of Comboinatorics and optimization, University of Waterloo, Waterloo, Ontario, 1996. In: Koblitz, N.: Algebraic aspects of cryptography, Springer-Verlag, Berlin Heidelberg New York. 1998.
5. Moreno R., Miret J.M., Sebe F. A hyperelliptic cryptosystem based on the P1363 IEEE standard // International Meeting On Coding Theory And Cryptography. IMCTC'99. -1999. -Medina.
6. N.P.Smart. On the Performance of Hyperelliptic Cryptosystems // In Advances in Cryptology - Eurocrypt'99. -LNCS 1592. -Springer. -Berlin. -pp. 165-175.
7. Hankerson D., Lopez J., Menezes A. Software implementation of elliptic curve cryptography over binary fields / In Cetin K. Koc and C. Paar editors // Workshop and embedded systems. -LNCS 1717. -Berlin: Springer-Verlag, 2000. -pp.1-24.
8. Brown M., Hankerson D., Lopez J., Menezes A. Software implementation of the NIST elliptic curves over prime fields // Research Report CORR 2000-56. Department of Combinatorics and Optimization, University of Waterloo. - Canada: Waterloo, Ontario, 2000. - 21p.
9. National Institute of Standards and Technology, Recommended Elliptic Curves for Federal Government Use, Appendix to FIPS 186-2, 2000. -43p.
10. Nagao K. Improving Group Law Algorithms for Jacobians of Hyperelliptic Curves // In W. Bosma, editor, ANTS IV, LNCS 1838. -Berlin. -Springer-Verlag. -pp. 439-448.
11. Wollinger T. Software and hardware implementation of hyperelliptic curve cryptosystems. PhD dissertation: Electronics and informatics. -Worchester Polytecnic Institute. -Germany: Bochum, 2004. -218 p.
12. Harley R. Fast arithmetic on genius two curves. -2000. Available at: http://cristal.inria.fr/harley/hyper/, adding.txt and doubling.c.
13. Lange T. Efficient arithmetic on genus 2 hyperelliptic curves over finite fields via explicit formulae // Cryptology ePrint Archive. -Report 2002/121. -2002. - 13 p.
14. Kovtun V. Yu., Zbitnev S. I. Arithmetic in Jacobian of genus 2 Hyperelliptic curve in projective coordinates with reduced complexity // Vostochno-Evropeyskiy zhurnal peredovikh tekhnologiy. -2004. -Vol. 1/2 (13). -Kharkov. -pp. 14-22.
15. Kovtun V.Yu. Transformations in Jacobian genus 2 HEC in projective coordinates over odd characteristic fields // Radiotekhnika: Vseukrainskiy mezhvedomstvenniy nauchnotekhnicheskiy sbornik. -2006. -Vol. 144. -Karkov. -pp. 102-110. In Russian.
16. Matsuo K., Chao J., Tsujii S. Fast genius two hyperelliptic curve cryptosystem // Technical report IEICE. -ISEC2001-31. -IEICE`2001. -2001. -8p.
17. Miyamoto Y., Doi H., Matsuo K., Chao J., Tsujii S. A fast addition algorithm of genius two hyperelliptic curve // In the 2002 Symposium on cryptography and information security. SCIS`2002. Japan: IEICE, 2002. - pp.497-502. (In Japanese).
18. Takahashi M. Improving Harley algorithms for Jacobians of genius 2 hyperelliptic curves // In the 2002 Symposium on cryptography and information security. -SCIS`2002. Japan: IEICE, 2002. -pp. 155-160. In Japanese.
19. O'hEigeartaigh C. web-page: www.computing.dcu.ie/~OhEigeartaigh/crypto.html
20. Weng A. Constructing hyperelliptic curves of genus 2 suitable for cryptography // Mathematics of Computation. -Vol. 72. -No.241. -2002. -pp. 435-458.

16 Vladislav Kovtun1, Jan Pelzl2, and Alexandr Kuznetsov3
21. Furucawa E., Kawazoe M., Takahashi T. Counting Points on the Jacobian Variety of a Hyperelliptic Curve defined by $y^{\wedge} 2=x^{\wedge} 5+$ ax over a Prime Field // Electronic cryptology archive Citeseer. Available at: http://citeseer.ist.bsu.edu/558804.html
22. Gaudry P., Schost E. Construction of Secure Random Curves of Genus 2 over Prime Fields // Advances in Cryptology - EUROCRYPT 2004. -2004. C. Cachin and J. Camenisch, Eds., LNCS vol. 3027, Springer-Verlag, pp. 239-256.
23. Katagi M., Kitamura I., Akishita T., Takagi T. Novel Efficient Implementations of Hyperelliptic Curve Cryptosystems using Degenerate Divisors // nformation Security Applications, 5th International Workshop - WISA 2004. -2004. LNCS vol. 3325, Springer 2004, -pp. 345-359

