
UNIVERSITY OF CALGARY

Fast Algorithms for Arithmetic on Elliptic Curves over Prime Fields

by

Nicholas T. Sullivan

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

CROSS-DISCIPLINARY DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF MATHEMATICS AND STATISTICS

and

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

January, 2007

c© Nicholas T. Sullivan 2007



THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of

Graduate Studies for acceptance, a thesis entitled “Fast Algorithms for Arithmetic

on Elliptic Curves over Prime Fields” submitted by Nicholas T. Sullivan in partial

fulfillment of the requirements for the degree of MASTER OF SCIENCE.

Supervisor, Dr. R. Scheidler
Department of Mathematics and
Statistics

Co-supervisor, Dr. M. J. Jacobson
Department of Computer Science

Dr. M. Bauer
Department of Mathematics and
Statistics

Dr. J. Aycock
Department of Computer Science

Dr. A. O. Fapojuwo
Department of Electrical and Com-
puter Engineering

Date

ii



Abstract

We present here a thorough discussion of the problem of fast arithmetic on elliptic

curves over prime order finite fields. Since elliptic curves were independently pro-

posed as a setting for cryptography by Koblitz [53] and Miller [67], the group of

points on an elliptic curve has been widely used for discrete logarithm based cryp-

tosystems. In this thesis, we survey, analyse and compare the fastest known serial

and parallel algorithms for elliptic curve scalar multiplication, the primary operation

in discrete logarithm based cryptosystems. We also introduce some new algorithms

for the basic group operation and several new parallel scalar multiplication algo-

rithms. We present a mathematical basis for comparing the various algorithms and

make recommendations for the fastest algorithms to use in different circumstances.
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Chapter 1

Introduction

Cryptography was revolutionized by Diffie and Hellman in 1976 [27] with two con-

cepts, public key cryptography (PKC), and their eponymous key exchange protocol.

PKC and the Diffie-Hellman key exchange protocol have since become pillars of mod-

ern commercial cryptography. PKC provides a means for encryption and authen-

tication and the Diffie-Hellman key exchange protocol allows the use of symmetric

cryptography without the need for costly and slow secure communication channels

to exchange keys. The security of Diffie and Hellman’s method for exchanging keys

relies on a mathematical one-way function, a function that is easy to compute but

difficult to invert. An example of a one-way function is exponentiation of integers

modulo a prime. As far as we know, it is easy to compute gx mod p, but difficult to

extract x from gx in this setting. This extraction problem is called the discrete log-

arithm problem (DLP). Diffie and Hellman’s one-way function relates closely to the

DLP and can be inverted by solving it. If we assume that solving the Diffie-Hellman

problem requires a lot of computation, the one way function is secure.

The concept of computational difficulty can be defined formally, and the amount

of work required to solve a problem can be calculated explicitly. Research has

found that the DLP on the group of integers modulo a prime can be solved in

sub-exponential time using the general number field sieve [61]. According to the

current state of knowledge, the problem is difficult, but not as difficult as a problem

that can only be solved in exponential time.

1



2

In 1985, Koblitz [53] and Miller [67] independently proposed elliptic curve cryp-

tography (ECC), an approach to public key cryptography based on the group of

points on an elliptic curve over a finite field. The group of points on an elliptic curve

also exhibits a discrete logarithm problem. After twenty years of research, the fastest

algorithm for solving the DLP in this group still has exponential running time. This

means that the same level of security can be achieved with smaller keys compared to

the DH key exchange protocol, making ECC preferable for devices with constrained

resources such as PDAs, pagers, smart cards and cell phones. A smaller key also

means faster and more efficient computation. Furthermore, if a fast solution for the

DLP in the integers modulo a prime is found, ECC will possibly still be secure.

Efficient elliptic curve arithmetic is critical for ECC. We mention here some ECC

protocols and outline the requisite elliptic curve operations that are needed for them.

We also describe the operations needed for the cryptographic primitives based on

operations in the group of points on an elliptic curve over a finite field.

Notationally, the group under consideration is a generic additive group. Group

elements are represented by capital letters and integer scalar multipliers by lower

case letters. The group operation applied to two points P and Q is denoted by

P + Q. The scalar multiplication operation, or P + P + · · ·+ P︸ ︷︷ ︸
n times

is denoted by nP .

The operations we are mainly concerned with are unknown point scalar multi-

plication (computing nP where both n and P are not known in advance), known

point scalar multiplication (computing nP where n is unknown and P is known) and

known multiplier scalar multiplication (computing nP where n is known and P is

unknown). We study algorithms specific to each of these cases in Chapter 3.



3

A public key encryption scheme allows two parties to communicate securely.

One popular encryption scheme is ECIES [9]. In this scheme, encryption requires

the computation of one unknown point scalar multiplication and one known point

scalar multiplication. Decryption requires one known multiplier scalar multiplication.

PSEC [33] is another encryption scheme. In this protocol, encryption requires the

computation of one unknown point scalar multiplication and one known point scalar

multiplication. Decryption requires a known multiplier scalar multiplication and a

known point scalar multiplication.

Key establishment algorithms allow two parties to establish a common secret for

use in symmetric cryptography. ECDH [96] is the elliptic curve variant of the Diffie-

Hellman key agreement protocol. Each party requires the computation of one known

point scalar multiplication and one unknown point scalar multiplication. Another

popular key establishment algorithm is ECMQV [59]. For this protocol, each party

requires the ability to compute both known point scalar multiplication and unknown

point scalar multiplication.

A signature scheme allows one party to digitally sign a piece of data, providing

authentication and non-repudiation. ECDSA [46] is the standard digital signature

scheme using elliptic curves. Signature generation requires a known point scalar

multiplication and verification requires the computation of aP + bQ where P is

known, Q is unknown and a, b are unknown.

The elliptic curve scalar multiplication operations are the most time consum-

ing parts of each of the above protocols. In order to implement these protocols

efficiently, it is important that unknown point, known point and known multiplier

scalar multiplication are all computed as efficiently as possible.
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1.1 Contributions of the Thesis

The focus of this thesis is efficient arithmetic on the group of points on an elliptic

curve over a prime field with applications to ECC. Elliptic curve arithmetic is a com-

paratively new and very active area of research with a large body of literature. The

purpose of this thesis is twofold. First, it provides a comprehensive survey of known

techniques for elliptic curve arithmetic, including a description and mathematical

analysis. Second, it introduces several new algorithms for elliptic curve arithmetic.

The intention is to determine the most efficient algorithms for calculations on elliptic

curves in different situations with a thorough analysis and comparison of the latest

techniques and the newly introduced ideas.

The specific focus of this thesis is elliptic scalar multiplication in software. We

cover addition, doubling and tripling for elliptic curves over prime fields only and use

these operations to determine the cost of various serial and parallel scalar multipli-

cation algorithms. This analysis could be translated for non-prime field of interest

such as binary fields or optimal extension fields. In this thesis, only prime fields are

examined because they are considered the fastest to implement in software. The par-

allel algorithms examined in Chapter 4 are parallel at the level of point addition and

we do not examine algorithms that are parallel at the finite field operation level. We

consider many sequential algorithms in the unknown point, known point and known

multiplier cases, and parallel algorithms in the unknown point case. Since some

fast algorithms are suceptible to side-channel attack, a brief overview side-channel

resistant methods and simultaneous scalar multiplication are presented in Chapter

5.
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The main contribution of this thesis is an analysis and comparison of the fastest

algorithms for elliptic curve scalar multiplication over prime fields. The results pro-

vide a thorough comparison of such algorithms under reasonable and standard as-

sumptions. This analysis is novel and constitutes a significant tool for determining

the most efficient scalar multiplication algorithm for any given setting in elliptic

curve cryptography. This thesis provides the most extensive and careful comparison

of the fastest known serial algorithms. The work on parallel algorithms is the only

such analysis and provides the first estimates of the speedup that can be obtained

by this type of parallelization.

In addition, a number of novel algorithms are presented, including several parallel

algorithms for elliptic curve scalar multiplication. A new modification of the point

tripling algorithm is presented that allows the double-base chain algorithm (Section

3.2.6) to be the fastest algorithm not requiring storage space. In Chapter 4, we

introduce and analyze a number of new parallel algorithms. We present a new

parallel algorithm used to precompute points and we introduce several left-to-right

and right-to-left algorithms for scalar multiplication as well as a double-base method

for scalar multiplication. The algorithms provide a modest speedup over the single

processor scalar multiplication algorithms, and could be useful in certain settings

where time is at a premium such as large-scale encryption. The new algorithms

could be useful in non-constrained implementations and are shown to be faster than

the existing algorithms in certain situations.
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1.1.1 Methodology

A methodology for determining the efficiency of an algorithm is a necessary first step

in order to make valid comparisons between different algorithms that perform the

same operation. Algorithms for elliptic curves can be classified as either high-level

or low-level. Specifically, high-level algorithms operate with the elliptic curve group

operations and low-level algorithms deal with finite field arithmetic. The focus of

this thesis is high-level algorithms for elliptic curve operations. Low level algorithms

are discussed in Appendix A.

For the operations in the field, the analysis will pertain to software implementa-

tions. In order to maintain flexibility, we will assume as little as possible about the

hardware. We will use constants to represent the time it takes to compute field op-

erations such as addition, multiplication and inversion. The relative times for these

constants are based on past implementations, e.g. Brown et al. [16].

Elliptic curve operations such as point doubling, addition and tripling are com-

puted using formulas involving finite field elements. The analysis of elliptic curve

operations is based on the number of finite field operations required to evaluate the

formulas. Elliptic curve scalar multiplication is a compound operation, computed

using a sequence of elliptic curve operations. To analyze an elliptic curve scalar

multiplication algorithm, the expected (or average) number of elliptic curve oper-

ations needed for the algorithm is computed. Once this is determined, we choose

a specific representation for the group elements. The number of field operations to

compute these operations on points in the chosen representation is then identified.

The scalar multiplication algorithm cost formulas are combined with the group op-
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eration choices, resulting in a cost formula in terms of finite field multiplications,

squarings and inversions. These formulas are determined for elliptic curves over a

set of primes called the NIST primes, which are used in practice.

The costs of different scalar multiplication algorithms are made comparable by

substituting the relative speeds of squaring and inversion into the cost formulas to

obtain a cost in terms of only finite field multiplications. In our context, squaring is

slightly faster than multiplication and inversion is much slower than multiplication.

By expressing their costs in terms of the number of multiplications, we can directly

compare the various scalar multiplication algorithms.

Analyses based on operation counts provide a relatively solid mathematical pic-

ture of the efficiency of the various elliptic curve algorithms. This analysis will

provide a good measure for the computational requirements of existing implementa-

tions and also good predictions for future implementations. They can also be used to

provide estimates for the time it would take to perform the algorithms on any system

with any parameters. A new implementation of these algorithms is not included as

it is beyond the scope of the thesis.

1.1.2 Thesis Outline

In Chapter 2, we introduce the theory of elliptic curves. This chapter provides the

background needed to define the group of rational points of an elliptic curve over

a finite field. The relevant properties of this group are described and formulas for

the group law are presented. For the rest of the thesis, we consider elliptic curves

over prime fields only. We present explicit algorithms for computing the group

operation for elliptic curves over prime fields using different coordinate systems. We
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also present some new explicit algorithms for point tripling.

In Chapter 3, we focus on the predominant operation in elliptic curve cryptog-

raphy: scalar multiplication. The standard double-and-add method borrowed from

modular exponentiation is presented as well as more efficient techniques. The al-

gorithms studied here fall into the categories of unknown point algorithms, known

point algorithms and known multiplier algorithms. The unknown point algorithms

include binary NAF, window NAF, sliding window, fractional window, and double-

base number systems. The known point algorithms are the windowing and comb

methods. The known multiplier algorithms are based on addition chains. A novel

analysis is done to determine the average computational cost of these algorithms and

the storage space required. The algorithms from this section can all be found in the

literature.

In Chapter 4, we present parallel algorithms for scalar multiplication. A parallel

computing framework is introduced and several parallel algorithms are analyzed

and compared with respect to effective computation cost and the communication

time between processors. Many of the algorithms presented in this section are new.

The algorithms introduced include a new parallel precomputation algorithm, a new

modification of the pth order binary algorithm, several new algorithms for right-to-left

and left-to-right parallel scalar multiplication, a parallelization of windowing from

the literature, and a new algorithm based on double-base n-chains and Montgomery’s

ladder. We find that a small speed improvement can be obtained by parallelization,

depending on the cost of communication between processors.

In Chapter 5, we summarize the results of the thesis. Further topics such as side

channel attacks, multiple point multiplication and elliptic curves over binary fields
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are briefly discussed and directions for further work are proposed.

Finally, two appendices are included that deal with extra material. In Appendix

A, we introduce finite fields as well as algorithms for arithmetic in prime fields.

In Appendix B, we present all the tables from Chapters 3 and 4 that were not

immediately needed.



Chapter 2

Elliptic Curve Basics

This chapter provides an introduction to elliptic curves as mathematical objects.

We develop the theory of elliptic curves, define the group of points on an elliptic

curve and provide explicit algorithms for the operation on this group. We focus

on the computational aspects of elliptic curve arithmetic that will be useful for

cryptographic applications.

An elliptic curve over a given field is defined by an equation called a Weierstraß

equation. A point on an elliptic curve is a solution to the Weierstraß equation over

the given field. The set of points on an elliptic curve can be made into an Abelian

group. The group operation is usually described algebraically, with formulas derived

from the geometry of the curve, but it can also be described graphically in some

circumstances.

We can identify different curves that generate isomorphic groups of points us-

ing the notion of curve isomorphism. Two curves that generate the same group

can be thought of as interchangeable. This interchangeability allows for specialized

equations for elliptic curves over certain fields. In particular, curve isomorphism

allows curves over fields with characteristic two (binary curves) to be represented

by a simplified Weierstraß equation that is used to simplify the rules for the group

operation. The same can be done for curves over fields of odd prime characteristic

(prime curves) and curves of characteristic zero. The two types of curves that are

most useful in cryptography are binary and prime curves. Elliptic curves over prime

10
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fields are the focus of this thesis.

Many cryptographic protocols (Diffie-Hellman [27], ElGamal [32]) are generic

in the sense that they can be adapted to use any Abelian group. Elliptic curve

cryptosystems are specific cases of these generic cryptosystems that use the group

of points on an elliptic curve over a finite field. In order for a group to be useful

in this setting, it must somehow be “difficult” in a computational sense to compute

the inverse operation of exponentiation in the group. The group must be finite but

large enough so that it is intractable to compute discrete logarithms with generic

algorithms (see Pollard [84]) and the group needs a large cyclic subgroup in order to

prevent Pohlig-Hellman attacks (see Pohlig and Hellman [83]). It will be shown that

both prime curves and binary curves have these desirable properties. Moreover, for

correctly chosen prime curves and binary curves there is no known sub-exponential

algorithm for solving the discrete logarithm problem, making both types of curves

excellent candidates for cryptographic applications.

The formulas for performing the group operation on points in affine or projective

coordinates over binary or prime fields are derived from the geometric definition of the

field operation. Performing this group operation on a computer requires the formulas

to be translated into a sequence of operations in the base field. Efficient algorithms

are developed for elliptic curve point addition and doubling in affine and projec-

tive coordinate systems. Additionally, other coordinate systems based on projective

coordinates (Jacobian [18], Chudnovsky-Jacobian [18], Lopez-Dahab [66]) allow for

alternative implementations of elliptic curve arithmetic. In certain applications it

can be more efficient to use different coordinate systems simultaneously. Algorithms

for mixed-coordinate operations were developed in order to accommodate this need
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and are presented in this chapter.

The algorithms put forth in this chapter for the group of points on an elliptic

curve over a prime field are the basic building blocks of the scalar multiplication

algorithms in Chapter 3.

2.1 Elliptic Curves

Elliptic curves are mathematical objects that arise naturally in branches of math-

ematics including algebraic geometry and number theory. An elliptic curve is a

specific case of a non-singular algebraic curve. For a broad introduction to the study

of algebraic curves see Fulton [34].

An elliptic curve is defined in terms of a Weierstraß equation and a base field.

The points that satisfy the equation are called rational points on the curve. As we

will see, these points form a group with a little help, and are often referred to as the

group of points on an elliptic curve.

In this section, we present the generalized Weierstraß equation and describe the

limitations to be applied in order to define a genuine elliptic curve. An equivalence

relation can be defined on the set of elliptic curves, thus providing a mechanism to

derive simplified Weierstraß equations for elliptic curves over certain fields. We also

briefly discuss alternative forms of an elliptic curve.

2.1.1 Weierstraß Equation

We begin with the definition of an elliptic curve.

Definition 2.1.1. Let K be a field, K its algebraic closure. An elliptic curve E over
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K is denoted by E/K and is given by the Weierstraß equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, (2.1)

where a1, a2, a3, a4, a6 ∈ K, and for each point (x, y) with coordinates in K satisfying

Equation 2.1 and the partial derivatives 2y + a1x + a3, and 3x2 + 2a2x + a4− a1y do

not vanish simultaneously at that point.

The criteria that both partial derivatives do not vanish simultaneously means

that the curve is non-singular. A method for testing a curve for non-singularity

involves a quantity called the discriminant of the curve. Let

b2 = a2
1 + 4a2, b4 = a1a3 + 2a4, b6 = a2

3 + 4a6, and

b8 = a2
1a6 − a1a3a4 + 4a2a6 + a2a

2
3 − a2

4.

The discriminant of the curve E/K, denoted by ∆, is defined to be

∆ = −b2
2b8 − 8b4 − 27b2

6 + 9b2b4b6. (2.2)

The discriminant is useful because ∆ = 0 if and only if E/K is non-singular.

The object of interest for this chapter is the set of L-rational points associated

with an elliptic curve E/K with K ⊆ L ⊆ K. This set corresponds closely to the set

of solutions to the Weierstraß equation defining E/K. Included in the set are the

points with coordinates in L that satisfy the Weierstraß equation and an additional

point denoted by ∞. This point can be thought of as being infinitely far up the

y-axis, so that it intersects any line parallel with the y-axis. This point corresponds

to a point in projective space that is not found in affine space and is necessary for

the group law. This is clarified in the next section when coordinate systems are

discussed; for now, ∞ will be treated as just another point.
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Definition 2.1.2. If L is an extension of K or K itself, then the set of L-rational

points over E/K is defined to be the set of all points (x, y) ∈ L × L that satisfy

Equation 2.1 along with the point ∞. This set is denoted E(L).

The set of K-rational points is also called the set of rational points on a curve.

The sets of L-rational points are very important because they have a group structure

that is the setting for elliptic curve cryptography.

2.1.2 Simplified Weierstraß Equations

It is useful to define an equivalence relation on the set of elliptic curves over a given

field. This equivalence relation will also be shown to be a bijection between the sets

of points on the curves. In Section 2.3.5, we show that two equivalent elliptic curves

have isomorphic groups of points.

Definition 2.1.3. Two curves E/K (with variables x, y) and E ′/K (with variables

x′, y′) are isomorphic over K if and only if there exist constants r, s, t ∈ K and

u ∈ K∗ such that the change of variables

(x, y)← (u2x′ + r, u3y′ + su2x′ + t) (2.3)

transforms the equation of E/K into the equation of E ′/K. Such a transformation

is called an admissible change of variables or an isomorphism from E to E ′.

An isomorphism of curves can also be used to define a bijection of sets between

the sets of L-rational points of two curves in the following way. Suppose that the

change of variables (x, y) ← (u2x′ + r, u3y′ + su2x′ + t) transforms the equation of

the elliptic curve E/K into the equation for the elliptic curve E ′/K for r, s, t ∈ K



15

and u ∈ K∗ where L is a field with K ⊆ L ⊆ K. Then the map

φ : E(L)→ E ′(L)

defined by

φ(a, b) = (u2a′ + r, u3b′ + su2a′ + t)

is a bijection with

φ−1(a′, b′) =

(
a− r

u2
,

b− t− su2a′

u3

)
,

sending ∞ to ∞.

With this equivalence relation on elliptic curves, the next step is to find canonical

forms of the Weierstraß equation with fewer parameters that can cover all equivalence

classes of curves. For characteristic other than 2 or 3, the substitution

(x, y)←
(

x′ − a2
1 + 4a2

12
, y′ − a1

2

(
x′ − a2

1 + 4a2

12

)
− a3

2

)
is an admissible change of variables with u = 1, r = (a2

1 + 4a2)/12, s = a1/2 and

t = a3/2. It transforms Equation (2.1) from a long form Weierstraß equation to one

of the form

E ′ : (y′)2 = (x′)3 + ax′ + b, (2.4)

where a, b ∈ K with discriminant ∆ = −16(4a3 + 27b2) 6= 0.

For curves of characteristic 2 and 3, there are different admissible changes of

variable depending on the supersingularity of the curve. Supersingular elliptic curves

are curves for which the cardinality of the set of rational points over any extension

field is not divisible by the characteristic of the field. Supersingular curves are

less secure than non-supersingular curves in some cryptographic applications (see
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Galbraith [35]) and desirable in others, and we will not discuss them in detail in this

thesis.

If the characteristic of K is 2, and a1 = 0, then the curve is supersingular and

the admissible change of variables

(x, y) = (x′ + a2, y
′)

leads to

E ′ : (y′)2 + cy′ = (x′)3 + ax′ + b, (2.5)

where a, b, c ∈ K with discriminant ∆ = c4 6= 0. If the characteristic of K is 2 and

a1 6= 0, then the curve is non-supersingular and the admissible change of variables

(x, y) =

(
x′a2

1 +
a3

a1

, a3
1y

′ − a2
1a4 + a2

3

a3
1

)
leads to

E ′ : (y′)2 + x′y′ = (x′)3 + a(x′)2 + b, (2.6)

where a, b ∈ K with discriminant ∆ = b 6= 0.

If K has characteristic 3, then there are also two cases to consider. If a2
1 = −a2,

then the curve is supersingular and the admissible change of variables

(x, y) = (x′, y′ + a1x
′ + a3)

leads to

E ′ : (y′)2 = (x′)3 + ax′ + b, (2.7)

where a, b ∈ K with discriminant ∆ = −a3 6= 0. If a2
1 6= −a2, then the curve is

non-supersingular and the admissible change of variables

(x, y) =

(
x′ +

a4 − a1a3

a2
1 + a2

, y′ + a1x
′ + a1

(
a4 − a1a3

a2
1 + a2

)
+ a3

)
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leads to

E ′ : (y′)2 = (x′)3 + a(x′)2 + b, (2.8)

where a, b ∈ K with discriminant ∆ = −a3b 6= 0.

The short forms (2.4) to (2.8) are referred to as short or simplified Weierstraß

equations. Any curve over K is isomorphic to a curve defined by a short Weierstraß

equation. We will assume that any curve over a prime field of characteristic 6= 2, 3

is defined by a short Weierstraß equation of the form of (2.4) and that any non-

supersingular curve over a binary field is given in the form of (2.6).

2.1.3 Alternative Models

Chudnovsky and Chudnovsky [18] studied four basic forms of elliptic curves includ-

ing the Weierstraß model, the Jacobi model, the Jacobi form and the Hessian model.

Another alternative model is the Montgomery form [74], which is resistant to side-

channel attacks. These other models can be useful for other purposes. For example,

Liardet and Smart [62] use the Jacobi form to prevent power analysis attacks, while

Joye and Quisquater [47] use the Hessian form for its interesting side-channel prop-

erties and parallelizability. The Montgomery form can be used to derive faster point

operations [79]. The drawbacks are that Hessian, Jacobi and Montgomery forms

only apply to elliptic curves over fields with certain properties. For the purpose of

this thesis, we focus on the Weierstraß model. The Weierstraß model is completely

general in the sense that any elliptic curve can be transformed into Weierstraß form,

whereas the same can not be said about the Montgomery form, the Jacobi form or

the Hessian form.
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2.2 Coordinate Systems

In the previous section, the set of L-rational points on an elliptic curve over a field

K was defined to be the set of solutions over L of a Weierstraß equation in two

variables. A point in this form is represented by a pair (x, y) ∈ L × L; this form

of representation is called the affine coordinate system. An alternative coordinate

system that can also be used is the projective coordinate system. In such a system,

rather than representing a point by a pair of elements, a point is represented by an

equivalence class of triples.

Projective coordinate systems are useful because they allow points to be rep-

resented using a redundant representation and give a realization of the point at

infinity. Computations on the curve are done with different formulas for different

representations. Specifically, the formulas for the yet-to-be-defined group operation

with standard affine coordinates all require either a finite field inversion or division

step. According to Hankerson et al. [43], these operations can be very costly relative

to field multiplication. Projective coordinates allow for group operations to be cal-

culated without any inversions at the cost of additional field multiplications and a

larger representation that may no longer be unique. In this section, several variants

of projective systems are examined.

2.2.1 Projective Coordinates

The only model for a curve we have examined so far in this chapter has been the

affine model. In the affine model, curves are defined by equations in n variables with

coefficients in K ⊆ L and L-rational points on the curve are elements of the space
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Ln = L× L× · · · × L︸ ︷︷ ︸
n times

. For elliptic curves, the points lie in the two-dimensional affine

space L× L.

An alternative model for a curve is the projective model. Projective space is

similar to affine space in that points in n-dimensional projective space are (n + 1)-

tuples of elements of L. The difference is that the point (0, 0, . . . , 0) is not included

and that points are equivalent up to scalar multiplication. There are n copies of

n-dimensional affine space in n-dimensional projective space, found by setting one

coordinate to 1 and allowing the other coordinates to range over the field.

Definition 2.2.1. For a field K, define an equivalence relation ∼= on K3\{(0, 0, 0)}

as follows: (X1, Y1, Z1) ∼= (X2, Y2, Z2) if X1 = λX2, Y1 = λY2, Z1 = λZ2 for some

λ ∈ K∗. We call the equivalence class containing a triple (X, Y, Z) a projective point

and denote it by (X : Y : Z). The set of all such points

{(X : Y : Z) | (X, Y, Z) 6= (0, 0, 0)}/〈∼=〉

is called the projective plane.

A polynomial f ∈ K[x1, . . . , xn] for n ∈ N is called homogeneous when all terms

have the same degree. Curves in n-dimensional projective space are defined by

homogeneous equations in n + 1 variables. An elliptic curve in projective space is

defined by an equation which is the “homogenization” of the equation for the curve

in affine space. We can identify points in projective space with those in affine space

with the following maps:

µ : K ×K → {(X : Y : Z) | Z 6= 0}/〈∼=〉

(x, y) 7→ (x : y : 1).



20

The partial inverse to this map is the following:

ν : {(X : Y : Z) | Z 6= 0}/〈∼=〉 → K ×K

(X : Y : Z) 7→ (X/Z, Y/Z).

In order to get an equation of an elliptic curve in projective space, the substi-

tutions x ← X/Z and y ← Y/Z are made in the equation for the curve in affine

space. Both sides of the resulting equation are multiplied by Z3, resulting in an

equation of homogeneous polynomials of degree three. This homogeneous equation

is the “homogenization” of the equation for the curve, or the projective Weierstraß

equation.

For a non-supersingular curve over a field of characteristic other than 2 or 3, the

simplified Weierstraß equation is E : y2 = x3 + ax+ b, and the projective Weierstraß

equation is

E : ZY 2 = X3 + aXZ2 + bZ3.

For a non-supersingular curve over a field of characteristic 2, the simplified Weierstraß

equation is E : y2 + xy = x3 + ax2 + b, giving

E : Y 2Z + XY Z = X3 + aX2Z + bZ3,

for the projective Weierstraß equation. These new equations are non-singular because

if there is a point [X : Y : Z] on the curve that will satisfy all three partial derivatives,

then (X/Z, Y/Z) will satisfy the partial derivatives of the affine curve, which is a

contradiction.

Notice that every solution (X : Y : Z) = (X/Z : Y/Z : 1) in projective space

(with Z 6= 0) to the projective equation for the curve corresponds to the affine
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solution (X/Z, Y/Z) of the affine equation of the curve and vice versa. Therefore

µ ◦ ν(X : Y : Z) = (X : Y : Z) for all (X : Y : Z) ∈ {(X : Y : Z) | Z 6= 0}/〈∼=〉. By

composing the the functions ν and µ, ν ◦µ(x, y) = (x, y) for all (x, y) ∈ K×K. This

shows that there is a one-to-one correspondence between affine points satisfying the

affine Weierstraß equation and projective points with Z 6= 0 satisfying the projective

Weierstraß equation.

Solving for Z = 0 in the projective Weierstraß equation results in only one point,

(0 : 1 : 0). To complete the bijection between affine points on an elliptic curve and

projective points on an elliptic curve, the point (0 : 1 : 0) is associated with the point

∞ in the affine group.

Projective space has a property that is not found in affine space dealing with

the intersection of curves. Two curves in projective space intersect at a point when

the equations for both curves are simultaneously satisfied by the coordinates of the

point. The multiplicity of such an intersection is a measure of how similar the curves

behave at the point. For the intersection point P of an elliptic curve and a line, the

multiplicity is one when the line is not tangent to the curve at P , two when the line

is tangent to the curve at P and is not an inflection point, and three when the curve

is tangent to P and is an inflection point. Bèzout’s Theorem [89, p. 242] states

that two curves of degree n and m in projective space intersect at k points with

multiplicities mk so that
∑k

i=1 mk = n×m. Therefore any line intersects an elliptic

curve in three places, which is the essential fact for defining the group operation. In

the affine case, this does not hold. A vertical line will intersect an elliptic curve with

multiplicity at most 2 while every non-vertical line will intersect an elliptic curve

with multiplicity 3.
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Note that in projective space, any of the three points of intersection could have

0 as a Z coordinate and therefore lie outside of standard affine space. Luckily, an

elliptic curve will only intersect this portion of projective space (called the line at

infinity) at one point. In the case where the characteristic of K is greater than 3,

this point is (0 : 1 : 0). We call this point the point at infinity, or∞. Including∞ as

an L-rational point on an elliptic curve allows the three-points-to-a-line rule to hold

in the affine model as well. Any line that would have intersected (0 : 1 : 0) in the

projective case is said to intersect the point ∞ in the affine case, preserving the fact

that any line will intersect an elliptic curve in three places for the affine model. This

is the justification for the inclusion of the point ∞ in the set of L-rational points of

a curve in affine space.

2.2.2 Generalized Projective Coordinates

The standard projective model of an elliptic curve is useful for improving the effi-

ciency of computation on elliptic curves, but was surpassed by another projective

model introduced by Chudnovsky and Chudnovsky [18]. These projective coordi-

nate systems lead to more efficient arithmetic and rely on a generalized definition of

projective space.

Definition 2.2.2. For a field K, define an equivalence relation ∼=c,d on K3\{(0, 0, 0)}

as follows:

(X1, Y1, Z1) ∼= (X2, Y2, Z2) if X1 = λcX2, Y1 = λdY2, Z1 = λZ2 for some λ ∈ K∗,

c, d ∈ N.

We call the equivalence class containing a triple (X, Y, Z) a (c, d)-projective point
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and denote it by (X : Y : Z). The set of all such points

{(X : Y : Z) | (X, Y, Z) 6= (0, 0, 0)}/〈∼=(c,d)〉

is called (c, d)-projective 2-space.

If Z 6= 0, then a unique representative for (X : Y : Z) is (X/Zc, Y/Zd, 1). This

gives a one-to-one correspondence between affine points and projective points with

Z 6= 0.

A similar process to homogenization is used to find the formula for a curve in

(c, d)-projective space. When c = d = 1, the projective version of the equation is

homogeneous under the standard notion of degree. With different values of c and d,

the resulting equation is homogeneous with the following measure of degree:

deg(X) = c, deg(Y ) = d, and deg(Z) = 1.

To obtain the (c, d)-projective version of an affine curve E : y2 + a1xy + a3y =

x3 +a2x
2 +a4x+a6, substitute x→ X/Zc and y → Y/Zd, then multiply through by

the highest power of Z in the denominator. If 3c > 2d, the resulting (c, d)-projective

curve is

E : Y 2Z3c−2d + a1XY Z2c−d + a3Y Z3c−d = X3 + a2X
2Zc + a4XZ2c + a6Z

c.

If 3c < 2d, the resulting (c, d)-projective curve is

E : Y 2 + a1XY Zd−c + a3Y Zd = X3Z2d−3c + a2X
2Z2d−2c + a4XZ2d−c + a6Z

2d.

If 3c = 2d, the resulting (c, d)-projective curve is

E : Y 2 + a1XY Zd−c + a3Y Zd = X3 + a2X
2Zc + a4XZ2c + a6Z

3c.
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Solving for Z = 0 shows that there is only one (c, d)-projective point with Z = 0.

This corresponds to the point at infinity in the affine coordinate system. To convert

back to affine representation, substitute 1 for Z. The affine coordinate system is

denoted by A.

The main types of projective coordinates used for curves over prime fields are:

• Standard projective coordinates: c = 1, d = 1. This coordinate system will be

denoted by P . In this system, ∞ is represented by (0 : 1 : 0).

• Jacobian projective coordinates: c = 2, d = 3. Jacobian and Chudnovsky Ja-

cobian projective coordinates were proposed by Chudnovsky and Chudnovsky

[18]. In Jacobian coordinates, point doubling can be performed in fewer fi-

nite field operations than in projective coordinates. Jacobian-based coordinate

systems are mainly used for elliptic curves over prime fields. This coordinate

system will be denoted by J . In this system, ∞ is represented by (1 : 1 : 0).

• Chudnovsky Jacobian Coordinates: ((X : Y : Z), Z2, Z3). The first three coor-

dinates are the same as in Jacobian projective coordinates and two redundant

elements are added. These redundant values are used to speed up computa-

tions in certain operations (such as point addition). The representation also

takes more space and requires extra computation for other operations (such

as point doubling). This coordinate system will be denoted by J c. In this

system, ∞ is represented by ((1 : 1 : 0), 0, 0).

• Modified Jacobian Coordinates: ((X : Y : Z), aZ4). The modified Jacobian

coordinate system was introduced by Cohen et al. [20] for prime curves. The
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first three coordinates are the same as in the Jacobian projective case, and

one redundant element is added. In this context a is the coefficient of x in the

simplified Weierstraß equation (2.4) for the curve. The redundant value is used

to speed up computation for point doubling, but also requires extra storage

space and more field squarings. This coordinate system has the advantage of

having the most efficient point doubling operation, but its advantages versus

Jacobian coordinates are eliminated when the coefficient a of the Weierstraß

equation (2.4) of the elliptic curve is chosen to be −3. This coordinate system

will be denoted by Jm. In this system, ∞ is represented by ((1 : 1 : 0), 0).

• Lopez-Dahab (LD) projective coordinates: c = 1, d = 2. This coordinate

system is useful for elliptic curves over binary fields. In this system, ∞ is

represented by (1 : 0 : 0).

2.3 The Group of Points

The set of L-rational points on an elliptic curve E/K is a widely studied object

in mathematics. Part of the reason that this set is so interesting and relevant to

cryptography is that it has an associated group structure. Specifically, there is a

natural group operation on the set of points that can be used to create an Abelian

group with ∞ acting as the identity.

The Abelian group in question arises naturally from the fact that any line in-

tersects an elliptic curve in at most three points. The formula for addition in this

group will be derived from the intersection of the equation of a line and the general

Weierstraß equation.
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Groups of points on elliptic curves over finite fields are the product of two cyclic

groups (Section 2.3.5). The parameters of the curve can be chosen so that the group

of points has a large prime divisor and therefore a large cyclic subgroup. The fact

that the group has a large cyclic subgroup is important for secure cryptography.

2.3.1 The Group Law

The group law on the set of points of an elliptic curve over any field K relies on

the fact that any line intersects an elliptic curve in at most three points. As is the

convention for Abelian groups, the operations will be written additively.

We know that a curve of degree 3 (an elliptic curve in this case) and a curve of

degree 1 (a line) intersect in k ≤ 3 points P1, . . . , Pk with
∑k

i=1 mi = 3, where mi is

the multiplicity of the intersection at Pi. We define the following relation on the set

of co-linear points:
k∑

i=1

miPi =∞. (2.9)

If ∞ is defined to be the identity element, the relation can be informally described

as “co-linear points sum to zero”. Since the number of points in the intersection is at

most three, this relation can define a group operation. Given two L-rational points

in affine form P = (x1, y1) and Q = (x2, y2) on an elliptic curve E/K, the group

operation is described by the following steps:

• To find −R for any point R ∈ E(L), R 6=∞, do the following:

1. Take the line through R and ∞. In affine coordinates, a line through ∞

is a line of the form x = a for some constant a ∈ L.
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2. If the intersection of this line and E(L) contains only R and ∞, then

R + R +∞ =∞, i.e. R = −R.

3. If the intersection of this line contains another point S, then R+S +∞ =

∞ and hence −R = S.

• To compute P + Q, where P and Q ∈ E(L) with P 6= Q, x1 6= x2, do the

following:

1. Take the unique line through P and Q and find its intersection with E(L)

2. If this intersection contains only P and Q, then the line is tangent to the

curve at either P or Q. This means that either 2P + Q = ∞ (when the

line tangent to P contains Q) or P + 2Q = ∞ (when the line tangent

to Q contains P . In the first case, the sum P + Q is −Q, and it is −P

otherwise.

3. If the intersection contains another point R, then P + Q + R = ∞, and

hence P + Q = −R.

If x1 = x2, then the line through P and Q is parallel to the y-axis and so ∞ is

in the intersection, therefore P + Q =∞ and P = −Q.

• To compute P + P , or 2P , do the following:

1. Take the unique line through P tangent to E (this line is unique because

the curve is non-singular) and the intersection of this line with E(L).

2. If this intersection contains only P , then P is an inflection point, so 3P =

∞, and hence 2P = −P .
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3. If there is another point R in the intersection, then 2P + R = ∞ and

hence P + P = −R.

When K = R, this process can be shown graphically. Figure 2.1(a) describes the

addition of the points P and Q on an elliptic curve. First, a line is drawn through P

and Q, this line intersects the curve at three points, P , Q and −(P + Q). In order

to find P + Q, the negative of −(P + Q) is taken. A vertical line through −(P + Q)

intersects the curve at two points, −(P + Q) and our desired point P + Q.

Figure 2.1(b) describes the doubling of the point P on a curve over R. First,

a line is drawn through P and tangent to the curve. This line intersects the curve

at two points, P , and −(2P ). In order to find 2P , the negative of −(2P ) is taken.

A vertical line through −(2P ) intersects the curve at two points, −(2P ) and our

desired point 2P .

We now derive the addition formulas for an arbitrary field K. Let E/K be an

elliptic curve given by the Weierstraß equation E : y2 + a1xy + a3y = x3 + a2x
2 +

a4x + a6 with a1, a2, a3, a4, a6 ∈ K and K ⊆ L ⊆ K.

Let P, Q ∈ E(L) with P 6= Q be points in affine coordinates, P = (x1, y1),

Q = (x2, y2), where x1 6= x2. We compute the coordinates of P + Q = R = (x3, y3).

The line through P and Q has slope

λ =
y1 − y2

x1 − x2

and passes through P . Denoting the constant term by µ, the equation becomes

y = λx + µ. Since P satisfies this equation, we get µ = y1 − λx1. The equation for

the line is then

y = λx +
x1y2 − x2y1

x1 − x2

.
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(a) Point Addition over R (b) Point Doubling over R

Figure 2.1: Point Arithmetic over R.

The intersection of the line with the curve is obtained by equating the equation for

the line and the Weierstraß equation for E/K:

(λx + µ)2 + (a1x + a3)(λx + µ) = x3 + a2x
2 + a4x + a6.

Solving this equation is equivalent to finding the roots of the polynomial r(x), defined

by

r(x) = x3 + (a2 − λ2 − a1λ)x2 + (a4 − 2λµ− a3λ− a1µ)x + a6 − µ2 − a3µ.

Two of the roots of this polynomial are already known, namely the x-coordinates of

P and Q. We know that the negative of the sum of the roots of a monic polynomial

is equal to the coefficient of the second highest term. If x3 is the third root, we have

λ2 + a1λ − a2 = x1 + x2 + x3. This implies the x-coordinate of the third co-linear
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point, −R, is x3 = λ2 + a1λ − a2 − x1 − x2. Furthermore, the point −R is on the

same line and therefore has y-coordinate ỹ3 = λx3 + µ.

By the choice of the neutral element, any point and its inverse share the same

x-coordinate. If a point −R = (x3, y
′
3) lies on the curve, so does R = (x3, y3). By

simultaneously solving the Weierstraß equation evaluated at (x, y) and (x, y′), we find

that y′ = −y − a1x− a3. For R = (x3, y3), we get that y3 = −λx3 − µ− a1x3 − a3.

There are two cases for which x1 = x2, namely y1 = y2 and y1 6= y2. If y1 = y2,

the operation for doubling P is analogous to point addition except that λ is the

slope of E/K at P obtained through implicit differentiation. If y1 6= y2 then the line

through the two points is vertical and the two points sum to ∞. In summary,

−P = (x1,−y1 − a1x1 − a3), (2.10)

P + Q =

 ∞ if Q = −P ,

(λ2 + a1λ− a2 − x1 − x2, λ(x1 − x3)− y1 − a1x3 − a3) otherwise,

where

λ =


y1 − y2

x1 − x2

if P 6= ±Q,

3x2
1 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3

if P = Q.

Proposition 2.3.1 from Washington [94, page 3] shows that the binary operation

+ is in fact a group operation.

Proposition 2.3.1. Let K be a field, L an extension of K and E/K an elliptic

curve over K. Let + denote the group operation on points. Then (E(L), +) is an

Abelian group.

This proposition shows that the set of L-rational points on an elliptic curve is

an Abelian group under point addition. Previously, we defined an isomorphism on
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curves in order to simplify the Weierstraß equation for curves over certain fields.

Theorem 2.3.2, taken from Silverman [88, Sec. 2.2], justifies this definition.

Theorem 2.3.2. Let E/K and E ′/K be elliptic curves. If E/K and E ′/K are

isomorphic as elliptic curves, then E(K) and E ′(K) are isomorphic as groups.

This result provides sufficient justification for our initial definition of isomorphism

between curves. Algorithms for computing the group operations efficiently in the

various coordinate systems will be explored later in this chapter.

2.3.2 Scalar Multiplication

Scalar multiplication is an operation that can be performed on any additively written

group. We will denote scalar multiplication by n ∈ N on the set E(L) of L-rational

points on an elliptic curve E/K for K a field and K ⊆ L ⊆ K with the following

operator:

n : E(L) → E(L)

P 7→ P + P + · · ·+ P︸ ︷︷ ︸
n times

.

The scalar product of a point P ∈ E(L) by n ∈ N is therefore denoted nP . This

operator will be very important in Chapter 3.

2.3.3 Custom Group Law Formulas

In order to perform arithmetic on an elliptic curve group, the fundamental operations

needed are point addition and point doubling. The general formulas presented in

the previous section can be used to perform these operations. These formulas are
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based on the general Weierstraß equation (2.1) and can be improved by considering

a simplified Weierstraß such as equations (2.4) or (2.6) instead.

Suppose that E/Fq is a curve n prime field of odd characteristic given by a sim-

plified Weierstraß equation (2.4). It follows from (2.11) and (2.10) that the following

rules hold:

1. Identity: ∞+ P = P +∞ = P for all P ∈ E(Fq).

2. Negation: If P = (x, y) ∈ E(Fq), then −P = (x,−y). If P =∞, then −P = P .

3. Addition: If P = (x1, y1) ∈ E(Fq), Q = (x2, y2) ∈ E(Fq) and P 6= ±Q, then

P + Q = (x3, y3) with

x3 = λ2 − x1 − x2 and y3 = λ(x1 − x3)− y1, (2.11)

where λ = (y2 − y1)/(x2 − x1).

4. Doubling: If P = (x1, y1) and P 6= −P then 2P = (x3, y3) with

x3 = λ2 − 2x1 and y3 = λ(x1 − x3)− y1, (2.12)

where λ = 3x2
1 + a/2y1.

In fact, these rules hold for any field of characteristic not equal to 2 or 3.

If E/Fq is a non-supersingular curve over a binary field given by a simplified

Weierstraß equation (2.6) then it follows from Equations (2.10) and (2.11) that the

following rules hold on points in affine form:

1. Identity: ∞+ P = P +∞ = P for all P ∈ E(Fq).
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2. Negation: If P = (x, y) ∈ E(Fq), then −P = (x, x + y); if P = ∞, then

−P = P .

3. Addition: If P = (x1, y1) ∈ E(Fq), Q = (x2, y2) ∈ E(Fq) and P 6= ±Q, then

P + Q = (x3, y3) with

x3 = λ2 + λ + a = x2
1 + x2 + a and y3 = λ(x1 + x3) + x3 + y1, (2.13)

where λ = (y1 + y2)/(x1 + x2).

4. Doubling: If P = (x1, y1) and P 6= −P then 2P = (x3, y3) with

x3 = λ2 + λ + a and y3 = λ(x1 + x3) + x3 + y1, (2.14)

where λ = x1 + y1/x1.

These formulas allow for the computation of addition and doubling of elliptic

curve points when they are given in affine coordinates. By making the substitutions

x ← X/Zc, y ← Y/Zd, these formulas can be used to compute points in (c, d)-

projective coordinates. In the next section, we will describe the algorithms that are

used to compute group operations using the previous formulas in various coordinate

systems with the minimum number of field operations.

2.3.4 Group of Points Over Fq

A special case to consider is that of elliptic curves over a finite field Fq. In order to use

the group E(Fq) for cryptographic purposes, it is necessary to have an understanding

of the size of the group and its algebraic structure.

There are a few basic requirements for a group to be useful for discrete logarithm

based cryptography. At the very least, the group must be of sufficiently large size
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and it must have a large cyclic subgroup. In this section, it is shown that for elliptic

curves over finite fields, the size of an elliptic curve group is approximately the same

as that of the field over which it is defined, that the group is a direct product of two

cyclic subgroups, and other useful properties.

2.3.5 Basic Group Properties

The size of the group E(Fq) is denoted by #E(Fq). Since E(Fq)\{∞} ⊆ Fq × Fq,

this set is finite. This is strengthened with Theorem 2.3.3, the Hasse-Weil bound.

The proof of the Hasse-Weil bound and more details concerning the possible values

of #E(Fq) can be found in Waterhouse [95, pages 536–538].

Theorem 2.3.3 (Hasse-Weil bound). Let E/Fq be an elliptic curve. Then

q + 1− 2
√

q ≤ #E(Fq) ≤ q + 1 + 2
√

q.

Since
√

q is small relative to q, we have #E(Fq) ≈ q. Theorem 2.3.4, from Koblitz

[54, Sec 6.1], gives the exact order of the group E(Fqn) as long as #E(Fq) is known.

This is useful for the case when q is a small prime such as 2 or 3.

Theorem 2.3.4. Let E/Fq be an elliptic curve and define t via t = q +1−#E(Fq).

Then

#E(Fqn) = qn + 1− Vn,

where {Vn} is the sequence defined by V0 = 2, V1 = t, Vn = V1Vn−1− qVn−2 for n ≥ 2.

Theorem 2.3.5, from Washington [94, Sec. 4.3], describes the group structure of

an elliptic curve.
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Theorem 2.3.5. Let E be an elliptic curve defined over Fq. Then E(Fq) is isomor-

phic to Z/n1Z ⊕ Z/n2Z where n1 and n2 are uniquely determined positive integers

such that n2 divides both n1 and q − 1.

The most useful scenario for cryptographic applications is the case when one

of the two subgroups is a very small group or trivial. Galbraith and McKee [36]

have made conjectures about the probability of a random curve having such a group

structure, including the following:

Conjecture 2.3.6. Let P1 be the probability that a number within 2
√

p of p + 1 is

prime. Then the probability that an elliptic curve over Fpk has a prime number of

points is asymptotic to cpP1 as p→∞, where

cp =
2

3

∏
l>2

(
1− 1

(l − 1)2

) ∏
l|p−1
l>2

(
1 +

1

(l + 1)(l − 2)

)
.

Here the products are over all primes l satisfying the stated conditions.

Note that
∏

l>2

(
1− 1

(l−1)2

)
≈ 0.6601618 is the Hardy-Littlewood twin primes

constant. Galbraith and McKee also give a similar conjecture about the probability

that a random elliptic curve over Fp has k · q points for a prime q. These conjectures

are backed up by numerical evidence and suggest that these curves happen with a

large enough probability that a curve with k · p points for small k can be found in a

reasonable amount of time by randomly choosing curves.

2.4 Optimizing Formulas for Prime Curve Arithmetic

In this section, we examine the explicit algorithms for computing in the group of

points on an elliptic curve defined over a finite field. The goal of this section is to
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describe formulas that compute point doubling and point addition in the minimal

number of field operations. We also present the best known algorithms for performing

these operations in affine, projective and mixed coordinate systems.

The notation C + D → E will denote the operation that adds two points in

coordinate systems C and D, and outputs a point in coordinate system E. Similarly,

2C → E will denote the operation that doubles a point in coordinate system C and

outputs a point in coordinate system E. The field cost of an algorithm is defined

to be the number of multiplications (M), squarings (S) and inversions (I) in Fq

required for the algorithm. The operations that are omitted (addition, subtraction)

take an insignificant amount of time relative to the other operations as indicated in

Appendix A.

The problem of minimizing the storage space needed for the implementation of

an algorithm is important because elliptic curve cryptography is often used on con-

strained devices. However, this is not examined in detail in this exposition. If there

are two algorithms with the same field cost but differing storage space requirements,

we choose the most space-efficient algorithm. If the number of temporary variables

is of the utmost importance, there are a number of options including modifying

the algorithms so that the input variables are overwritten and used as temporary

variables. Input variables are lost but temporary space is saved.

We present the algorithms for the curve E/Fp with equation E : y2 = x3 +ax+ b

for a prime p greater than 3. A restriction that we will make is that we will always

assume a = −3 for the curve. This restriction does not reduce the security of the

curve or put a restriction on the possible group structures that can be obtained

(Theorem 3.15 of Hankerson et al. [43]). This restriction is common practice and
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allows the value 3X2 + aZ4, which requires 3 squarings to be computed näıvely, to

be calculated as 3(X −Z2)(X + Z2) with only one squaring and one multiplication.

This allows a saving of 2 squarings in the doubling formula for points in Jacobian

form.

Although arithmetic on binary curves is also cryptographically important, the

focus of this thesis is elliptic curves over prime fields. Algorithms for binary arith-

metic are presented by Hankerson et al. [43, Sec. 3.2.3] and by Cohen et al. [6, Sec

13.3].

2.4.1 Affine Operations

The algorithms for calculating point addition and point doubling in affine coordinates

follow directly from the formulas in Section 2.3.3 and are similar to presentations in

Hankerson et al. [43, Sec 3.1], and Hitchcock et al. [44].

Algorithm 1: Point Doubling (2A → A)
Input: Affine Point P = (x1, y1),
Output: Affine Point 2P = (x2, y2)
(1) if P =∞ then return ∞
(2) r1 ← x2

1

(3) r1 ← r1 − 1
(4) r2 ← 2r1

(5) r1 ← r2 + r1

(6) if r1 = 0 then return ∞
(7) r2 ← 2y1

(8) r2 ← r−1
2

(9) r1 ← r1 · r2

(10) r3 ← (−2)x1

(11) r2 ← r2
1

(12) x2 ← r1 + r2

(13) r3 ← x1 − x2

(14) r2 ← r1 · r3

(15) y2 ← r2 − y1
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(16) Q := (x2, y2)
(17) return Q

The field cost for Algorithm 1 is I + 2M + 2S, and 3 temporary variables are

required.

Algorithm 2: Point Addition (A+A → A)
Input: Affine Points P1 = (x1, y1) 6= P2 = (x2, y2)
Output: Affine Point P1 + P2 = (x3, y3)
(1) if x1 = x2 then return ∞
(2) r1 ← x2 − x1

(3) r2 ← y2 − y1

(4) r2 ← r−1
2

(5) r1 ← r1 · r2

(6) r3 ← r2
1

(7) r3 ← r3 − x1

(8) x3 ← r3 − x2

(9) r2 ← x1 − x3

(10) r3 ← r1 · r2

(11) y3 ← r3 − y1

(12) Q := (x3, y3)
(13) return Q

The field cost for Algorithm 2 is I+2M+S and 3 temporary variables are required.

These formulas are rarely used in practice because they involve the expensive finite

field inversion operation. In Appendix A, we explain that one inversion takes the

same time as approximately 30 to 80 multiplications in Fp for large primes depending

on the implementation. It will be demonstrated in the next subsection that the

addition and doubling operations can be performed in significantly less time using

projective coordinates.
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2.4.2 Projective Operations

The formulas for point arithmetic in (c, d)-projective coordinates can be obtained

from the formulas for affine coordinates with the substitutions xi = Xi/Z
c
i and yi =

Yi/Z
d
i for input points (xi, yi). This substitution leaves several terms with negative

exponents in the formulas. Since the projective point is really an equivalence class

of points, then for any value α, the point (Xαc, Y αd, Zα) can also be returned. The

formulas can therefore be modified to remove denominators by multiplying through

by constants using a specifically chosen α. The resulting formulas can be used to

compute addition or doubling for points given in (c, d)-projective coordinates.

The Chudnovsky Jacobian ((2, 3)-projective) form of the Weierstraß equation

E : y2 = x3 + ax + b is

E : Y 2 = X3 + aXZ4 + bZ6,

the point at infinity is (1 : 1 : 0) and the negative of (X : Y : Z) is (X : −Y : Z).

We will continue to assume that a = −3.

By replacing x1 by X1/Z
2
1 and y1 by Y1/Z

3
1 in Equation (2.11) and cancelling

denominators, the formula for adding (X1 : Y1 : Z1) to (X2 : Y2 : Z2) becomes

U1 = X1Z
2
2 , U2 = X2Z

2
1 ,

S1 = Y1Z
3
2 , S2 = Y2Z

3
1 ,

X = U2 − U1, Y = S2 − S1,

X3 = −X3 − 2U1X
2 + Y 2,

Y3 = −S1X
3 + Y (U1X

2 −X3),

Z3 = Z1Z2X.
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One complication is that it is not immediately clear if two points given in projec-

tive form are equal. It is possible that two points are used as the input of an addition

formula and that both points are the same. The algorithms we present determine

whether P = ±Q and call either the doubling algorithm or return ∞.

Similarly, by replacing x1 by X1/Z
2
1 and y1 by Y1/Z

3
1 in Equation (2.12) and

cancelling denominators, the formula for doubling (X1 : Y1 : Z1) becomes

M = 3X2
1 + aZ4

1 ,

S = 4X1Y
2
1 , T = −2S + M2,

X3 = T,

Y3 = −8Y 4
1 + M(S − T ),

Z3 = 2Y1Z1.

Algorithms 3 to 6 calculate point addition and doubling in Jacobian and Chud-

novsky Jacobian coordinates on a curve E/Fp. The algorithms are adapted from

presentations in Hankerson et al. [43, Sec 3.2], and Hitchcock et al. [44].

Algorithm 3: Point Doubling (2J → J )
Input: Jacobian Point P = (X1 : Y1 : Z1)
Output: Jacobian Point 2P = Q = (X3 : Y3 : Z3)
(1) if Z1 = 0 then return P1

(2) r1 ← Z2
1

(3) Z3 ← X1 − r1

(4) r1 ← X1 + r1

(5) Z3 ← r1 · Z3

(6) r1 ← 2Z3

(7) r1 ← r1 + Z3

(8) if r1 = 0 then return (1 : 1 : 0)
(9) Y3 ← 2Y1

(10) Y3 ← Y 2
3

(11) Z3 ← Y 2
3
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(12) Y3 ← Y3 ·X1

(13) Z3 ← Z3/2
(14) X3 ← r2

1

(15) X3 ← X3 − Y3

(16) X3 ← X3 − Y3

(17) Y3 ← Y3 −X3

(18) Y3 ← Y3 · r1

(19) Y3 ← Y3 − Z3

(20) Z3 ← Y1 · Z1

(21) Z3 ← 2Z3

(22) Q := (X3 : Y3 : Z3)
(23) return Q

The field cost Algorithm 3 is 4M + 4S (or M + S if 2P = ∞) and only one

temporary variable is required.

Algorithm 4: Point Addition (J + J → J )
Input: Jacobian Points P1 = (X1 : Y1 : Z1), P2 = (X2 : Y2 : Z2)
Output: Jacobian Point P1 + P2 = (X3 : Y3 : Z3)
(1) if Z1 = 0 then return P2

(2) if Z2 = 0 then return P1

(3) r1 ← Z2
2

(4) X3 ← X1 · r1

(5) r1 ← Z2 · r1

(6) Y3 ← Y1 · r1

(7) r1 ← Z2
1

(8) r2 ← X2 · r1

(9) r1 ← Z1 · r1

(10) r1 ← Y2 · r1

(11) r1 ← r1 − Y3

(12) r2 ← r2 −X3

(13) if r2 = 0
(14) if r1 = 0
(15) Q := 2P1 using 2J → J
(16) return Q
(17) else
(18) Q := (1 : 1 : 0)
(19) return Q
(20) Z3 ← Z1 · Z2
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(21) Z3 ← Z3 · r2

(22) r3 ← r2
2

(23) r2 ← r2 · r3

(24) r3 ← r3 ·X3

(25) X3 ← r2
1

(26) Y3 ← r2 · Y3

(27) r2 ← X3 − r2

(28) X3 ← 2r3

(29) X3 ← r2 −X3

(30) r2 ← r3 −X3

(31) r2 ← r1 · r2

(32) Y3 ← r2 − Y3

(33) Q := (X3 : Y3 : Z3)
(34) return Q

The field cost for Algorithm 4 is 12M + 4S, unless either P1 ± P2 or either point

is∞. In the case where P1 = P2, the field cost is 6M +2S plus the cost of 2J → J ,

10M + 6S in total. When P1 = −P2, the field cost is 6M + 2S. The operation does

not require any additions or multiplications when either point is ∞.

The algorithms for J c are similar to those for J but take advantage of the

additional terms provided by the Chudnovsky representation. In Chudnovsky Jaco-

bian representation, the terms Z2
1 , Z

3
1 , Z

2
2 , and Z3

2 are already computed, which saves

2M + 2S, while Z2
3 , Z

3
3 have to be computed at the end, costing M + S.

Algorithm 5: Point Doubling (2J c → J c)
Input: Chudnovsky Jacobian Point P1 = ((X1 : Y1 : Z1), Z

2
1 , Z

3
1)

Output: Chudnovsky Jacobian Point 2P1 = ((X3 : Y3 : Z3), Z
2
3 , Z

3
3)

(1) if Z1 = 0 then return P1

(2) Z3 ← Y1 · Z1

(3) Z3 ← 2Z3

(4) (Z3)
2 ← X1 − (Z2

1)
(5) (Z3)

3 ← X1 + (Z2
1)

(6) (Z3)
2 ← (Z3)

3 · (Z3)
2

(7) (Z3)
3 ← 2(Z3)

2

(8) (Z3)
3 ← (Z3)

3 + (Z3)
2
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(9) if (Z3)
3 = 0 then return (1 : 1 : 0)

(10) Y3 ← 2Y1

(11) Y3 ← Y 2
3

(12) (Z3)
2 ← Y 2

3

(13) Y3 ← Y3 ·X1

(14) (Z3)
2 ← (Z3)

2/2
(15) X3 ← ((Z3)

3)2

(16) X3 ← X3 − Y3

(17) X3 ← X3 − Y3

(18) Y3 ← Y3 −X3

(19) Y3 ← Y3 · (Z3)
3

(20) Y3 ← Y3 − (Z3)
2

(21) Z2
3 ← (Z3)

2

(22) Z3
3 ← (Z2

3) · (Z3)
(23) Q := ((X3 : Y3 : Z3) , Z2

3 , Z
3
3)

(24) return Q

The field cost for Algorithm 5 is 5M+4S and no temporary variables are required.

Algorithm 6: Point Addition (J c + J c → J c)
Input: Chudnovsky Jacobian Points P1 = ((X1 : Y1 : Z1), Z

2
1 , Z

3
1),

P2 = ((X2 : Y2 : Z2), Z
2
2 , Z

3
2)

Output: Chudnovsky Jacobian Point P1+P2 = ((X3 : Y3 : Z3), Z
2
3 , Z

3
3)

(1) if Z1 = 0 then return P2

(2) if Z2 = 0 then return P1

(3) X3 ← X1 · (Z2
2)

(4) Y3 ← Y1 · (Z3
2)

(5) (Z3
3)← X2 · (Z2

1)
(6) (Z2

3)← Y2 · (Z3
1)

(7) (Z2
3)← (Z2

3)− Y3

(8) (Z3
3)← (Z3

3)−X3

(9) if (Z3
3) = 0

(10) if (Z2
3) = 0

(11) Q := 2P1 using 2J c → J c

(12) return Q
(13) else
(14) Q := ((1 : 1 : 0), 0, 0)
(15) return Q
(16) Z3 ← Z1 · Z2

(17) Z3 ← Z3 · (Z3
3)
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(18) r1 ← (Z3
3)2

(19) (Z3
3)← (Z3

3) · r1

(20) r1 ← r1 ·X3

(21) X3 ← (Z2
3)2

(22) Y3 ← (Z3
3) · Y3

(23) (Z3
3)← X3 − (Z3

3)
(24) X3 ← 2r1

(25) X3 ← (Z3
3)−X3

(26) (Z3
3)← r1 −X3

(27) (Z3
3)← (Z2

3) · (Z3
3)

(28) Z2
3 ← (Z3)

2

(29) Z3
3 ← Z · (Z2

3)
(30) Q := ((X3 : Y3 : Z3), Z

2
3 , Z

3
3)

(31) return Q

The field cost for Algorithm 6 is 11M + 3S, unless either P1 = ±P2 or either

point is ∞, and the algorithm only requires one temporary variable. In the case

where P1 = P2, the field cost is 4M plus the cost of 2J c → J c, or 9M + 4S in total.

When P1 = −P2, the field cost is 4M . The operation does not require any additions

or multiplications when either point is ∞.

The addition formula for Chudnovsky Jacobian coordinates takes less computa-

tion than Algorithm 4 because Z2
1 , Z

3
1 , Z

2
2 , and Z3

2 are all precomputed.

2.4.3 Mixed Coordinate Operations

Mixed coordinate operations were introduced by Cohen et al. [20]. The authors

noted that in previous research, the arithmetic on the curve was performed using

only one coordinate system. They then developed formulas for addition and doubling

that would correctly add two points in different coordinate systems or take a point

in one coordinate system and return its double in another.

The algorithms that are most useful in later chapters are described in complete
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detail with the number of finite field operations required by each of them. Algorithms

7 to 9 are mixed coordinate algorithms derived from Hankerson et al. [43, Sec. 3.2]

and Hitchcock et al. [44]. The first mixed algorithm takes an affine point and returns

its double in Jacobian form.

Algorithm 7: Point Doubling (2A → J )
Input: Affine Point P1 = (x1, y1)
Output: Jacobian Point 2P1 = Q = (X3 : Y3 : Z3)
(1) if P =∞ or y1 = 0 then return (1 : 1 : 0)
(2) r1 ← x2

1

(3) Z3 ← 2r1

(4) Z3 ← Z3 + r1

(5) Y3 ← 2y1

(6) Z3 ← Y3 · x1

(7) Y3 ← Y 2
3

(8) Y3 ← Y 2
3

(9) Y3 ← Y3/2
(10) X3 ← Z2

3

(11) r1 ← 2Z3

(12) X3 ← X3 − r1

(13) r1 ← r3 −X3

(14) r1 ← r1 · Z3

(15) Y3 ← r1 − Y3

(16) Z3 ← y1

(17) Q := (X3 : Y3 : Z3)
(18) return Q

The field cost for Algorithm 7 is 2M + 4S, a savings of two multiplications

compared to the algorithm for 2J → J . Only one temporary variable is required.

Algorithm 8 takes two affine points and returns their sum in Jacobian form. It

is assumed that these two points are distinct.

Algorithm 8: Point Addition (A+A → J )
Input: Two Affine Points P1 = (x1, y1), P2 = (x2, y2)
Output: Jacobian Point P1 + P2 = Q = (X3 : Y3 : Z3)
(1) if P1 =∞ then return P2
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(2) if P2 =∞ then return P2

(3) if x1 = x2 then return ∞
(4) Z3 ← x2 − x1

(5) r1 ← Z2
3

(6) r2 ← Z3 · r1

(7) r1 ← r1 · x1

(8) r1 ← 2r1

(9) Y3 ← y1 − y2

(10) X3 ← Y 2
3

(11) X3 ← X3 − r1

(12) X3 ← X3 − r2

(13) r2 ← r2 · Y1

(14) r1 ← r1 −X3

(15) Y3 ← Y3 · r1

(16) Y3 ← Y3 − r2

(17) Q := (X3 : Y3 : Z3)
(18) return Q

The field cost for Algorithm 8 is 4M + 2S, a savings of 8 multiplications and 2

squarings compared to the algorithm for J +J → J . Only two temporary variables

are required.

Algorithm 9 takes two affine points and a Jacobian point and returns their sum

in Jacobian form.

Algorithm 9: Point Addition (J +A → J )
Input: Affine Points P1 = (X1 : Y1 : Z1), P2 = (x2, y2)
Output: Jacobian Point P1 + P2 = (X3 : Y3 : Z3)
(1) if Z1 = 0 then return P2

(2) if Z2 = 0 then return P1

(3) r1 ← Z2
1

(4) r2 ← x2 · r1

(5) r1 ← Z1 · r1

(6) r1 ← y2 · r1

(7) r1 ← r1 − Y1

(8) r2 ← r2 −X1

(9) if r2 = 0
(10) if r1 = 0
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(11) Q := 2P1 using 2A → J
(12) return Q
(13) else
(14) Q := (1 : 1 : 0)
(15) return Q
(16) Z3 ← Z1 · r2

(17) r3 ← r2
2

(18) r2 ← r2 · r3

(19) r3 ← r3 ·X3

(20) X3 ← r2
1

(21) Y3 ← r2 · Y3

(22) r2 ← X3 − r2

(23) X3 ← 2r3

(24) X3 ← r2 −X3

(25) r2 ← r3 −X3

(26) r2 ← r1 · r2

(27) Y3 ← r2 − Y3

(28) Q := (X3 : Y3 : Z3)
(29) return Q

The field cost for Algorithm 9 is 8M +3S, unless P1 = ±P2. If P1 = P2, the field

cost is 5M + 5S and if P1 = −P2, the field cost is 3M + S. The algorithm requires

three temporary variables.

There are numerous other combinations of coordinate systems, most of which are

listed by Cohen et al. [20]. The costs marked with ∗ were derived by the author. The

modified Jacobian coordinate system Jm was omitted because it does not provide

any advantage over J when a = −3 in the Weierstraß Equation (2.4).

The results of Table 2.1 illustrate the advantages and disadvantages of each rep-

resentation. Chudnovsky Jacobian coordinates provide the most efficient addition

unless one of the points to be added is in affine coordinates. Jacobian coordinates

provides the fastest doubling. For a large compound operation that requires sig-

nificantly more doublings than additions, the Jacobian representation is likely to be
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Table 2.1: Field Cost of Mixed Addition and Doubling

Doubling Addition

2A → A I + 2M + 2S A+A → A I + 2M + S
2A → J 2M + 4S A+A → J 4M + 2S*
2A → J c 3M + 5S A+ J → J 8M + 3S
2J → J 4M + 4S A+ J c → J 7M + 2S*
2J → J c 5M + 5S J + J → J 12M + 4S
2J c → J 4M + 3S J + J c → J 11M + 3S
2J c → J c 5M + 4S J c + J c → J 10M + 2S

A+A → J c 5M + 3S
A+ J → J c 9M + 4S*
A+ J c → J c 8M + 3S
J + J → J c 13M + 5S*
J + J c → J c 12M + 4S*
J c + J c → J c 11M + 3S

more efficient while Chudnovsky Jacobian or affine-Jacobian coordinates are likely to

be more efficient for a compound operation requiring more additions than doublings.

The conversion from (X : Y : Z) in J to (x, y) in A with associated costs in

parentheses is as follows:

1. Z−1 is computed (I).

2. (Z−1)2, (Z−1)3 are computed (M + S).

3. x = X · (Z−2) and y = X · (Z−3) are computed (2M).

The total is I+3M+S. Some of the most useful operations that will be utilized in

subsequent sections, with their respective field costs in parentheses, are the following:

• 2A → J , (2M + 4S): This is the fastest doubling operation; initial points are

often given in affine coordinates.
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• 2J → J , (4M + 4S): In most of the algorithms for scalar multiplication,

doubling will be featured more heavily than addition, therefore fast doubling is

essential. This is the most efficient algorithm for doubling intermediate points

when a = −3.

• A +A → J , (2M + 4S): This is the fastest addition operation; initial points

are often given in affine coordinates.

• A+J → J , (8M +3S): The addition of points given in affine form with inter-

mediate points in Jacobian form will be needed in certain scalar multiplication

algorithms.

• J +J → J , (12M +4S): This addition algorithm is used for adding interme-

diate points that are in Jacobian form.

• J c + J c → J c, (11M + 3S): This algorithm is more efficient for the addition

of intermediate points, but requires a conversion from Jacobian to Chudnovsky

Jacobian coordinates. This addition is preferable when a long string of addi-

tions needs to be performed.

• J c + J c → J , (10M + 2S): This operation can be used to terminate the

long string of additions mentioned above and return the value in Jacobian

coordinates.

• J → J c, (M + S): This operation is used to convert Jacobian coordinates

to Chudnovsky Jacobian coordinates when a number of repeated additions is

needed such as in certain precomputations.
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• J → A, (I + 3M + S): This operation is needed to convert the intermediate

points from Jacobian coordinates to affine coordinates.

2.4.4 Specialized Formulas

In this section, we focus on formulas for operations that involve two or more basic

operations performed in sequence. Using custom formulas, certain operations can

be performed faster when performed in sequence. Examples of this include a double

followed by an add or an addition of a point to itself twice (tripling). If we treat

these compound operations as a single operation, custom formulas can be found

that reduce their complexity. Just like for doubling and addition, we will denote the

sequenc double then add by 2A + B → C and triple by 3A→ C for points given in

coordinate systems A, B and C.

The formulas for 3A → A were introduced by Eisentrager et al. [31] and improved

by Ciet et al. [19]. These formulas were used by Dimitrov et al. [28] to derive the

following formula for tripling in Jacobian coordinates. Given P = (X1 : Y1 : Z1), we

compute 3P = (X3 : Y3 : Z3) as

M = 3X2
1 + aZ4

1 ,

E = 12X1Y
2
1 −M2, T = 2Y 2

1 · 4Y 2
1 ,

X3 = 8Y 2
1 (T −ME) + X1E

2,

Y3 = Y1(4(ME − T )(2T −ME)− E3), and

Z3 = Z1E.

This formula computes the triple of a point for the case where a is an arbitrary

value using 10M + 6S operations. A repeated version that computes 3kJ → J was
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described, with field cost (11k − 1)M + (4k + 2)S. The authors did not examine

the case where a = −3. In this case, it is possible to reduce the cost of tripling an

affine point to 9M + 5S. We used this fact to derive two new algorithms for point

tripling, Algorithms 10 and 11, that are not found in the literature. Algorithm 10

takes a point in affine form and returns its triple in Jacobian form. We will make

the plausible assumption that P does not have order 3.

Algorithm 10: Point Tripling (3A → J )
Input: Affine Point P1 = (x1, y1)
Output: Jacobian Point 3P1 = Q = (X3 : Y3 : Z3)
(1) if Z1 = 0 or y1 = 0 then return P1

(2) r1 ← X2
1

(3) r1 ← r1 + (−1)
(4) r2 ← 2r1

(5) r2 ← r2 + r1

(6) r1 ← Y 2
1

(7) r1 ← 2r1

(8) r3 ← 2r1

(9) r3 ← X1 · r3

(10) Y3 ← 2r3

(11) r3 ← r3 + Y3

(12) Y3 ← r2
2

(13) Y3 ← −Y3

(14) r3 ← r3 + Y3

(15) r4 ← r2
1

(16) r4 ← 2r4

(17) Y3 ← r2
3

(18) Z3 ← X1 · Y3

(19) r2 ← r2 · r3

(20) r2 ← −r2

(21) r2 ← r2 + r5

(22) X3 ← r1 · r2

(23) X3 ← 2X3

(24) X3 ← 2X3

(25) X3 ← X3 + Z3

(26) r1 ← r1 + r2
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(27) r2 ← −r2

(28) Z3 ← Z3 · r3

(29) r1 ← r1 · r2

(30) r1 ← 2r1

(31) r1 ← 2r1

(32) Y3 ← r1 − Z3

(33) Y3 ← Y3 · Y1

(34) Z3 ← Z1

(35) Q := (X3 : Y3 : Z3)
(36) return Q

Algorithm 10 takes 7M + 5S and 4 temporary variables or S when 2P =∞.

Algorithm 11: Point Tripling (3J → J )
Input: Jacobian Points P1 = (X1 : Y1 : Z1)
Output: Jacobian Point 3P1 = Q = (X3 : Y3 : Z3)
(1) if Z1 = 0 then return P1

(2) r1 ← Z2
1

(3) r2 ← X1 − r1

(4) r1 ← X1 + r1

(5) r1 ← r1 · r2

(6) r2 ← 2r1

(7) r2 ← r2 + r1

(8) if r2 = 0 then return (1 : 1 : 0)
(9) r1 ← Y 2

1

(10) r1 ← 2r1

(11) r3 ← 2r1

(12) r3 ← X1 · r3

(13) Y3 ← 2r3

(14) r3 ← r3 + Y3

(15) Y3 ← r2
2

(16) Y3 ← −Y3

(17) r3 ← r3 − Y3

(18) r4 ← r2
1

(19) r4 ← 2r4

(20) Y3 ← r2
3

(21) Z3 ← X1 · Y3

(22) r2 ← r2 · r3

(23) r2 ← −r2

(24) r2 ← r2 + r5
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(25) X3 ← r1 · r2

(26) X3 ← 2X3

(27) X3 ← 2X3

(28) X3 ← X3 + Z3

(29) r1 ← r1 + r2

(30) r2 ← −r2

(31) Z3 ← Z3 · r3

(32) r1 ← r1 · r2

(33) r1 ← 2r1

(34) r1 ← 2r1

(35) Y3 ← r1 − Z3

(36) Y3 ← Y3 · Y1

(37) Z3 ← Z1 · r3

(38) Q := (X3 : Y3 : Z3)
(39) return Q

Algorithm 11 has a field cost of 9M+5S and uses 4 temporary variables, a savings

of M + S and 3 temporary variables when compared with the formula by Dimitrov

et al. [28].

Formulas for 2A+A → A were introduced by Eisentrager et al. [31] and improved

by Ciet et al. [19]. This algorithm was used to develop algorithms for 2A + A →

J and 2A + J → J that take fewer field operations than any combination of

doubling and addition algorithms. These are not included because they are not used

in later chapters of the thesis and are generally not useful for elliptic curve scalar

multiplication.

Table 2.2 illustrates the field cost of various special operations. The costs marked

with ∗ were derived by the author. There are no known custom algorithms for

2J +A → J and 2J +J → J that take fewer operations than the combination of

a double and an addition. The cost of these operations in Table 2.2 are given as the

sum of the costs of the corresponding double and addition.
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Table 2.2: Field Cost of Special Operations
Operations Field Cost

2A+A → A I + 9M + 2S
2A+A → J * 11M + 3S
2A+ J → J * 15M + 4S
2J +A → J 12M + 7S
2J + J → J 16M + 8S
3A → A I + 7M + 4S
3A → J * 7M + 5S
3J → J * 9M + 5S



Chapter 3

Elliptic Curve Scalar Multiplication

Scalar multiplication, adding a point P to itself k times, is an important operation

on the group of points on an elliptic curve, especially for ECC. In this chapter, we

describe, analyze and compare several algorithms to compute kP .

Scalar multiplication requires a point and an integer with which to multiply it.

In certain situations, either the point or the multiplier is known in advance. The

majority of the algorithms presented in this chapter are designed for the case in which

neither the point nor the scalar multiplier are known in advance. This is called the

unknown point case and any precomputation involving the point to be multiplied is

included as part of the operation. We also describe algorithms for the known point

case and the known multiplier case.

The unknown point methods introduced in this chapter are related to the clas-

sical binary scalar multiplication algorithm (see Knuth [52, Sec. 4.20]). The binary

method computes the scalar multiple of a point by a sequence of successive dou-

blings and additions determined by the digits of the binary representation of the

multiplier. Improvements to this algorithm can be made by taking different binary

representations of the multiplier such as the non-adjacent form (NAF) or the width

w non-adjacent form (w-NAF). These and similar representations lead to the binary

NAF (Section 3.2.2), window NAF (3.2.3), sliding window (3.2.4), and fractional

window (3.2.5) algorithms. An algorithm based on double-base number systems

(3.2.6) generalizes the binary algorithm further.

55
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In the known point or known multiplier cases, some steps can be taken to speed

up scalar multiplication. We discuss techniques used in these special circumstances

in Sections 3.3 and 3.4. The main techniques for the known point case are the

fixed-base windowing technique and the comb method. These involve expensive

precomputations and provide a significant speedup compared to the unknown point

algorithms. The known multiplier algorithms rely on generating an addition chain

for the multiplier.

The algorithms in this chapter will be analyzed in terms of two levels of complex-

ity. First, we present the expected number of elliptic curve operations needed and

second, the number of finite field operations needed. The number of finite field op-

erations is determined by specifying the point representations and the elliptic curve

operations used in the algorithms. The analyses in this chapter are all new. These

estimates are average case estimates unless otherwise noted.

3.1 Conventions

In this chapter, we deal with elliptic curves over prime fields. Suppose that E/Fp is

such an elliptic curve where p is a large prime. In this case, E(Fp) is the group of

rational points. The focus of this chapter is computing the scalar multiple kP of a

point P ∈ E(Fp) where k ∈ N. The time it takes to perform the scalar multiplication

operation is related to the size of the integer k. We focus on the size of various

representations of k, where the integer d = blog2 kc+1 is the bit-length of the binary

representation of k.

In this chapter, we will deal with numbers and their base 2 representations.
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Integers are represented using finite sums of the form
∑

i≥0 ai2
i. If n is an integer

and can be written as a finite sum n =
∑

i≥0 ai2
i, we call n =

∑
i≥0 ai2

i a base-2

representation of n. The following notation is used to denote base 2 representations:

(· · · , a2, a1, a0)2 = · · ·+ a22
2 + a12

1 + a0.

Each ai is called a digit. In the usual binary system, each digit is equal to 0 or 1. In

this chapter, we deal with alternative systems for which the digits and the base can

take on different values.

The running time analysis of scalar multiplication is based on two levels of com-

plexity, elliptic curve operations and finite field operations. For the number of elliptic

curve additions and doublings, the time needed to perform an addition will be de-

noted A, the time for a doubling D and the time needed for a tripling T . For finite

field operations, as before, a finite field multiplication will be denoted M , a squaring

S and an inversion I. Operations such as finite field addition, negation and doubling

that take a negligible amount of time in comparison to multiplication will not be

counted.

As explained in Section 2.2, there are different representations of elliptic curve

points. Elliptic curve operations have different costs in different representations.

For this discussion, we will only consider points in Chudnovsky Jacobian form (J c),

Jacobian form (J ), and affine form (A). Projective coordinates (P) are not used

because addition and doubling are both slower in this form than in Chudnovsky

Jacobian form.

In the detailed analysis of an algorithm, we describe each step of the algorithm

in terms of operations listed in Tables 2.1 and 2.2. Every elliptic curve operation
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has an associated cost in terms of the number of operations required in the base

field. The total cost of an algorithm is the total of the costs of the required group

operations. This total is called the field cost and the field cost with substitutions

S = (4/5)M and I = 80M will be called the M -cost. These estimates are standard

and are justified in Section A.4 and based on the findings of Brown et al. [16]. It

must be emphasized that the field costs presented in this chapter are average case

estimates. We must also note that while the standard substitution for I is 80M , it

may be as low as 30M in certain implementations and this consideration is noted

when relevant.

In 1999, NIST [78] published a set of recommended primes for prime field ellip-

tic curve cryptography that can be found in Section A.3.3 of the Appendix. These

primes are denoted by P192, P224, P256, P384 and P521 and their bit-lengths are

192, 224, 256, 384 and 521, respectively. These primes are chosen because they have

a specific form that permits faster modular reduction (see Appendix A for more de-

tails). In elliptic curve cryptography, the scalars used in scalar multiplication are

approximately the same size as the underlying field of the curve. In each section of

this chapter, we examine the field cost and M -cost of the scalar multiplication algo-

rithms for multipliers of sizes 192, 224, 256, 384 and 521 bits, in order to correspond

with curves over the corresponding NIST primes. In some algorithms, the multiplier

is given in a base 2 representation other than the standard binary representation. In

such cases, we assume the multipliers have length 192, 224, 256, 384 and 521 so that

they have the same length as the corresponding NIST primes.
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3.2 Unknown Point Scalar Multiplication

In this section, we present algorithms for elliptic curve scalar multiplication when

neither the point nor the multiplier are known in advance. A general overview of

these algorithms is presented by Gordon [39].

Most of the algorithms in this section are variations of the binary algorithm

presented in Section 3.2.1. The variations improve efficiency by utilizing other rep-

resentations of integers for which the digits can be taken from a set larger than

{0, 1}. Including −1 in the set of digits lead to the NAF algorithm (Section 3.2.2);

using larger digits leads to the window NAF, sliding window, and fractional window

algorithms (Sections 3.2.3, 3.2.4 and 3.2.5). The binary algorithm is generalized for

binary-ternary representations of integers in the double-base chain algorithm (3.2.6).

All the algorithms presented in this section are found in the literature in one form

or another.

3.2.1 Binary Method

The näıve method for computing kP from P is to add P to itself k times. This

method is inefficient since it takes k elliptic curve operations. Binary exponentiation

is a simple method for exponentiation that requires on the order of log(k) elliptic

curve operations. This algorithm is equivalent to the square-and-multiply method

for modular exponentiation (see Gordon [39]) but described in additive form. It

is sometimes referred to as the double-and-add algorithm. The algorithm relies on

the fact that every integer k has a binary representation (kd−1, . . . , k0)2 such that

k = kd−12
d−1 + · · ·+ k12 + k0 with kd−1 6= 0 and ki ∈ {0, 1}. Using Horner’s rule [52,
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Ch. 4] we can write

kP = 2(2 . . . (2kd−1P + kd−2P ) + · · ·+ k1P ) + k0P,

allowing kP to be computed using a sequence of doublings and additions.

In the right-to-left variant of this algorithm, based on Horner’s rule, the com-

putation begins with the least significant digits. Each binary power multiple of P

is computed, and is added to the running total when the corresponding digit is 1.

Algorithm 12 is adapted from Gordon [39].

Algorithm 12: Right-to-Left Binary Scalar Multiplication
Input: Affine point P , positive integer k with binary representation
(kd−1, . . . , k0)2

Output: Affine point kP
(1) Q←∞
(2) T ← P
(3) for i = 0 down to d− 1
(4) if ki 6= 0 then Q← Q + T
(5) T ← 2T
(6) return Q

The left-to-right variant of this algorithm begins with the most significant digits.

The point P is added to the running total for each non-zero digit and the total is

doubled for every digit. Algorithm 13 is adapted from Gordon [39].

Algorithm 13: Left-to-Right Binary Scalar Multiplication
Input: Affine point P , positive integer k with binary representation
(kd−1, . . . , k0)2

Output: Affine point kP
(1) Q← P
(2) for i = d− 2 to 0
(3) if ki 6= 1
(4) Q← 2Q + P
(5) else
(6) Q← 2Q
(7) return Q
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Algorithms 12 and 13 both take d− 1 squarings and H(k)− 1 additions where d

is the bit-length of k and H(k) is the Hamming weight (i.e. the number of non-zero

digits) of k. H(k) is (d + 1)/2 on average.

A more detailed analysis can be performed by determining the type of representa-

tion used for the elliptic curve points and the specific operations used to perform the

computation. The following is a description of each step of the previous algorithms

using operations from Tables 2.1 and 2.2. In Algorithm 12, there are approximately

twice as many doublings as additions. The coordinate system with the fastest dou-

bling is Jacobian coordinates, so this is the coordinate system we will use. Another

option is Chudnovsky Jacobian coordinates, saving one multiplication and one squar-

ing per addition, and costing an extra multiplication per doubling in comparison to

Jacobian coordinates. Since M > S, this coordinate system is slower. Moreover,

each point is represented by 5 finite field elements instead of 3.

Step 4 of Algorithm 12 defines Q the first time it is reached. The second time

it is reached, it is performed with A + J → J if k is odd and J + J → J if k is

even. Every other time, J + J → J is used. Step 5 is performed with 2A → J

the first time and 2J → J the rest of the time. The result of the algorithm is

in Jacobian form, so J → A is needed to return the required affine point. The

mixed affine-Jacobian operations are used because the initial points are given in

affine coordinates.

With this implementation, Algorithm 12 takes(
d− 1

2

)
A + (d− 1)D,
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which has field cost(
d− 3

2

)
(12M +4S)+(d−2)(4M +4S)+(8M +3S)+(2M +4S)+(I +3M +S)

= I + (10d− 13)M + (6d− 6)S

when k is odd and(
d− 1

2

)
(12M + 4S) + (d− 2)(4M + 4S) + (2M + 4S) + (I + 3M + S)

= I + (10d− 9)M + (6d− 5)S

when k is even.

Step 4 of Algorithm 13 is performed with 3A → J if i = d−2, and 2J +A → J

otherwise. Step 6 is performed with 2A → J if i = d− 2, and 2J → J otherwise.

The result of the algorithm is in Jacobian form, so J → A is needed.

Algorithm 13 has field cost(
d− 3

2

)
(12M + 7S) + (8M + 4S) +

(
d− 1

2

)
(4M + 4S) + (I + 3M + S)

= I + (8d− 5)M +

(
11

2
d +

11

2

)
S

when kd−2 is 1 and(
d− 1

2

)
(12M + 7S) + (2M + 4S) +

(
d− 3

2

)
(4M + 4S) + (I + 3M + S)

= I + (8d− 7)M +

(
11

2
d− 11

2

)
S

when kd−2 is 0.

If we suppose that both kd−2 and k0 are 1 half the time as one would expect

on average, then Table 3.1 describes the average field cost of these operations. The
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Table 3.1: Binary Method Average Cost

d
R2L L2R

Field Cost M -cost Field Cost M -cost

192 I+1909.0M+1146.5S 2906.2M I+1516.0M+1043.0S 2430.4M
224 I+2229.0M+1338.5S 3379.8M I+1772.0M+1219.0S 2827.2M
256 I+2549.0M+1530.5S 3853.4M I+2028.0M+1395.0S 3224.0M
384 I+3829.0M+2298.5S 5747.8M I+3052.0M+2099.0S 4811.2M
521 I+5199.0M+3120.5S 7775.4M I+4148.0M+2852.5S 6510.0M

left-to-right binary algorithm is more efficient in this context because the point that

is repeatedly added is the initial point P , given in affine form, which allows the faster

Jacobian-affine addition formulas to be used.

3.2.2 Binary NAF

The signed binary representation is a redundant system for representing an integer.

The standard base 2 representation for an integer k is

k =
d−1∑
i=0

ki2
i,

where ki ∈ {0, 1}. This representation is unique. A signed binary system is a base

2 representation that allows ki ∈ {−1, 0, 1}. Let (kd−1, . . . , k0) denote a sequence

of digits of such an integer k, where kd−1 6= 0. The notation ki will represent the

integer −ki. Signed binary representations are highly redundant, for example

3 = (1, 1) = (1, 0, 1) = (1, 1, 0, 1),

in such a representation. If we make the additional restriction that no two consecu-

tive digits can be non-zero, we find that this restricted signed binary representation
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not only exists, it is unique for all integers. A useful fact is that this representa-

tion requires at most one additional digit when compared to the standard binary

representation. This representation is called the non-adjacent form (NAF) and its

properties, summarized below in Theorem 3.2.1, were examined in depth by Bosma

[13].

Theorem 3.2.1. Let k be a positive integer.

1. k has a unique NAF denoted NAF(k).

2. NAF(k) has the fewest non-zero digits of any signed digit binary representation

of k.

3. The length of NAF(k) is at most one more than the length of the binary repre-

sentation of k.

4. If the length of NAF(k) is l, then 2l/3 < k < 2l+1/3.

5. The average density of nonzero digits among all NAFs of length l is 1/3.

Since the first digit kd−1 of an NAF representation for a positive integer k is 1,

then kd−2 is forced to be 0. Computing the NAF representation of an integer k is a

straightforward process performed by Algorithm 14. This algorithm is adapted from

Hankerson et al. [43, Alg. 3.35].

Algorithm 14: Computing the NAF of a Positive Integer
Input: Positive integer k
Output: NAF(k) as a signed binary representation (kd−1, . . . , k0)
(1) i← 0
(2) while k ≥ 1
(3) if k is odd
(4) ki ← 2− (k mod 4)
(5) k ← k − ki
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(6) else
(7) ki ← 0
(8) k ← k/2, i← i + 1
(9) return (kd−1, . . . , k0)

Another signed binary encoding that was recently introduced by Okeya et al.

[81] is the mutual opposite form (MOF). This representation has many of the same

attributes as the NAF including length expansion and average density. The signif-

icant difference is that it is computed left-to-right rather than right-to-left. This

could potentially lead to improvements as the MOF can be computed more easily

on the fly. See Okeya et al. [81] for more details on the encoding. Since the density

of this representation is identical to that of the NAF, we will not consider separate

algorithms for left-to-right NAF scalar multiplication and left-to-right MOF scalar

multiplication.

In the binary representation, the operation performed for each digit is either

2P +Q or 2P . When −1 is allowed for a digit, the operations performed are 2P +Q,

2P or 2P − Q. The fact that negation is a fast operation in the group of rational

points on an elliptic curve allows 2P − Q to be computed in essentially the same

amount of time as 2P + Q. This allows for the binary algorithm to be adapted to

using a signed digit representation with no additional computational cost. Algorithm

15 computes a scalar multiple of a point given the NAF of the scalar, adapted from

Gordon [39].

Algorithm 15: Left-to-Right NAF
Input: Affine point P , positive integer k with NAF(k) = (kd−1, . . . , k0)
Output: Affine point kP
(1) Q← 2P
(2) for i = d− 3 to 0
(3) if ki = 1
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(4) Q← 2Q + P
(5) else if ki = −1
(6) Q← 2Q− P
(7) else
(8) Q← 2Q
(9) return Q

The average proportion of non-zero digits in an NAF representation is 1/3 accord-

ing to Bosma [13]. Therefore the approximate average running time of this algorithm

will be (
d

3
− 1

)
A + (d− 1)D,

where d is the length of k.

In Algorithm 15, there are approximately three times as many doublings as ad-

ditions. The coordinate system with the fastest doubling is Jacobian coordinates, so

this is the coordinate system we will use. Using the operations from Tables 2.1 and

2.2, a more detailed analysis of the previous algorithm can be performed.

Step 1 of Algorithm 13 is performed with 2A → J . Steps 4 and 6 are performed

with 2J +A → J , Step 8 is performed with 2J → J . The result of the algorithm

is in Jacobian form, so J → A is needed to return the result in affine form.

This algorithm takes the following number of operations on average:

(
d− 3

3

)
(12M + 7S) + (2M + 4S) +

(
d− 2− d− 3

3

)
(4M + 4S) + (I + 3M + S)

= I +

(
20

3
d− 11

)
M +

(
15

3
d− 6

)
S.

Table 3.2 describes the average field cost of NAF scalar multiplication for d corre-

sponding to the 5 NIST primes, assuming d/3 non-zero terms. The NAF method

requires no extra storage space while remaining simple and quite fast. Because of
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Table 3.2: Binary NAF Method Average Cost
d Field Cost M -cost

192 I+1269.0M+954.0S 2112.2M
224 I+1482.3M+1114.0S 2453.5M
256 I+1695.7M+1274.0S 2794.9M
384 I+2549.0M+1914.0S 4160.2M
521 I+3462.3M+2599.0S 5621.5M

these properties, the NAF method is considered a benchmark for scalar multiplica-

tion. In the following sections, a number of algorithms will be described that are

faster, but require either a certain amount of storage space or a more complicated

precomputation.

3.2.3 Window NAF

Precomputation can potentially provide a speed boost in comparison to the NAF

method. Given w ≥ 2, a width-w NAF (or simply w-NAF) of an integer k is a base

2 representation

k =
d−1∑
i=0

ki2
i,

where w ≥ 2, ki is odd, |ki| < 2w−1 for all i and at most one of any w consecutive

digits is non-zero. The set of possible values for ki is called the digit set of the rep-

resentation. Notice that when w = 2, this corresponds to the previously introduced

NAF representation.

Every k ∈ N has a unique width-w NAF, denoted NAFw(k) (see Muir and Stinson

[76]). This representation is a generalization of the NAF representation. Theorem

3.2.2 summarizes the properties of w-NAF from Muir and Stinson [76].
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Theorem 3.2.2. Let k, w be positive integers.

1. k has a unique width-w NAF.

2. NAF2(k) = NAF(k).

3. The length of NAFw(k) is at most one more than the length of the binary

representation of k.

4. The average density of nonzero digits among all width-w NAFs of length l is

1/(w + 1).

Möller [71] and Bosma [13] discuss methods to eliminate the length expansion of

a w-NAF expansion in around half the cases.

As with the NAF, there is a left-to-right analogue of the w-NAF, namely the

w-MOF described in Okeya et al. [81]. This is simply the sliding window technique

described in Section 3.2.4 performed on the MOF of a number. We will not examine

this further since the w-MOF has the same non-zero density as the w-NAF.

Algorithm 16 computes the width-w NAF of an integer, from Hankerson et al.

[43, Alg. 3.35].

Algorithm 16: Computing the Width-w NAF of an Integer
Input: Positive integers k,w
Output: Width-w NAF of k, (ki−1, . . . , k0)
(1) i← 0
(2) while k ≥ 1
(3) if k is odd then ki ← k mod 2w (signed), k ← k − ki

(4) else ki ← 0
(5) k ← k/2, i← i + 1
(6) return (ki−1, . . . , k0)

The digit set B for this representation is the odd integers between −2w−1 and

2w−1. If the points bP are precomputed for every positive b in the digit set B,
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the binary algorithm can again be applied. The advantage is that in this case, the

number of non-zero digits and hence the number of additions needed is lower. This

leads to Algorithm 17 for computing a scalar multiple of a point, given the w-NAF

of the multiplier, adapted from Hankerson et al. [43, Alg. 3.36].

Algorithm 17: Left-to-Right Window NAF
Input: Positive integer k with NAFw(k) = (kd−1, . . . , k0), affine point
P
Output: Affine point kP
(1) Precomputation:
(2) Set P1 ← P
(3) P2 ← 2P
(4) foreach i ∈ {3, 5, . . . , 2w−1 − 1}
(5) Pi ← Pi−2 + P2

(6) Computation:
(7) Q← Pd−1

(8) for i = d− 2 to 0
(9) if ki > 0
(10) Q← 2Q + Pki

(11) else if ki < 0
(12) Q← 2Q− Pki

(13) else
(14) Q← 2Q
(15) return Q

The density of the non-zero width-w NAFs of length d is approximately d/(w+1).

This means that the running time of Algorithm 17 is approximately

(D + (2w−2 − 1)A) +

((
d

w + 1
− 1

)
A + (d− 1)D

)
.

Algorithm 17 also requires the storage of 2w−2 − 1 points.

There are many possibilities for the coordinate system in this algorithm. First,

let us examine the possibilities for the precomputation stage. The precomputation

consists of a large number of additions by the value 2P , and the resulting values
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are used in additions in the main stage. This suggests that the running total should

be kept in Chudnovsky Jacobian coordinates for faster addition. There are two

possibilities for the representation of 2P ; it is either computed as 2A → J c or

2A → A. In the former case, every addition in the precomputation will be of the

form J c +J c → J c, and cost 11M + 3S. If 2P is stored in affine coordinates, every

addition will use J c +A → J c, and cost 8M + 3S. The trade-off is that 2A → A

has an expensive inversion step. In fact, even if we assume I is as low as 30M , then

w must be at least 6 for this trade-off to be more efficient. Therefore, we will assume

that for Algorithm 17, Step 3 is performed with 2A → J c, Step 5 is performed with

A+ J c → J c for i = 3, and J c + J c → J c otherwise.

For the main computation, there are approximately w+1 times as many doublings

as additions, therefore Jacobian coordinates are used for the temporary variable. If

the precomputed values are kept in Chudnovsky Jacobian coordinates, the double-

and-add (for digits other than ±1) will be performed with 2J + J c → J , and

cost 15M + 7S. Another option is to use simultaneous inversion to convert the

precomputed values to affine coordinates. Montgomery [75] introduced a method

for computing the inverses of k field elements using only one inverse and 3(k − 1)

multiplications. The operation is described in Algorithm 54 in Section A.3.4 of the

Appendix. Converting the precomputed points to affine coordinates would allow

each addition to use 2J + A → J , costing only 12M + 7S. The trade-off for this

is dependent on the size of the precomputed set and number of additions required.

The optimal scheme to use for different parameters is identified in Tables 3.3 and

3.4.

If the precomputed points are kept in Chudnovsky Jacobian coordinates for Al-
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gorithm 17, Step 10 is performed with 2J + A → J if ki = 1, and 2J + J c → J

otherwise. Similarly, Step 12 is performed with 2J − A → J if ki = −1, and

2J − J c → J otherwise. Step 14 is performed with 2A → J the first time, and

2J → J otherwise.

If the precomputed points are converted to affine coordinates for Algorithm 17,

(I +3(2w−2−2)M) is required to compute Z−1
1 , Z−1

3 , . . . , Z−1
2w−1−1 using simultaneous

inversion (Algorithm 54) and 3(2w−2 − 1)M + (2w−2 − 1)S to compute the affine

form of each Pi = (XiZ
−2
i , YiZ

−3
i ). Once all the precomputed values are in affine

coordinates, Step 10 is performed with 2J +A → J and Step 12 is performed with

2J − A → J . Step 14 is performed with 2A → J the first time and 2J → J

otherwise. The final step is J → A.

When ki is non-zero, ki = ±1 happens with probability around (1/2w−2). The

precomputation for 17 has average field cost

(3M + 5S) + (8M + 3S) + (2w−2 − 2)(11M + 3S)

= (11 · 2w−2 − 11)M + (3 · 2w−2 + 2)S,

converting the table of precomputed values to affine form has cost

I + (6 · (2w−2 − 1)− 3)M + (2w−2 − 1)S.

With precomputed values in Chudnovsky Jacobian form, the rest of the algorithm
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has average field cost(
1

2w−2

)(
d

w + 1
− 1

)
(12M + 7S)+(

2w−2 − 1

2w−2

)(
d

w + 1
− 1

)
(15M + 7S) + (2M + 4S)+(

d− d

w + 1
− 1

)
(4M + 4S) + (I + 3M + S)

= I +

((
(12 + (2w−2 − 1)15)(d− (w + 1))− 4d2w−2

2w−2(w + 1)

)
+ 4d + 1

)
M+((

(7 + (2w−2 − 1)7)(d− (w + 1))− 4d2w−2

2w−2(w + 1)

)
+ 4d + 1

)
S.

With the precomputed values in affine form, the rest of the algorithm has field cost(
d

w + 1
− 1

)
(12M+7S)+(2M+4S)+

(
d− d

w + 1
− 1

)
(4M+4S)+(I+3M+S)

= I +

(
8d

w + 1
+ 4d− 11

)
M +

(
3d

w + 1
+ 4d− 6

)
S.

Algorithm 54 requires the same number of temporary field elements as elements

being inverted. For space-constrained implementations, this seems to pose a problem.

A possible solution is to store the temporary values in the places of the coordinates

Z2, Z3 of the precomputed values, since these are not used.

Tables 3.3 and 3.4 describe the average field costs and average M -costs of the

window NAF method with various window sizes and d chosen to correspond to the

length of the NIST primes P192 and P521. Both versions of the algorithm are in-

cluded; using the regular Chudnovsky Jacobian table and converting the table to

affine form. By increasing w, the running time of the main portion of the algorithm

decreases at the cost of the precomputation. This is advantageous until the precom-

putation, which has exponential cost in w, outweighs the gains in the main portion.
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Table 3.3: Window NAF Method Average Cost (d = 192)

w
Regular Table Affine Table

Storage
Field Cost M -cost Field Cost M -cost

3 I+1152.0M+914.0S 1963.2M 2I+1155.0M+915.0S 2047.0M 1
4 I+1153.3M+891.2S 1946.3M 2I+1112.2M+894.2S 1987.6M 3
5 I+1159.8M+884.0S 1947.0M 2I+1129.0M+891.0S 2001.8M 7
6 I+1210.8M+894.3S 2006.2M 2I+1228.4M+909.3S 2115.9M 15
7 I+1354.7M+932.0S 2180.3M 2I+1473.0M+963.0S 2403.4M 31

Table 3.4: Window NAF Method Average Cost (d = 521)

w
Regular Table Affine Table StorageField Cost M -cost Field Cost M -cost

3 I+3126.0M+2476.8S 5187.4M 2I+3129.0M+2477.8S 5271.2M 1
4 I+3094.4M+2404.6S 5098.1M 2I+2954.6M+2407.6S 5040.7M 3
5 I+3037.8M+2364.5S 5009.4M 2I+2883.7M+2371.5S 4940.9M 7
6 I+3026.2M+2351.3S 4987.2M 2I+2920.4M+2366.3S 4973.5M 15
7 I+3115.4M+2371.4S 5092.5M 2I+3118.0M+2402.4S 5199.9M 31

the gains in the main The fastest version for a given amount of storage space (in

terms of Chudnovsky Jacobian points) is written in bold. If none of the terms in a

row are bold, then there is a faster set of parameters requiring less storage space in

bold earlier in the table. For example, in row 4 of Table 3.4, the M -cost using an

affine table is 4973.5M , using 15 points of storage. This is not in bold because in

the previous row, an M -cost of 4940.9M was achieved using only 7 points of storage.

The tables for d chosen to correspond with P224, P256 and P384 are similar and

can be found in Appendix B.

Notice that the choice of whether or not to convert the table of precomputed

values to affine coordinates depends on the d value and the amount of storage space

available. It may be noted that the storage list in these tables denotes Chudnovsky
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Jacobian points. This choice can also be affected by the computation time of an

inversion relative to a multiplication. If I ≈ 80M is assumed, the parameters in

bold remain the fastest, but when I is as low as 30M , the affine table becomes

slightly more advantageous.

For each NIST prime, given a reasonably small, finite amount of storage space,

the window NAF method is faster than the NAF method. The next method we will

examine is the sliding window method. The sliding window method has comparable

running time to the window NAF.

3.2.4 Sliding Window

The window NAF technique uses the width-w NAF of an integer to compute the

scalar multiple of a point P . The digit set of the base 2 representation is

{−2w−1 + 1,−2w−1 + 3, . . . ,−1, 1, . . . , 2w−1 − 3, 2w−1 − 1},

and therefore the points 3P, 5P, . . . , (2w−1−1)P have to be precomputed. The sliding

window technique is similar, but uses the NAF of an integer to determine the digits

of the representation.

The sliding window takes advantage of the fact that in the NAF representation

of an integer, no two consecutive digits are non-zero. This means that if any w

consecutive digits are taken from the NAF of an integer n, the number it represents

will be between −2w+1/3 and 2w+1/3. This follows from the fact that any number

that is greater than 2w+1/3 has a NAF that is at least w + 1 digits according to

Bosma [13].

The digits of the NAF representation of n can be grouped into sets of consecutive
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digits of length at most w, with placement so that the lowest order digit in each set

is odd. In the sliding window technique, the integers represented by these sets are

used as the digits for a base 2 representation of n, and the scalar multiple nP is

computed as in the previous algorithms.

The choice of w determines the number of points that have to be precomputed.

When the minimum window width is chosen to be w, the number of points needed

in the precomputation is around a third more than in the window NAF method with

parameter w (all odd points up to 2w+1/3 versus the odd point up to 2w+1/4). The

advantage of this method is that the average density of non-zero digits is lower than

in the w-NAF representation, causing the number of additions needed to compute

the scalar multiple to decrease.

Algorithm 18 is a left-to-right version of the sliding window NAF algorithm

adapted from Hankerson et al. [43, Alg. 3.38].

Algorithm 18: Left-to-Right Sliding Window NAF
Input: Affine point P , positive integer k with NAF(k) = (kd−1, . . . , k0),
window width w ∈ N
Output: Affine point kP
(1) Precomputation:
(2) P1 ← P
(3) P2 ← 2P
(4) foreach i ∈ {3, 5, . . . , 2(2w − (−1)w)/3− 1}
(5) Pi = Pi−2 + P2

(6) Computation:
(7) Q←∞
(8) i← d− 1
(9) while i ≥ 0
(10) find the largest t ≤ w such that u → (ki, . . . , ki−t+1) is

odd.
(11) Q← 2t−1Q
(12) if u > 0
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(13) Q← 2Q + Pu

(14) else if u < 0
(15) Q← 2Q− P−u

(16) else
(17) Q← 2Q
(18) i← i− t
(19) return Q

According to Hankerson et al. [43, Sec 3.3.1], the average length of a run of zeros

between windows is

ν(w) =
4

3
− (−1)w

3 · 2w−2
,

and the running time for Algorithm 18 is approximately(
D +

(
2w − (−1)w

3
− 1

)
A

)
+

((
d

w + ν(w)
− 1

)
A + (d− 1)D

)
.

The steps of this algorithm are analogous to those of Algorithm 17 and the points are

represented in the same way. The two options are to keep the precomputed values in

Chudnovsky Jacobian coordinates or to use simultaneous inversion to convert them

to affine coordinates.

The precomputation for Algorithm 18 has average cost

(3M + 5S) + (8M + 3S) +

(
2w − (−1)w

3
− 2

)
(11M + 3S)

=

(
11 · 2

w − (−1)w

3
− 11

)
M +

(
3 · 2

w − (−1)w

3
+ 2

)
S.

Converting the table of precomputed values to affine form has cost

I +

(
6

(
2w − (−1)w

3
− 1

)
− 3

)
M +

(
2w − (−1)w

3
− 1

)
S.

With the precomputed values in Chudnovsky Jacobian form, the rest of the algorithm
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has a field cost of(
6

2w − (−1)w

)(
d

w + ν(w)
− 1

)
(12M + 7S)+(

1− 6

2w − (−1)w

)(
d

w + ν(w)
− 1

)
(15M + 7S) + (2M + 4S)+(

d− d

w + ν(w)
− 1

)
(4M + 4S) + (I + 3M + S)

= I +

((
15− 3

6

2w − (−1)w

)(
d

w + ν(w)
− 1

)
+ 4d− 4d

w + ν(w)
+ 1

)
S+

7

(
d

w + ν(w)
− 1

)
+ 4d−

(
4d

w + ν(w)
+ 1

)
S,

and with the precomputed values in affine form, the rest of the algorithm has cost(
d

w + ν(w)
− 1

)
(12M + 7S) + (2M + 4S)+(

m− d

w + ν(w)
− 1

)
(4M + 4S) + (I + 3M + S).

= I +

(
3m +

8d

w + ν(w)
+ 1

)
M +

(
4d +

3d

w + ν(w)
+ 1

)
S.

Tables 3.5 and 3.6 describe the average field costs and average M -costs of the

sliding window method with various window sizes and d chosen to correspond to

the length of the NIST primes P192 and P521, respectively. Both versions of the

algorithm are included; using the regular Chudnovsky Jacobian table and converting

the table to affine form. The fastest version for a given amount of storage space is

written in bold. If none of the terms are bold, then there is a version requiring less

storage space that is faster listed earlier in the table. The tables for d chosen to

correspond with P224, P256 and P384 are similar and can be found in Appendix B.

As with the w-NAF, the choice of whether or not to convert the table of pre-

computed values to affine coordinates depends on the d value and the amount of
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Table 3.5: Sliding Window Method Average Cost (d = 192)

w
Regular Table Affine Table StorageField Cost M -cost Field Cost M -cost

3 I+1162.0M+901.0S 1962.8M 2I+1129.3M+903.0S 2011.7M 2
4 I+1157.6M+888.7S 1948.6M 2I+1114.6M+892.7S 1988.7M 4
5 I+1179.4M+887.4S 1969.3M 2I+1164.9M+897.4S 2042.8M 10
6 I+1255.6M+905.8S 2060.2M 2I+1304.1M+925.8S 2204.7M 20
7 I+1466.1M+962.0S 2315.7M 2I+1652.1M+1004.0S 2615.3M 42

Table 3.6: Sliding Window Method Average Cost (d = 521)

w
Regular Table Affine Table StorageField Cost M -cost Field Cost M -cost

3 I+3136.0M+2436.3S 5165.1M 2I+3030.2M+2438.3S 5140.9M 2
4 I+3087.7M+2392.7S 5081.9M 2I+2931.9M+2396.7S 5009.3M 4
5 I+3034.9M+2358.2S 5001.5M 2I+2893.8M+2368.2S 4948.3M 10
6 I+3053.7M+2356.7S 5019.1M 2I+2980.0M+2376.7S 5041.4M 20
7 I+3210.3M+2396.3S 5207.3M 2I+3283.5M+2438.3S 5394.2M 42

storage space available. This choice can also be affected by the computation time of

an inversion relative to a multiplication; for example, when I is as low as 30M , the

affine table becomes slightly more advantageous.

The M -costs of the sliding window technique are comparable to the window NAF

method. The next method we will examine is the fractional window method. The

fractional window technique is a generalization of both the window NAF and the

sliding window techniques and will tie the results of both algorithms together.

3.2.5 Fractional Window

For a given value w, the window NAF and sliding window techniques require a

fixed number of precomputed points. For each successive value of w, the number of
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values that need to be precomputed doubles. The fractional window technique was

introduced by Möller [72], and is a generalization of the window NAF and sliding

window techniques. This representation allows more flexibility in the number of

precomputed values while providing a computation time that is at least as fast.

Let w ≥ 2 be an integer and m an odd integer such that 1 ≤ m ≤ 2w − 1. The

(m, w)-ary fractional window representation is a base 2 representation with digits in

the set

B = {±1,±3, . . . ,±(2w + m)} .

Let the map η : {0, 1, . . . , 2w+2} → B ∪ {0} be defined as follows:

• If x is even, then η(x) = 0.

• If 0 < x ≤ 2w + m, then η(x) = x.

• If 2w + m < x < 3 · 2w −m, then η(x) = x− 2w+1.

• If 3 · 2w −m ≤ x < 2w+2, then η(x) = x− 2w+2.

Algorithm 19, from Möller [71], encodes the integer k into signed fractional win-

dow representation. Starting with the lowest w+2 digits, the algorithm identifies the

appropriate digit by applying η and subtracts this from the number. The set of digits

that is examined is shifted by one and the process is repeated. This is not unlike

the encoding process for window NAF (Algorithm 16) except that in this case the

encoding function guarantees that the digit is in the range {−2w −m, . . . , 2w + m}.

Algorithm 19: Encoding Signed Fractional Window
Input: Integer k, width w ∈ N, parameter m ∈ {1, 3, . . . , 2w − 1}
Output: Signed (m,w)-ary fractional representation (bi−1, . . . , b0) of
k
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(1) d← k mod 2w+2

(2) c← bk/2w+2c
(3) i← 0
(4) while d 6= 0 and c 6= 0
(5) bi ← η(d)
(6) d← d− b1

(7) i← i + 1
(8) d← (c mod 2) · 2w+1 + d/2
(9) c← bc/2c
(10) return (bi−1, . . . , b0)

Just like with the w-NAF encoding, the length of the fractional window encoding

of an integer is at most one digit longer than the length of the binary representation.

Algorithm 20, from Möller [71], is the algorithm for computing the scalar multiple

kP of a point P when k ∈ N is given in signed fractional window representation.

It is nearly identical to that of left-to-right window NAF except for the different

representation of k and the values that have to be precomputed. The precomputed

values are {3P, 5P, . . . , (2w + m)P}.

Algorithm 20: Left-to-Right Fractional Window NAF
Input: Affine point P , positive integer k with signed m, w-ary frac-
tional representation (kd−1, . . . , k0)
Output: Affine point kP
(1) Precomputation:
(2) P1 ← P
(3) P2 ← 2P
(4) foreach i ∈ {3, 5, . . . , 2w + m}
(5) compute Pi ← Pi−2 + P2

(6) Computation:
(7) Q← P
(8) for i = d− 2 to 0
(9) if ki > 0
(10) Q← 2Q + Pki

(11) else if ki < 0
(12) Q← 2Q− Pki

(13) else
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(14) Q← 2Q
(15) return Q

According to Möller [71], the average density of non-zero entries achieved by the

signed fractional window representation with parameters w and m is(
1

w + m+1
2w + 2

)
,

so the running time for Algorithm 18 is approximately(
D +

(
2w + m + 1

2
− 1

)
A

)
+

((
1

w + m+1
2w

− 1

)
A + (d− 1)D

)
.

The steps of this algorithm are analogous to those of Algorithms 17 and 18, and the

points are represented in the same way. The two options are to keep the precom-

puted values in Chudnovsky Jacobian coordinates or to use simultaneous inversion

to convert them to affine coordinates.

Algorithm 20 has field cost

(3M + 5S) + (8M + 3S) + 11

(
2w + m + 1

2
− 11

)
M + 3

(
2w + m + 1

2
+ 2

)
S

in the precomputation stage, and converting the table of precomputed values to affine

form has field cost

I +

(
6

(
2w + m + 1

2
− 1

)
− 3

)
M +

(
2w + m + 1

2
− 1

)
S.

With the precomputed values in Chudnovsky Jacobian form, the rest of the algorithm

has field cost(
1

2w + m + 1

)(
d

w + m+1
2w + 2

− 1

)
(12M + 7S)+(

1− 1

2w + m + 1

)(
d

w + m+1
2w + 2

− 1

)
(15M + 7S) + (2M + 4S)

+

(
d− d

w + m+1
2w + 2

− 1

)
(4M + 4S) + (I + 3M + S)
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= I +

((
15− 3

1

2w + m + 1

)(
d

w + m+1
2w + 2

− 1

)
+ 4d− 4d

w + m+1
2w + 2

+ 1

)
S+

7

(
d

w + m+1
2w + 2

− 1

)
+ 4d−

(
4d

w + m+1
2w + 2

+ 1

)
S

With the precomputed values in affine form, the rest of the algorithm has field cost(
d

w + m+1
2w + 2

− 1

)
(12M + 7S) + (2M + 4S)

+

(
d− d

w + m+1
2w + 2

− 1

)
(4M + 4S) + (I + 3M + S)

= I +

(
3m +

8m

w + m+1
2w + 2

+ 1

)
M +

(
4m +

3m

w + m+1
2w + 2

+ 1

)
S.

Tables 3.7 and 3.8 describe the average field costs and average M -costs of the

fractional window method with different values of w and m with d chosen to corre-

spond to the length of the NIST primes P192 and P521, respectively. Both versions

of the algorithm are included; using the Chudnovsky Jacobian table and using the

table converted to affine coordinates. The fastest version for a given amount of stor-

age space is written in bold. If none of the terms are bold, then there is a faster

version requiring less storage. The tables for d chosen to correspond to P224, P256

and P384 are similar and can be found in Appendix B.

It must be noted that for a given amount of storage space, the average cost of the

fractional window algorithm agrees exactly with that of the window NAF (Section

3.2.3) and sliding window (Section 3.2.4) algorithms. This demonstrates how the

fractional window technique is a generalization of both previous methods.

As we will show in Section 3.2.7, if storage space is disregarded, the fractional

window method is the fastest algorithm for unknown point scalar multiplication.
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Table 3.7: Fractional Window Method Average Cost (d = 192)

w m
Regular Table Affine Table Sto.Field Cost M -cost Field Cost M -cost

1 1 I+1152.0M+914.0S 1963.2M 2I+1155.0M+915.0S 2047.0M 1

2 1 I+1162.0M+901.0S 1962.8M 2I+1129.3M+903.0S 2011.7M 2
3 I+1153.3M+891.2S 1946.3M 2I+1112.2M+894.2S 1987.6M 3

3

1 I+1157.6M+888.7S 1948.6M 2I+1114.6M+892.7S 1988.7M 4
3 I+1159.1M+886.7S 1948.5M 2I+1118.3M+891.7S 1991.7M 5
5 I+1159.5M+885.2S 1947.7M 2I+1123.1M+891.2S 1996.1M 6
7 I+1159.8M+884.0S 1947.0M 2I+1129.0M+891.0S 2001.8M 7

4

1 I+1166.6M+885.0S 1954.6M 2I+1140.8M+893.0S 2015.2M 8
3 I+1173.1M+886.2S 1962.0M 2I+1152.8M+895.2S 2028.9M 9
5 I+1179.4M+887.4S 1969.3M 2I+1164.9M+897.4S 2042.8M 10
7 I+1185.7M+888.6S 1976.5M 2I+1177.3M+899.6S 2057.0M 11

Table 3.8: Fractional Window Method Average Cost (d = 521)

w m
Regular Table Affine Table Sto.Field Cost M -cost Field Cost M -cost

1 1 I+3126.0M+2476.8S 5187.4M 2I+3129.0M+2477.8S 5271.2M 1

2 1 I+3136.0M+2436.3S 5165.1M 2I+3030.2M+2438.3S 5140.9M 2
3 I+3094.4M+2404.6S 5098.1M 2I+2954.6M+2407.6S 5040.7M 3

3

1 I+3087.7M+2392.7S 5081.9M 2I+2931.9M+2396.7S 5009.3M 4
3 I+3073.3M+2382.2S 5059.0M 2I+2912.8M+2387.2S 4982.6M 5
5 I+3055.9M+2372.8S 5034.1M 2I+2896.9M+2378.8S 4959.9M 6
7 I+3037.8M+2364.5S 5009.4M 2I+2883.7M+2371.5S 4940.9M 7

4

1 I+3037.6M+2362.2S 5007.4M 2I+2886.5M+2370.2S 4942.6M 8
3 I+3036.5M+2360.1S 5004.6M 2I+2889.9M+2369.1S 4945.1M 9
5 I+3034.9M+2358.2S 5001.5M 2I+2893.8M+2368.2S 4948.3M 10
7 I+3033.1M+2356.5S 4998.3M 2I+2898.2M+2367.5S 4952.2M 11
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When comparing algorithms with a fixed amount of storage space, the fractional

window algorithm can possibly be beaten by the algorithm described in Section

3.2.6, double-base chain scalar multiplication.

3.2.6 Double-Base Representation

In recent years, research has been done on a highly redundant system for represent-

ing integers, the double-base number system (DBNS). Rather than representing an

integer by a sum of powers of two, it is represented by a sum of mixed powers of two

and three (see Dimitrov et al. [30]). An integer k is represented as

k =
m∑

i=1

si2
bi3ti with si ∈ {−1, 1} and bi, ti ≥ 0.

The DBNS can result in very sparse representations of integers, as evidenced by the

following theorem of Dimitrov et al. [29].

Theorem 3.2.3. Every positive integer k can be represented as the sum of at most

O
(

log k
log log k

)
numbers of the form 2b3t.

The proof is based on a result by Tijdeman [93] that states that given the ordered

sequence {n1, n2, . . .} of integers that are powers of the same two primes, the maximal

distance between ni and ni+1 is sub-linear in ni. Of all the representations discussed

in this thesis, DBNS is the only one for which the optimal number of terms is provably

sublinear in log(k).

A canonical representation for an integer k is a representation that has a minimal

number of terms. It seems that finding a canonical DBNS representation of a large

integer is a hard problem. There is, however, a greedy algorithm (see Dimitrov et
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al. [28]) that can find a relatively sparse representation that satisfies the asymptotic

bound from Theorem 3.2.3.

A more useful class of DBNS representations in our context is the class of double-

base chains.

Definition 3.2.4. Given k ∈ N, a double-base chain for k is a sequence of triples

((sm, bm, tm), . . . , (s1, b1, t1)) where si ∈ {1,−1} for all i, 0 ≤ b1 ≤ b2 ≤ · · · ≤ bm and

0 ≤ t1 ≤ t2 ≤ · · · ≤ tm such that

k =
m∑

i=1

si2
bi3ti .

The length of a double-base-chain is m. Each si2
bi3ti is called a term of the chain.

A double-base chain can be uniquely identified by the differences bi − bi−1 and

ti − ti−1 for 2 ≤ i ≤ m, resulting in a compact representation of k. Dimitrov [28,

Alg. 1] describes a variation of the greedy algorithm that returns a double-base

chain for an integer with a small number of terms. This algorithm is included here

as Algorithm 21.

When given the parameters bmax and tmax, Algorithm 21 returns a double-base

chain for k for which the largest term is 2b3t with b ≤ bmax, t ≤ tmax. The algorithm

begins by finding the closest power of two and three 2b3t to k with b ≤ bmax, t ≤ tmax.

This term is taken as the first term of the DBNS representation. The number k is

updated by subtracting the term from k. The values bmax and tmax are updated to

b and t respectively. The process is repeated until k is exactly a power of two and

three.

Algorithm 21: Conversion to DBNS with Restricted Exponents
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Input: Positive integer k, positive integers bmax, tmax, the largest al-
lowed binary and ternary exponents
Output: A sequence of triples ((sm, bm, tm), . . . , (s1, b1, t1)) such that
k =

∑m
i=1 si2

bi3ti , where b1 ≤ b2 ≤ · · · ≤ bm, t1 ≤ t2 ≤ · · · ≤ tm and
si ∈ {−1, 1}
(1) s← 0
(2) i← 1
(3) while k > 0
(4) define z = 2b3t, to be the best approximation of k with 0 ≤

b ≤ bmax and 0 ≤ t ≤ tmax

(5) (si, bi, ti)← (s, b, t)
(6) i← i + 1
(7) bmax ← b, tmax ← t
(8) if k < z then s← −s
(9) k ← |k − z|
(10) return (si, bi, ti)i>0

The complexity of Algorithm 21 depends greatly on the implementation of Step 4.

If it is feasible to store all the mixed powers of 2 and 3, then this can be done with a

simple search. Less memory-intensive algorithms have been developed by Berthé and

Imbert [12]. In any case, the complexity of Algorithm 21 can be made insignificant

in comparison with the time it takes for scalar multiplication. In situations where

a random integer multiplier needs to be generated, it may be possible to securely

generate a random double-base chain, avoiding the need for this algorithm.

Table 3.9 presents the results of the greedy algorithm on a set of random in-

tegers of lengths d = 192, 224, 256, 384 and 521 with various choices for bmax and

tmax. The values of bmax, tmax are chosen so that 2bmax3tmax closely approximates the

corresponding NIST prime. For Table 3.9, all 2b3t were enumerated and a few of

the closest values to 2192, 2224, 2256, 2384 and 2512 were chosen. This choice ensures

that the first term of the double-base chain is most likely (1, bmax, tmax) and high

enough so that the remainder after subtracting (bmax, tmax) is not too high. The
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Table 3.9: Results of Greedy Algorithm on 2500 Integers
d bmax tmax terms

192

135 36 48.73
116 48 44.07
89 65 44.98
51 89 59.64

224
140 53 52.58
121 65 49.75
102 77 53.04

256

199 36 70.05
172 53 63.00
134 77 56.49
88 106 71.74

384

300 53 105.84
216 106 84.60
197 118 84.57
132 159 107.82

521

437 53 151.29
353 106 128.91
269 159 113.43
183 212 143.84

point of Table 3.9 is to find optimal values of bmax, tmax for Algorithm 22, the scalar

multiplication algorithm presented below. The results of Table 3.9 were computed

by the author with an implementation of Algorithm 21 with a precomputed table

of powers of two and three. This algorithm was applied to 2500 random integers of

with bit-size d for d corresponding to the NIST primes. The mean number of terms

for each set of parameter was computed and included as column 4 of table 3.9.

Algorithm 22, adapted from Dimitrov et al. [28], computes the scalar multiple

of a point when given the multiplier as a double-base chain. This is computed in

an analogous way to left-to-right binary multiplication. In the binary algorithm, a
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temporary variable stores the initial point and is doubled a number of times corre-

sponding to the difference in the powers of the non-zero terms. In Algorithm 22, the

temporary variable is doubled and tripled for the difference between successive terms.

The sign of each term determines whether the base point is added or subtracted.

Algorithm 22: Double-Base Chain Scalar Multiplication
Input: Affine point P , positive integer k with DBNS representation
k =

∑m
i=1 si2

bi3ti , where b1 ≤ b2 ≤ · · · ≤ bm and t1 ≤ t2 ≤ · · · ≤ tm,
si ∈ {±1}
Output: Affine point kP
(1) Q← s1P
(2) for i = 1 to m− 1
(3) u← bi − bi+1, v ← ti − ti+1

(4) Q← 2u3vQ
(5) if si+1 = 1
(6) Q← Q + P
(7) if si+1 = −1
(8) Q← Q− P
(9) return Q

For an integer with m terms, maximal binary exponent bm and maximal ternary

exponent tm, Algorithm 22 will have estimated computation time

(m− 1)A + bmD + tmT.

Algorithm 22 requires a large number of doublings and triplings, and a smaller

number of additions. The fastest coordinate system for doubling and tripling is

Jacobian. We will therefore use the formulas for J + A → J , 2J → J , and

3J → J to execute Algorithm 22. The field cost of Algorithm 22 is exactly

(m−1)(8M +3S)+(2M +4S)+(bm−1)(4M +4S)+ tm(9M +5S)+(I +3M +S)

= I + (8M + 4bm + 9tm − 7)M + (3m + 4bm + 5tm − 2)S. (3.1)
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Table 3.10: Double-Base Chain Average Cost
d bm tm m Field Cost M -cost

192

135 36 48.73 I+1246.8M+864.2S 2018.2M
116 48 44.07 I+1241.6M+834.2S 1988.9M
89 65 44.98 I+1293.8M+813.9S 2025.0M
51 89 59.64 I+1475.1M+825.9S 2215.9M

224
140 53 52.58 I+1450.6M+980.7S 2315.2M
121 65 49.75 I+1460.0M+956.2S 2305.0M
102 77 53.04 I+1518.3M+950.1S 2358.4M

256

199 36 70.05 I+1673.4M+1184.2S 2700.7M
172 53 63.00 I+1662.0M+1140.0S 2654.0M
134 77 56.49 I+1673.9M+1088.5S 2624.7M
88 106 71.74 I+1872.9M+1095.2S 2829.1M

384

300 53 105.84 I+2516.7M+1780.5S 4021.1M
216 106 84.60 I+2487.8M+1645.8S 3884.4M
197 118 84.57 I+2519.6M+1629.7S 3903.3M
132 159 107.82 I+2814.6M+1644.5S 4210.1M

521

437 53 151.29 I+3428.3M+2464.9S 5480.2M
353 106 128.91 I+3390.3M+2326.7S 5331.7M
269 158 113.43 I+3398.4M+2204.3S 5241.9M
183 212 143.84 I+3783.7M+2221.5S 5640.9M

From Table 3.9, we obtain estimates for the values of m given certain bm, tm for

the NIST primes. By evaluating Equation (3.1) with these values and comparing

the M -costs, we can determine the average running time for the selected values of

(bm, tm). These values are presented in Table 3.10.

The optimal values for (bm, tm) in terms of M -cost are listed in bold in Table

3.10. For multipliers of length d = 192 the optimal value of (bm, tm) is (116, 48),

for d = 224 it is (121, 65), for d = 256 it is (134, 77), for d = 384 it is (216, 106)

and for d = 521 it is (269, 159). Table 3.10 demonstrates that Algorithm 22 for

scalar multiplication is slightly slower than the fastest methods based on the binary
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Table 3.11: Scalar Multiplication (P192)
Algorithm Variables Storage Field Cost M -cost
R2L Binary (12) – – I+1909.0M+1146.5S 2906.2M
L2R Binary (13) – – I+1516.0M+1043.0S 2430.4M
L2R NAF (15) – – I+1269.0M+954.0S 2112.2M
w-NAF (17) w = 4, J c 3 I+1153.3M+891.2S 1946.3M
swNAF (18) w = 4, J c 4 I+1157.6M+888.7S 1948.6M
fwNAF (20) w = 2, c = 3, J c 3 I+1153.3M+891.2S 1946.3M
DBChain (22) bmax = 116, tmax = 48 – I+1242.2M+834.5S 1988.9M

algorithm.

3.2.7 Summary

Table 3.11 provides a summary of the algorithms for scalar multiplication of unknown

points in terms of their storage requirements (in points), their field costs and their

M -costs. For each algorithm, the parameters that result in the smallest M -costs are

chosen. The parameters are chosen to correspond to the curve over the NIST prime

P192. The results for elliptic curves over the NIST primes P224, P256, P384 and

P521 are presented in Appendix B and mirror the results of Table 3.11.

The “Variables” column lists the specific parameters that are used to give the

results in the row. Storage is measured in Chudnovsky Jacobian points. For the

window methods, Ameans that the precomputed table of values is converted to affine

form (only appears in Appendix tables) and J c means that it is kept in Chudnovsky

Jacobian form.

The storage column shows the number of points stored. The only storage required

for the NAF and double-base chain methods are the representations of the multiplier.
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Table 3.12: Low Storage Scalar Multiplication Comparison
d Algorithm Storage M -cost

192
fwNAF

1 1963.2M
2 1962.8M

DBChain 0 1988.9M

224
fwNAF

1 2276.8M
2 2274.3M

DBChain 0 2305.0M

256
fwNAF

1 2590.4M
2 2585.7M

DBChain 0 2624.7M

384
fwNAF

1 3844.8M
2 3831.6M

DBChain 0 3884.4M

512
fwNAF

1 5187.4M
2 5140.9M

DBChain 0 5241.9M

The storage space for each of these is usually less than that of two field elements and

can be ignored.

Table 3.11 demonstrates that under the assumptions made about the relative

costs of field operations, the fractional window method (Algorithm 20) is the fastest

algorithm for computing scalar multiples of unknown points on elliptic curves over

P192. The fastest algorithm requiring no storage is the double-base chain method

(Algorithm 22). These results are similar for the NIST primes P224, P256, P384

and P521 in Tables B.10 to B.13. The results from Tables 3.7, B.7, B.8, B.9 and

3.8 for the fractional window algorithm and Table 3.10 for the double-base chain

algorithm are combined in Table 3.12 to demonstrate the M -cost of both algorithms

when storage space is limited. Table 3.12 shows that for a given non-zero amount of

storage space, the fractional window algorithm has a lower M -cost than the double-
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base chain algorithm.

3.3 Known Point Scalar Multiplication

In this section, we study methods for scalar multiplication that can be used when

the point is known in advance. The main theoretical difference in this case compared

to the unknown point case is that precomputations are not included in the running

time of the algorithms. This allows for more expensive precomputation steps that

can be used to speed up computation considerably.

The methods we focus on in this section are the windowing method and the comb

method. Windowing works by precomputing a number of the binary power multiples

of the fixed point to eliminate the need for doubling. In the comb method, expensive

sums of certain multiples of P are stored in order to reduce the number of operations

needed.

3.3.1 Fixed-Base Windowing

The näıve method for computing a scalar multiple of a point using precomputation

would be to compute 2iP for as many i’s as are needed and to apply the right-to-left

binary algorithm from Section 3.2.1 without any doubling. For a d-bit multiplier,

this would cost approximately d−1
2

A and require the storage of d − 1 extra points.

Brickell et al. [14] proposed a version of this algorithm that uses the same idea but

allows for more flexibility in the number of points stored. This idea was originally

proposed by Yao [98].
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Suppose k ∈ N is written as

k =
l−1∑
i=0

bi2
wi,

for bi in some digit set B. Let B′ denote the set of absolute values of non-zero digits

in B. We can write

k =
∑
b∈B′

b

(∑
i:bi=b

2wi −
∑

i:bi=−b

2wi

)
.

Define the points

Pb =

(∑
i:bi=b

2wi −
∑

i:bi=−b

2wi

)
P.

We can then calculate kP =
∑

b∈B′ bPb.

The digits bi can be computed by taking the NAF of the point k and partitioning

the digits into blocks of length w. By writing NAF(k) = Kl−1||Kl−2|| · · · ||K1||K0

and taking the integers represented by the blocks Ki as the digits bi we obtain

bi ∈ B = {−K,−K + 1, . . . ,−1, 0, 1, . . . , K − 1, K},

for 0 ≤ i ≤ l− 1 and K = (2w+1− 2)/3 if w is even and K = (2w+1− 1)/3 otherwise.

Algorithm 23 computes the scalar multiple of a point using fixed-base windowing.

It proceeds in two steps, the precomputation stage and the result stage. In the

precomputation stage, we compute 2iwP for 1 ≤ i ≤ l − 1 by repeated doubling. In

the result stage, the final sum
∑

b∈B bPb is computed from the precomputed values.

Algorithm 23 is adapted from Hankerson et al. [43, Alg. 3.42] and Brickell et al.

[14].

Algorithm 23: Fixed-Base NAF Windowing
Input: Affine point P , positive integer k with NAF(k) written as l
singed bit-strings of length w: Kl−1||Kl−2|| · · · ||K1||K0
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Output: Affine point kP
(1) Offline Precomputation:
(2) foreach 0 ≤ i ≤ l − 1
(3) Pi = 2wiP
(4) A←∞, B ←∞
(5) foreach j from K down to 1
(6) foreach i for which Ki = j
(7) B ← B + Pj

(8) foreach i for which Ki = −j
(9) B ← B − Pj

(10) A← A + B
(11) return A

The the average running time of Algorithm 23 is(
K − 2K + 1

4l
+

(
l

2K

2K + 1

))
A.

The l
(

2K
2K+1

)
additions come from Steps 7 and 9 when Pi is non-zero. One of these

steps is executed once for each of the l blocks Ki, each of which has a 1/(2K + 1)

chance of being 0 and contributing nothing.

The other K − 2K+1
4l

additions come from Step 10. The total number of times

that this step is applied is K, but if the digits {K, K−1, . . . , K−T +1} do not occur

as some |Ki|, then the B value is ∞ and no addition is performed for the first T

applications of this step. Since the digits Ki are essentially chosen at random among

−K, . . . , K, the typical gap between two represented numbers should be (2K +1)/L.

Therefore, the average highest value will be K− (2K +1)/2L and the average lowest

value will be −K + (2K + 1)/2L. This leads to an average highest absolute value of

K−(2K+1)/4L, from which we get T = (2K+1)/4L. In this case, the variable B will

be ∞ for Step 10 the first T times. Therefore the number of additions contributed

by this step is K − 2K+1
4l

. The algorithm also requires the storage of l− 1 temporary

points. The cases where either Pi or B are ∞ are not examined in Hankerson et al.
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Table 3.13: Fixed-Base Window Average Cost (d = 192)
w Storage Field Cost M -cost

2 95 I+639.3M+237.4S 909.1M
3 63 I+523.0M+190.4S 755.3M
4 47 I+477.5M+167.8S 691.8M
5 38 I+535.7M+177.5S 757.7M
6 31 I+710.7M+219.9S 966.6M
7 27 I+1143.9M+334.9S 1491.8M
8 23 I+2025.4M+572.1S 2563.1M

[43].

Since precomputation is not an issue, we will assume that the precomputed points

are stored in affine coordinates to allow faster addition. Since the only operation

performed is addition, the intermediate points are stored in Chudnovsky Jacobian

coordinates. The additions of Pi will be J c + A → J c and the other additions

J c + J c → J c. The average field cost of this algorithm is therefore(
l

(
2K

2K + 1

))
(8M + 3S) +

(
K − 2K + 1

4l

)
(11M + 3S) + (I + 3M + S)

= I +

(
(8l)

(
2K

2K + 1

)
− 11

2K + 1

4l
+ 11K + 3

)
M

+

(
(3l)

(
2K

2K + 1

)
− 3

2K + 1

4l
+ 3K + 1

)
S.

Table 3.13 lists the cost of fixed-base windowing for values of d that correspond

to the length of the NIST prime P192. Here, l =
⌈

d
w

⌉
where d is the size of the input

and w is the fixed windowing size. The row in bold represents the parameters that

produce the lowest M -cost. The tables for d chosen to correspond to P224, P256,

P384 and P521 are similar and can be found in Appendix B.

These results demonstrate that with enough precomputation, scalar multiplica-



96

tion can be performed much more quickly than with unknown point methods. The

cost of the fixed-base window method is high for very small and very large amounts

of precomputation. In the next section, we examine another algorithm that is faster

than fixed-base windowing in some situations.

3.3.2 Fixed-Base Comb

In the fixed-base windowing method, the values 2wiP are computed and combined

with addition to form kP . In the fixed-base comb method, rather than eliminating

all the doublings, the goal is to use precomputation to utilize the doublings more

efficiently. This idea was originally proposed by Lim and Lee [64].

Suppose that k ∈ N is represented by l bit-strings of length w, i.e.

k = Kl−1||Kl−2|| · · · ||K1||K0,

where Ki = Ki,w−1||Ki,w−2|| · · · ||Ki,1 and Ki,j ∈ {0, 1}. We can write k as follows:

k =
l−1∑
i=0

w−1∑
j=0

Ki,j2
wi+j

=
w−1∑
j=0

(
l−1∑
i=0

Ki,j2
wi+j

)

=
w−1∑
j=0

2j

(
l−1∑
i=0

Ki,j2
wi

)
.

By precomputing all the possible values for
∑l−1

i=0 Ki,j2
wi, it takes w− 1 doubles and

w − 1 additions on average to compute kP .

In order to simplify the notation, we define

[al−1, al−2, . . . , a1, a0]P := al−12
(l−1)wP + al−22

(l−2)wP + . . . + a12
wP + a0P.
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These values are precomputed for all possible (al−1, . . . , a0) ∈ {0, 1}l, resulting in

Algorithm 24, adapted from Hankerson et al. [43, Alg. 3.44].

Algorithm 24: Fixed-Base Comb
Input: Affine point P , positive integer k with k written as l bit-strings
of length w: Kl−1||Kl−2|| · · · ||K1||K0

Output: Affine point kP
(1) Offline Precomputation:
(2) Compute [al−1, al−2, . . . , a1, a0]P for all (al−1, . . . , a0) ∈ {0, 1}l
(3) Q←∞
(4) foreach j from w − 1 down to 0
(5) Q← 2Q + [Kl−1,j, . . . , K0,j]P
(6) return Q

The average running time of Algorithm 24 is(
2l − 1

2l
(w − 1)

)
A + (w − 1)D.

The algorithm also requires the storage of 2l − 2 temporary points.

Precomputing the points in affine form and taking 2J +A → J as the operation

when the point added is non-zero and 2J → J otherwise, the average field cost of

this algorithm is(
2l − 1

2l
(w − 1)

)
(12M+7S)+

(
(w − 1)− 2l − 1

2l
(w − 1)

)
(4M+4S)+(I+3M+S).

Table 3.14 lists the cost of Algorithm 24 for d chosen to correspond to the length

of the NIST prime P192. The variable w = dd
l
e where d is the size of the input and

l is given. The tables for d chosen to correspond with P224, P256, P384 and P521

are similar and can be found in Appendix B.

In comparison to the fixed-base window, the comb method is generally faster.

Fixed-base windowing is only competitive with the comb method when the amount

of storage space available is in the optimal range for fixed-base windowing.
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Table 3.14: Fixed-Base Comb Average Cost (d = 192)
l Storage Field Cost M -cost

2 2 I+953.0M+594.8S 1508.8M
3 6 I+696.0M+418.4S 1110.7M
4 14 I+543.5M+321.2S 880.5M
5 30 I+449.5M+263.4S 740.2M
6 62 I+371.1M+216.5S 624.4M
7 126 I+325.3M+189.4S 556.8M
8 254 I+278.3M+161.7S 487.7M

3.4 Known Multiplier Scalar Multiplication

The case when a multiplier is known in advance occurs in certain elliptic curve pro-

tocols such as ECIES [9]. In this section, we describe some techniques for computing

a scalar multiple of a point using information precomputed from the multiplier. The

mathematical construct that is used to do this is an addition chain.

3.4.1 Addition Chains

Definition 3.4.1. An addition chain for an integer k is given by a pair of sequences

(c, d) such that

c = (c0, . . . , cs), c0 = 1, cs = k

ci = cji
+ cki

for all 1 ≤ i ≤ s with respect to (3.2)

d = (d0, . . . , ds), di = (ji, ki) and 0 ≤ j, k ≤ i− 1.

The length of the addition chain is s.

An addition chain for k is a sequence of integers, with each element a sum of

two previous elements, 1 as the first element, and k as the last. The vector c holds
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the sequence of integers in the chain and d describes which previous two integers are

summed to get the corresponding integer in c. Often, only c is given since it is easy

to derive a sequence d from c.

An addition chain provides a method for computing the scalar multiple of a

point, namely by computing each scalar multiple in the chain. For example, the

following three sequences are addition chains for 15: ca = (1, 2, 3, 4, 7, 8, 15), cb =

(1, 2, 3, 6, 7, 14, 15), cc = (1, 2, 3, 6, 12, 15). Notice that ca corresponds to the right-

to-left binary algorithm and c2 corresponds to the left-to right binary algorithm.

In fact, the binary representation of an integer k corresponds to a specific type of

addition chain for k. Also notice that the length of c1 and c2 are 6 and that the

length of c3 is 5.

For a given k, the smallest s such that there exists an addition chain of length s is

denoted by l(k). By exhaustive search, we see that l(15) = 5, but the determination

of l(k) for larger k can be quite difficult. Since the cost for addition and doubling

can be different, it can be relevant to count the number of additions and doublings

in the chain. Say that w(k) = (ak, bk) where ak is the number of times that ji 6= ki

and bk is the number of times that ji = ki.

For elliptic curves, subtraction is the same speed as addition, so a useful gener-

alization of an addition chain is an addition-subtraction chain.

Definition 3.4.2. An addition-subtraction chain for an integer k is given by a triple
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of sequences (c, d, e) such that

c = (c0, . . . , cs), c0 = 1, cs = k

ci = cji
+ eicki

for all 1 ≤ i ≤ s with respect to

d = (d0, . . . , ds), di = (ji, ki) and 0 ≤ j, k ≤ i− 1,

e = (e0, . . . , es), ei = ±1.

The length of the addition-subtraction chain is s.

Addition-subtraction chains are useful for elliptic curve scalar multiplication be-

cause negation is essentially free on an elliptic curve. A minimal addition-subtraction

chain can be shorter than a minimal addition chain for a given integer. For example,

c = (1, 2, 4, 8, 16, 32, 31) is an addition-subtraction chain for 31 with length 6 while

l(31) = 7.

We will present a method by Bergeron et al. [11] for computing a short addition

chain for an integer. First, we must introduce two operations on addition chains, ⊕

and ⊗. If c = (c0, . . . , cs) and c′ = (c′0, . . . , c
′
t), then

c⊗ c′ = (c0, . . . , cs, csc
′
0, . . . , csc

′
t),

and if j is an integer in the chain c,

c⊕ j = (c0, . . . , cs, cs + j).

Suppose that (1, . . . , n mod k, . . . , k) is an addition chain for k and (1, . . . , bn/kc) is

a chain for bn/kc for integers k, n, then

(1, . . . , n mod k, . . . , k)⊗ (1, . . . , bn/kc)⊕ (n mod k), (3.3)
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is a chain for n. The method proposed by Bergeron et al. is to choose the value

of k appropriately and apply Equation (3.3) recursively. When k = bn/2c, then

this method produces the addition chain used in the left-to-right binary algorithm.

Bergeron et al. proposed a method based on two procedures, minchain and chain.

The minchain(n) procedure proceeds by producing a short addition chain for n .

The chain(n, k) procedure computes r = n mod k, and if r = 0, then minchain is

applied recursively to n and n/k and these chains are combined with ⊗. If r 6= 0,

then Equation (3.3) is applied, which recursively calls chain(k, r) and minchain(q)

and combines them with chain(k, r)⊗ minchain(q)⊕r.

minchain(n)
(1) if n = 2l then return (1, 2, 4, . . . , 2l)
(2) if n = 3 then return (1, 2, 3)
(3) return chain(n, 2blog n/2c)

chain(n, k)
(1) q ← bn/kc and r ← n mod k
(2) if r = 0 then return (minchain(k) ⊗ minchain(q))
(3) else return chain(k, r)⊗ minchain(q)⊕r

More advanced variants on this method are described by Bergeron et al. [10].

Methods for determining a short chain for a given integer include Knuth’s power

tree method [52], Kunihiro and Yamamoto’s method [57] and Yacobi’s variation on

the Lempel-Ziv compression algorithm [97]. Nedjah [77] examines methods based on

genetic algorithms.

The shortness of an addition-subtraction chain can be measured in different ways.

For known multiplier elliptic curve scalar multiplication, the natural measure would

be to equate an addition-subtraction chain with the operations required to compute

it. For each term of an addition chain, when di = (ji, ki) has ji = ki, then the term
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corresponds to a doubling, and when ji 6= ki, then it corresponds to an addition. We

can also measure the storage space required to compute the scalar multiplication.

In Algorithm 25 we compute the scalar multiple of a point when given an addition-

subtraction chain (c, d, e) for the multiplier. The algorithm works by mirroring the

construction of the chain. For each ci, we compute ciP by doing the following: if

ei = 1, we add cji
P to cki

P ; if ei = −1, we subtract, and if ji = ki we double cji
P .

This algorithm is adapted from Cohen et al. [6, Alg. 9.41].

Algorithm 25: Scalar Multiplication Using Addition Chains
Input: Affine point P , integer k with addition-subtraction chain
(c, d, e), as defined in Def. 3.4.2
Output: Affine point kP
(1) Q0 ← P
(2) for i from 1 to s
(3) if ji = ki then Qi ← 2Qji

(4) else Qi ← Qji
+ eiQki

(5) return Qs

If a is the number of terms for which ji = ki then the estimated running time of

Algorithm 25 is

aA + (s− a)D.

The choice of coordinates used depends on the values of a and s. Generally, Chud-

novsky Jacobian coordinates should be used for large values of a relative to s and

Jacobian coordinates otherwise.

For suitably chosen addition-subtraction chains, Algorithm 25 can be faster than

the algorithms for unknown point scalar multiplication. Bergeron’s method will com-

pute a short addition chain for an integer but not an addition-subtraction chain. An

algorithm for determining an efficient addition-subtraction chain for elliptic curve

scalar multiplication needs to take into account the length of the chain as well as
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the number of additions versus doublings in the chain. As of yet, there is no thor-

ough analysis of efficient algorithms to compute addition-subtraction chains that are

optimal in this fashion. This is an interesting avenue of future research.



Chapter 4

Parallel Scalar Multiplication Methods

In this chapter, we apply parallel methods to the problem of elliptic curve scalar mul-

tiplication. Parallel computation is used to reduce the total time required to perform

a calculation by using multiple processors working in tandem. Optimally, the com-

putation is split evenly between processors. Many elliptic curve scalar multiplication

algorithms cannot be optimally parallelized because of the inherent structure of the

operation, but some advantages can be obtained by parallelization.

The goal of this chapter is to present, analyze and compare several techniques

for improving the running time of scalar multiplication using parallelization. Paral-

lelization can be done on two levels, the elliptic curve operation level and the finite

field operation level. We will focus only on the elliptic curve operation level; that is,

we will assume that the elliptic curve operations are primitive.

Our analysis is based on a variant of the shared memory parallel computation

model with non-uniform memory access (NUMA) (see [85]). In our variant of this

model, there are multiple processors with their own memory and some shared mem-

ory accessible to all processors. Communication between processors is performed by

reading and writing to the shared memory, which has a fixed cost. The algorithms in

this chapter require a small number of processors and only share elliptic curve points.

This model is similar to the standard PRAM theoretical model for parallel complex-

ity (see Karp and Ramachandran [51]) in that it is highly abstract and provides an

estimate for the cost of the algorithm with minimal designated computer properties.

104
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This model is more realistic than the PRAM model because it considers the cost of

communication between processors. We use this model because it is simple to use

for comparing algorithms and it is more robust than the standard model.

The first task to which we apply parallelization is precomputing tables of points,

for example, to be used with methods such as width-w NAF. New algorithms are

presented for both computing the table of elements and for converting the table from

Chudnovsky Jacobian to affine coordinates.

The next task to which parallelism is applied to is unknown point scalar multi-

plication. Although there is no known way to perfectly distribute the computation

needed for scalar multiplication over several processors in the unknown point case,

several methods exist to distribute some of the computation over several proces-

sors resulting in an overall faster computing time. These algorithms are based on

extensions of both right-to-left and left-to-right binary methods, windowing tech-

niques and double-base chain techniques. Other than the pth order method, the

two-processor window right-to-left and the parallel Montgomery ladder technique,

all the algorithms in this chapter are new.

4.1 Computing Model

A parallel computing model provides a framework for analyzing a parallel algorithm.

In this chapter, we will use a model resembling shared memory architecture with

non-uniform memory access (NUMA) (see [85]). In our parallel computation model,

there is a set amount of shared memory and each processor has a certain amount of

memory that it can access in a fast manner. A processor can read from or write to the
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shared memory, but there is a cost for doing so. We will use the variable s1 to denote

the cost associated with one processor reading or writing in the shared memory space.

Since the cost of reading from and writing to shared memory depends on the amount

of data to read or write, we will assume that s1 is the cost of reading or writing one

Chudnovsky Jacobian point because it is the most common representation used in

this chapter and because it requires the most space of any representation.

Our model is compatible with the standard shared memory computing model,

where all processors can read and write to the same memory space at no cost. This

is achieved by simply setting s1 to zero.

Just as in Chapter 3, we provide estimates for the number of additions (A), dou-

bles (D) and triples (T ) needed to execute the algorithms. Also, we determine the av-

erage field cost and M -cost of the algorithms for multipliers of sizes 192, 224, 256, 384

and 521 bits, in order to correspond with curves over the NIST primes. We will de-

termine the computational cost of an algorithm by determining the time from the

start of the first processor to the end of the last processor in terms of field cost.

Assuming this processor begins immediately and has no waiting time, we call this

cost the effective cost of the algorithm. This is the first careful comparison of these

algorithms.

We are also concerned with the granularity of the algorithm; that is, the total

number of communications needed between processors. In addition to the compu-

tation cost, the average number of reads and writes to the shared memory in terms

of s1 is estimated and included in the analysis. Since this value is indeterminate,

we make certain reasonable assumptions about the maximal value of s1. These are

noted as they are needed.
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4.2 Parallel Precomputation

The precomputation step in the window NAF algorithm from Section 3.2.3 can be

efficiently parallelized. The values that need to be precomputed are Pi = iP for

i ∈ {1, 3, 5, . . . , 2w − 1}. The algorithms presented in this section for parallelizing

the precomputation are new and are not found in the literature.

Algorithm 26 computes this set of points using two processors by computing 4P

on the first processor, 3P on the second processor and then all multiples of P that

are 1 mod 4 on the first processor and 3 mod 4 on the second processor by repeatedly

adding 4P to P and 3P respectively.

Algorithm 26: Two-Processor Table Computation
Input: Affine point P , integer w
Output: Chudnovsky Jacobian points Pi = iP for i ∈ {1, 3, . . . , 2w−1−
1}
(1) P1 ← P
(2) processor 1:
(3) P4 ← 2P1

(4) P4 ← 2P4

(5) write P4 to shared memory
(6) foreach i ∈ {5, 9, . . . , 2w−1 − 3}
(7) Pi ← Pi−4 + P4

(8) processor 2:
(9) P3 ← 2P1

(10) P3 ← P1 + P3

(11) wait for P4 to be written to memory, read
(12) foreach i ∈ {7, 11, . . . , 2w−1 − 1}
(13) Pi ← Pi−4 + P4

(14) return {P1, P3, . . . , P2w−1−1}

Reading P4 in Step 11 causes the second processor to be the last to finish, because

both processors perform the same number of additions after P4 is obtained. Assuming
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A > D, the time requirement for Algorithm 26 is

D + A + (2w−3 − 1)A,

with communication time 2s1. This is nearly twice as fast as the precomputation

using one processor in Algorithm 17, which requires (D + (2w−2 − 1)A).

This algorithm can be generalized to N = 2n processors as long as w > n. On

processors 2i for 2 ≤ i ≤ n, compute 2i+1P . Using these values, compute (2i− 1)P

on processor i. The points

P, 3P, . . . , (2i− 1)P, . . . , (2n+1 − 1)P

will form a set similar to a spanning set or basis for the points P, 3P, . . . , (2w−1−1)P .

Once 2n+1P is computed, we compute all kP where k ≡ 2i−1 mod 2n+1 by repeatedly

adding 2n+1P to (2i− 1)P on processor i. Continue computing kP for k ≤ 2w−1− 1.

When n = 1, the points P , 3P , and 4P are computed, then 4P is added to P and

3P repeatedly to compute all the kP where k ≡ 2i− 1 mod 4, just like in Algorithm

26. Algorithm 27 performs this operation.

Algorithm 27: 2n-Processor Table Computation
Input: Affine point P , integer w
Output: Chudnovsky Jacobian points Pi = iP for i ∈ {1, 3, . . . , 2w−1−
1}
(1) P1 ← P
(2) processor i:
(3) for i ∈ {1, . . . , 2n} do:
(4) if i ≥ 2l and i < 2l+1 for some integer l > 0
(5) P2l+1 ← 2l+1P
(6) find the number of digits in 2i + 1, di ← blog2(2i + 1)c+ 1
(7) P2i+1 ←∞
(8) wait for processor i−2di−1 to write (2i+1−2di)P to memory

then read
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(9) P2i+1 ← 2diP + (2i + 1− 2di)P (= (2i + 1)P )
(10) write P2i+1 to shared memory
(11) wait for 2n+1P to be written to memory by processor 2n, read
(12) foreach j ∈ {(2i+1)+2n+1, . . . , (2i+1)+(2w−n−1−1)2n+1}
(13) Pj ← Pj−2n+1 + 2n+1P
(14) return {P1, P3, . . . , P2w−1−1}

Algorithm 27 is equivalent to Algorithm 26 when n = 1. The time that processor

i will have to wait in Step 8 is maximal when i = 2n − 1 since it needs to wait for

processor 2n−1 − 1, which in turn needs to wait for processor 2n−2 − 1, etc. which

has to wait for processor 3 which needs to wait for processor 2. Processor 2n only

needs to compute n + 1 doublings and one addition. Processor 2 adds a doubling

and each other processor adds an addition. For this case, the time needed to wait is

thus D + (n− 1)A. Therefore the worst case running time of Steps 1 through 9 is at

most

D + nA,

with (n− 1)s1 reads/writes. Step 11 will have running time

(2w−2−n − 1)A

for each processor and therefore the last processor to finish calculations will do so in

D + nA + (2w−2−n − 1)A,

with communication cost ((n + 1) + (2w−2−n − 1))s1. Algorithm 27 is fast when you

disregard the communication cost since it essentially reduces the number of additions

by a factor of nearly N while adding only log2 N additions in comparison with the

serial version.

Just as in the serial version of this algorithm, the point representation used

in Algorithm 27 is designed to take advantage of the fact that the most common
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operation is point addition. Arithmetic using Chudnovsky Jacobian coordinates

allows for the most efficient addition, and Jacobian coordinates allow for the fastest

doubling, therefore the scheme we use is a combined affine-Chudnovsky-Jacobian

scheme. The formula used for the first doubling is (2A → J ), the repeated doubling

to 2nP will be 2J → J , and the final double to 2n+1P will be 2J → J c. The

first addition will be either (A + J c → J c) or (J c + J c → J c), and the repeated

addition will be J c + J c → J c. This results in an effective field cost of

(2M + 4S) + n(11M + 3S) + (2w−2−n − 1)(11M + 3S)

= (11n + 11 · 2w−2−n − 9)M + (3n + 3 · 2w−2−n + 1)S.

If we consider the time it takes to send information from one processor to another,

there is an additional factor of (n+1)s1, with (2w−2−n−1) ·s1 if all the precomputed

values are subsequently written to shared memory.

It may be useful to convert the table of precomputed values from the previous

section to affine form, as was done in Section 3.2.3. This can be parallelized to 2n

processors by splitting the set of points into 2n equal sets and applying Algorithm 54

to each set using a different processor. Notice that at the end of Algorithm 27, the

set of points computed in parallel is already conveniently partitioned into these sets.

The effective field cost of converting 2w−2−1 points Pi from Chudnovsky Jacobian

to affine form for i ∈ {3, . . . , 2w−1 − 1} on 2n processors is the cost of Algorithm 54

on the largest partition. The set of points is partitioned into 2n sets, so the largest

set is of size 2w−2−n. Therefore the effective field cost is

I +
(
6 · 2w−2−n − 3

)
M +

(
2w−2−n

)
S.
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This method for the parallel precomputation of a table will be useful in the next

section, which deals with the parallelization of scalar multiplication.

4.3 Parallel Unknown Point Scalar Multiplication

Unknown point scalar multiplication was introduced in Section 3.2. In this section

we examine parallel algorithms for this operation derived mostly from variations of

the binary algorithm.

In order to create a parallelized version of a task, we must examine the sequence

of dependencies in the algorithm’s execution. In the case of the binary algorithm for

unknown point scalar multiplication, we can not overcome the need for performing

a large number of doublings in sequence. The gain that can be achieved by paral-

lelization in this case stems from the parallelization of additions. Since not all of the

algorithm can be parallelized, Amdahl’s law [2] implies that massive parallelization

brings diminishing returns. We therefore limit our parallelization to a small number

of processors. Specifically, we will examine algorithms on 2 to 8 processors.

The algorithms we examine are the pth order binary method (Section 4.3.1),

several right-to-left and left-to-right algorithms (Sections 4.3.2 to 4.3.7), the double-

base n-chain method (Section 4.3.9) and Montgomery’s method (Section 4.3.10).

Many of the left-to-right, right-to-left and double-base n-chain methods are new and

can not be found in the literature. The two results we are concerned with in this

section are effective field cost and granularity. A summary of the results of this

section are presented in Section 4.3.11.



112

4.3.1 pth Order Binary

This method was introduced by Garcia and Garcia [38] as a way to reduce the number

of additions needed to calculate a scalar multiplication using additional processors.

The term pth order is in reference to using p processors. In this thesis we use the

variable N to represent the number of processors. This method is based on splitting

the multiplier k into a number of integers with a small number of non-zero digits

that sum to k. We present a novel algorithm that improves on that of Garcia and

Garcia by using the NAF of the multiplier rather than the binary representation.

Let k be the multiplier and w be a parameter denoting window size. Suppose d

is the length of NAF(k). Define l := dd/we. Then NAF(k) = Kl−1|| . . . ||K0 where

each Ki is a signed bitstring of length w, padded with zeros if needed.

Each Ki can be written as Ki,0 + Ki,12 + · · ·Ki,w−12
w−1 for Ki,j ∈ {−1, 0, 1}.

Notice that

k =
∑

0≤i≤l−1,
0≤j≤w−1

Ki,j2
iw+j.

If we define

gj =
∑

0≤i≤l−1

Ki,j2
iw+j

for 0 ≤ j ≤ w − 1, then

k =
∑

0≤j≤w−1

gj.

Each gj is zero for all but 1/w of the digits of k, and therefore has approximately

w times fewer non-zero digits in its binary representation than k. For example, if
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w = 4 and NAF(k) = (1, 0, 1, 0 , 0, 0, 0, 1 , 0, 1, 0, 1), we obtain

g0 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

g1 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0)

g2 = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)

g3 = (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1).

Every wth digit of each gj agrees with k, and the rest of the digits are 0. Calculat-

ing gjP using the binary NAF method should require around the same number of

doublings as computing kP but with w times fewer additions.

The algorithm involves two main stages:

1. Bit scattering: Compute the set {g0, . . . , gw−1} as described above. Using N =

w processors, compute the set

{g0P, g1P, . . . , gw−1P}.

2. Recombination: Using dw/2e processors, calculate
∑

0≤j≤w−1 gjP . This can be

done in the time it takes for dlog2 we additions using a recursive algorithm.

Calculate P1,j = g2jP + g2j+1P on processor j for 0 ≤ j ≤ b(w − 1)/2c, (if

there is no gjP to add, add ∞). Then calculate P2,j = P1,2j + P1,2j+1 for

0 ≤ 2j ≤ b(w − 1)/2c when defined. Continue with Pi,j = Pi−1,2j + Pi−1,2j+1

for 0 ≤ 2ij ≤ b(w − 1)/2c. Once 2ij > b(w − 1)/2c, then Pi,1 = kP .

Algorithm 28 performs this by first computing every gi from the bit-scattering

step, then computing giP with the binary NAF algorithm (Algorithm 15) on proces-

sor i. The recombination stage is performed in successive steps by processors with
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numbers divisible by powers of 2. Algorithm 28 is adapted almost directly from

the ideas from Garcia and Garcia [38], with the NAF replacing the standard binary

representation.

Algorithm 28: pth Order Binary
Input: Affine point P and signed bitstrings K0, . . . , Kl−1 of length
w(= N)
Output: Affine point kP
(1) gm ← Kl−1,m|| · · · ||K0,m where Ki,j matches Ki at binary digit

j and has 0 for every other digit.
(2) foreach processor j ∈ {0, . . . , N − 1} do:
(3) calculate Pj ← gjP using binary NAF, write to memory.
(4) for i = 1 to dlog2 we
(5) processor j:
(6) foreach j ∈ {0, . . . , b(w − 1)/2c2−i}
(7) if 2ij + 2i−1 ≤ l then Qj ← P2ij+2i−1 read from memory
(8) else Qj ←∞
(9) P2ij ← P2ij + Qj, write to memory
(10) return P0

The average running time of Algorithm 28 is approximately(
(d− 1)D +

d− 1

3w
A

)
+ (dlog2 weA) ,

with communication overhead of ((2dlog2 we) + 1) s1. The first term comes from

computing giP and the second from the recombination stage. This reduces the

number of additions in the main section by a factor of w in exchange for dlog2 we

additions.

For a detailed analysis of Algorithm 28 we will chose an appropriate coordinate

system. The binary NAF portion of the algorithm uses the mixed Jacobian-Affine

coordinate system described in the analysis of Algorithm 15, with the exception that

the final result is converted to Chudnovsky Jacobian rather than affine. This is

preferable because the next steps are all additions and Chudnovsky Jacobian coor-
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dinates allow for the fastest addition.

With these choices for coordinates, the average cost for Step 3 is(
d− 3

3w

)
(12M + 7S) + (2M + 4S) +

(
d− 2− d− 3

3w

)
(4M + 4S) + (M + S)

for each processor with communication overhead s1. Each execution of Steps 6 to 8

will cost (J c + J c → J c) and (2s1), and the return step costs (I + 3M + S). This

results in an effective field cost of

(
d− 3

3w

)
(12M + 7S) + (2M + 4S)

+

(
d− 2− d− 3

3w

)
(4M + 4S) + (M + S)

+ (dlog2 we)(12M + 4S) + (I + 3M + S)

= I +

(
4d + 8 · d− 3

3w
+ 12dlog2 we − 2

)
M+(

4d + 3 · d− 3

3w
+ 4dlog2 we − 2

)
S,

with communication overhead of ((2dlog2 we) + 1) s1.

Tables 4.1 describes the field costs and M -costs of Algorithm 28 with d corre-

sponding to the length of the NIST prime P192. Recall that the M -cost is the field

cost with substitutions S ← (4/5)M and I ← 80M . The tables for d chosen to cor-

respond to P224, P256, P384 and P521 are similar and can be found in Appendix B.

The advantages of this algorithm are that it outperforms the fastest one-processor

algorithms and it has a relatively low amount of communication overhead. The next

algorithm takes an orthogonal view to splitting up the additions.
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Table 4.1: pth Order Binary Method Average Cost (d = 192)
N Field Cost M -cost s1

2 I+1030.0M+864.5S 1801.6M 3
3 I+958.0M+837.0S 1707.6M 5
4 I+916.0M+821.2S 1653.0M 5
5 I+902.8M+815.8S 1635.4M 7
6 I+886.0M+809.5S 1613.6M 7
7 I+874.0M+805.0S 1598.0M 7
8 I+865.0M+801.6S 1586.3M 7

4.3.2 Right-to-Left Parallel

The troublesome part of the pth order method is the recombination stage (Steps 4

to 8). This stage can be avoided by taking an alternative approach to bit-scattering

that is reminiscent of the right-to-left binary algorithm. In this section, we present

a new algorithm that implements this idea.

As in the previous section, suppose d is the length of NAF(k). Define w ∈ N to be

the word length, and define l := dd/we to be the number of words in NAF(k). Then

NAF(k) = Kl−1|| . . . ||K0 where each Ki is a signed bitstring of length w, padded

with zeros if needed.

The key observation for this algorithm is that k = K0+K1||0w+· · ·+Kl−1||0(l−1)w

where 0k represents k consecutive zeros. Rather than splitting the multiplier into a

set of long sparse integers, it can be split into K0, K1||0w, · · · , Kl−1||0(l−1)w. Each of

these integers has a low Hamming weight, but they are not all the same length as k.

Each KiP is calculated in parallel for 0 ≤ i ≤ l− 1 with N = l processors. Then

a repeated doubling algorithm is used to calculate (Kj||0w)P on processor j. Once

K0P is calculated, it is written to shared memory to be read by the processor cal-
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culating (K1||0w)P . That processor then calculates K0P + (K1||0w)P = (K1||K0)P

and sends the result to the next processor, which computes (K1||K0)P +(K2||02w) =

(K2||K1||K0)P , and so on. In this arrangement, each processor is in use only as long

as doubling is needed, so the recombination is performed by processors that have

finished early, eliminating the need for a recombination stage. The implicit assump-

tion we have made is that j doublings take longer than 2 reads from shared memory.

Algorithm 29, which does not appear in the literature, performs this operation.

Algorithm 29: Right-to-Left Parallel
Input: Affine point P , l(= N) signed bitstrings K0, . . . , Kl−1 of length
w
Output: Affine point kP
(1) foreach processor i ∈ {0, . . . , l − 1}, simultaneously perform

the following:
(2) Pi ← KiP using the binary NAF algorithm
(3) Pi ← 2iwPi using consecutive doubling
(4) if i = 0
(5) write Pi to memory
(6) else
(7) wait until Pi−1 is written to memory, read
(8) calculate Pi ← Pi + Pi−1

(9) if i < l − 1 then write Pi to memory
(10) return Pl−1

The average running time of Algorithm 29 is(
(w − 1)D +

w − 3

3
A

)
+ ((l − 1)wD + A) .

The first term comes from computing Kl−1P and the second from the repeated dou-

bling and final addition. The coordinate system used for Algorithm 29 is the standard

Jacobian-affine for the binary NAF algorithm and Jacobian for the doubling. Before

the final point is sent to processor l − 1, it is converted to Chudnovsky Jacobian

coordinates so J + J c → J is used for the final addition.
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Table 4.2: Right-to-Left Parallel Method Average Cost (d = 192)
N Field Cost M -cost s1

2 I+1024.0M+861.0S 1792.8M 1
3 I+938.7M+829.0S 1681.9M 1
4 I+896.0M+813.0S 1626.4M 1
5 I+884.0M+816.0S 1616.8M 1
6 I+853.3M+797.0S 1570.9M 1
7 I+858.7M+809.0S 1585.9M 1
8 I+832.0M+789.0S 1543.2M 1

With this configuration, Step 2 has average field cost(
w − 3

3

)
(12M + 7S) + (2M + 4S) +

(
w − 2− w − 3

3

)
(4M + 4S).

For processor l − 1, Step 3 requires (d − 1)w(2J → J ) and Step 7 J + J c → J .

The return step costs (I + 3M + S). This results in an effective field cost of

(
w − 3

3

)
(12M + 7S) + (2M + 4S) +

(
w − 2− w − 3

3

)
(4M + 4S)+

(l − 1)w(4M + 4S) + (11M + 3S) + (I + 3M + S),

= I +

(
8w

3
+ 4lw

)
M + (w + 1 + 4lw)S

with communication overhead s1.

Table 4.2 describes the field costs and M -costs of Algorithm 28 with d correspond-

ing to the length of the NIST prime P192. The tables for d chosen to correspond

with P224, P256, P384 and P521 are similar and can be found in Appendix B.

This new algorithm has all the advantages of the pth order algorithm as well as a

lower cost and communication time due to the elimination of the recombination step.

Note that it might be possible to reduce the effective cost of this algorithm by using
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the parallel precomputation algorithm from Section 4.2. In the next algorithm, we

will attempt to reduce the total running time of this algorithm.

4.3.3 Right-to-Left Parallel With Hedging

In Algorithm 29, the processors finished in succession with the last processor con-

taining the final result. This allowed the additions performed on the other processors

to essentially have no net effect on the total running time of the operation. The only

time spent on additions on the first processor was in calculating Kl−1P for the most

significant block Kl−1 and performing the final addition. One way to reduce this first

cost is to vary the size of the blocks in such a way that the processors still finish in

sequence but the most significant block is small. We introduce a new algorithm in

this section based on this idea.

The key part of the algorithm is changing the sizes of the blocks Ki so that each

processor will finish almost immediately before the result is needed. This is achieved

by making the lower order blocks longer so that the computation takes longer on the

processors that compute them.

Let us suppose that performing a scalar multiplication of P by an n digit number

takes time nC and the calculation of 2nP takes time nD. If the largest block K1 has

length L1, then the calculation of K1P will take time L1C. The next processor must

compute 2L1(K2P ). For this to take the same amount of time, K2 should be length

L2 where L2C + L1D ≈ L1C. Solving this gives L2 ≈ L1(1−D/C).

The next processor needs to compute 2L22L1(K3P ) in the same time as the previ-

ous processor computed 2L1(K2P ) + K1P . Therefore, we need L3C + (L1 + L2)D ≈
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L1D + L2C + A. Solving this, we obtain

L3 ≈ (1−D/C)L2 + A/C ≈ (1−D/C)2L1 + A/C.

By comparing processors n and n− 1, we obtain

Ln ≈ (1−D/C)Ln−1 + A/C.

Evaluating this recursively, we arrive at:

Ln ≈
(

1− D

C

)n−1

L1 +
n−3∑
i=0

(
1− D

C

)i
A

C

=

(
1− D

C

)n−1

L1 +
1−

(
1− D

C

)n−2

1−
(
1− D

C

) A

C

=

(
1− D

C

)n−1

L1 +
C

D

(
1−

(
1− D

C

)n−1
)

A

C

=

(
1− D

C

)n−1

L1 +

(
1−

(
1− D

C

)n−1
)

A

D

=

(
1− D

C

)n−1

L1 +
A

D
−
(

1− D

C

)n−1
A

D

=

(
1− D

C

)n−2((
1− D

C

)
L1 −

A

D

)
+

A

D

The relationship between the maximal length of the multiplier L and the number of

processors N is

L = L1 +
N∑

i=2

⌊
(1− D

C
)i−2

((
1− D

C

)
L1 −

A

D

)
+

A

D

⌋
. (4.1)

If we assume that D = 7.2M , A = 15.2M from the M -cost of 2J → J and

J +J → J and C = 10.7M from (2J → J ) + (1/3)(J +A → J ), we obtain some

estimates on the number of processors needed for the final word to be of length 1 for

the NIST primes.
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By choosing the length of the largest block L1 in Equation (4.1), we can calculate

when the block size Li is 2 and when the total length of the multiplier, L, is larger

than that of a given NIST prime. The value of L1 can be determined by trial and

error. If we set L1 = 123, then L8 = 2 and L = 192, L1 = 146 gives L8 = 2 and

L = 225, L1 = 168 gives L8 = 2 and L = 257, L1 = 253 gives L8 = 2 and l = 384,

and finally L1 = 352 gives L8 = 2 and L = 521. These values are estimates, but they

indicate that even given a small cost for writing to memory, 7 or 8 processors should

be enough for this algorithm. If we consider communication cost, each addition

step comes with one read from memory and one write to memory, therefore we set

A = 15.2M + 2s1. Except for very large values of s1, the block sizes can still be

chosen so that at most 8 processors are needed.

Once the NAF of the integer multiplier k is split into appropriate length signed

bit-strings, Algorithm 30 computes the scalar multiple of a given point in the same

manner as Algorithm 29. Algorithm 30 is new and does not appear in the literature.

Algorithm 30: Right-to-Left Parallel with Hedging
Input: Affine point P , l = N signed bitstrings Ki of length Li, i ∈
{0, . . . , l − 1} such that

∑l−1
i=0 2LiKi = k and

∑l−1
i=0 Li = d

Output: Affine point kP
(1) foreach processor i ∈ {0, . . . , l − 1}
(2) Pi ← KiP using the binary NAF algorithm

(3) Pi ← 2
Pi−1

i=0 LiPl using consecutive doubling
(4) if i = 0
(5) write Pi to memory
(6) else
(7) wait until Pi−1 is written to memory, read
(8) Pi ← Pi + Pi−1

(9) if i < l − 1 then write Pi to memory
(10) return Pl−1

If the parameters are correctly set, then processor l− 1 will most likely not need
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to wait, and the running time of the whole algorithm is the running time of processor

l − 1. Thus the average running time of Algorithm 30 is

(d− 1)D + A.

Using the same coordinate choices as in Section 4.3.2 results in an effective field cost

of

(d−2)(4M+4S)+(2M+4S)+(12M+4S)+(I+3M+S) = I+(4d+9)M+(4d+1)S,

with communication overhead of s1. Table 4.3 describes the field costs and M -

costs of Algorithm 30 with d corresponding to the NIST primes. Since there is

only one addition contributing to the effective cost of the algorithm, this seems to

be a reasonable lower bound for computing an unknown point scalar multiple in

parallelizing. It must be noted that if the processor needs to wait, then this cost

may be slightly higher. The next algorithms will attempt to approach the effective

cost of this algorithm with fewer processors.

4.3.4 Two-Processor Right-to-Left

The parallelization achieved in Algorithms 29 and 30 works by spreading the addi-

tion steps throughout the processors. The two-processor algorithm takes a different

Table 4.3: Right-to-Left Parallel Method Average Cost (8 Processors)
d Field Cost M -cost s1

192 I+777.0M+769.0S 1472.2M 1
224 I+905.0M+897.0S 1702.6M 1
256 I+1033.0M+1025.0S 1933.0M 1
384 I+1545.0M+1537.0S 2854.6M 1
521 I+2093.0M+2085.0S 3841.0M 1



123

approach. All the doubling steps are performed on one processor and the results are

periodically sent to the other processor in order to combine them using additions.

In an NAF scalar multiplication, there are on average three times as many dou-

blings as additions. If a doubling takes around half the time of that of an addition,

the addition processor should not be slower than the the doubling processor.

Algorithm 31 performs scalar multiplication in this manner. One processor com-

putes the points 2P, 4P, 8P, . . . by repeated addition and writes 2iP to memory when

ki 6= 0 while the other adds ki2
iP whenever it is written to memory. This algorithm

is not found in this form in the literature.

Algorithm 31: Two-Processor Right-to-Left NAF
Input: Affine point P , integer k with signed binary representation
(kd−1, . . . , k0)
Output: Affine point kP
(1) processor 1:
(2) Q1 ← P
(3) for i = 1 to d− 1
(4) if ki = 1 then write Q1 to memory
(5) Q1 ← 2Q1

(6) processor 2:
(7) Q2 ←∞
(8) for every Q1 written to memory: Q2 ← Q2 + Q1

(9) return Q2

A feature of the NAF representation of integers is that no two consecutive bits

in the representation are non-zero. This provides a worst-case scenario in which the

representation of the integer k alternates between zero and non-zero values. In such a

case, the second processor would compute d/2 additions and the first would compute

d − 1 doubles. In the typical case, only d/3 additions would be required, including

a final addition that needs the result of the last doubling on the other processor in
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Table 4.4: Two-Processor Right-to-Left Average Cost
d Field Cost M -cost s1

192 I+777.0M+769.0S 1472.2M 63
224 I+905.0M+897.0S 1702.6M 74
256 I+1033.0M+1025.0S 1933.0M 84
384 I+1545.0M+1537.0S 2854.6M 127
521 I+2093.0M+2085.0S 3841.0M 173

order to continue. Algorithm 31 has an average-case running time of

(d− 1)D + A,

Since the bulk of the effective cost is being performed by the doubling, we take D to

be 2J → J and A to be J + J → J . This results in a best case field cost of

(d−2)(4M+4S)+(2M+4S)+(12M+4S)+(I+3M+S) = I+(4d+9)M+(4d+1)S

There is also (d/3−1)s1 in communication overhead on average. Table 4.4 describes

the average cost of Algorithm 31.

Aside from the communication overhead, Algorithm 31 has the same effective field

cost as Algorithm 30. This algorithm is therefore well suited to a shared-memory

parallel implementation where s1 is negligible. However, when s1 is more costly,

this algorithm will be significantly slower as it has rather fine granularity. The next

section examines an algorithm that lowers the communication overhead at the cost

of more elliptic curve operations.
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4.3.5 Two-Processor Window Right-to-Left

Recall the windowing technique for known point scalar multiplication from Section

3.3.1. This algorithm can be modified so that the precomputation is included in the

computation time. Möller [72] introduced a variant of this algorithm that can be

parallelized to two processors and has some useful properties that protect against

side-channel attacks (see Section 5.1.2). We will present a simplified version of his

algorithm.

In Algorithm 31, to compute kP for NAF(k) = (kd−1, . . . , k0), the first processor

computes 2iP for all 1 ≤ i ≤ d− 1 and sends 2iP for ki 6= 0 to the other processor.

The second processor then adds the points it receives together to obtain kP . In

this algorithm, the digits of k are grouped into windows and the second processor

computes the sums of the 2iP corresponding to each digit separately.

Suppose k ∈ N is written as

k =
l−1∑
i=0

bi2
wi,

for bi ∈ B, for some digit set B. For simplicity, assume

B = {−2w−1, . . . ,−1, 0, 1, . . . , 2w−1}.

Let B′ denote the set {|b| | b ∈ B} of absolute values of digits. We can write

k =
∑
b∈B′

b

(
l−1∑

i:bi=b

2wi −
l−1∑

i:bi=−b

2wi

)
.

Just as kP is calculated in Algorithm 31, the points

Pb =
l−1∑

i:bi=b

2wi −
l−1∑

i:bi=−b

2wi
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can be computed with two processors, one performing the point doublings and the

other performing the point additions and subtractions. We can then calculate

kP =
2w−1∑
b=0

bPb =
2w−1∑
b=0

b∑
j=1

Pb.

The algorithm proceeds in two steps, the right-to-left stage and the result stage.

The right-to-left stage involves the first processor computing 2iwP for 1 ≤ i ≤ l − 1

and sending the results to processor 2, which computes the points Pb for b ∈ B′.

In the result stage, the point
∑

b∈B′ bPb is computed. The result stage is performed

exclusively on the second processor.

Algorithm 32 performs this operation; it is a simplified version of that described

by Möller [72] in that it does not use randomization to protect from side-channel

attacks.

Algorithm 32: Two-Processor Window Right-to-Left
Input: Affine point P , integer k with signed 2w-ary representation
(kl−1, . . . , k0)2w

Output: Affine point kP
(1) processor 1:
(2) Q← P
(3) for i = 1 to l − 1
(4) if ki 6= 0 then write Q, ki

(5) Q← 2wQ
(6) processor 2:
(7) foreach 0 ≤ b ≤ 2w−1

(8) Pb ←∞
(9) foreach Q, ki written in memory, read
(10) if ki > 0
(11) Pki

← Pki
+ Q

(12) else if ki < 0
(13) P−ki

← P−ki
−Q

(14) for i = 2w−1 − 1 down to 2
(15) Pi ← Pi + Pi+1

(16) for i = 2 to 2w−1



127

(17) P1 ← P1 + Pi

(18) return P1

Similarly to the previous algorithm, the second processor is the last to finish. As

long as w ≥ 2, the running time of Algorithm 32 is approximately

((l − 1)w)D + (2w − 2)A,

with communication overhead (l − 1)s1. The algorithm also requires the storage of

2w−1 temporary points. Assuming D is performed with the 2J → J operation and

A with J + J → J , the average effective running time of this algorithm is

(w(l − 1)− 1)(4M + 4S) + (2M + 4S) + (2w − 2)(11M + 3S) + (I + 3M + S)

= I + (4wl − 4w + 11 · 2w − 21)M + (4wl − 4w + 3 · 2w − 5)S.

In addition, (l − 1)s1 is required for passing points between processors.

Table 4.5 describes the field costs and M -costs of Algorithm 32 with d correspond-

ing to the length of the NIST prime P192. The tables for d chosen to correspond to

P224, P256, P384 and P521 are similar and can be found in Appendix B.

The results show that Algorithm 32 has a higher effective M -cost than Algorithm

31, but a lower communication overhead when w ≥ 3. The main advantages of the

windowed method are the savings in the number of transfers between processors and

Table 4.5: Right-to-Left Windowing Method Average Cost (d = 192)
w Field Cost M -cost s1

2 I+783.0M+767.0S 1476.6M 95
3 I+823.0M+775.0S 1523.0M 63
4 I+907.0M+795.0S 1623.0M 47
5 I+1091.0M+851.0S 1851.8M 38
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the measures that can be taken against side-channel attacks. However, the side-

channel resistant version of this algorithm presented by Möller is more costly than

the version presented here.

4.3.6 Left-to-Right Parallel

Algorithm 32 used a technique analogous to the right-to-left binary algorithm for

modular exponentiation. In Sections 4.3.1 to 4.3.5, we will examine algorithms that

take an alternative approach analogous to the left-to-right binary algorithm.

Let k be an integer multiplier with NAF(k) = (kd−1, . . . , k0). Then we can write

k in terms of blocks of length w as follows

K0 = (kw−1, . . . , k0), . . . , Kl−1 = (0, . . . , kd−1, . . . , k(l−1)w),

where Kl−1 is padded with zeros as needed.

The first step of the w-bit left-to-right algorithm uses l = N processors to calcu-

late the values KiP for 0 ≤ i < l − 1. The point kP is calculated by taking Kl−1P ,

doubling it w times, adding the value Kl−2P , then doubling w times and repeating

for each KiP until finally K0 is added, obtaining kP .

Algorithm 33 is a new algorithm that performs scalar multiplication in this man-

ner.

Algorithm 33: Left-to-Right Parallel
Input: Affine point P , l(= N) signed bitstrings K0, . . . , Kl−1 of length
w
Output: Affine point kP
(1) foreach processor i ∈ {0, . . . , l − 1}
(2) Pi ← KiP using the binary NAF algorithm
(3) if i < l − 1 then write Pl to memory
(4) if i = l − 1
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(5) foreach j from l − 2 down to 0
(6) wait until Pi is written and read
(7) Pl−1 ← 2wPl−1 using consecutive doubling
(8) Pl−1 ← Pl−1 + Pj

(9) return Pl−1

The average running time of Algorithm 33 is(
wD +

w − 3

3
A

)
+ ((l − 1)wD + (l − 1)A) ,

with communication overhead (l−1)s1. The first term comes from computing Kl−1P ,

the second term is from the repeated doubling and the addition of the other KiP

to the total. The drawback of this algorithm compared to Algorithm 29 is that the

additions used to combine the values computed on each processor are performed

on the main processor l − 1 and therefore contribute to the total running time.

Specifically, l− 2 additional additions are needed in comparison with Algorithm 33.

After the initial computation of the values KiP , all the processors except for l−1

are idle. This observation leads to the next algorithm, which has the same running

time but only uses 3 processors.

4.3.7 Left-to-Right (3 Processors)

In Algorithm 33, all but one of the processors are idle for most of the computation.

Also, the values computed by the other processors are not needed immediately. These

two facts allow the number of processors to be reduced to three.

The algorithm below consists of the same operations as the previous one except

that the values K0P, . . . , Kl−2P are computed by two processors concurrently while

another processor performs the doubling. Three processors are needed rather than

two because the time required to compute KiP is on average more than the time it
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takes to compute w doubles and one add.

Algorithm 34 is a new algorithm that performs this operation.

Algorithm 34: Left-to-Right (3 Processors)
Input: Affine point P , l signed bitstrings K0, . . . , Kl−1 of length w
Output: Affine point kP
(1) foreach processor j ∈ {0, 1} simultaneously perform
(2) for i = l − 3 + j down to 0 or 1 by 2
(3) Pi ← KiP using the binary NAF algorithm, write to mem-

ory
(4) for processor 2 simultaneously perform
(5) Pi ← Kl−1P using the binary NAF algorithm
(6) for i = l − 2 to 0
(7) wait until Pi is written to memory, read
(8) Pl−1 ← 2wPl−1 using consecutive doubling
(9) Pl−1 ← Pl−1 + Pi

(10) return Pl−1

The average running time of Algorithm 34 is

(
wD +

w

3
A
)

+ ((l − 1)wD + (l − 1)A),

the same as Algorithm 33. The first term comes from computing Kl−1P , the second

term is from the repeated doubling and the addition of the other KiP to the total.

Assuming that each block takes approximately the same amount of time, the first

processor should not have to wait.

The coordinate system used is affine-Jacobian for the binary NAF algorithm,

with the return value in Chudnovsky Jacobian coordinates. The repeated doubling

is performed with 2J → J and the addition is J + J c → J .

The average cost for Step 3 is(
w − 3

3

)
(12M + 7S) + (2M + 4S) +

(
w − 2− w − 3

3

)
(4M + 4S) + (M + S),
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Table 4.6: Left-to-Right (3 Processors) Average Cost (d = 192)
l Field Cost M -cost s1

3 I+951.7M+834.0S 1698.9M 2
4 I+921.0M+822.0S 1658.6M 3
5 I+921.0M+829.0S 1664.2M 4
6 I+902.3M+814.0S 1633.5M 5
7 I+919.7M+830.0S 1663.7M 6
8 I+905.0M+814.0S 1636.2M 7
9 I+935.7M+840.0S 1687.7M 8

with s1 for communication. Since each processor only performs this step at most
⌈

l−3
2

⌉
times, they should all finish before processor two. The cost of Step 5 for processor 2

is (
w − 3

3

)
(12M + 7S) + (2M + 4S) +

(
w − 2− w − 3

3

)
(4M + 4S).

Step 8 costs w(4M + 4S) and Step 9 costs 12M + 4S with s1 to read from memory.

This results in an effective cost for Algorithm 34 of(
w − 3

3

)
(12M + 7S) + (2M + 4S) +

(
w − 2− w − 3

3

)
(4M + 4S)+

w(l − 1)(4M + 4S) + (l − 1)(12M + 4S) + (I + 3M + S)

= I +

(
8w

3
+ 4lw + 12l − 23

)
M + (w + 4lw + 4l − 10)S,

with communication overhead (d− 1) · s1.

Table 4.6 describes the field costs and M -costs of Algorithm 34 with d correspond-

ing to the length of the NIST prime P192. The tables for d chosen to correspond

with P224, P256, P384 and P521 are similar and can be found in Appendix B.

The advantage of this algorithm is that is is relatively fast compared to other

parallel implementations with a small number of processors and less communication
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time. Since the number of blocks l is variable, a trade-off can be made between the

effective field cost (the cost on processor 2) and the communication time, providing

more flexibility. In the next section, we will examine a version of this algorithm that

only needs two processors but uses precomputation.

4.3.8 Two-Processor Left-to-Right Parallel with Precomputation

In the previous algorithm, scalar multiplication is split into two parts. The multiplier

k is split into blocks K0, . . . , Kl−1 of length w. Computation of each KiP is performed

on two processors and the results are sent to another processor which computes

2wQ + R. The reason that the previous algorithm required three processors instead

of two is that KiP in general takes more time to compute than 2wQ + R. With

precomputed values available, it is possible to make sure that only one processor is

needed to compute the values Ki.

To achieve this, we must look at the width-v NAF of the multiplier. Suppose that

v-NAF(k) = (kd−1, . . . , k0). Let (kd−1 = kvs , kvs−1 , . . . , kv1) be the non-zero digits of

v-NAF(k). The value s is the number of non-zero digits. Let w be a small positive

integer and r = bs/wc, then define

K0 = (kvs , . . . , kvs−w),

K1 = (kvs−w−1 , . . . , kvs−2w),

...

Kr = (kvs−rw−1 , . . . , kv1).

These values are blocks of consecutive digits of k. The values needed for v-NAF are

precomputed with Algorithm 27. The algorithm will proceed by computing K0P on
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processor 1, then doubling vs−w−vs−2w times and adding K1P , K2P, . . . , KrP . while

processor 2 computes K1P, K2P, . . . , KrP . Each KiP is computed with vs−iw−1 −

vs−(i+1)w doublings and w− 1 additions. The goal is to select w and v appropriately

so that processor 2 finishes before processor 1.

In the worst case, the number of zeros between two non-zero values in a v-NAF

representation of an integer is v − 1. For now, we will assume that this is always

the case. This gives us worst case estimates for our choices of w and v, so that

the parameter choices work for any input. In this case, we assume s = d/v, and

r = d/wv; we are looking at the average results, so these do not have to be integers.

After precomputation, processor 1 uses (w− 1)A + (w− 1)vD to compute K0P ,

then (d− wv)D and (d/wv)A. Processor 2 uses (d/wv)((w − 1)A + (w − 1)vD). In

the computation of KiP , the additions are J +A → J . The doublings are 2J → J

and all other additions are J + J → J . The total field cost for processor 1 is

(d− wv)(4M + 4S) +

(
d

wv

)
(12M + 4S)+

((w − 1)v(4M + 4S) + (w − 1)(8M + 3S)).

The total field cost for processor 2 is(
d

wv

)
((w − 1)v(4M + 4S) + (w − 1)(8M + 3S)).

We need to find the values for v and w such that the field cost for processor 1 is

minimal, while being larger than that of processor 2. Keep in mind that a higher

value for v translates into a larger precomputation, so we keep v small. Also, lower

values of w translate into more additions on processor 1, so we wish to keep w large.

Table 4.7 shows the smallest w for a given v and d that satisfies the above equation
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Table 4.7: Largest Values of w for a given v, d
d 192 224 256 384 521
v 3 4 5 3 4 5 3 4 5 3 4 5 3 4 5 6
w 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6 6

for given bit length d.

Algorithm 35 is a new algorithm that computes the scalar multiple of a point in

the manner described above given the values K0, . . . , Kr as above with bit lengths

l0, . . . , lr.

Algorithm 35: Two-Processor Left-to-Right Parallel with Precom-
putation
Input: Affine point P , r + 1 signed binary digit strings K0, . . . , Kr of
lengths l0, . . . , lr
Output: Affine point kP
(1) precomputation:
(2) compute Pi = iP for i ∈ {1, 3, . . . , 2v − 1} using 2-processor

precomputation (Algorithm 26).
(3) for processor 1 perform the following:
(4) Q0 ← K0P using binary v-NAF algorithm
(5) for j = 1 to r
(6) Q← 2ljQ
(7) wait until Qj is written to memory, read
(8) Q← Q + Qj

(9) for processor 2 do the following:
(10) for j = 1 to r
(11) Qj ← KjP using binary v-NAF algorithm
(12) write Qj to memory
(13) return Q

This algorithm will finish without waiting with appropriate choices for w,v and

Ki. As described above, in the worst case r ≈ dt/(vw)e. In the average case, the

number of zero terms between successive points is v, not v − 1, so we can assume
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r = d/((v + 1)w). The effective field cost of the non-precomputation portion of

Algorithm 32 is

(d− w(v + 1))D + (d/((v + 1)w))A + ((w − 1)(v + 1)D + (w − 1)A)

on average.

The repeated doubling in Step 6 is performed with Jacobian coordinates. Each

block KiP is computed with the binary v-NAF algorithm by doubling a point in

Jacobian coordinates and adding the precomputed affine points. The points KiP

are given in Jacobian coordinates to processor 1 and added.

With these coordinate systems, the effective field cost of Algorithm 35 without

the precomputation is

(d− w(v + 1))(4M + 4S) + ((d/((v + 1)w))(12M + 4S)+

(w − 1)(v + 1)(4M + 4S) + (w − 1)(8M + 3S) + (S + 3M + I),

= I +

(
4d− 4v + 8w +

12d

vw + w
− 9

)
M +

(
4d− 4v + 3w +

4d

vw + w
− 2

)
S,

with communication overhead d/((w+1)v)s1. The generation of the precomputation

table has field cost

(2M + 4S) + (11M + 3S) + (2v−3 − 1)(11M + 3S)

= (2 + 11 · 2w−3)M + (4 + 3 · 2w−3)S,

and converting the table to affine coordinates costs

I +
(
6 · 2v−3 − 3

)
M +

(
2v−3

)
S,

with a communication overhead of (3 + 2v−3 − 1)s1.
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Table 4.8: Left-to-Right (2 Processors) Average Cost
d v w Field Cost M -cost s1

192
3 4 2I+922.0M+820.0S 1738.0M 16
4 5 2I+891.2M+805.7S 1695.7M 12
5 6 2I+901.0M+803.3S 1703.7M 12

224
3 4 2I+1074.0M+956.0S 1998.8M 18
4 5 2I+1034.5M+938.8S 1945.6M 14
5 6 2I+1039.7M+934.9S 1947.6M 13

256
3 4 2I+1226.0M+1092.0S 2259.6M 21
4 5 2I+1177.9M+1072.0S 2195.4M 15
5 6 2I+1178.3M+1066.4S 2191.5M 14

384
3 4 2I+1834.0M+1636.0S 3302.8M 29
4 5 2I+1751.3M+1604.4S 3194.9M 20
5 6 2I+1733.0M+1592.7S 3167.1M 17

521

3 4 2I+2484.8M+2218.2S 4419.4M 38
4 5 2I+2365.1M+2174.4S 4264.6M 26
5 6 2I+2326.7M+2155.9S 4211.4M 21
6 6 2I+2365.9M+2159.6S 4253.6M 23

Table 4.8 describes the field costs and M -costs of Algorithm 35 with d corre-

sponding to the NIST primes and v, w determined from Table 4.7. The results of

Table 4.8 demonstrate that this algorithm improves upon using a single processor,

at the expense of a small number of communications. This is the last algorithm we

examine based on the binary algorithm.

4.3.9 Parallel Double-Base Representation

Double-base chain multiplication introduced in Section 3.2.6 can be generalized to

multiple processors in an analogous way to the pth order binary algorithm using a

generalization of a double-base chain. The material in this section is new and is not

found in the literature. The key concept is a double-base n-chain.
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Definition 4.3.1. A double-base n-chain for an integer k is a set of n double-base

chains for integers g1, . . . , gn such that
∑n

i=1 gi = k.

Double-base n-chains can be generated in a number of ways. They can be com-

puted by applying a relaxed version of Algorithm 21 or by taking a double-base chain

and partitioning the chain into n sub-chains. There has not been any extensive study

of the density of double-base n-chains.

Computing a multiple of a point using double-base n-chains can be performed in

a manner analogous to the pth order binary method. If g1, . . . , gn form a double-base

n-chain for k, then kP can be computed with n processors in parallel by computing

giP on processor i. The point kP is the sum of each of the points giP . If the

integers gi are chosen correctly, then the technique introduced in Section 4.3.2 can

be applied. With this method, the integers g1, . . . , gn are arranged so that g1P

finishes first, then g2P , and so forth with gnP finishing last. With this arrangement,

processor 1 sends g1P to processor 2, which then computes g1P + g2P and sends the

result to the next processor. The final processor receives
∑n−1

k=1 giP and computes

kP = gnP +
∑n−1

k=1 giP with one addition.

Algorithm 36 is a new algorithm that computes the scalar multiple of an integer

on N processors when given a double-base N -chain by computing the scalar multiple

of each chain and then adding them together once they are all completed.

Algorithm 36: n-Chain Scalar Multiplication
Input: Affine point P , positive integer k =

∑N
i=1 gi with DBNS rep-

resentations gi =
∑mi

j=1 gij2
bij 3tij

Output: Affine point kP
(1) foreach processor i ∈ {1, . . . , N} do:
(2) calculate Pi ← giP using Algorithm 22.
(3) if N > i > 1
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(4) read Pi−1 from memory
(5) Pi ← Pi + Pi−1

(6) write Pi to memory
(7) if i = N
(8) read Pi−1 from memory
(9) Pi ← Pi + Pi−1

(10) return Pn

The cost of Algorithm 36 depends on the chains that are given. One possibility

is to take the double-base chain derived from the greedy algorithm and to split it

into N different chains. For instance, if the chain has mmax terms, take the smallest

mmax/N terms for the first chain, the next smallest mmax/N terms for the second,

etc. In this case, if bmax, tmax, and mmax represent the maximal binary exponent,

the maximal ternary exponent and the number of terms, then the average running

time is ⌈
mmax − 1

N
+ 1

⌉
A + bmaxD + tmaxT.

Algorithm 36 requires a large number of doublings and triplings and a smaller

number of additions. The fastest coordinate system for doubling and tripling is

Jacobian. We will therefore use the formulas for J + A → J , 2J → J , and

3J → J to execute Algorithm 36. The field cost of Algorithm 36 is on average⌈
mmax − 1

N

⌉
(8M + 3S) + (2M + 4S) + (bmax − 1)(4M + 4S)+

tmax(9M + 5S) + (12M + 4S) + (I + 3M + S)

= I +

(
8

⌈
mmax − 1

N

⌉
+ 4bmax + 9tmax + 13

)
M+(

3

⌈
mmax − 1

N

⌉
+ 4bmax + 5tmax + 5

)
S,

and a communication overhead of s1.
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Table 4.9: Double-Base n-Chain Average Cost (d = 192)
N Field Cost M -cost s1

2 I+1085.0M+775.0S 1785.0M 1
3 I+1029.0M+754.0S 1712.2M 1
4 I+997.0M+742.0S 1670.6M 1
5 I+981.0M+736.0S 1649.8M 1
6 I+973.0M+733.0S 1639.4M 1
7 I+965.0M+730.0S 1629.0M 1
8 I+957.0M+727.0S 1618.6M 1

Table 4.9 describes the field costs and M -costs of the variant of Algorithm 36 with

no recombination stage. For each d corresponding to a NIST prime, bmax, tmax, mmax

are chosen optimally. For multipliers of length 192 the optimal value of (bmax, tmax)

is (116, 48), see Table 3.10. The tables for d chosen to correspond with P224, P256,

P384 and P521 are similar and can be found in Appendix B.

Using the double-base chain results from Table 3.9, some estimates can be made

about the effective field cost of Algorithm 36. Note that finding a double-base n-

chain by splitting a double-base chain is not necessarily the best method of finding

one, and that it is almost always possible to find a double-base n-chain that is less

dense and therefore faster by using a modified greedy algorithm.

4.3.10 Parallel Montgomery Ladder

Montgomery [74] introduced a technique for scalar multiplication of points on curves

in a form called Montgomery form now referred to as Montgomery’s Ladder. The

technique involves special formulas for addition and doubling that rely on only the

X and Z coordinates of a point in projective form. The Y coordinate is derived from
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the X and Z coordinates after the calculation.

Brier and Joye [15] generalized Montgomery’s formulas to any curve with short

Weierstraß equation y2 = x3 + ax + b. If we write nP in projective coordinates as

(Xn : Yn : Zn), then the following formulas hold:

Addition:

Xm+n = Zm−n(−4bZmZn(XmZn + XnZm) + (XmXn − aZmZn)2),

Zm+n = Xm−n(XmZn −XnZm)2,

Doubling:

X2n = (X2
n − aZ2

n)2 − 8bXnZ
3
n,

Z2n = 4Zn(Xn(X2
n + aZ4

n) + bZ3
n).

The advantage of these formulas is that the Y -coordinate of a point is never

needed. If a = −3, then an addition requires 8M + 2S and a doubling requires

5M + 3S. We want to recover the affine coordinates for nP = (xn, yn). Given the x

coordinates xn, xn+1 of nP and (n + 1)P , respectively, yn is recovered by

yn =
2b + (x1xn + a)(x1 + xn)− (x1 − xn)2xn+1

2y1

.

To find these values, we compute T = (ZnZn+1(2y1))
−1, then (Zn)−1 = TZn+1(2y1)

and Z−1
n+1 = TZn(2y1),(2y1)

−1 = TZnZn+1. This allows us to compute xn = XnZ
−1
n

and xn+1 = Xn+1Z
−1
n+1. Therefore, given x1, (Xn, Zn) and (Xn+1, Zn+1), computing

yn takes

(6M + I) + 4M + S.

The left-to-right binary method can be applied with these formulas for doubling

and addition. Doubling only requires the point nP , but addition requires the points



141

nP, mP and (n − m)P . In Montgomery’s ladder, two points are stored: P1 and

P2. The point P1 corresponds to the temporary multiple nP and P2 corresponds to

(n + 1)P . Given a multiplier k = (kd−1, . . . , k0)2, the left-to-right binary method

proceeds by scanning the digits from kd−1 down to k0. Starting with P1 = P , if

ki = 0, then P1 is doubled, and if ki = 1, then P1 is doubled and P is added. Since

P2 = P1 + P , the double and add step can be computed by adding P2 to P1. Since

we are adding nP to (n + 1)P , we need the point (n + 1− n)P = P . Notice that P2

needs to be kept as P1 + P for the new P1. When ki = 0, P1 is set to 2P1, so setting

P2 to P1 + P2 results in P2 = 2P1 + P . When ki = 0, P1 is set to 2P1 + P , so setting

P2 to 2P2 results in P2 = (2P1 + P ) + P .

If this algorithm is implemented with the special Montgomery operations, then

P1 − P2 is equal to P at each step, so that Zm−n = Z1. Since P is given in affine

form, Z1 = 1; therefore, the addition requires one less multiplication (7M + 2S).

Algorithm 37 computes a scalar multiple of a point using the operations; it is

adapted from Brier and Joye [15]. Processor 1 computes the successive values of P1

and processor 2 computes the successive values of P2.

Algorithm 37: Parallel Montgomery Ladder Scalar Multiplication
Input: Affine point P , positive integer k with binary representation
k = (kd−1, . . . , k0)2

Output: Affine point kP
(1) P1 ← P
(2) P2 ← 2P
(3) for i = d− 2 to 0
(4) if ki = 0
(5) processor 1:
(6) P1 ← 2P1

(7) write P1 to shared memory
(8) processor 2:
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(9) read P1 from shared memory
(10) P2 ← P1 + P2

(11) write P2 to shared memory
(12) else
(13) processor 1:
(14) read P2 from shared memory
(15) P1 ← P1 + P2

(16) write P1 to shared memory
(17) processor 2:
(18) P2 ← 2P2

(19) write P2 to shared memory
(20) compute (xn, yn) from P1, P2

(21) return P1

For each step of the loop, the processor performing addition will take the longest

time. The effective running time of Algorithm 37 in terms of elliptic curve operations

is (d− 1)A.

Using Montgomery operations for each double and add, the effective field cost of

Algorithm 37 is

(d− 2)(7M + 3S) + (5M + 3S) + (I + 10M + S)

= I + (7d + 1)M + (3d− 2)S,

with 2(d− 1)s1 in communication overhead. Table 4.10 describes the field costs and

M -costs of Algorithm 37 on two processors with d corresponding to the length of the

NIST primes.

The main advantage of this algorithm is that it has good side-channel resistance

(see Section 5.1.2). However, the algorithm has very fine granularity in that it

requires many communications and hence is not practical when s1 is large.
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4.3.11 Summary

This section compares the running times of the various algorithms described in this

chapter. Tables 4.11 and 4.12 describe these results for parameters corresponding to

the NIST primes P192 and P521 in terms of their field costs and their M -costs. The

tables for d chosen to correspond with P224, P256 and P384 are similar and can

be found in Appendix B. The amount of shared memory needed is one Chudnovsky

point for every algorithm except 2P L2R, in which 2v−2− 1 Chudnovsky points need

to be stored.

If we take a more in depth look at Tables 4.11 and 4.12, we can determine the

theoretical speedup of these algorithms in comparison with their serial counterparts.

The theoretical speedup is computed as c1/cN where c1 is the M -cost of the com-

parable serial algorithm and cN is the M -cost of the algorithm on N processors in

question.

Let us first look at Table 4.11. The first case to consider is when the commu-

nication time is very low (s1 < 2M). In this case, the two-processor right-to-left

algorithm (Algorithm 31) has cost less than 1472.2M +2M ·63 = 1598.2M , which is

lower than that of any algorithm using 5 or fewer processors and is comparable with

Table 4.10: Parallel Montgomery Ladder Average Cost
d Field Cost M -cost s1

192 I+1345.0M+574.0S 1884.2M 382
224 I+1569.0M+670.0S 2185.0M 446
256 I+1793.0M+766.0S 2485.8M 510
384 I+2689.0M+1150.0S 3689.0M 766
521 I+3648.0M+1561.0S 4976.8M 1040
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Table 4.11: Parallel Scalar Multiplication (P192)
Processors Algorithm Variables Field Cost M -cost s1

2

pth (28) – I+1030.0M+864.5S 1801.6M 3
R2L Par. (29) – I+1024.0M+861.0S 1792.8M 1
2P R2L (31) – I+777.0M+769.0S 1472.2M 63

2P Win R2L (32) w = 4 I+907.0M+795.0S 1623.0M 47
w = 5 I+1091.0M+851.0S 1851.8M 38

2P L2R (35)
v = 3, w = 4 2I+922.0M+820.0S 1738.0M 16
v = 4, w = 5 2I+891.2M+805.7S 1695.7M 12
v = 5, w = 6 2I+901.0M+803.3S 1703.7M 12

DB2Chain (36) – I+1085.0M+775.0S 1785.0M 1
MontLad (37) – I+1345.0M+574.0S 1884.2M 382

3

pth (28) – I+958.0M+837.0S 1707.6M 5
R2L Par. (29) – I+938.7M+829.0S 1681.9M 1

3P L2R (34)

l = 3 I+951.7M+834.0S 1698.9M 2
l = 4 I+921.0M+822.0S 1658.6M 3
l = 5 I+921.0M+829.0S 1664.2M 4
l = 6 I+902.3M+814.0S 1633.5M 5

DB3Chain (36) – I+1029.0M+754.0S 1712.2M 1

4
pth (28) – I+916.0M+821.2S 1653.0M 5
R2L Par. (29) – I+896.0M+813.0S 1626.4M 1
DB4Chain (36) – I+997.0M+742.0S 1670.6M 1

5
pth (28) – I+902.8M+815.8S 1635.4M 7
R2L Par. (29) – I+884.0M+816.0S 1616.8M 1
DB5Chain (36) – I+981.0M+736.0S 1649.8M 1

6
pth (28) – I+886.0M+809.5S 1613.6M 7
R2L Par. (29) – I+853.3M+797.0S 1570.9M 1
DB6Chain (36) – I+973.0M+733.0S 1639.4M 1

7
pth (28) – I+874.0M+805.0S 1598.0M 7
R2L Par. (29) – I+858.7M+809.0S 1585.9M 1
DB7Chain (36) – I+965.0M+730.0S 1629.0M 1

8
pth (28) – I+865.0M+801.6S 1586.3M 7
R2L Par. (29) – I+832.0M+789.0S 1543.2M 1
R2L Hed. (30) – I+777.0M+769.0S 1472.2M 1
DB8Chain (36) – I+957.0M+727.0S 1618.6M 1
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Table 4.12: Parallel Scalar Multiplication (P521)
Processors Algorithm Variables Field Cost M -cost s1

2

pth (28) – I+2784.7M+2345.0S 4740.7M 3
R2L Par. (29) – I+2784.0M+2346.0S 4740.8M 1
2P R2L (31) – I+2093.0M+2085.0S 3841.0M 173

2P Win R2L (32) w = 4 I+2235.0M+2123.0S 4013.4M 130
w = 5 I+2411.0M+2171.0S 4227.8M 104

2P L2R (35)

v = 3, w = 4 2I+2484.8M+2218.2S 4419.4M 38
v = 4, w = 5 2I+2365.1M+2174.4S 4264.6M 26
v = 5, w = 6 2I+2326.7M+2155.9S 4211.4M 21
v = 6, w = 6 2I+2365.9M+2159.6S 4253.6M 23

DB2Chain (36) – I+2967.0M+2042.0S 4680.6M 1
MontLad (37) – I+3648.0M+1561.0S 4976.8M 1040

3

pth (28) – I+2566.4M+2262.7S 4456.6M 5
R2L Par. (29) – I+2552.0M+2259.0S 4439.2M 1

3P L2R (34)
l = 6 I+2369.0M+2189.0S 4200.2M 5
l = 7 I+2361.0M+2193.0S 4195.4M 6
l = 9 I+2327.7M+2172.0S 4145.3M 8

DB3Chain (36) – I+2815.0M+1985.0S 4483.0M 1

4
pth (28) – I+2451.3M+2219.5S 4306.9M 5
R2L Par. (29) – I+2445.3M+2224.0S 4304.5M 1
DB4Chain (36) – I+2743.0M+1958.0S 4389.4M 1

5
pth (28) – I+2394.3M+2197.6S 4232.3M 7
R2L Par. (29) – I+2380.0M+2202.0S 4221.6M 1
DB5Chain (36) – I+2695.0M+1940.0S 4327.0M 1

6
pth (28) – I+2348.2M+2180.3S 4172.5M 7
R2L Par. (29) – I+2320.0M+2172.0S 4137.6M 1
DB6Chain (36) – I+2663.0M+1928.0S 4285.4M 1

7
pth (28) – I+2315.3M+2168.0S 4129.7M 7
R2L Par. (29) – I+2300.0M+2172.0S 4117.6M 1
DB7Chain (36) – I+2647.0M+1922.0S 4264.6M 1

8
pth (28) – I+2290.7M+2158.8S 4097.7M 7
R2L Par. (29) – I+2288.0M+2175.0S 4108.0M 1
R2L Hed. (30) – I+2093.0M+2085.0S 3841.0M 1
DB8Chain (36) – I+2631.0M+1916.0S 4243.8M 1
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Table 4.13: Scalar Multiplication Speedup (P192)
Processors Algorithm s1 M -cost 1P Alg Speedup

2
2P R2L 0M–2M 1472.2M–1598.2M 1946.3M 1.32–1.22

2M–4M 1598.2M–1734.2M 1946.3M 1.22–1.12
2P L2R (v = 4, w = 5) 3M–10M 1731.7M–1815.7M 1946.3M 1.12–1.07
DB2Chain >10M >1795M 1946.3M 1.08–1.00

3 3P L2R (l = 6) 0M–12M 1633.5M–1693.5M 1946.3M 1.19–1.15
R2L Par. >10M >1691.9M 1946.3M 1.15–1.00

the fastest algorithms for 6 or 7 processors. The speedup is at least 1.22 versus the

fractional window algorithm (Algorithm 20) in this case. If 8 processors are avail-

able, the right-to-left with hedging algorithm (Algorithm 30) is always faster with a

speedup of 1.32, as long as the value of s1 is not too large.

The more complicated case is when there is a limited number of processors and

s1 > 2M . Table 4.13 describes the resulting cost of the fastest algorithms using

two or three processors for the possible ranges of s1. In this case, we assume that

there are 3 available spaces of storage for precomputation. With a smaller amount

of storage space, the fractional window algorithm to which we are comparing would

not be available and the two-processor left-to-right algorithm with v = 4 would not

be available. The fastest serial scalar multiplication algorithm with no storage space

is the double-base chain algorithm (Algorithm 22) with a cost of 1988.9M .

Table 4.13 indicates that if two processors are available, 2P R2L is the fastest

algorithm for s1 = 0 up to around s1 ≈ 3M , 2P L2R is faster for s1 ≈ 3M up to

s1 ≈ 10M and DB2Chain is faster for s1 > 10M . If three processors are available

then 2P R2L is the fastest algorithm for s1 = 0 up to around s1 ≈ 3M , 3P L2R is

faster for s1 ≈ 3M up to s1 ≈ 11M , and R2L Parallel is faster for s1 > 10M .
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Table 4.14: Scalar Multiplication Speedup (P521)
Processors Algorithm s1 M -cost 1P Alg Speedup

2
2P R2L 0M–2M 3841M–4187M 4940.9M 1.29–1.18

2M–4M 4187M–4533M 4940.9M 1.18–1.09
2P L2R (v = 4, w = 5) 3M–25M 4274.4M–4631.4M 4940.9M 1.16–1.04
DB2Chain >25M >4705.6M 4940.9M 1.05–1.00

3 3P L2R (l = 9) 2M–40M 4157.3M–4461.3M 4940.9M 1.19–1.11
R2L Par. >40M >4479.2M 4940.9M 1.10–1.00

Table 4.12 gives similar results when the communication time is very low (s1 <

2M). In this case, the two-processor right-to-left algorithm (Algorithm 31) still

has cost 3841.0M + 173s1 which is less than 4187M , and lower than that of any

algorithm using 5 or fewer processors and is comparable with the fastest algorithms

for 6 or 7 processors. The speedup is at least 1.18 versus the fractional window

algorithm (Algorithm 20) in this case. If 8 processors are available, the right-to-left

with hedging algorithm (Algorithm 30) is always faster with a speedup of 1.29.

Again, the complicated case is when there is a limited number of processors and

s1 > 2M . Table 4.14 describes the resulting cost of the fastest algorithms using

two or three processors for the possible ranges of s1. In this case, we assume that

there are 7 available spaces of storage for precomputation. With a smaller amount

of storage space, the fractional window algorithm we are comparing to would not

be available and the two processor right-to-left algorithm with v = 4 would not be

available. The fastest serial scalar multiplication algorithm with no storage space is

the double-base chain algorithm (Algorithm 22) with a cost of 5241.9M .

This table indicates that if two processors are available, 2P R2L is the fastest

algorithm for s1 = 0 up to around s1 ≈ 3M , 2P L2R is faster for s1 ≈ 3M up to
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s1 ≈ 25M , and DB2Chain is faster for s1 > 25M . If three processors are available,

then 2P R2L is the fastest algorithm for s1 = 0 up to around s1 ≈ 3M , 3P L2R is

faster for s1 > 3M up to s1 ≈ 40M , and R2L Parallel is faster for s1 > 40M .

The consistency of the results of these two tables suggest that the following

general conclusions hold for all the NIST primes:

• 2P R2L is the fastest algorithm for fewer than 8 processors when s1 is very

small.

• R2L Hed. is the fastest algorithm for 8 processors.

• 2P L2R and 3P L2R are the fastest algorithms for 2 and 3 processors, respec-

tively, when s1 is small.

• DB2Chain and R2L Par. are the fastest algorithms for 2 and 3 processors

respectively when s1 is large.

• R2L Par. is the fastest algorithm for 3 to 7 processors when s1 is not very

small.

• Using more than 8 processors does not offer any advantage over using 8 pro-

cessors.

It must be noted that these estimates are based on very specific assumptions.

Implementations of the algorithms are needed to determine the practical speedup

that is obtained.

The results of this chapter suggest that a speedup can be obtained as long as the

communication time s1 is small. The maximum speedup is around 1.30, and this can
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be achieved with at most 8 processors. If speed of computation is a high priority and

multiple processors are available, it may be useful to implement one of these parallel

algorithms.



Chapter 5

Conclusion

In this thesis, we presented results on the comparative speed of several serial and

parallel scalar multiplication algorithms for elliptic curves over prime fields. A metric

called the M -cost was developed and used to compare the running time of differ-

ent algorithms using estimates of S = (4/5)M and I = 80 for the relative speed

of prime field squaring, multiplication and inversion. These assumptions are stan-

dard (Okeya and Sakurai [80] and Lim and Hwang [65]) and hold for most software

implementations of prime field arithmetic.

Using this metric, we examined elliptic curve scalar multiplication in three sit-

uations: unknown point, known point and known multiplier scalar multiplication.

For all three scenarios, we performed a detailed analysis of the performance of scalar

multiplication algorithms. In the unknown point case, we found that the fastest

algorithm requiring precomputation and storage space is the fractional window al-

gorithm (Algorithm 20), and using the new tripling formulas, the fastest algorithm

not requiring storage space is the double-base chain algorithm (Algorithm 22). In

the known point case, we examined fixed-base windowing and the comb method and

found that the comb method is faster for a given amount of storage space except

for a small range of parameters where fixed-base windowing is faster. The results

for unknown point and known point scalar multiplication were shown to hold for

scalars with lengths corresponding with all five NIST primes. In the known mul-

tiplier case, there are no definitive results in the literature on computing optimal

150
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addition-subtraction chains, so a full analysis could not be made.

In Chapter 4, we presented several algorithms for unknown point scalar multi-

plication using multiple processors. We used a computation model in which there

are a small number of processors that each have their own memory and access to

a shared memory bank. Combining this model with the M -cost metric, we were

able to determine the fastest algorithms given different memory access costs. Using

two processors, the two processor right-to-left algorithm (Algorithm 31) was shown

fastest when memory access is fast, two processor left-to-right (Algorithm 35) is

fastest when memory access is slower, and double-base n-chain (Algorithm 36) is

fastest when writing to memory is very slow. For three processors, three processor

right-to-left (Algorithm 34) is fastest when memory access is fast, and right-to-left

parallel is fastest otherwise. For 4 to 7 processors, the right-to-left parallel algorithm

(Algorithm 29) is fastest and for 8 processors, right-to-left parallel with hedging

(Algorithm 30) is fastest. The results of this chapter show that a speedup can be

obtained for scalar multiplication by using multiple processors, but the speedup is

not linear in the number of processors. Instead, it appears to approach an upper

bound as the number of processors increases.

These results are significant because they show that there are high level parallel

algorithms that can increase the speed of scalar multiplication. Also, using the mod-

ified tripling formulas, the double-base chain algorithm becomes the most efficient

serial algorithm for scalar multiplication that does not need extra storage space.

This thesis demonstrates that although much progress has been made, there is still

more work to be done in the area of fast elliptic curve arithmetic.
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5.1 Further Work

In this section, we will examine several topics that are relevant to elliptic curve

arithmetic and ECC but were not examined in this thesis.

5.1.1 Simultaneous Multiplication

One operation that we did not discuss in this thesis is simultaneous scalar multiplica-

tion. Simultaneous multiplication is a specialized algorithm for computing aP + bQ

that is used in signature verification, for example ECDSA [46]. We now briefly men-

tion some of the standard techniques for performing simultaneous multiplication and

discuss further avenues of study.

In some elliptic curve signature schemes, the value aP + bQ needs to be com-

puted, where a, b ∈ N and P, Q are points on an elliptic curve. One method that

was suggested by ElGamal [32] is what is often referred to as Shamir’s trick. The

idea is similar to that of the left-to-right binary algorithm. NAF representations

(ak−1, . . . , a0), (bk−1, . . . , a0) of a and b are taken (padding a or b with zeros if nec-

essary), and the points P + Q, P − Q,−P − Q are precomputed. The algorithm

begins by examining the highest order digits of a and b, and setting an accumula-

tor R = ak−1P + bk−1Q. The algorithm proceeds by doubling the accumulator and

adding aiP + biQ for each i from k − 2 down to 0.

We now discuss the current methods for encoding the digits of P and Q to increase

the efficiency of Shamir’s trick. The joint sparse form is an optimal signed encoding

that reduces the average number of digits in which (ai, bi) 6= (0, 0). Interleaving is a

method that allows window NAF and other techniques to be combined by performing
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the doublings jointly.

Joint Sparse Form

For simplicity, we write the NAF representations of a and b jointly in a 2×n coefficient

matrix:  a

b

 =

 ak−1 . . . a0

bk−1 . . . b0

 .

The non-zero columns of this matrix correspond to additions when computing the

joint scalar multiplication. The joint sparse form is a representation of the two

integers chosen to minimize the number of non-zero columns. The following definition

was introduced by Solinas [90].

Definition 5.1.1. The joint sparse form (or JSF) of the l-bit integers a and b is a

representation of the form  a

b

 =

 ak−1 . . . a0

bk−1 . . . b0


such that ai, bi ∈ {0,±1} and

1. At least one of any three consecutive columns is zero.

2. Consecutive terms in a row do not have opposite signs.

3. If aj+1aj 6= 0 then bj+1 6= 0 and bj = 0.

Note that the JSF of two given integers is unique and the average number of

non-zero columns is k/2. There is also a variant on the JSF called simple JSF that

is due to Grabner et al. [40] that is easier to compute in practice.
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Interleaving

Interleaving is a method for simultaneous multiplication in which window methods

are used for computing additions and doublings jointly. It is due to Gallant et al.

[37] and Möller [69].

Suppose a and b have base 2 representations

a = (ak−1, . . . , a0)2, b = (bl−1, . . . , b0)2

where the coefficients ai ∈ A, bi ∈ B and A, B are specific digit sets. These represen-

tations can be taken from window NAF, fractional window or other representations.

Interleaving involves precomputing all the multiples of P in A and all the multiples

of Q in B, and then applying Shamir’s trick. Interleaving is discussed in Hankerson

et al. [43, Sec. 3.3.3].

Further Research

It would be useful to have a full analysis of the JSF and interleaving algorithms for

elliptic curve scalar multiplication in order to do a full analysis signature verification

by comparing different multiple point multiplication algorithms.

There are possible generalizations of the JSF that have yet to be fully explored,

including window and fractional window analogues. There is also work to be done to

create efficient parallel versions of multiple point multiplication. Another potentially

relevant issue specific to ECDSA [46] is finding algorithms for computing aP + bQ

when one or both of the points are known.
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5.1.2 Side Channel Attacks

Another point of interest that was briefly mentioned but not discussed in detail is the

issue of side channel attacks. This has become a popular area of research in recent

years. Implementations of cryptographic algorithms can be susceptible to leaking

data through what are called side channels.

An overview of side-channel attacks on curves and their countermeasures can be

found in a report by Avanzi [5]. We briefly discuss the different types of side channel

attacks and describe a number of available mathematical solutions.

Simple Power Analysis

Power analysis is a technique in which the power consumption of a cryptographic

device is measured while it is in use in order to determine the secret key, first intro-

duced by Kocher et al. [56]. With statistical tools, the information obtained from

the raw power consumption graph is used to determine which operations were per-

formed by the device. A simple power analysis attack involves analyzing the power

trace of one cryptographic operation.

Since different operations (multiplication, addition, cyclic shift, etc.) require

different amounts of power, an attacker may be able to derive information about

the operation performed. For example, in binary scalar multiplication, a sequence

of additions and doublings is performed based on the binary representation of the

scalar multiple. If an attacker can distinguish the power curve of an addition from

a doubling, he can determine the sequence of operations performed and hence the

binary representation of the secret key.

One possible countermeasure to this attack is the introduction of dummy elliptic
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curve operations. The simplest version of this is the double-and-always-add algo-

rithm. This is similar to the double-and-add algorithm, except that when a zero

digit occurs, a dummy addition is performed. This causes the power curve to look

like an alternating sequence of doubles and additions. Lange mentions a method of

Giessmann [6, page 689] for introducing dummy operations to the NAF method that

does not introduce as many additions.

There are related methods that do not require dummy operations but present

the same sequence of elliptic curve operations to a side channel attacker. The Mont-

gomery ladder method presented in Section 4.3.10 is one of these methods. Möller

[70] also presented some ideas based on windowing methods for which there is no

digit 0 in the digit set. Okeya and Tagagi [82] achieve expansions without the digit

0 in a window NAF type expansion.

Another countermeasure is the introduction of dummy finite field operations.

Chevallier-Mames et al. [17] introduced the concept of side-channel atomicity. In

side channel atomicity, instead of making the sequence of elliptic curve operations

uniform, each operation is split up into a number of identical blocks. To a side-

channel attacker, a sequence of operations made up of atomic blocks looks uniform.

Brier et al. [15] presented a set of unified formulas for addition and doubling.

Using these formulas, addition and doubling are indistinguishable in terms of simple

power analysis. Joye and Quisquater [47] examined similar unified formulas for

Hessian curves, and Liardet and Smart [62] examined such formulas in the Jacobi

model.

The simplest and least costly mathematical defence against simple power anal-

ysis seems to be that of side-channel atomicity, since it only introduces a few field
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additions and no multiplications to the formulas for Jacobian, Chudnovsky Jacobian,

and mixed affine-Jacobian operations.

Differential Side Channel Attacks

Differential power analysis was also introduced by Kocher et al. [56] and involves

taking a large number of power traces of a cryptographic device in order to determine

information about the secret key.

To defend against differential power analysis, the representation of the scalar

must be varied from one execution to another. This makes the information obtained

from each operation unrelated, diffusing the effect of differential attacks to obtain

information.

Coron’s first countermeasure [22] is a method for varying the scalar as long as

the group order is known. If l is the group order and k1, k2 are random integers, then

kP = (k + k1 + k2l)P − k1P . The performance penalty is linear in the bit-lengths of

k1 and k2.

Coron’s second countermeasure [22] is called blinding of group elements. Let k

be the hidden exponent, and store (Q, kQ) for a set of points Q. To compute kP ,

compute k(Q + P )− kQ for some stored Q. Changing Q each time ensures that the

computation of kP is hidden. The cost is two additions.

Projective randomization is another technique by which the base point is given

in Jacobian (or projective) coordinates (X : Y : Z) and replaced with an equivalent

element (λ2X : λ3Y : λZ) (or (λX : λY : λZ), respectively) for some random λ. See

Joye and Tymen [23].

Another option is the randomization of the curve equation. In Section 2.3.1, we
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discussed curve isomorphism. Joye and Tymen [23] introduced a way to work under

a different isomorphic curve equation for each execution of the curve in order to

counter differential analysis.

It should be noted that differential side channel analysis requires a large number

of power traces of scalar multiplications by the same exponent in order to be effective.

In many cryptographic primitives (such as ECDH [96]), the private key is ephemeral

and used only once. In these cases, differential side channel analysis is not effective.

Other attacks

Simple and differential power analysis attacks are the most common attacks referred

to in the literature, but there are many more side-channel attacks. See Cohen et al.

[6, Ch. 29] for a details about Goubin type attacks, higher order differential attacks,

timing attacks and fault attacks; some of the mathematical countermeasures are also

discussed.

Further Work

There are many possible countermeasures to side channel attacks. Choosing which

countermeasure is useful is determined by the implementation, by the protocol, and

by the required security parameters. Integrating the computational cost of the side

channel protection measures with the cost of the algorithms presented in this thesis

is an avenue for further research.

5.1.3 Binary Curves

Elliptic curves over prime fields are often preferred to elliptic curves over binary

fields for software implementations. The reason is that prime field arithmetic is
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often faster than binary field arithmetic in software implementations (see Brown et

al. [16] versus Hankerson et al. [42]). Binary fields are still in use, however. A useful

endeavour would be to revisit the questions of this thesis with a focus on binary field

arithmetic.

One major difference to the prime field scenario is the ratios of the time it takes for

finite field operations in binary field arithmetic. The relative speed of multiplication,

squaring and inversion is different in binary fields: rather than S = .8M, and I =

80M , in binary fields the ratios are closer to S = .1M, and I = 8M . For these ratios,

squaring cost can be neglected.

Chapter 2 provided a general introduction to elliptic curves that also applies

to binary curves up to Section 2.3.3. The general group law formulas (2.10) and

(2.11) can be customized for elliptic curves over binary fields. Projective coordinates

(López-Dahab [66]) are also useful for binary curves; however, they are not always

preferable because affine coordinates are competitive with the low cost of inversion.

Most of the algorithms in Chapter 3 are generic in the sense that they do not

require the elliptic curve to be defined over a prime field. The choices for coordinate

systems and the field cost analysis could be redone for binary fields. The same could

be done for many of the algorithms from Chapter 4.

5.1.4 Parallelization

The algorithms in Chapter 4 are essentially generic, and rely on properties about the

speed of doubling and addition. Most of this framework could possibly be improved

in some ways. For example, the parallel precomputation algorithm on two, four

or eight processors could be combined with a version of the right-to-left parallel
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algorithm modified to use window NAF.

A possible two-processor parallel system could be derived from a radix-2 system

for integers, so that the higher order digits are small and grow progressively larger

towards the lower order digits. The first processor would do the work of the precom-

putation by computing multiples of the base point while the other processor would

compute the scalar multiple of the point using the left-to-right binary algorithm,

reading precomputed points from shared memory as needed. Since the digits are

initially small and grow progressively larger, the points will have been precomputed

by the time they are needed to add to the total.

Chapter 4 only dealt with algorithms for unknown point scalar multiplication.

There is potential to parallelize known point methods such as the comb method.

We have not dealt with parallelizing elliptic curve scalar multiplication on a lower

level although there have been some successful attempts to do this in the literature.

Mishra et al. [68] introduced a method for pipelining the elliptic curve operations on

two processors. Aoki et al. [3] introduced algorithms to reduce the computation time

of certain elliptic curve operations using SIMD operations. One avenue of research

is to combine low level parallelizations with the high level parallel algorithms from

Chapter 4.

Another aspect that we have not examined is the implementation of these parallel

algorithms. Our analysis of the parallel algorithms in Chapter 4 is based on many

assumptions about the parallel model. It would be interesting to implement the

algorithms from Chapter 4 in order to see if estimates for s1 can be obtained and

how well the theoretical assumptions bear out in reality.
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Appendix A

Finite Fields

A.1 Introduction

This appendix provides an introduction to the theory of finite fields. We will focus

on the application of finite fields to elliptic curve arithmetic.

A field is a triple consisting of a non-empty set in conjunction with two binary

operations. These two operations are called addition (+) and multiplication (×).

The operations must satisfy certain field axioms.

Examples of fields include the rational numbers Q and the real numbers R, both

with standard addition and multiplication. Another example of a field is Z/(p), the

set of integers modulo p where p is a prime number. A field is called finite when the

underlying set is finite. For every prime number p, we know that Z/(p) is a field

with p elements. In fact, we will show that Z/(p) is the only field of size p up to

isomorphism. There is a unique field of size pk for all prime numbers p and positive

integers k, denoted by Fpk .

This appendix provides an introduction to finite fields and will single out prime

fields (Fp for p prime) for special consideration. There are other finite fields that are

relevant for elliptic curve cryptography, including binary fields (see Hankerson et al.

[42]) and optimal extension fields (see Bailey and Paar [7]), but these are beyond the

scope of this thesis.

To implement a finite field for use in cryptography, an efficient representation
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of elements is needed, as well as efficient algorithms for performing addition, sub-

traction, multiplication, squaring, inversion and modular reduction. Elements of a

prime field are be represented by multi-precision integers. Multi-precision integers

are stored as an array of word-sized integers, where the word size is often chosen to

correspond with the hardware word size.

In Section A.3, we present algorithms for addition, subtraction, multiplication,

inversion and modular reduction for field elements given in this form. Operations

such as addition and multiplication are computed on the integer representatives of

the field elements and then reduced to canonical form with a modular reduction al-

gorithm. We describe algorithms for addition and subtraction on the multi-precision

integer representatives in Section A.3.1 and we describe multiplication and squaring

for multi-precision integers in Section A.3.2.

Modular reduction algorithms are examined in Section A.3.3. The operation

is performed for all moduli with generic algorithms such as Barrett reduction and

Montgomery reduction. For special moduli, such as those suggested by NIST, we

present specialized algorithms.

Inversion is performed with a number of variants of the Euclidean algorithm. We

will present these algorithms and an algorithm for simultaneous inversion in Section

A.3.4.

The algorithms presented in this section are well suited to software implemen-

tation and are necessary precursors to the algorithms for elliptic curve arithmetic

presented in Chapter 2.
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A.2 Finite Field Basics

The results in this appendix can be found in most introductory algebra books such

as Artin [4] or Lang [58]. To define a finite field, we must first recall the definition

of a field.

Definition A.2.1. A field is a triple (F, +F ,×F ) consisting of a set F and two

binary operations +F and ×F on F that satisfy the following properties:

• (F, +F ) forms an Abelian group with identity denoted by 0F .

• (F \ {0F},×F ) forms an Abelian group with identity denoted by 1F .

• The distributive law holds: (a+F b)×F c = (a×F c)+F (a×F b) for all a, b, c ∈ F .

The field is often denoted by the set alone. If F is finite, then it is called a finite

field and the size of the set F , denoted by |F |, is the order of the field.

Every field has an associated number called the characteristic of the field.

Definition A.2.2. The characteristic of a field F is the smallest integer p such that

1 +F 1 +F · · ·+F 1︸ ︷︷ ︸
p times

= 0. If there is no such p, then the characteristic of the field is

0.

For example, Z/(p), the set of integers modulo p with standard addition and

multiplication modulo p, is a field of characteristic p when p is prime. Proposition

A.2.3 is from Ireland and Rosen [45, Ch. 7] and demonstrates that a field can be

constructed with a prime power order pk for every prime p and positive integer k.

Proposition A.2.3.
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• For any prime p, the set Z/(p) = {0, 1, . . . , p − 1} along with the operations

+Z/(p) and ×Z/(p) form a field. The operations are defined for a, b ∈ Z/(p) as

follows:

a +Z/(p) b = a + b mod p,

a×Z/(p) b = a× b mod p.

• Given an irreducible polynomial f ∈ (Z/(p))[x] of degree k, define the set

(Z/(p))[x] / (f) to be the set of polynomials of degree less than k with the oper-

ations +(Z/(p))[x] / (f) and ×(Z/(p))[x] / (f) forms a field. The operations are defined

for a, b ∈ (Z/(p))[x] / (f) as follows:

a +(Z/(p))[x] / (f) b = a + b mod f,

a×(Z/(p))[x] / (f) b = a× b mod f.

The field (Z/(p))[x]/(f) is a vector space of dimension k over Z/(p). Note that

there are irreducible polynomials over Z/(p) of every positive degree, see Adleman

and Lenstra [1] and Shoup [86] for methods to find such polynomials. Since irre-

ducible polynomials of every degree are easy to find, there exist explicitly computable

finite fields of order pk for every prime p and positive integer k. We now define field

isomorphism.

Definition A.2.4. Let F and G be fields. A map φ from F to G is called an

isomorphism if it satisfies the following properties:

• φ(a +F b) = φ(a) +G φ(b),

• φ(a×F b) = φ(a)×G φ(b), and
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• φ is onto

for all a, b ∈ F . Two fields F and G are called isomorphic if there exists an isomor-

phism from F onto G.

With this notion of isomorphism, it is possible to characterize all finite fields with

Theorem A.2.5 taken from Artin [4, Thm. 6.4].

Theorem A.2.5. Every finite field F has characteristic p for some prime integer p

and order pk for some positive integer k. Any two finite fields with the same order

are isomorphic. The “unique” finite field of order pk will be denoted by Fpk .

Theorem A.2.5 demonstrates that every finite field is isomorphic to one of the

fields defined in Proposition A.2.3. If p is prime, then Fp is called a prime field. For

the remainder of this appendix, we will drop the subscripts on +F ,×F , 0F and 1F if

the context is clear.

Definition A.2.6. For a given field F , a subfield G of F is a subset of F such that

G is a subgroup of F under + and G \ {0} is a subgroup of F \ {0} under ×, i.e.

• 1 ∈ G and

• if a, b ∈ G \ {0}, then a− b ∈ G \ {0} and a× b−1 ∈ G \ {0}

If G is a subfield of F , we say that F is an extension of G.

Another relevant fact is that the multiplicative group of a finite field is cyclic.

This is stated as Theorem A.2.7 and is taken from Artin [4, Thm. 6.4].

Theorem A.2.7. The multiplicative group of a finite field Fpk , denoted by F∗
pk =

(Fpk \ {0},×) is a cyclic group of order pk − 1.
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A.3 Prime Fields

In this section, we describe explicit algorithms for performing calculations in prime

fields and specialized reduction algorithms for certain finite fields that are relevant

to elliptic curve cryptography. For this discussion, we only consider finite fields Fp

where p is prime. Here we describe a method to represent prime fields efficiently

on a computer and the algorithms to perform the basic field operations using this

representation. This subject has been widely examined (see [48], [63], [87]) and is of

great importance to elliptic curve arithmetic.

The field elements are represented by their residues modulo p, namely, the num-

bers {0, 1, . . . , p− 1}. These field element representatives are stored on a computer

as multi-precision integers. A multi-precision integer is a representation of an integer

as a sequence of integers from 0 to W − 1, where W is a value called the word size.

If

k = (kn−1, . . . , k0)W

is the base W representation of k, then the multi-precision integer representation of

k is the sequence (kn−1, . . . , k0).

In practice, the word length W is chosen to agree with the physical word size

of the processor, but in general, W could be any positive integer. We will assume

henceforth that the word size is the wth power of 2 for an arbitrary positive integer

w. An integer k with binary representation

k = (kl−1, . . . , k0)2,

is stored as a number of words. For word-size 2w, the integer k is represented by
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d = d l
w
e integers Ki with bit-length at most w, or

(Kd−1, · · · , K0),

where

K0 = (kw−1, . . . , k0),

K1 = (k2w−1, . . . , kw),

...

Kd−1 = (0, . . . , 0, kl−1, . . . , k(d−1)w−1).

To perform operations on multi-precision integers, we will assume that the fol-

lowing operations can be performed:

1. Addition of two one-word integers.

2. Subtraction of two one-word integers.

3. Multiplication of two one-word integers resulting in a two-word integer.

An overview of some of the algorithms in this section can be found in Knuth [52,

Ch. 4] and Cohen et al. [6, Ch. 10 and 11].

Addition and subtraction is performed on field elements by adding or subtracting

their integer representatives word-by-word and keeping track of carry bits. If the total

is larger than p, then p is subtracted to obtain a representative in {0, . . . , p− 1}. In

the subtraction of a from b, if a < b, the result is obtained by subtracting b from p

and adding the result to a.

Classical integer multiplication is performed in one of two modes, operand scan-

ning and product scanning. Karatsuba-Ofman multiplication can also be used for
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large integers. Squaring is performed in much the same way as classical multiplica-

tion with a modification to take advantage of the fact that both multiplicands are

identical. The results of integer multiplication and squaring will be around twice the

length of the multiplicands, so a modular reduction step is performed to return an

element in {0, . . . , p− 1}.

Barrett reduction or Montgomery reduction are used to perform modular reduc-

tion in the general case. We will also introduce a reduction techniques for primes of

a special form, such as those proposed by NIST [78].

Inversion is performed using the binary extended GCD algorithm. Simultaneous

inversion can be performed to invert a set of elements at the cost of one inversion

and extra multiplications.

With this set of algorithms, we have explicit methods to compute every finite

field operation needed for elliptic curve arithmetic.

A.3.1 Addition

Multi-precision addition and subtraction are algorithms for arithmetic on multi-

precision integers. Addition and subtraction are performed in the same manner as

addition by hand, with the difference that each digit is a word rather than a decimal

digit. The lowest order words are added modulo the word size, and if their sum

exceeds the word size, a carry bit is set to one, otherwise the carry bit is zero. The

next words are added together modulo the word size again, the carry is added and

the new carry bit is set to one or zero as before. This process is repeated for all the

words to obtain the sum.

We are working modulo a prime p, so if the total exceeds the prime modulus p,
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then p is subtracted once to obtain an integer in the correct range.

Algorithm 38 performs multi-precision addition on two integers. If both integers

are different lengths, then the smaller integer is padded with zeros so that their

lengths are equal, taken from Cohen et al. [6, Alg. 10.3].

Algorithm 38: Multi-Precision Addition
Input: a, b ∈ {0, . . . , 2dw − 1}, given as a = (ad−1, . . . , a0)2w , b =
(bd−1, . . . , b0)2w , ad−1 6= 0
Output: (cd−1, . . . , c0)2w = a + b mod 2dw, carry bit c
(1) c← 0
(2) for i = 0 to d− 1
(3) ci ← (ai + bi + c) mod 2w

(4) c← b(ai + bi + c)/2wc
(5) return (c, cd−1, . . . , c0)2w

If the resulting number exceeds p, then a subtraction by p is necessary in order

to obtain the canonical representation.

Algorithm 39: Multi-Precision Subtraction
Input: a, b ∈ {0, . . . , 2dw − 1}, given as a = (ad−1, . . . , a0)2w , b =
(bd−1, . . . , b0)2w and a ≥ b
Output: (cd−1, . . . , c0)2w = a− b mod 2dw

(1) c← 0
(2) for i = 0 to d− 1
(3) ci ← (ai − bi + c) mod 2w

(4) c← b(ai − bi + c)/2wc
(5) return (cd−1, . . . , c0)2w

Addition and subtraction require a number of word operations that is linear in

the word size of the largest input value.

A.3.2 Multiplication

Multiplication of elements in Fp is computed in two ways; either the two integer rep-

resentatives are multiplied in Z and the result is reduced modulo p, or the reduction
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is performed at every step of the multiplication.

There are a number methods for multiplication in prime fields that we will not

examine in depth. Dhem [26] describes a method called interleaving for prime field

multiplication. Montgomery [73] described a different representation of integers that

can be used to perform multiplication and reduction. Koç et al. [55] provide a sum-

mary of Montgomery multiplication techniques. Modular reduction can be expensive

to repeat after every step, so we only deal with multiplying the integer representa-

tives.

In this section we present some algorithms for multiplying two multi-precision

integers. These are two forms of schoolbook multiplication and Karatsuba multipli-

cation. Reducing the product modulo a prime p is dealt with in Section A.3.3.

Schoolbook Multiplication

The first type of multiplication is schoolbook multiplication in operand scanning

mode. A one-word number a can be multiplied with a multi-word integer b by

multiplying the lowest order word of b by a and saving the carry, then multiplying

the next lowest order integer by a and adding the carry and continuing until all

the words are calculated. In operand scanning mode, each word of the first number

is multiplied by the second number. The sum of these products gives the product

of the two multi-precision numbers. Algorithm 40 carries out this operation, taken

from Cohen et al. [6, Alg. 10.8].

Algorithm 40: Multi-Precision Multiplication (Operand Scanning)
Input: a ∈ {0, . . . , 2d1w − 1}, b ∈ {0, . . . , 2d2w − 1}, given as a =
(ad1−1, . . . , a0)2w , b = (bd2−1, . . . , b0)2w and a ≥ b
Output: (cd1+d2−1, . . . , c0)2w = a× b
(1) for i = 0 to d2 − 1
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(2) ci ← 0
(3) for i = 0 to d2 − 1
(4) c← 0
(5) if ai = 0
(6) bd2−1 ← 0
(7) else
(8) for j = 0 to m− 1
(9) t← aibj + ci+j + c
(10) ci+j ← t mod 2w

(11) c← bt/2wc
(12) cd2+1 ← c
(13) return (cd1+d2−1, . . . , c0)2w

The second mode for integer multiplication is product scanning, sometimes called

Comba’s method [21]. This method is analogous to polynomial multiplication, each

word of the product is computed in sequence.

The product of two t-word integers will have at most 2t − 1 words. The lowest

order word of the product is computed as the product of the lowest order words of

the multiplicands modulo the word size. Anything exceeding the word size is carried

on to later words. The kth word of the product is computed from the sum of the

products of the ith and jth words of the multiplicands for all i + j = k, plus the

carries from the previous words. This is taken modulo the word size and the excess

is carried on to the next word. Algorithm 41 carries out this operation, adapted

from Hankerson et al. [43, Alg. 2.10].

Algorithm 41: Multi-Precision Multiplication (Product Scanning)
Input: a ∈ {0, . . . , 2d1w − 1}, b ∈ {0, . . . , 2d2w − 1}, given as a =
(ad1−1, . . . , a0)2w , b = (bd2−1, . . . , b0)2w and a ≥ b
Output: (cd1+d2−1, . . . , c0)2w = a× b
(1) for i = 0 to d2 − 1
(2) ci ← 0
(3) r0 ← 0,r1 ← 0,r2 ← 0
(4) d← max(d1, d2)
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(5) for k = 0 to 2d− 2
(6) foreach 0 ≤ i ≤ min(d− 1, k)
(7) t← aibk−i

(8) r0 ← t + r0 mod 2w

(9) c← b(t mod 2w + r0)/2
wc

(10) r1 ← r1 + bt/2wc+ c mod 2w

(11) c← b(r1 + bt/2wc+ c)/2wc
(12) r2 ← r2 + c mod 2w

(13) ck ← r0,r0 ← r1,r1 ← r2, r2 ← 0
(14) c2d−1 ← r0

(15) return (c2d−1, . . . , c0)2w

Comba [21] compared these two modes of multiplication for IBM PCs and found

that in practice product scanning is often faster than operand scanning.

Karatsuba-Ofman Multiplication

Karatsuba-Ofman multiplication is an algorithm to multiply two n-bit numbers that

takes less time asymptotically than the previous algorithms.

Suppose that j, k are 2l-word integers and k = k12
wl + k0, j = j12

wl + j0 where

k1, k0, j1, j0 are l word integers. The key observation is that

jk =(j12
wl + j0)(k12

wl + k0),

=j1k12
2wl + j0k0 + (j0k1 + j1k0)2

wl,

=j1k12
2wl + j0k0+

((j0 + j1)(k0 + k1)− j0k0 − j1k1)2
wl.

The value jk can therefore be computed using only three multiplications of l word

integers, namely the products j0k0, j1k1 and (j0 + j1)(k0 + k1). These are combined

to form the product using a few single-word additions, subtractions and two multi-

plications by powers of 2w. Multiplying one multi-precision integer by the word size

is done by appending a word consisting of zeros on as the low order word.
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Karatsuba [50, 49] introduced a method to use this decomposition recursively to

reduce the complexity of integer multiplication. Instead of computing the product

using schoolbook multiplication, requiring the equivalent of four l-word integer multi-

plications, we compute the three l-word multiplications j0k0, j1k1 and (j0+j1)(k0+k1)

as described above. Moreover, compute each of these smaller multiplications recur-

sively, reducing each to three dl/2e-word integer multiplications.

The complexity of Karatsuba-Ofman multiplication is O(dlog2 3) for d-word inte-

gers, compared to O(d2) for classical multiplication (see Knuth [52, Ch. 4]). However,

the crossover point where this algorithm is faster than classical multiplication can be

quite high, depending on the implementation and hardware. Some of these consider-

ations are described in the manual for the GMP library [41]; the results suggest that

the crossover for d can range from 8 up to more than 100. In Brown et al. [16], it was

found that Karatsuba multiplication is not efficient for elliptic curve cryptography

for current ranges, although this could change in the future. Since classical multipli-

cation is faster for smaller words, a threshold is set so that Karatsuba-Ofman is used

recursively for multiplications of integers larger than the threshold and schoolbook

multiplication is used for the rest. This threshold is set experimentally. Algorithm

42 is a recursive algorithm for Karatsuba-Ofman multiplication from Cohen et al.

[6, Alg. 10.11].

Algorithm 42: Multi-Precision Multiplication (Karatsuba-Ofman)
Input: a, b ∈ {0, . . . , 2dw − 1}, given as a = (ad1−1, . . . , a0)2w , b =
(bd2−1, . . . , b0)2w , threshold t, d = max(d1, d2)
Output: (cd1+d2−1, . . . , c0)2w = a× b
(1) if d ≤ t then compute ab using Algorithm 40 or 41
(2) p← bd/2c
(3) q ← dd/2e
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(4) A0 ← (aq−1, . . . , a0)2

(5) B0 ← (bq−1, . . . , b0)2

(6) A1 ← (ap+q−1, . . . , aq)2

(7) B1 ← (bp+q−1, . . . , bq)2

(8) As ← A0 + A1

(9) Bs ← B0 + B1

(10) Compute A0B0, A1B1, AsBs recursively
(11) return A1B12

2q + (AsBs − A1B1 − A0B0)2
q + A0B0

Algorithm 42 can be very efficient in practice, especially for large inputs.

Squaring

Squaring is a special case of multiplication. The fact that both multiplicands are the

same allows for time-saving modifications.

Both the operand scanning and product scanning modes of multiplication trans-

late to squaring algorithms. Algorithms 43 (derived from Algorithm 40) and 44

(from Hankerson et al. [43, Alg. 2.13]) are the multi-precision squaring algorithms

in operand scanning mode and product scanning mode, respectively. They follow Al-

gorithms 40 and 41 with modifications to reduce the complexity. Since aibj = ajbi,

only one of these products needs to be computed. Instead of looping through all

i and j, the modified algorithm loops through all i ≤ j and computes 2aiaj when

i < j. This reduces the number of single-word multiplications needed by a factor of

roughly two.

Algorithm 43: Multi-Precision Squaring (Operand Scanning)
Input: a ∈ {0, . . . , 2dw − 1}, given as a = (ad−1, . . . , a0)2w

Output: (c2d−1, . . . , c0)2w = a2

(1) for i = 0 to 2d− 1
(2) ci ← 0
(3) for i = 0 to d− 1
(4) t← a2

i + b2i

(5) b2i ← c mod 2w
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(6) c← bt/2wc
(7) for j = i + 1 to d− 1
(8) t← 2aiaj + ci+j + c
(9) ci+j ← t mod 2w

(10) c← bt/2wc
(11) ci+n ← c
(12) return (c2d−1, . . . , c0)2w

Algorithm 44: Multi-Precision Squaring (Product Scanning)
Input: a ∈ {0, . . . , 2dw − 1}, given as a = (ad−1, . . . , a0)2w

Output: (c2d−1, . . . , c0)2w = a2

(1) for i = 0 to d− 1
(2) ci ← 0
(3) r0 ← 0,r1 ← 0,r2 ← 0
(4) for k = 0 to 2d− 2
(5) foreach 0 ≤ i ≤ min(d− 1, k − i)
(6) if i = k − i
(7) t← a2

i

(8) else
(9) t← 2aibk−i

(10) c← bt/22wc
(11) r2 ← r2 + c mod 2w

(12) t← t mod 22w

(13) r0 ← t + r0 mod 2w

(14) c← b(t mod 2w + r0)/2
wc

(15) r1 ← r1 + bt/2wc+ c mod 2w

(16) c← b(r1 + bt/2wc+ c)/2wc
(17) r2 ← r2 + c mod 2w

(18) ck ← r0,r0 ← r1,r1 ← r2, r2 ← 0
(19) c2d−1 ← r0

(20) return (c2d−1, . . . , c0)2w

Algorithm 45 is the squaring variant of Karatsuba-Ofman multiplication, derived

from Algorithm 42.

Algorithm 45: Multi-Precision Squaring (Karatsuba-Ofman)
Input: a ∈ {0, . . . , 2dw−1}, given as a = (ad−1, . . . , a0)2w , threshold t
Output: (c2d−1, . . . , c0)2w = a2

(1) if d ≤ t then compute a2 using Algorithm 43 or 44
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(2) p← bd/2c
(3) q ← dd/2e
(4) A0 ← (aq−1, . . . , a0)2

(5) A1 ← (ap+q−1, . . . , aq)2

(6) As ← A0 + A1

(7) Compute A2
0, A2

1, A2
s recursively

(8) return A2
12

2q + (A2
s − A2

1 − A2
0)2

q + A2
0

As with general multiplication, squaring produces a result that is generally larger

than the modulus. In order to obtain a canonical representative of Fq, the result must

be reduced modulo the prime modulus.

A.3.3 Modular Reduction

Modular reduction takes an integer and a modulus and returns the non-negative

remainder of the integer divided by the modulus. For prime fields Fp, modular

reduction of an integer by p returns the unique representative of that integer in

{0, 1, . . . , p− 1}.

The results after multiplications of l-word integers from Section A.3.2 will be

2l-word integers. If the integer returned is larger than p, then a modular reduction

is necessary to return the corresponding representative in Fp. Formally, the problem

of modular reduction can be stated as follows: for a given k, find 0 ≤ k′ < p such

that k = qp + k′ for some integer q.

Barrett [8] introduced a method now known as Barrett reduction. Modular reduc-

tion is computed by estimating the value of the quotient q = bk/pc. The algorithm

requires the precomputation of one division, the value R = b22wd/pc. The value we
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are trying to estimate is

q =

⌊
k

p

⌋

=


k

2(w−1)d

22wd

p

2(w+1)d



≈


⌊

k

2(w−1)d

⌋
R

2(w+1)d

 .

The estimate

q̂ =
⌊
ba/2w(d−1)cR/2w(d+1)

⌋
,

is guaranteed to satisfy q ≤ q̂ ≤ q + 2, therefore there are only three values of q to

check. A short proof of this fact is described in Hankerson et al. [43, Sec. 2.2.4].

Algorithm 46 performs reduction of a 2d-word number modulo a d-word modulus

by first guessing q̂ for q. If this does not produce a value r in the correct range, then

r− p or r− 2p are in the correct range. This algorithm is adapted from Barrett [8].

Algorithm 46: Barrett Reduction
Input: d-word modulus p, 0 ≤ a ≤ 22dw, R = b22wd/pc
Output: a mod p
(1) q̂ ← bba/2w(d−1)cR/2w(d+1)c
(2) r ← (a mod 2w(d+1))− (q̂p mod 2w(d+1))
(3) if r < 0 then r ← r + 2w(d+1)

(4) while r ≥ p
(5) r ← r − p
(6) return r

Step 5 will only be executed at most twice. For a proof of correctness, see

Hankerson et al. [43, Sec. 2.2.4].

There are other general reduction algorithms that are of cryptographic interest,



191

notably the Montgomery method mentioned briefly in Section A.3.2. See Crandall

and Pomerance [25, Sec. 9.2] for a comparison of the Barrett and Montgomery

methods. We will not examine Montgomery reduction in depth because in this

thesis we focus more on fields over special primes.

NIST recommends a set of primes that are of a specific form that permits fast

reduction. The fast reduction algorithms for the five NIST primes and a complexity

analysis is given in this section.

A Mersenne prime is a prime of the form 2p − 1. Reduction of a number n =

(nk−1, . . . , n0)2 modulo a Mersenne prime Mp = 2p−1 can be performed easily. Since

2p − 1 ≡ 0 mod Mp, we have 2p ≡ 1 mod Mp. This means

n ≡ (nk−1, . . . , nk−1−p)22
k−p−1 + (nk−p−2, . . . , n0)2 mod Mp

≡ (nk−1, . . . , nk−1−p)22
k−2p−1 + (nk−p−2, . . . , n0)2 mod Mp

≡ (nk−p−2 + nk−1, . . . , nk−2p−2 + nk−1−p, nk−2p−3, . . . , n0)2 mod Mp.

This reduction step reduces the number of digits in the representative of n by p− 1.

To reduce completely, this reduction is applied until the representative for n has

fewer than p digits.

Mersenne primes are very rare, there are none with size in the cryptographi-

cally interesting range from 127 to 521 bits. However, Crandall [24] introduced the

notion of a pseudo-Mersenne prime that has similar reduction properties. A pseudo-

Mersenne prime is a number of the form 2p− c where c is a t-bit integer with p < t.
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Given such a number n,

n ≡ (nk−1, . . . , nk−1−p)22
k−p−1 + (nk−p−2, . . . , n0)2 mod (2p − c),

≡ (nk−1, . . . , nk−1−p)22
k−2p−1c + (nk−p−2, . . . , n0)2 mod (2p − c).

The resulting reduction is used in the same way to reduce the number of digits in

the representative for n by p− t.

In 1999, NIST [78] published a list of primes for use in elliptic curve cryptography.

They are, as follows:

P192 = 2192 − 264 − 1,

P224 = 2224 − 296 + 1,

P256 = 2256 − 2224 + 2192 + 296 − 1,

P384 = 2384 − 2128 − 296 + 232 − 1, and

P521 = 2521 − 1.

The NIST prime P521 is a Mersenne prime and the others are pseudo-Mersenne

primes with low Hamming weight. Algorithms 47 to 51 perform modular reduction

by the NIST primes P192 through P521. These algorithms are from Hankerson et

al. [43, Sec. 2.2.6] with a change in notation to conform with the style of this thesis.

Algorithm 47: Fast Reduction Modulo P192
Input: Integer a = (a5, a4, a3, a2, a1, a0)264 < (P192)2

Output: a mod P192
(1) s1 = (a2, a1, a0)264

(2) s2 = (0, a3, a3)264

(3) s3 = (a4, a4, 0)264

(4) s4 = (a5, a5, a5)264

(5) return s1 + s2 + s3 + s4 mod P192
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Algorithm 48: Fast Reduction Modulo P224
Input: Integer a = (a13, . . . , a0)232 < (P224)2

Output: a mod P224
(1) s1 = (a6, a5, a4, a3, a2, a1, a0)232

(2) s2 = (a10, a9, a8, a7, 0, 0, 0)232

(3) s3 = (0, a13, a12, a11, 0, 0, 0)232

(4) s4 = (a13, a12, a11, a10, a9, a8, a7)232

(5) s5 = (0, 0, 0, 0, a13, a12, a11)232

(6) return s1 + s2 + s3 − s4 − s5 mod P224

Algorithm 49: Fast Reduction Modulo P256
Input: Integer a = (a15, . . . , a0)232 < (P256)2

Output: a mod P256
(1) s1 = (a7, a6, a5, a4, a3, a2, a1, a0)232

(2) s2 = (a15, a14, a13, a12, a11, 0, 0, 0)232

(3) s3 = (0, a15, a14, a13, a12, 0, 0, 0)232

(4) s4 = (a15, a14, 0, 0, 0, a10, a9, a8)232

(5) s5 = (a8, a13, a15, a14, a13, a11, a10, a9)232

(6) s6 = (a10, a9, 0, 0, 0, a13, a12, a11)232

(7) s7 = (a11, a9, 0, 0, a15, a14, a13, a12)232

(8) s8 = (a12, 0, a10, a9, a8, a15, a14, a13)232

(9) s9 = (a13, 0, a11, a10, a9, 0, a15, a14)232

(10) return s1 + 2s2 + 2s3 + s4 + s5 − s6 − s7 − s8 − s9 mod P256

Algorithm 50: Fast Reduction Modulo P384
Input: Integer a = (a23, . . . , a0)232 < (P384)2

Output: a mod P384
(1) s1 = (a11, a10, a9, a8, a7, a6, a5, a4, a3, a2, a1, a0)232

(2) s2 = (0, 0, 0, 0, 0, a23, a22, a21, 0, 0, 0, 0)232

(3) s3 = (a23, a22, a21, a20, a19, a18, a17, a16, a15, a14, a13, a12)232

(4) s4 = (a20, a19, a18, a17, a16, a15, a14, a13, a12, a23, a22, a21)232

(5) s5 = (a19, a18, a17, a16, a15, a14, a13, a12, a20, 0, a23, 0)232

(6) s6 = (0, 0, 0, 0, a23, a22, a21, a20, 0, 0, 0, 0)232

(7) s7 = (0, 0, 0, 0, 0, 0, a23, a22, a21, 0, 0, a20)232

(8) s8 = (a22, a21, a20, a19, a18, a17, a16, a15, a14, a13, a12, a23)232

(9) s9 = (0, 0, 0, 0, 0, 0, 0, a23, a22, a21, 0, a20, 0)232

(10) s10 = (0, 0, 0, 0, 0, 0, 0, a23, a23, 0, 0, 0)232

(11) return s1 +2s2 +s3 +s4 +s5 +s6 +s7−s8−s9−s10 mod P384

Algorithm 51: Fast Reduction Modulo P521
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Input: Integer a = (a1041, a1040, . . . , a0)2 < (P521)2

Output: a mod P521
(1) s1 = (a1041, . . . , a522, a521)2

(2) s2 = (a520, . . . , a1, a0)2

(3) return s1 + s2 mod P521

The NIST reduction techniques are faster than Barrett reduction in general; see

Hankerson et al. [43, Sec. 5.1.5] for a comparison.

A.3.4 Inversion

Finding the inverse of an element of the multiplicative group of a finite field is

called inversion. The classical way to find an inverse is the extended Euclidean

algorithm. However, in its standard form, the extended Euclidean algorithm requires

some expensive division operations. These divisions are replaced by bit shifts in the

binary version of the extended Euclidean algorithm. In this section, we describe this

process.

The greatest common divisor (GCD) of two integers a and b, not both 0, is the

largest positive integer dividing both a and b and is denoted gcd(a, b). For each such

pair of integers (a, b), there exist unique integers s and t such that

sa + tb = gcd(a, b).

The extended Euclidean algorithm computes the values s, t and gcd(a, b) from a and

b. For this process, the division algorithm is needed, which takes positive integers

a, b and returns q, r such that a = qb + r, 0 ≤ r < b.

The key fact of the Euclidean algorithm is that if a = bq + r, then gcd(a, b) =

gcd(b, r). The GCD of two integers can be computed by repeatedly applying the

division algorithm, first on (a, b) to obtain q1, r1, then on (b, r1) to obtain (q2, r2), on
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(r1, r2) to obtain (q3, r3) and continue until rk | rk−1. When this process terminates,

rk+1 = 0 and rk is the resulting GCD. The extended GCD algorithm keeps track

of the values qi to compute (s, t) so that as + bt = gcd(a, b) when the algorithm

terminates.

As mentioned above, the main problem with the Euclidean algorithm is the di-

vision step. This step is at least as expensive as modular reduction. The binary Eu-

clidean algorithm replaces the need for this expensive operation with much simpler

halving operation. A halving operation is simply a bit shift of the binary represen-

tation, an operation that is easy to perform in hardware. The improved algorithm

is possible due to the following facts about GCDs.

• if a and b are both even, then gcd(a, b) = 2 gcd(a/2, b/2),

• if a is even and b is odd, then gcd(a, b) = gcd(a/2, b),

• if a and b are both odd, then gcd(a, b) = gcd(a, |a− b|/2).

The binary extended Euclidean algorithm uses these facts to reduce the sizes of a and

b until the GCD is obtained while keeping track of s, t so that as + bt = gcd(a, b). If

p is a prime and a is coprime to p, then gcd(a, p) = 1. Here, the extended Euclidean

algorithm generates integers s, t such that as + pt = 1. We then see that s(modp)

is the inverse of a(modp). Algorithm 52 computes s mod p such that as + pt = 1

for a prime p and and integer a, 0 ≤ a < p. For each iteration of the loop, both

numbers are divided by 2 until they are both odd, then p is set to |a− p|. By of the

properties of the GCD, these transformations to a and p do not change gcd(a, p), so

this process is repeated until either a or p is 0. The algorithm then returns the last

non-zero remainder.
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Algorithm 52: Binary Inversion
Input: integer a, prime p
Output: a−1 mod p
(1) u← a, v ← p
(2) x1 ← 1, x2 ← 0
(3) while u 6= 1 and v 6= 1
(4) while u is even
(5) u← u/2
(6) if x1 is even then x1 ← x1/2
(7) else x1 ← (x1 + p)/2
(8) while v is even
(9) v ← v/2
(10) if x2 is even then x2 ← x2/2
(11) else x2 ← (x2 + p)/2
(12) if u ≤ v then u← u− v, x1 ← x1 − x2

(13) else v ← v − u, x2 ← x2 − x1

(14) if u = 1 then return x1 mod p
(15) else return x2 mod p
(16) return s1 + s2 mod p

This version of the algorithm can be found in Hankerson et al. [43, Alg. 2.22]

and was adapted from Stein [91]. Its proof of correctness can be found in Knuth [52,

Ch. 4].

Algorithm 52 works for any modulus, Thomas et al. [92] introduced an alternative

inversion algorithm that only works for prime moduli. For every iteration of the

algorithm, q = −bp/ac is computed and a is set to p + qa which is necessarily a

smaller positive value. Multiplying a by q gives the next a value modulo p. When

a reaches 1, the product of all the values of q are the inverse of the original a.

Algorithm 53 computes the inverse of a prime field element in this manner and was

adapted from the presentation in Cohen et al. [6, Alg. 11.9].

Algorithm 53: Prime Field Binary Inversion
Input: prime p, integer a in {1, . . . , p− 1}
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Output: a−1 mod p
(1) u← 1
(2) while a 6= 1
(3) q ← −bp/ac
(4) z ← p + qa
(5) u← q · u mod p
(6) return u

Thomas et al. [92] provide a proof of termination. The division in Step 3 can

be performed inexpensively for certain primes such as Mersenne primes according to

Crandall and Pomerance [25, p. 428].

There are other inversion techniques including Lehmer’s technique [60] to com-

pute the extended GCD and Montgomery inversion [73]. We do not discuss Lehmer’s

technique because it provides the full results of the extended euclidean algorithm,

rather than just the inverse. Montgomery inversion is not included because it is used

in conjunction with Montgomery reduction, which we have not discussed. Several

algorithms are also presented in Cohen et al. [6, Sec. 11.1.3].

Simultaneous Inversion

Montgomery [75] introduced a method for computing the inverses of multiple ele-

ments of a prime field using only one inverse and a number of multiplications. The

technique involves multiplying all of the elements together and computing the in-

verse of the product. The inverse of one element can be obtained by multiplying

the inverse of the product of all the elements by every element except the one be-

ing inverted. For example, to invert x, y, compute (xy)−1 then x−1 = (xy)−1y and

y−1 = (xy)−1x. Algorithm 54 inverts a set of elements using this trick, adapted from

Montgomery [75].

Algorithm 54: Simultaneous Inversion
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Input: prime p, elements a1, . . . , ak in Fp

Output: (b1, . . . , bk) = (a−1
1 mod p, . . . , a−1

k mod p)
(1) c1 ← a1

(2) for i from 2 to k
(3) ci ← ci−1ai mod p
(4) c← c−1

k

(5) for i from k to 2
(6) bi ← c · ci−1 mod p
(7) a← c · ai mod p
(8) return (b1, . . . , bk)

Algorithm 54 takes 3(k − 1) multiplications, one inversion and k temporary el-

ements. This method will be more efficient than k inversions as long as three mul-

tiplications take less time to compute than one inversion, as is usually the case in

prime fields.

A.4 Complexity Summary

The algorithms presented in this appendix are designed for implementation in soft-

ware. In the this thesis, these operations are used in algorithms for elliptic curve

arithmetic. In order to compare the speed of these algorithms, a comparative analy-

sis of the time it takes to compute different finite field operations is used. Brown et

al. [16] performed an extensive set of timings for various algorithms for arithmetic

on the NIST curves.

First we must note that the relative and absolute speeds of the prime field oper-

ations discussed above depend greatly on implementation and hardware. Table A.1

presents the timings for prime field arithmetic on an 800 MHz Intel Pentium III,

including reduction to canonical form from Hankerson et al. [43]. The variables M ,

S and I represent the average time it takes to perform one multiplication, squaring
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Table A.1: Estimated Time of Prime Field Operations (in µs)

Operation FP192 FP224 FP256 FP384 FP521

Addition 0.07 0.07 0.08 0.10 0.10
Reduction 0.11 0.12 0.30 0.38 0.20
Multiplication 0.42 0.52 0.81 1.47 2.32
Squaring 0.36 0.44 0.71 1.23 1.87
Inversion 25.2 34.3 44.3 96.3 163.8
S/M 0.86 0.85 0.88 0.84 0.81
I/M 60.0 70.0 54.7 65.5 70.6

or inversion in Fp, respectively.

The algorithms used to implement these operations are very similar to the al-

gorithms presented in this appendix. Addition was performed with Algorithm 38.

Reduction with fast reduction Algorithms 47 through 51. Multiplication and squar-

ing were computed in product scanning mode similar to Algorithms 41 and 44 and

inversion was computed as in Algorithm 52. The timings would be different for

different variants of the specific algorithms. Inversion is often assumed to be worst

case since multiplication is a more important operation and is often better optimized

than inversion. Squaring is often assumed to be best case because most multiplica-

tion optimizations will affect squaring and multiplication equally. In this thesis we

follow the conventions from Okeya and Sakurai [80] and Lim and Hwang [65] and

assume that S = (4/5)M , I = 80M .



Appendix B

Algorithm Costs

In this section, we present tables describing the costs of algorithms from Chapters 3

and 4 that were not included in the text.

Tables B.1 to B.3 describe the average field costs and average M -costs of the

window NAF method with various window sizes and d chosen to correspond to the

length of the NIST primes P224, P384 and P521. Both versions of the algorithm

are included; using the regular Chudnovsky Jacobian table and converting the table

to affine form. The fastest version for a given amount of storage space is written

in bold. If none of the terms are bold, then there is a faster version requiring less

storage space.

Tables B.4 to B.6 describe the average field costs and average M -costs of the

sliding window method with various window sizes and d chosen to correspond to the

length of the NIST primes P224, P256 and P521. Both versions of the algorithm

are included; using the regular Chudnovsky Jacobian table and converting the table

Table B.1: Window NAF Method Average Cost (d = 224)

w
Regular Table Affine Table

Storage
Field Cost M -cost Field Cost M -cost

3 I+1344.0M+1066.0S 2276.8M 2I+1347.0M+1067.0S 2360.6M 1
4 I+1342.1M+1038.4S 2252.8M 2I+1291.4M+1041.4S 2284.5M 3
5 I+1342.4M+1028.0S 2244.8M 2I+1299.7M+1035.0S 2287.7M 7
6 I+1387.4M+1036.0S 2296.2M 2I+1393.0M+1051.0S 2393.8M 15
7 I+1525.9M+1072.0S 2463.5M 2I+1633.0M+1103.0S 2675.4M 31

200
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Table B.2: Window NAF Method Average Cost (d = 256)

w
Regular Table Affine Table

Storage
Field Cost M -cost Field Cost M -cost

3 I+1536.0M+1218.0S 2590.4M 2I+1539.0M+1219.0S 2674.2M 1
4 I+1530.9M+1185.6S 2559.4M 2I+1470.6M+1188.6S 2581.5M 3
5 I+1525.1M+1172.0S 2542.7M 2I+1470.3M+1179.0S 2573.5M 7
6 I+1563.9M+1177.7S 2586.1M 2I+1557.6M+1192.7S 2671.7M 15
7 I+1697.2M+1212.0S 2746.8M 2I+1793.0M+1243.0S 2947.4M 31

Table B.3: Window NAF Method Average Cost (d = 384)

w
Regular Table Affine Table StorageField Cost M -cost Field Cost M -cost

3 I+2304.0M+1826.0S 3844.8M 2I+2307.0M+1827.0S 3928.6M 1
4 I+2286.1M+1774.4S 3785.6M 2I+2187.4M+1777.4S 3769.3M 3
5 I+2255.8M+1748.0S 3734.2M 2I+2153.0M+1755.0S 3717.0M 7
6 I+2270.2M+1744.6S 3745.9M 2I+2215.9M+1759.6S 3783.5M 15
7 I+2382.2M+1772.0S 3879.8M 2I+2433.0M+1803.0S 4035.4M 31
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Table B.4: Sliding Window Method Average Cost (d = 224)

w
Regular Table Affine Table

Storage
Field Cost M -cost Field Cost M -cost

3 I+1354.0M+1050.3S 2274.3M 2I+1314.2M+1052.3S 2316.1M 2
4 I+1345.3M+1035.0S 2253.3M 2I+1291.3M+1039.0S 2282.5M 4
5 I+1359.9M+1030.4S 2264.2M 2I+1333.1M+1040.4S 2325.4M 10
6 I+1430.5M+1046.9S 2348.0M 2I+1467.1M+1066.9S 2480.6M 20
7 I+1635.7M+1101.5S 2596.9M 2I+1810.8M+1143.5S 2885.6M 42

Table B.5: Sliding Window Method Average Cost (d = 256)

w
Regular Table Affine Table

Storage
Field Cost M -cost Field Cost M -cost

3 I+1546.0M+1199.7S 2585.7M 2I+1499.1M+1201.7S 2620.4M 2
4 I+1533.1M+1181.3S 2558.1M 2I+1468.1M+1185.3S 2576.3M 4
5 I+1540.4M+1173.5S 2559.1M 2I+1501.3M+1183.5S 2608.0M 10
6 I+1605.4M+1188.0S 2635.8M 2I+1630.1M+1208.0S 2756.5M 20
7 I+1805.4M+1241.0S 2878.2M 2I+1969.5M+1283.0S 3155.9M 42

to affine form. The fastest version for a given amount of storage space is written in

bold. If none of the terms are bold, then there is an version requiring less storage

space that is faster.

Tables B.7 to B.9 describe the average field costs and average M -costs of the

fractional window method with different values of w and m with d chosen to corre-

spond to the length of the NIST primes P224, P256 and P521. Both versions of the

algorithm are included; using the Chudnovsky Jacobian table and using the table

converted to affine coordinates. The fastest version for a given amount of storage

space is written in bold. If none of the terms are bold, then there is a faster version

requiring less storage.
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Table B.6: Sliding Window Method Average Cost (d = 384)

w
Regular Table Affine Table StorageField Cost M -cost Field Cost M -cost

3 I+2314.0M+1797.0S 3831.6M 2I+2238.7M+1799.0S 3837.9M 2
4 I+2284.0M+1766.4S 3777.1M 2I+2175.1M+1770.4S 3751.5M 4
5 I+2262.3M+1745.7S 3738.8M 2I+2173.9M+1755.7S 3738.4M 10
6 I+2304.9M+1752.5S 3787.0M 2I+2282.1M+1772.5S 3860.1M 20
7 I+2484.0M+1799.1S 4003.2M 2I+2604.2M+1841.1S 4237.0M 42

Table B.7: Fractional Window Method Average Cost (d = 224)

w m
Regular Table Affine Table StorageField Cost M -cost Field Cost M -cost

1 1 I+1344.0M+1066.0S 2276.8M 2I+1347.0M+1067.0S 2360.6M 1

2 1 I+1354.0M+1050.3S 2274.3M 2I+1314.2M+1052.3S 2316.1M 2
3 I+1342.1M+1038.4S 2252.8M 2I+1291.4M+1041.4S 2284.5M 3

3

1 I+1345.3M+1035.0S 2253.3M 2I+1291.3M+1039.0S 2282.5M 4
3 I+1345.3M+1032.2S 2251.0M 2I+1292.8M+1037.2S 2282.6M 5
5 I+1344.0M+1029.9S 2247.9M 2I+1295.7M+1035.9S 2284.3M 6
7 I+1342.4M+1028.0S 2244.8M 2I+1299.7M+1035.0S 2287.7M 7

4

1 I+1348.6M+1028.7S 2251.5M 2I+1310.6M+1036.7S 2299.9M 8
3 I+1354.3M+1029.5S 2258.0M 2I+1321.7M+1038.5S 2312.5M 9
5 I+1359.9M+1030.4S 2264.2M 2I+1333.1M+1040.4S 2325.4M 10
7 I+1365.3M+1031.4S 2270.5M 2I+1344.7M+1042.4S 2338.6M 11

Table B.8: Fractional Window Method Average Cost (d = 256)

w m
Regular Table Affine Table StorageField Cost M -cost Field Cost M -cost

1 1 I+1536.0M+1218.0S 2590.4M 2I+1539.0M+1219.0S 2674.2M 1

2 1 I+1546.0M+1199.7S 2585.7M 2I+1499.1M+1201.7S 2620.4M 2
3 I+1530.9M+1185.6S 2559.4M 2I+1470.6M+1188.6S 2581.5M 3

3

1 I+1533.1M+1181.3S 2558.1M 2I+1468.1M+1185.3S 2576.3M 4
3 I+1531.5M+1177.6S 2553.6M 2I+1467.4M+1182.6S 2573.5M 5
5 I+1528.4M+1174.6S 2548.1M 2I+1468.2M+1180.6S 2572.6M 6
7 I+1525.1M+1172.0S 2542.7M 2I+1470.3M+1179.0S 2573.5M 7

4

1 I+1530.6M+1172.4S 2548.5M 2I+1480.4M+1180.4S 2584.7M 8
3 I+1535.6M+1172.9S 2553.9M 2I+1490.7M+1181.9S 2596.2M 9
5 I+1540.4M+1173.5S 2559.1M 2I+1501.3M+1183.5S 2608.0M 10
7 I+1545.0M+1174.2S 2564.4M 2I+1512.1M+1185.2S 2620.2M 11
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Table B.9: Fractional Window Method Average Cost (d = 384)

w m
Regular Table Affine Table StorageField Cost M -cost Field Cost M -cost

1 1 I+2304.0M+1826.0S 3844.8M 2I+2307.0M+1827.0S 3928.6M 1

2 1 I+2314.0M+1797.0S 3831.6M 2I+2238.7M+1799.0S 3837.9M 2
3 I+2286.1M+1774.4S 3785.6M 2I+2187.4M+1777.4S 3769.3M 3

3

1 I+2284.0M+1766.4S 3777.1M 2I+2175.1M+1770.4S 3751.5M 4
3 I+2276.2M+1759.5S 3763.7M 2I+2165.5M+1764.5S 3737.1M 5
5 I+2266.2M+1753.3S 3748.9M 2I+2158.3M+1759.3S 3725.7M 6
7 I+2255.8M+1748.0S 3734.2M 2I+2153.0M+1755.0S 3717.0M 7

4

1 I+2258.5M+1747.1S 3736.2M 2I+2159.6M+1755.1S 3723.6M 8
3 I+2260.6M+1746.3S 3737.6M 2I+2166.5M+1755.3S 3730.8M 9
5 I+2262.3M+1745.7S 3738.8M 2I+2173.9M+1755.7S 3738.4M 10
7 I+2263.8M+1745.2S 3740.0M 2I+2181.6M+1756.2S 3746.6M 11

Table B.10: Scalar Multiplication (P224)
Algorithm Variables Storage Field Cost M -cost
R2L Binary (12) – – I+2229.0M+1338.5S 3379.8M
L2R Binary (13) – – I+1772.0M+1219.0S 2827.2M
L2R NAF (15) – – I+1482.3M+1114.0S 2453.5M
w-NAF (17) w = 5, J c 7 I+1342.4M+1028.0S 2244.8M
swNAF (18) w = 4, J c 5 I+1345.3M+1032.2S 2251.0M
fwNAF (20) w = 3, c = 5, J c 7 I+1342.4M+1028.0S 2244.8M
DBChain (22) bmax = 121, tmax = 65 – I+1460.0M+956.3S 2305.0M

Tables B.10 to B.12 describe the result of Chapter 3 for parameters corresponding

to the NIST primes P224, P256 and P384 in terms of their storage requirements (in

points), their field costs and their M -costs.

Tables B.14 to B.17 list the cost of fixed base windowing for values of d that

correspond to the length of the NIST primes P224, P256, P384 and P521. The

variable l =
⌈

d
w

⌉
where d is the size of the input and w is the fixed windowing size.

Tables B.18 to B.21 list the cost of Algorithm 24 for d chosen to correspond to
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Table B.11: Scalar Multiplication (P256)
Algorithm Variables Storage Field Cost M -cost
R2L Binary (12) – – I+2549.0M+1530.5S 3853.4M
L2R Binary (13) – – I+2028.0M+1395.0S 3224.0M
L2R NAF (15) – – I+1695.7M+1274.0S 2794.9M
w-NAF (17) w = 5, J c 7 I+1525.1M+1172.0S 2542.7M
swNAF (18) w = 4, J c 5 I+1533.1M+1181.3S 2558.1M
fwNAF (20) w = 3, c = 5, J c 7 I+1525.1M+1172.0S 2542.7M
DBChain (22) bmax = 134, tmax = 77 – I+1676.1M+1089.3S 2624.7M

Table B.12: Scalar Multiplication (P384)
Algorithm Variables Storage Field Cost M -cost
R2L Binary (12) – – I+3829.0M+2298.5S 5747.8M
L2R Binary (13) – – I+3052.0M+2099.0S 4811.2M
L2R NAF (15) – – I+2549.0M+1914.0S 4160.2M
w-NAF (17) w = 5, A 7 2I+2153.0M+1755.0S 3717.0M
swNAF (18) w = 5, A 10 2I+2173.9M+1755.7S 3738.4M
fwNAF (20) w = 3, c = 5, A 7 2I+2153.0M+1755.0S 3717.0M
DBChain (22) bmax = 216, tmax = 106 – I+2487.8M+1645.8S 3884.4M

Table B.13: Scalar Multiplication (P521)
Algorithm Variables Storage Field Cost M -cost
R2L Binary (12) – – I+5199.0M+3120.5S 7775.4M
L2R Binary (13) – – I+4148.0M+2852.5S 6510.0M
L2R NAF (15) – – I+3462.3M+2599.0S 5621.5M
w-NAF (17) w = 5, A 7 2I+2883.7M+2371.5S 4940.9M
swNAF (18) w = 5, A 10 2I+2893.8M+2368.2S 4948.3M
fwNAF (20) w = 3, c = 5, A 7 2I+2883.7M+2371.5S 4940.9M
DBChain (22) bmax = 269, tmax = 159 – I+3407.6M+2207.8S 5241.9M
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Table B.14: Fixed-Base Window Average Cost (d = 224)
w Storage Field Cost M -cost

2 111 I+741.7M+275.8S 1042.3M
3 74 I+603.1M+220.4S 859.4M
4 55 I+538.6M+190.7S 771.2M
5 44 I+583.0M+195.1S 819.1M
6 37 I+759.3M+238.0S 1029.7M
7 31 I+1177.8M+347.4S 1535.8M
8 27 I+2062.9M+585.6S 2611.3M

Table B.15: Fixed-Base Window Average Cost (d = 256)
w Storage Field Cost M -cost

2 127 I+844.1M+314.2S 1175.4M
3 85 I+683.1M+250.4S 963.5M
4 63 I+599.7M+213.6S 850.6M
5 51 I+638.1M+215.8S 890.7M
6 42 I+799.5M+253.0S 1081.9M
7 36 I+1219.6M+362.9S 1589.9M
8 31 I+2098.9M+598.7S 2657.9M

Table B.16: Fixed-Base Window Average Cost (d = 384)
w Storage Field Cost M -cost

2 191 I+1253.7M+467.8S 1708.0M
3 127 I+988.7M+365.0S 1360.7M
4 95 I+843.8M+305.1S 1167.9M
5 76 I+834.1M+289.2S 1145.5M
6 63 I+967.3M+315.7S 1299.9M
7 54 I+1366.9M+417.7S 1781.0M
8 47 I+2236.3M+649.2S 2835.7M



207

Table B.17: Fixed-Base Window Average Cost (d = 521)
w Storage Field Cost M -cost

2 260 I+1695.3M+633.4S 2282.1M
3 173 I+1323.3M+490.5S 1795.7M
4 130 I+1110.7M+405.2S 1514.8M
5 104 I+1053.3M+371.4S 1430.4M
6 86 I+1150.1M+384.2S 1537.5M
7 74 I+1528.2M+478.0S 1990.6M
8 65 I+2385.2M+704.5S 3028.9M

Table B.18: Fixed-Base Comb Average Cost (d = 224)
l Storage Field Cost M -cost

2 2 I+1113.0M+694.8S 1748.8M
3 6 I+817.0M+491.2S 1290.0M
4 14 I+635.5M+375.7S 1016.0M
5 30 I+520.0M+304.9S 843.9M
6 62 I+442.4M+258.3S 729.0M
7 126 I+373.1M+217.3S 626.9M
8 254 I+326.2M+189.7S 557.9M

the length of the NIST primes P224, P256, P384 and P521. The variable w = dd
l
e

where d is the size of the input and l is given.

Tables B.22 to B.25 describe the field costs and M -costs of Algorithm 28 with d

corresponding to the length of the NIST primes P224, P256, P384 and P521. Recall

that the M -cost is the field cost with substitutions S ← (4/5)M and I ← 80M . The

tables for d chosen to correspond with are similar and can be found in Appendix B.

Tables B.26 to B.29 describe the field costs and M -costs of Algorithm 28 with d

corresponding to the length of the NIST primes P224, P256, P384 and P521.

Tables B.30 to B.33 describe the field costs and M -costs of Algorithm 32 with d
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Table B.19: Fixed-Base Comb Average Cost (d = 256)
l Storage Field Cost M -cost

2 2 I+1273.0M+794.8S 1988.8M
3 6 I+938.0M+564.1S 1469.3M
4 14 I+727.5M+430.2S 1151.7M
5 30 I+602.2M+353.2S 964.8M
6 62 I+501.8M+293.0S 816.2M
7 126 I+432.8M+252.2S 714.5M
8 254 I+374.0M+217.6S 628.1M

Table B.20: Fixed-Base Comb Average Cost (d = 384)
d Storage Field Cost M -cost

2 2 I+1913.0M+1194.8S 2948.8M
3 6 I+1400.0M+842.4S 2153.9M
4 14 I+1095.5M+648.2S 1694.0M
5 30 I+896.0M+525.9S 1396.7M
6 62 I+751.1M+439.0S 1182.4M
7 126 I+647.6M+377.7S 1029.8M
8 254 I+565.5M+329.4S 909.1M

Table B.21: Fixed-Base Comb Average Cost (d = 521)
d Storage Field Cost M -cost

2 2 I+2603.0M+1626.0S 3983.8M
3 6 I+1906.0M+1147.1S 2903.7M
4 14 I+1498.0M+886.6S 2287.3M
5 30 I+1225.0M+719.2S 1880.4M
6 62 I+1024.2M+599.0S 1583.4M
7 126 I+886.4M+517.3S 1380.2M
8 254 I+781.0M+455.2S 1225.2M
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Table B.22: pth Order Binary Method Average Cost (d = 224)
N Field Cost M -cost s1

2 I+1200.7M+1008.5S 2087.5M 3
3 I+1114.4M+975.7S 1975.0M 5
4 I+1065.3M+957.2S 1911.1M 5
5 I+1047.9M+950.2S 1888.0M 7
6 I+1028.2M+942.8S 1862.5M 7
7 I+1014.2M+937.6S 1844.2M 7
8 I+1003.7M+933.6S 1830.6M 7

Table B.23: pth Order Binary Method Average Cost (d = 256)
N Field Cost M -cost s1

2 I+1371.3M+1152.5S 2373.3M 3
3 I+1270.9M+1114.3S 2242.4M 5
4 I+1214.7M+1093.2S 2169.3M 5
5 I+1192.9M+1084.6S 2140.6M 7
6 I+1170.4M+1076.2S 2111.4M 7
7 I+1154.4M+1070.1S 2090.5M 7
8 I+1142.3M+1065.6S 2074.8M 7

Table B.24: pth Order Binary Method Average Cost (d = 384)
N Field Cost M -cost s1

2 I+2054.0M+1728.5S 3516.8M 3
3 I+1896.7M+1669.0S 3311.9M 5
4 I+1812.0M+1637.2S 3201.8M 5
5 I+1773.2M+1622.2S 3151.0M 7
6 I+1739.3M+1609.5S 3106.9M 7
7 I+1715.1M+1600.4S 3075.5M 7
8 I+1697.0M+1593.6S 3051.9M 7
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Table B.25: pth Order Binary Method Average Cost (d = 521)
N Field Cost M -cost s1

2 I+2784.7M+2345.0S 4740.7M 3
3 I+2566.4M+2262.7S 4456.6M 5
4 I+2451.3M+2219.5S 4306.9M 5
5 I+2394.3M+2197.6S 4232.3M 7
6 I+2348.2M+2180.3S 4172.5M 7
7 I+2315.3M+2168.0S 4129.7M 7
8 I+2290.7M+2158.8S 4097.7M 7

Table B.26: Right-to-Left Parallel Method Average Cost (d = 224)
N Field Cost M -cost s1

2 I+1194.7M+1005.0S 2078.7M 1
3 I+1100.0M+972.0S 1957.6M 1
4 I+1045.3M+949.0S 1884.5M 1
5 I+1020.0M+942.0S 1853.6M 1
6 I+1013.3M+947.0S 1850.9M 1
7 I+981.3M+925.0S 1801.3M 1
8 I+970.7M+921.0S 1787.5M 1

Table B.27: Right-to-Left Parallel Method Average Cost (d = 256)
N Field Cost M -cost s1

2 I+1365.3M+1149.0S 2364.5M 1
3 I+1261.3M+1115.0S 2233.3M 1
4 I+1194.7M+1085.0S 2142.7M 1
5 I+1178.7M+1089.0S 2129.9M 1
6 I+1146.7M+1072.0S 2084.3M 1
7 I+1134.7M+1070.0S 2070.7M 1
8 I+1109.3M+1053.0S 2031.7M 1
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Table B.28: Right-to-Left Parallel Method Average Cost (d = 384)
N Field Cost M -cost s1

2 I+2048.0M+1725.0S 3508.0M 1
3 I+1877.3M+1661.0S 3286.1M 1
4 I+1792.0M+1629.0S 3175.2M 1
5 I+1745.3M+1614.0S 3116.5M 1
6 I+1706.7M+1597.0S 3064.3M 1
7 I+1686.7M+1592.0S 3040.3M 1
8 I+1664.0M+1581.0S 3008.8M 1

Table B.29: Right-to-Left Parallel Method Average Cost (d = 521)
N Field Cost M -cost s1

2 I+2784.0M+2346.0S 4740.8M 1
3 I+2552.0M+2259.0S 4439.2M 1
4 I+2445.3M+2224.0S 4304.5M 1
5 I+2380.0M+2202.0S 4221.6M 1
6 I+2320.0M+2172.0S 4137.6M 1
7 I+2300.0M+2172.0S 4117.6M 1
8 I+2288.0M+2175.0S 4108.0M 1
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Table B.30: Right-to-Left Windowing Method Average Cost (d = 224)
w Field Cost M -cost s1

2 I+911.0M+895.0S 1707.0M 111
3 I+955.0M+907.0S 1760.6M 74
4 I+1035.0M+923.0S 1853.4M 55
5 I+1211.0M+971.0S 2067.8M 44

Table B.31: Right-to-Left Windowing Method Average Cost (d = 256)
w Field Cost M -cost s1

2 I+1039.0M+1023.0S 1937.4M 127
3 I+1087.0M+1039.0S 1998.2M 85
4 I+1163.0M+1051.0S 2083.8M 63
5 I+1351.0M+1111.0S 2319.8M 51

corresponding to the length of the NIST primes P224, P256, P384 and P521. The

tables for d chosen to correspond with are similar and can be found in Appendix B.

Tables B.34 to B.37 describe the field costs and M -costs of Algorithm 34 with d

corresponding to the length of the NIST prime P224, P256, P384 and P521.

Tables B.38 to B.41 describe the field costs and M -costs of the variant of Algo-

rithm 36 with no recombination stage. For each d corresponding to a NIST prime,

bmax, tmax, mmax are chosen optimally. For multipliers of length d = 224 the optimal

Table B.32: Right-to-Left Windowing Method Average Cost (d = 384)
w Field Cost M -cost s1

2 I+1551.0M+1535.0S 2859.0M 191
3 I+1591.0M+1543.0S 2905.4M 127
4 I+1675.0M+1563.0S 3005.4M 95
5 I+1851.0M+1611.0S 3219.8M 76
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Table B.33: Right-to-Left Windowing Method Average Cost (d = 521)
w Field Cost M -cost s1

2 I+2103.0M+2087.0S 3852.6M 260
3 I+2143.0M+2095.0S 3899.0M 173
4 I+2235.0M+2123.0S 4013.4M 130
5 I+2411.0M+2171.0S 4227.8M 104

Table B.34: Left-to-Right (3 Processors) Average Cost (d = 224)
l Field Cost M -cost s1

4 I+1070.3M+958.0S 1916.7M 3
5 I+1057.0M+955.0S 1901.0M 4
6 I+1062.3M+964.0S 1913.5M 5
7 I+1042.3M+946.0S 1879.1M 6
8 I+1043.7M+946.0S 1880.5M 7
9 I+1051.7M+951.0S 1892.5M 8

10 I+1078.3M+973.0S 1936.7M 9

Table B.35: Left-to-Right (3 Processors) Average Cost (d = 256)
l Field Cost M -cost s1

4 I+1219.7M+1094.0S 2174.9M 3
5 I+1215.7M+1102.0S 2177.3M 4
6 I+1195.7M+1089.0S 2146.9M 5
7 I+1195.7M+1091.0S 2148.5M 6
8 I+1182.3M+1078.0S 2124.7M 7
9 I+1206.3M+1099.0S 2165.5M 8

10 I+1206.3M+1096.0S 2163.1M 9
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Table B.36: Left-to-Right (3 Processors) Average Cost (d = 384)
l Field Cost M -cost s1

6 I+1755.7M+1614.0S 3126.9M 5
7 I+1747.7M+1613.0S 3118.1M 6
8 I+1737.0M+1606.0S 3101.8M 7
9 I+1747.7M+1617.0S 3121.3M 8

10 I+1761.0M+1629.0S 3144.2M 9
11 I+1742.3M+1609.0S 3109.5M 10
12 I+1742.3M+1606.0S 3107.1M 11

Table B.37: Left-to-Right (3 Processors) Average Cost (d = 521)
l Field Cost M -cost s1

6 I+2369.0M+2189.0S 4200.2M 5
7 I+2361.0M+2193.0S 4195.4M 6
8 I+2361.0M+2200.0S 4201.0M 7
9 I+2327.7M+2172.0S 4145.3M 8

10 I+2358.3M+2203.0S 4200.7M 9
11 I+2349.0M+2194.0S 4184.2M 10
12 I+2350.3M+2194.0S 4185.5M 11
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Table B.38: Double-Base n-Chain Average Cost (d = 224)
N Field Cost M -cost s1

2 I+1282.0M+889.0S 2073.2M 1
3 I+1218.0M+865.0S 1990.0M 1
4 I+1186.0M+853.0S 1948.4M 1
5 I+1162.0M+844.0S 1917.2M 1
6 I+1154.0M+841.0S 1906.8M 1
7 I+1138.0M+835.0S 1886.0M 1
8 I+1138.0M+835.0S 1886.0M 1

Table B.39: Double-Base n-Chain Average Cost (d = 256)
N Field Cost M -cost s1

2 I+1466.0M+1010.0S 2354.0M 1
3 I+1394.0M+983.0S 2260.4M 1
4 I+1354.0M+968.0S 2208.4M 1
5 I+1338.0M+962.0S 2187.6M 1
6 I+1322.0M+956.0S 2166.8M 1
7 I+1306.0M+950.0S 2146.0M 1
8 I+1298.0M+947.0S 2135.6M 1

value of (bmax, tmax) is (121, 65), for d = 256, (134, 77), for d = 384, (216, 106) and

for d = 521, (269, 159) just as in Section 3.2.6, see Table 3.10.

Tables B.42 to B.12 describe the result of Chapter 4 for parameters corresponding

to the NIST primes P224, P256 and P384 in terms of their field costs and their M -

costs.
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Table B.40: Double-Base n-Chain Average Cost (d = 384)
N Field Cost M -cost s1

2 I+2167.0M+1525.0S 3467.0M 1
3 I+2055.0M+1483.0S 3321.4M 1
4 I+1999.0M+1462.0S 3248.6M 1
5 I+1967.0M+1450.0S 3207.0M 1
6 I+1943.0M+1441.0S 3175.8M 1
7 I+1927.0M+1435.0S 3155.0M 1
8 I+1919.0M+1432.0S 3144.6M 1

Table B.41: Double-Base n-Chain Average Cost (d = 521)
N Field Cost M -cost s1

2 I+2967.0M+2042.0S 4680.6M 1
3 I+2815.0M+1985.0S 4483.0M 1
4 I+2743.0M+1958.0S 4389.4M 1
5 I+2695.0M+1940.0S 4327.0M 1
6 I+2663.0M+1928.0S 4285.4M 1
7 I+2647.0M+1922.0S 4264.6M 1
8 I+2631.0M+1916.0S 4243.8M 1
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Table B.42: Parallel Scalar Multiplication (P224)
Processors Algorithm Variables Field Cost M -cost s1

2

pth (28) – I+1200.7M+1008.5S 2087.5M 3
R2L Par. (29) – I+1194.7M+1005.0S 2078.7M 1
2P R2L (31) – I+905.0M+897.0S 1702.6M 74

2P Win R2L (32)
w = 4 I+1035.0M+923.0S 1853.4M 55
w = 5 I+1211.0M+971.0S 2067.8M 44

2P L2R (35)
v = 3, w = 4 2I+1074.0M+956.0S 1998.8M 18
v = 4, w = 5 2I+1034.5M+938.8S 1945.6M 14
v = 5, w = 6 2I+1039.7M+934.9S 1947.6M 13

DB2Chain (36) – I+1282.0M+889.0S 2073.2M 1
MontLad (37) – I+1569.0M+670.0S 2185.0M 446

3

pth (28) – I+1114.4M+975.7S 1975.0M 5
R2L Par. (29) – I+1100.0M+972.0S 1957.6M 1

3P L2R (34)

l = 4 I+1070.3M+958.0S 1916.7M 3
l = 5 I+1057.0M+955.0S 1901.0M 4
l = 6 I+1062.3M+964.0S 1913.5M 5
l = 7 I+1042.3M+946.0S 1879.1M 6

DB3Chain (36) – I+1218.0M+865.0S 1990.0M 1

4
pth (28) – I+1065.3M+957.2S 1911.1M 5
R2L Par. (29) – I+1045.3M+949.0S 1884.5M 1
DB4Chain (36) – I+1186.0M+853.0S 1948.4M 1

5
pth (28) – I+1047.9M+950.2S 1888.0M 7
R2L Par. (29) – I+1020.0M+942.0S 1853.6M 1
DB5Chain (36) – I+1162.0M+844.0S 1917.2M 1

6
pth (28) – I+1028.2M+942.8S 1862.5M 7
R2L Par. (29) – I+1013.3M+947.0S 1850.9M 1
DB6Chain (36) – I+1154.0M+841.0S 1906.8M 1

7
pth (28) – I+1014.2M+937.6S 1844.2M 7
R2L Par. (29) – I+981.3M+925.0S 1801.3M 1
DB7Chain (36) – I+1138.0M+835.0S 1886.0M 1

8
pth (28) – I+1003.7M+933.6S 1830.6M 7
R2L Par. (29) – I+970.7M+921.0S 1787.5M 1
R2L Hed. (30) – I+905.0M+897.0S 1702.6M 1
DB8Chain (36) – I+1138.0M+835.0S 1886.0M 1
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Table B.43: Parallel Scalar Multiplication (P256)
Processors Algorithm Variables Field Cost M -cost s1

2

pth (28) – I+1371.3M+1152.5S 2373.3M 3
R2L Par. (29) – I+1365.3M+1149.0S 2364.5M 1
2P R2L (31) – I+1033.0M+1025.0S 1933.0M 84

2P Win R2L (32)
w = 4 I+1163.0M+1051.0S 2083.8M 63
w = 5 I+1351.0M+1111.0S 2319.8M 51

2P L2R (35)
v = 3, w = 4 2I+1226.0M+1092.0S 2259.6M 21
v = 4, w = 5 2I+1177.9M+1072.0S 2195.4M 15
v = 5, w = 6 2I+1178.3M+1066.4S 2191.5M 14

DB2Chain (36) – I+1466.0M+1010.0S 2354.0M 1
MontLad (37) – I+1793.0M+766.0S 2485.8M 510

3

pth (28) – I+1270.9M+1114.3S 2242.4M 5
R2L Par. (29) – I+1261.3M+1115.0S 2233.3M 1

3P L2R (34)
l = 4 I+1219.7M+1094.0S 2174.9M 3
l = 6 I+1195.7M+1089.0S 2146.9M 5
l = 8 I+1182.3M+1078.0S 2124.7M 7

DB3Chain (36) – I+1394.0M+983.0S 2260.4M 1

4
pth (28) – I+1214.7M+1093.2S 2169.3M 5
R2L Par. (29) – I+1194.7M+1085.0S 2142.7M 1
DB4Chain (36) – I+1354.0M+968.0S 2208.4M 1

5
pth (28) – I+1192.9M+1084.6S 2140.6M 7
R2L Par. (29) – I+1178.7M+1089.0S 2129.9M 1
DB5Chain (36) – I+1338.0M+962.0S 2187.6M 1

6
pth (28) – I+1170.4M+1076.2S 2111.4M 7
R2L Par. (29) – I+1146.7M+1072.0S 2084.3M 1
DB6Chain (36) – I+1322.0M+956.0S 2166.8M 1

7
pth (28) – I+1154.4M+1070.1S 2090.5M 7
R2L Par. (29) – I+1134.7M+1070.0S 2070.7M 1
DB7Chain (36) – I+1306.0M+950.0S 2146.0M 1

8
pth (28) – I+1142.3M+1065.6S 2074.8M 7
R2L Par. (29) – I+1109.3M+1053.0S 2031.7M 1
R2L Hed. (30) – I+1033.0M+1025.0S 1933.0M 1
DB8Chain (36) – I+1298.0M+947.0S 2135.6M 1
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Table B.44: Parallel Scalar Multiplication (P384)
Processors Algorithm Variables Field Cost M -cost s1

2

pth (28) – I+2054.0M+1728.5S 3516.8M 3
R2L Par. (29) – I+2048.0M+1725.0S 3508.0M 1
2P R2L (31) – I+1545.0M+1537.0S 2854.6M 127

2P Win R2L (32)
w = 4 I+1675.0M+1563.0S 3005.4M 95
w = 5 I+1851.0M+1611.0S 3219.8M 76

2P L2R (35)
v = 3, w = 4 2I+1834.0M+1636.0S 3302.8M 29
v = 4, w = 5 2I+1751.3M+1604.4S 3194.9M 20
v = 5, w = 6 2I+1733.0M+1592.7S 3167.1M 17

DB2Chain (36) – I+2167.0M+1525.0S 3467.0M 1
MontLad (37) – I+1793.0M+766.0S 3689.0M 510

3

pth (28) – I+1896.7M+1669.0S 3311.9M 5
R2L Par. (29) – I+1877.3M+1661.0S 3286.1M 1

3P L2R (34)
l = 6 I+1755.7M+1614.0S 3126.9M 5
l = 7 I+1747.7M+1613.0S 3118.1M 6
l = 8 I+1737.0M+1606.0S 3101.8M 7

DB3Chain (36) – I+2055.0M+1483.0S 3321.4M 1

4
pth (28) – I+1812.0M+1637.2S 3201.8M 5
R2L Par. (29) – I+1792.0M+1629.0S 3175.2M 1
DB4Chain (36) – I+1999.0M+1462.0S 3248.6M 1

5
pth (28) – I+1773.2M+1622.2S 3151.0M 7
R2L Par. (29) – I+1745.3M+1614.0S 3116.5M 1
DB5Chain (36) – I+1967.0M+1450.0S 3207.0M 1

6
pth (28) – I+1739.3M+1609.5S 3106.9M 7
R2L Par. (29) – I+1706.7M+1597.0S 3064.3M 1
DB6Chain (36) – I+1943.0M+1441.0S 3175.8M 1

7
pth (28) – I+1715.1M+1600.4S 3075.5M 7
R2L Par. (29) – I+1686.7M+1592.0S 3040.3M 1
DB7Chain (36) – I+1927.0M+1435.0S 3155.0M 1

8
pth (28) – I+1697.0M+1593.6S 3051.9M 7
R2L Par. (29) – I+1664.0M+1581.0S 3008.8M 1
R2L Hed. (30) – I+1545.0M+1537.0S 2854.6M 1
DB8Chain (36) – I+1919.0M+1432.0S 3144.6M 1


