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Abstract. In this note, we briefly report on the first large-scale and
practical application of multiparty computation, which took place in
January 2008.

1 Introduction and History

Multiparty computation (MPC) is an extremely general subject, and a protocol
enabling general secure multiparty computation is a very strong tool that can –
in principle – solve almost any cryptographic protocol problem.

In multiparty computation, one considers a number of players P1, ..., Pn,
who initially each possess some inputs x1, ..., xn, and we then want to securely
compute some function f on these inputs where f(x1, ..., xn) = (y1, ..., yn) such
that Pi learns yi but no other information. This should hold, even if players
exhibit some amount of adversarial behavior.

The goal can be accomplished by some interactive protocol π that the players
execute. Intuitively, we want that executing π is equivalent to to having a trusted
party T that receives privately xi from Pi, computes the function, and returns
yi to each Pi. This “equivalence” is not only intuition, but can be formalized
using, for instance, Canetti’s Universal Composability framework[5].

The general theory of MPC was founded in the late 80-ties [16, 3, 7]. The
theory was later developed in several ways in many papers by different authors
– see for instance [21, 18, 8]. An overview of the theoretical results known can be
found in [6].

Despite the obvious potential that MPC has in solving a wide range of prob-
lems, we have seen virtually no practical applications of MPC in the past. This
is probably in part due to the fact that direct implementation of the first gen-
eral protocols would lead to very inefficient solutions. Another factor has been
a general lack of understanding in the general public of the potential of the
technology.
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A lot of research has gone into solving the efficiency problem, both for general
protocols [11, 17, 9] and for special types of computations such as voting [4, 12].

The authors of this paper have been involved in two research projects SCET
(Secure Computing, Economy and Trust) 1 and SIMAP (Secure Information
Management and Processing) 2, that have also aimed at improving the effi-
ciency of multiparty computation, this time with an explicit focus on range of
economic applications, which we believe are particularly interesting for practical
use. In the economic field of mechanism design the concept of a trusted third
party has been a central assumption since the 70-ties [15, 19, 10]. Ever since the
field was initiated it has grown in momentum and turned into a truly cross dis-
ciplinary field. Today, many practical mechanisms require a trusted third party.
In particular, we have considered:

– Various types of auctions. This is not limited to only standard highest bid
auctions with sealed bids but also includes, for instance, variants with many
sellers and buyers, so called double auctions - essentially scenarios where one
wants to find a fair market price for a commodity given the existing supply
and demand in the market.

– Benchmarking, where several companies want to combine information on
how their businesses are running, in order to compare themselves to best
practice in the area. The benchmarking process is either used for learning,
planning or motivation purposes. This of course has to be done while pre-
serving confidentiality of companies’ private data.

When looking at such applications, we found that the computation needed is
basically elementary arithmetic on integers of moderate size, typically around
32 bits. More concretely, quite a wide range of the cases require only addition,
multiplication and comparison of integers. The known generic MPC protocols
can usually handle addition and multiplication very efficiently. What they re-
ally do is actually operations modulo some prime p, because the protocols are
based on secret sharing over Zp. So by choosing p large enough compared to the
input numbers, we can avoid modular reductions and get integer addition and
multiplication.

This is efficient because each number is shared “in one piece” using a linear
secret sharing scheme, so that secure addition, for instance, requires only one
local addition by each player. Unfortunately, this also implies that comparison
is much harder. A generic solution would express the comparison operation as
an arithmetic circuit over Zp, but this would be far too large to give a practical
solution, because the circuit would not have access to the binary representation
of the inputs. So instead we developed special purpose techniques for comparison.
This enables comparison in constant-round with unconditional security[13] and
also a logarithmic round solution that is more practical for the size of numbers
we are interested in.

1 see http://sikkerhed.alexandra.dk/uk/projects/scet/.
2 see http://sikkerhed.alexandra.dk/uk/projects/simap/.



The SIMAP project goes a step further and has additionally developed a
domain specific programming language smcl [20]. This language allows you to
express the desired computation, and specify which information should be avail-
able to which players at any given time. Such a program can then be compiled
to code that will run on the players’ machines and execute the appropriate pro-
tocols.

2 The Application Scenario

In this section we describe the practical case in which our system has been
deployed.

In Denmark, several thousand farmers produce sugar beets, which are sold
to the company Danisco, which is the only sugar producing company on the
Danish market. Farmers have contracts that give them production rights, that
is, a contract entitles a farmer to produce a certain amount of beets per year and
deliver them to Danisco. These contracts can be traded between farmers, but
trading has historically been very limited and has been done only via bilateral
negotiations.

In recent years, however, the EU drastically reduced the support for sugar
beet production. This and other factors meant that there was now an urgent
need to reallocate contracts to farmers where productions pays off best. It was
realized that this was best done via a nation-wide exchange, a double auction.
The details of this mechanism and the particular business case can be found in
[1, 2]. Briefly, the goal is to find the so called market clearing price, which is a
price per unit of the commodity that is traded. What happens is that each buyer
specifies, for each potential price, how much he is willing to buy at that price,
similarly sellers say how much they are willing to sell at each price 3. All bids go
to an auctioneer, who computes, for each price, the total supply and demand in
the market. Since we can assume that supply grows and demand decreases with
increasing price, there is a price where total supply equals total demand, and
this is the price we are looking for. Finally, all bidders who specified a non-zero
amount to trade at the market clearing price get to sell/buy the amount at this
price.

This could in principle be implemented with a single trusted party as the
auctioneer. However, in our scenario, we have some additional security concerns
implying that this is not a satisfactory solution: Bids clearly reveal information
on a farmer’s economic position and his productivity, and therefore farmers
would be reluctant to accept Danisco acting as auctioneer, given its position in
the market. Even if Danisco would never misuse its knowledge of the bids in
future price negotiations, the mere fear of this happening could affect the way
farmers bid and lead to a suboptimal result of the auction. On the other hand,
contracts in some cases act as security for debt that farmers have to Danisco,
3 In real life, a bidder would only specify a small number of prices, namely those where

the quantity he wants to trade changes, and by how much. The quantities to trade
at other prices then follow from this.



and hence the farmers’ organization DKS running the auction independently
would not be acceptable for Danisco. Finally, the common solution of delegating
the legal and practical responsibility by paying e.g. a consultancy house to be
the trusted auctioneer would be a very expensive solution.

It was therefore decided to implement an electronic double auction, where
the role of the auctioneer would be played by a multiparty computation done
by representatives for Danisco, DKS and the SIMAP project. A three party
solution was selected, partly because it was natural in the given scenario, but
also because it allowed using efficient information theoretic tools such as se-
cret sharing, rather than (much) more expensive cryptographic methods such as
homomorphic encryption.

3 The Auction System

In the system that was deployed, a web server was set up for receiving bids, and
three servers were set up for doing the secure computation. Before the auction
started, a public/private key pair was generated for each computation server,
and a representative for each involved organization stored the private on a USB
stick, protected under a password.

Each bidder logged into the webserver and an applet was downloaded to his
PC together with the public keys of the computation servers. After the user
typed in his bid, the applet secret shared the bids, and encrypted the shares
under the server public keys. Finally the entire set of ciphertexts were stored in
a database by the webserver.

As for security precautions on the client side, we did not explicitly implement
any security against cheating bidders, other than verifying their identity. This is
because the method used for encrypting bids implicitly gives some protection:
it is a variant of the non-interactive VSS based on pseudorandom secret sharing
presented in [14]. Using this method, an encrypted bid is either obviously mal-
formed, or is guaranteed to produce consistently shares values. This means that
the only cheating that is possible, is to submit bids that are not monotone, i.e.,
bids where, for instance, the amount you want to buy does not decrease with
increasing price, as it should. It is easy to see that this cannot be to a bidders
advantage. As a final word on the client-side security, we considered security
against third-party attacks on client machines as being the user’s responsibility,
and so did not explicitly handle this issue.

After the deadline for the auction had passed, the servers were connected
to the database and each other, and the market clearing price was securely
computed, as well as the quantity each bidder would buy/sell at that price.
The representative for each of the involved parties triggered the computation by
inserting his USB stick and entering his password on his own machine.

The computation was based on standard Shamir secret sharing over a field
GF (p) where p was a 64 bit prime. Standard protocols with passive security
were used for addition and multiplication, while a variant of the protocol from
[13] was used for secure comparison. We settled for passive security because our



most important goal was to avoid that any party would need access to bids in
cleartext at any point, and passive security already achieves this.

The system worked with a set of 4000 possible values for the price, meaning
that after the total supply and demand has been computed for all prices, the
market clearing price could be found using binary search over 4000 values, which
means about 12 secure comparisons.

The bidding phase ran smoothly, with very few technical questions asked by
users. The only issue was that the applet on some PC’s took up to a minute to
complete the encryption of the bids. It is not surprising that the applet needed
a non-trivial amount of time, since each bid consisted of 4000 numbers that had
to be handled individually. A total of 1200 bidders participated in the auction,
each of these had the option of submitting a bid for selling, for buying, or both.

The actual computation was done January 14 and lasted about 30 minutes.
Most of this time was spent on decrypting shares of the individual bids, which
is not surprising, as the input to the computation consisted of about 9 million
individual numbers.

As a result of the auction, about 25.000 tons of production rights changed
owner.

To the best of our knowledge, this was the first large-scale and genuinely
practical application of multiparty computation.

4 Evaluation and Potential

How successful have we been with the auction system, and does the technology
have further potential in practice?

Other than the fact that the system worked and produced correct results,
it is of course important what users think. In this connection, we can note the
results of an on-line survey that was conducted simultaneously with the bidding
phase. Here, about 80% of the respondents said that it was important to them
that the bids were kept confidential, and also that they were happy about the
confidentiality that the system offered. We find that, in particular, the fact that
confidentiality is seen as important is very interesting. Also Danisco and DKS
have been satisfied with the system, and say that they may well run the auction
again in coming years.

In judging the further potential of multiparty computation, it is important
to ask what motivated, at the end of the day, DKS and Danisco to try using such
a new and untested technology? One important factor was simply the obvious
need for a nation-wide exchange for production rights, which had not existed
before, so the opportunity to have a cheap electronic solution - secure or not -
was certainly a major reason. We do believe, however, that security also played a
role. If Danisco and DKS would have tried to run the auction using conventional
methods, one or more people would have had to have access to the bids, or control
over the system holding the bids in cleartext. As a result, some security policy
would have had to be agreed, answering questions such as: who should have
access to the system and when? who has responsibility if data leaks, and what



are the consequences? Since the parties have conflicting interests, this would
have lead to very lengthy discussions, possibly bringing the whole project to
a halt. Alternatively, the parties might have found a solution in collaboration
with a consultancy house as mediator, but this would have been a more expensive
solution, and the parties would still have had to agree on whether the mediator’s
security policy was satisfactory. As it happened, there was no need for this kind
of negotiations at all, since the multiparty computation ensured that no one
needed to have access to bids at any point.

Our conclusion is that the ability of multiparty computation to keep secret
everything that is not intended to be public, really is useful in practice, because it
short-circuits discussions and concerns about which parts of the data are sensitive
and what common security policy one should have for handling such data. In
contrast, if some part of the system - even a secure hardware device - has access to
the private data in cleartext, one is forced to administrate that part via a security
policy that all parties can agree on. It may be time-consuming, expensive or even
impossible to reach such an agreement if parties have conflicting interests. We
therefore expect that multiparty computation will turn out to be useful in many
practical scenarios in the future.
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