GENERATORS OF JACOBIANS OF GENUS TWO CURVES

CHRISTIAN ROBENHAGEN RAVNSHQ®J

ABsTrACT. This paper provides an efficient, probabilistic algorithm to find
generators of subgroups of points of prime number order on the Jacobian of a
genus two curve.

1. INTRODUCTION

In [9], Koblitz described how to use elliptic curves to construct a public key cryp-
tosystem. To get a more general class of curves, and possibly larger group orders,
Koblitz [10] then proposed using Jacobians of hyperelliptic curves. After Boneh and
Franklin [1] proposed an identity based cryptosystem by using the Weil-pairing on
an elliptic curve, pairings have been of great interest to cryptography [5]. The next
natural step was to consider pairings on Jacobians of hyperelliptic curves. Gal-
braith et al [6] survey the recent research on pairings on Jacobians of hyperelliptic
curves.

Miller [12] uses the Weil-pairing to determine generators of E(F,), where E is
an elliptic curve defined over a finite field IF;,. Let C' be a genus two curve defined
over F,. In [14], the author describes an algorithm based on the Tate-pairing
to determine generators of the subgroup Jc(Fy)[m] of points of order m on the
Jacobian, where m is a number dividing ¢ — 1. The key ingredient of the algorithm
is a “diagonalization” of a set of randomly chosen points {Pi,..., Py, Q1,...,Q4}
on the Jacobian with respect to a pairing ¢; i.e. a modification of the set such that
e(P;,Q;) # 1if and only if ¢ = j. This procedure is based on solving the discrete
logarithm problem in Jc(F,)[m]. Contrary to the special case when m divides ¢—1,
this is infeasible in general. Hence, in general the algorithm in [14] does not apply.

In the present paper, we generalize the algorithm in [14] to subgroups of points
of prime order ¢, where ¢ does not divide g — 1. In order to do so, we must somehow
alter the diagonalization step. We exploit the fact that the matrix representation
of the Frobenius endomorphism on Jc[f] is particularly simple with respect to
an appropriate basis B of Jc[f], and that computation of B is feasible. Hereby,
computations of discrete logarithms are avoided, yielding the desired altering of
the diagonalization step.

Setup. Consider a genus two curve C defined over a finite field F,. Let ¢ be an odd
prime number dividing the number of F,-rational points on the Jacobian J¢, and
with ¢ dividing neither ¢ nor ¢ — 1. Assume that the F,-rational subgroup Jc (F,)[¢]
of points on the Jacobian of order ¢ is cyclic. Let k be the multiplicative order
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of ¢ modulo ¢. Write the characteristic polynomial of the ¢*-power Frobenius
endomorphism on Jo as
Pe(X) = X* + 201 X3 + (24" + 0f — 1) X2 + 201.¢° X + ¢**,

where 20,47, € Z. Let wi, € C be a root of Py(X). Finally, if ¢ divides 471y, we
assume that ¢ is unramified in Q(wy).

Remark. Notice that in most cases relevant to cryptography, the considered genus
two curve C fulfills these assumptions. Cf. Remark 7.

The algorithm. First of all, we notice that in the above setup, the g-power Fro-
benius endomorphism ¢ on J¢ is represented on Jc[¢] by either a diagonal matrix
or a matrix of the form

1 00 O
10 g 0 0
M=15 0 0 —q
001 ¢

with respect to an appropriate basis B of J¢[f]; cf. Lemma 8. From this descrip-
tion of the action of ¢ on Jc[f], it follows that all non-degenerate, bilinear, anti-
symmetric and Galois-invariant pairings on J¢[¢] are given by the matrices

0 a 0 O
a0 0 0 .
Eab = 0o 0 o0 bl a,b e Z/lZ
0O 0 —-b O

with respect to B; cf. Theorem 9. By using this description of the pairing, the
desired algorithm is given as follows.

Algorithm 13. On input the considered curve C, the numbers £, q, k and 1, and a
number n € N, the following algorithm outputs a generating set of Jc[€] or “failure”.

(1) If £ does not divide 47y, then do the following.
(a) Choose points O # x1 € Jc(Fy)[l], v2 € o (F g ) [0\ (Fy)[€] and x5 €
U :=Jc[0\dc(F e )[l); compute x5 = xf— " (xf). If e(xs, p(a3)) # 1,
then output {x1, x2, x3,0(x3)} and stop.
(b) Leti=j=0. While i <n do the following
(i) Choose a random point x4 € U.
(i) i:=i+1.
(iii) If e(xs,xq) =1, theni:=i+1. Elsei:=n and j := 1.
(c) If 5 =0 then output “failure”. Else output {x1,x2,x3, T4}
(2) If £ divides 47y, then do the following.
(a) Choose a random point O # x1 € Jc(Fy)[¢]
(b) Leti=j=0. While i <n do the following
(i) Choose random points ys,ys € Jc[l]; compute x, = q(y, —
e(yw)) — oy — (ys)) for v=3,4.
(il) If e(ws,x4) =1 then i:=i+ 1. Else i :=n and j := 1.
(c) If j = 0 then output “failure” and stop.
(d) Leti=j=0. While i <n do the following
(i) Choose a random point xo € Jc|[f].
(ii) Ife(z1,22) =1 then i:=1i+ 1. Elsei:=n and j := 1.
(e) If 5 =0 then output “failure”. Else output {x1,x2, 3,24} and stop.
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Algorithm 13 finds generators of Jc[¢] with probability at least (1 — 1/¢*)? and
in expected running time O(log ¢); cf. Theorem 14.

Remark. To implement Algorithm 13, we need to find a ¢*- Weil number (cf. Defi-
nition 2). On Jacobians generated by the complex multiplication method [17, 7, 3],
we know the Weil numbers in advance. Hence, Algorithm 13 is particularly well
suited for such Jacobians.

Assumption. In this paper, a curve is an irreducible nonsingular projective variety
of dimension one.

2. GENUS TWO CURVES

A hyperelliptic curve is a projective curve C' C P™ of genus at least two with a
separable, degree two morphism ¢ : C' — P!, It is well known, that any genus two
curve is hyperelliptic. Throughout this paper, let C be a curve of genus two defined
over a finite field F, of characteristic p. By the Riemann-Roch Theorem there exists
a birational map 1 : C — P?, mapping C to a curve given by an equation of the
form

Yy’ +g(x)y = h(z),
where g, h € Fy[x] are of degree deg(g) < 3 and deg(h) < 6; cf. [2, chapter 1].

The set of principal divisors P(C) on C constitutes a subgroup of the degree zero

divisors Divo(C). The Jacobian J¢ of C' is defined as the quotient

dc = Divo(C)/P(C).
The Jacobian is an abelian group. We write the group law additively, and denote
the zero element of the Jacobian by O.
Let ¢ # p be a prime number. The £"-torsion subgroup Jc[¢"] C J¢ of points of
order dividing ¢™ is a Z/¢"Z-module of rank four, i.e.
Je[l") = Z/0"Z X 20" X /07 < 7] 0" Z;

cf. [11, Theorem 6, p. 109].
The multiplicative order k of ¢ modulo ¢ plays an important role in cryptography,
since the (reduced) Tate-pairing is non-degenerate over F«; cf. [8].

Definition 1 (Embedding degree). Consider a prime number ¢ # p dividing the
number of [ -rational points on the Jacobian Jc. The embedding degree of gc(Fq)
with respect to £ is the least number k, such that ¢* =1 (mod /).

3. THE FROBENIUS ENDOMORPHISM

Since C is defined over F, the mapping (z,y) — (z%,y?) is a morphism on C.
This morphism induces the g-power Frobenius endomorphism ¢ on the Jacobian J¢.
Let P(X) be the characteristic polynomial of ; cf. [11, pp. 109-110]. P(X) is called
the Weil polynomial of Jc, and

ldc(Fq)| = P(1)
by the definition of P(X) (see [11, pp. 109-110]); i.e. the number of F,-rational
points on the Jacobian is P(1).

Definition 2 (Weil number). Let notation be as above. Let P;(X) be the cha-
racteristic polynomial of the ¢"™-power Frobenius endomorphism ¢,, on Jo. A
number w,, € C with P,,(w,,) = 0 is called a ¢"™-Weil number of J¢.
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Remark 3. Note that J¢ has four ¢"-Weil numbers. If P, (X) = [[,(X — w;), then
P (X) =1[,(X —w™). Hence, if w is a ¢-Weil number of J¢, then w™ is a ¢™-Weil
number of J¢o.

4. NON-CYCLIC SUBGROUPS

Consider a genus two curve C defined over a finite field F,. Let P, (X) be
the characteristic polynomial of the ¢"*-power Frobenius endomorphism ¢,,, on the
Jacobian Jc. P, (X) is of the form P, (X) = X* + sX3 + tX? + s¢™X + ¢*™,
where s,t € Z. Let 0 = £ and 7 = 2¢™ 4+ 0% —t. Then

Pn(X)=X*+20X3+ (2¢™ + 0% — 7) X2 + 20¢™ X + ¢*™,
and 20,47 € Z. In [15], the author proves the following Theorem 4 and 5.

Theorem 4. Consider a genus two curve C defined over a finite field F,. Write
the characteristic polynomial of the ¢ -power Frobenius endomorphism on the Jaco-
bian Jc as P (X) = X* 420 X3+(2¢™+0%—7) X2 4+20¢™ X +¢*>™, where 20,47 € 7.
Let £ be an odd prime number dividing the number of IFy-rational points on Jc, and
with 01 q and 01 q— 1. If 14T, then

(1) dcFym)[4] is of rank at most two as a Z/lZ-module, and
(2) Jc(Fgm)[l] is bicyclic if and only if ¢ divides ¢ — 1.

Theorem 5. Let notation be as in Theorem 4. Furthermore, let w,, be a ¢ -Weil
number of Jo, and assume that ¢ is unramified in Q(w,,). Now assume that £ | 4.
Then the following holds.
(1) fwm €Z, then | g™ —1 and Jc[¢] C Jc(Fgm).
(2) Ifwn € Z, then L4 q™ —1, Jo(Fgm )] ~ (Z/0Z)? and Jc[l] C Jo(Fymr) if
and only if £ | ¢™* — 1.

Inspired by Theorem 4 and 5 we introduce the following notation.

Definition 6. Consider a curve C. We say that C is a C(¢, g, k, 7i)-curve, and
write C' € C(¢, q, k, 71, if the following holds.

(1) C is of genus two and defined over the finite field F,.

(2) ¢1is an odd prime number dividing the number of F,-rational points on the
Jacobian J¢, and ¢ divides neither ¢ nor g — 1.

(3) Jc(Fy)[4 is cyclic.

(4) Let k be the multiplicative order of ¢ modulo ¢. The characteristic polyno-
mial of the ¢*-power Frobenius endomorphism on J¢ is given by

Po(X) = X* 4+ 20, X3 + (2¢" + 07 — ) X% + 206" X + ¢*F,

where 20y, 41 € Z.
(5) Let wy be a ¢"-Weil number of Jo. If ¢ divides 474, then ¢ is unramified

in Q(wg).

Remark 7. In most cases relevant to cryptography, we consider a prime divisor ¢ of
size ¢2. Assume £ is of size ¢?. Then ¢ divides neither ¢ nor ¢ — 1. The number of
[F,-rational points on the Jacobian is approximately ¢?. Thus, Jc(F,)[¢] is cyclic.
Since ¢ is ramified in Q(wy) if and only if ¢ divides the discriminant of Q(wy), £ is
unramified in Q(wy) with probability approximately 1 — 1/¢e. Hence, in most cases
relevant to cryptography the considered genus two curve C is a C(¢, g, k, 7y )-curve.
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5. MATRIX REPRESENTATION OF THE FROBENIUS ENDOMORPHISM

An endomorphism 1 : Jo — Jc induces a linear map v : Jc[f] — dc[f] by
restriction. Hence, 1 is represented by a matrix M € Maty(Z/¢Z) on Jc[f]. If ¢
can be represented on Jo[f] by a diagonal matrix with respect to an appropriate
basis of J¢[¢], then we say that ¢ is diagonalizable or has a diagonal representation
on HC [E]

Let f € Z[X] be the characteristic polynomial of ¢ (see [11, pp. 109-110]),
and let f € (Z/¢Z)[X] be the characteristic polynomial of 1. Then f is a monic
polynomial of degree four, and by [11, Theorem 3, p. 186],

F(X) = F(X)  (mod 0).

The matrix representation of the g-power Frobenius endomorphism on J¢[f] is
given explicitly by the following lemma.

Lemma 8. Consider a curve C € C(¢,q,k, 7). Let ¢ be the g-power Frobenius
endomorphism on the Jacobian Jc. If ¢ is not diagonalizable on Jc[f], then ¢ is
represented on Jc[f] by a matriz of the form

1) M = 5

SO O
O o O
_ o O o

[an}

with ¢ Z ¢+ 1 (mod ¢) with respect to an appropriate basis of Jc[/].

Proof. Let Py, € (Z/VZ)[X] be the characteristic polynomial of the restriction of oy,
to Jc[f]. Since £ divides the number of F,-rational points on Jc, 1 is a root of Pj.
Assume that 1 is an root of P, with multiplicity v. Then

Pk(X) = (X - 1)ka(X)7

where Q. € (Z/¢Z)[X] is a polynomial of degree 4 — v, and Qy(1) # 0. Since the
roots of Py, occur in pairs (o, 1/a), v is an even number. Let Uy = ker(pp — 1)¥
and W, = ker(Q(¢x)). Then Uy and W}, are gj-invariant submodules of the
Z/¢Z-module Jc[l], ranky /7 (Uy) = v, and Jc[l] ~ Uy, @ Wi

Assume at first that £ does not divide 47;. Then Jc (F,)[€] is cyclic and Jc (F g )[/]
bicyclic; cf. Theorem 4. By |16, Theorem 3.1], v = 2. Choose points z1, 22 € Jc[4],
such that ¢(x1) = 21 and @(x2) = gra. Then {1, 22} is a basis of J¢(Fx ) [¢(]. Now,
let {z3, x4} be a basis of Wy, and consider the basis B = {z1,x2, 3,24} of Jc[4].
If 3 and x4 are eigenvectors of ¢y, then ¢y is represented by a diagonal matrix
on Jc[f] with respect to B. Assume x3 is not an eigenvector of ¢j. Then B’ =
{z1, 29,23, pr(x3)} is a basis of Jo[f], and ¢y is represented by a matrix of the
form (1).

Now, assume ¢ divides 47. Since ¢ divides ¢" —1, it follows that ¢ [¢] C dc (Fr);
cf. Theorem 5. Let P € (Z/¢Z)[X] be the characteristic polynomial of the restriction
of ¢ to Jc[f]. Since ¢ divides the number of F,-rational points on J¢, 1 is a root
of P. Assume that 1 is an root of P with multiplicity v. Since the roots of P occur
in pairs (a, g/«), it follows that

P(X) = (X - )"(X — ¢)"Q(X),
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where Q € (Z/(7)[X] is a polynomial of degree 4 —2v, Q(1) # 0 and Q(q) # 0. Let
U =ker(p—1)", V =ker(p — q)* and W = ker(Q(¢)). Then U, V and W are -
invariant submodules of the Z/¢Z-module Jc[l], rankyz(U) = ranky (V) = v,
and Je[f] ~ UV e W. If v = 1, then it follows as above that ¢ is either
diagonalizable on Jc[¢] or represented by a matrix of the form (1) with respect to
some basis of Jc[¢]. Hence, we may assume that v = 2. Now choose z; € U, such
that p(z1) = x1, and expand this to a basis (z1,22) of U. Similarly, choose a basis
(z3,24) of V with p(z3) = qrs. With respect to the basis B = {x1, z2, 23,24}, @ is
represented by a matrix of the form

1 o 0 O

0 1 0 O

M = 0 0 g B

0 0 0 ¢

Notice that
1 ka O 0
0 1 0 0
k_
ME=10 0 1 kgt1B
0 0 O 1

Since Jclf] C Jo(Fyr), we know that ¢ = ¢ is the identity on Jc[¢]. Hence,
M* =1. So a = 3 =0 (mod ¢), i.e. ¢ is represented by a diagonal matrix with
respect to B.

Finally, we observe that if ¢ = ¢+ 1 (mod ¢), then ¢, is diagonalizable. O

6. ANTI-SYMMETRIC PAIRINGS ON THE JACOBIAN
On J¢[¢], a non-degenerate, bilinear, anti-symmetric and Galois-invariant pairing
e:dcll] x dcll] = pe = (¢) CF,.
exists, e.g. the Weil-pairing. Since ¢ is bilinear, it is given by
e(w,y) =" &Y,

for some matrix & € Maty(Z/¢Z) with respect to a basis B = {x1,z2,23,24}
of Jc[f]. Since € is Galois-invariant,

Vr,y € doll) 1 e(z,y)? = e(p(z), 0(y)).
This is equivalent to
Va,y € dcll] : q(z" €y) = (Mx)"E(My),

where M is the matrix representation of ¢ on Jc[f] with respect to B. Since
(Mz)TE(My) = 27 MTE My, it follows that

Va,y € Jolf) - 27 q€y = 2T MTE My,

or equivalently, that ¢€ = MTEM.
Now, let

e(wy,22) = (¢, e(x1,23) = ("2, e(x2,w3) =(*" and e(w3,24) = (",
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Assume at first that ¢ is not diagonalizable on Jc[¢]. By Galois-invariance and
anti-symmetry we see that

0 ar a2 qag
- —a1 0 a4y a4
o —as9 —aQgq 0 Qg

—qay —ayg —ag O
Since MTEM = ¢€, it follows that
azq(c = (1+¢q)) = asq(c = (14+¢)) =0 (mod ).
Thus, az = a4 =0 (mod ¢); cf. Lemma 8. So

0 a 0 0
e_ |- 0 0 0
“lo0 0 0 a

0 0 —as O

Since ¢ is non-degenerate, a?a2 = det & #Z 0 (mod /).

Now assume that ¢ is represented by a diagonal matrix diag(1l,q, o, ¢/a) with
respect to an appropriate basis {x1,z2, z3,24} of Jo[f]. Let e(x1,24) = ¢* and
e(wy,w4) = (9. Then it follows from MTEM = €, that

az(a—q)=az(a—1)=as(a—1)=as(ac—q) =0 (mod ¥).
If « =1,q (mod ¢), then Jc(F,) is bi-cyclic. Hence the following theorem holds.

Theorem 9. Consider a curve C € C(¢,q,k, 7). Let ¢ be the g-power Frobenius
endomorphism on the Jacobian Jo. Now choose a basis B of dc[l], such that ¢ is
represented by a diagonal matriz with respect to B. All non-degenerate, bilinear,
anti-symmetric and Galois-invariant pairings on Jco[f] are given by the matrices

0 a 0 O
—a 0 0 0 5

&v=10 0o o sl ®bE@/D)
0 0 —b 0

with respect to B.

Remark 10. Let notation and assumptions be as in Theorem 9. Let £ be a non-
degenerate, bilinear, anti-symmetric and Galois-invariant pairing on J¢[¢], and let €
be given by €, with respect to a basis {x1,x2,z3,24} of Jo[f]. Then ¢ is given
by €11 with respect to {a "'z, b7 23, 4}

7. FINDING GENERATORS OF J¢[/]

Consider a curve C € C(¢,q,k,7;). Let ¢ be the g-power Frobenius endo-
morphism on the Jacobian Jc. Let € be a non-degenerate, bilinear, anti-symmetric
and Galois-invariant pairing

e:dcll] x dcll] — pe = (C) S F;

We consider the cases £t 47, and £ | 475, seperately.
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7.1. The case ¢ { 41,. If ¢ does not divide 47y, then Jo(Fy)[¢] is cyclic and
Jc(Fyx)[4] is bicyclic; cf. Theorem 4. Choose a random point O # 1 € Jc(Fq)[4],
and expand {1} to a basis {x1,y2} of dc(Fyx)[f], where ©(y2) = qy2. Let x5 €
Jo(F )]\ dc(Fy)[¢] be a random point. Write 25 = ag21 + azys. Then

xy = xh — p(ah) = az(l — q)y2 € (y2),

Le. @(x2) = qra. Now, let Jo[f] ~ Jo(Fyx)[(] ® W, where W is a p-invariant
submodule of rank two. Choose a random point x5 € Jc[f] \ do(Fyx)[£]. Then

x3 = ah — (k) €W
as above. Notice that

dcll] = (w1, 29, 23, 0(x3)) if and only if e(z3,(23)) # 1;

cf. Theorem 9.
Assume e(x3, p(x3)) = 1. Then x3 is an eigenvector of . Let p(x3) = awxs.
Then

PX) =X -1DX - g)(X —a)(X —q/a) (mod ¢),

where P(X) is the Weil polynomial of Jo. If a # ¢/« (mod £), then ¢ is diagonal-
izable on Jc[f]. Assume o = g/a (mod £); then a? = ¢ (mod ¢), i.e.

Pu(X) = (X —1)(X £1)2,

where Pj(X) is the characteristic polynomial of the restriction of the g¢*-power
Frobenius endomorphism on J¢ to Jo[¢]. But then ¢ divides 474. Hence, {1, x2, x5}
can be expanded to a basis B = {x1, 22, x3, 24} of Jc[¢], such that ¢ is represented
by a diagonal matrix on Jo[f] with respect to B. We may assume that ¢ is given
by €1,1 with respect to B; cf. Remark 10.

Now, choose a random point = € Jo[f] \ dc(Fyr)[¢]. Write 2 = 121 + aows +
asxs + agxy. Then e(zs,z) = (. So e(x3,z) # 1 if and only if ¢ does not
divide ay. On the other hand, {z1,x2,z3,2} is a basis of J¢[¢] if and only ¢ does
not divide ay. Hence, {x1,z2,23,2} is a basis of Jo[f] if and only if ¢ does not
divide ay. Thus, if £ does not divide 47, then the following Algorithm 11 outputs
generators of Jo[¢] with probability 1 — 1/e~.

Algorithm 11. The following algorithm takes as input a C(¢, q, k, 1 )-curve C, the
numbers ¢, q, k and 1, and a number n € N.
(1) Choose points O # x1 € Jc(Fg)[], x2 € dc(Fy)[0] \ dc(Fy)[€] and x4 €
U :=Jcl\ dc(Fr)ll]; compute x5 = af — o"(2h). If e(as, p(x3)) # 1,
then output {x1,x9,x3,0(x3)} and stop.
(2) Let i =j =0. While i <n do the following
(a) Choose a random point x4 € U.
(b) i: =i+ 1.
(c) Ife(ws,x4) =1, then i:=i+ 1. Elsei:=n and j := 1.
(3) If j = 0 then output “failure”. Else output {x1,zo,23,24}.

7.2. The case ( | 47;. Assume / divides 47,. Then Jco[f] € Jc(Fyx); cf. Theo-
rem 5. Choose a random point O # z1 € Jc(Fy)[f], and let yo € Jc[f] be a point
with o(y2) = qyo. Write Jc[l] = (z1,y2) @ W, where W is a ¢-invariant submodule
of rank two; cf. the proof of Lemma 8. Let {ys,y4} be a basis of W, such that ¢ is
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represented on Jc[¢] by either a diagonal matrix or a matrix of the form (1) with
respect to the basis

B= {Ilay27y37y4}'

Now, choose a random point z € Jc[f] \ do(Fq)[¢]. Since z — p(z) € (y2, Y3, ya),
we may assume that z € (yo,ys,ys). Write 2 = asys + azys + aqys. If  is not
diagonalizable on Jc[¢], then

qz — p(2) = aaqy2 + a3qys + asqys — (2qy2 + asys + cu(—qys + cya))

= (a3 + 1)y + (g — a3 — auc)ya,

ie. qz—p(z) € (ys,ya) = W. If gz—p(z) = 0, then it follows that ¢ = g+1 (mod ).
This is a contradiction; cf. Lemma 8. So ¢z — ¢(z) is a non-trivial element of W.
On the other hand, if ¢ is represented by a diagonal matrix M = diag(1, ¢, o, ¢/)
on Jc[f] with respect to B, then

qz — ¢(2) = aaqyz + a3qys + cuqys — (2qy2 + azoys + as(q/a)ys)
= as(q — a)ys + as(q — q/a)ya;

50 qz — ¢(2) € (ys,ya). If gz — ¢(z) = 0, then it follows that ¢ = 1 (mod ¢). This
contradicts the choice of the curve C' € C(¢, ¢, k, 7). Hence, we have a procedure
to choose a point O # w € W.

Choose two random points wq,ws € W. Write w; = a;3y3 + ayays for i = 1, 2.
We may assume that ¢ is given by €;; with respect to B; cf. Remark 10. But then

a(wl, w2) — <a13a24—a14(123.

Hence, e(wq,w2) = 1 if and only if aygans = ajgaes (mod £). If a5 Z 0 (mod £),
then e(wy,wz) = 1if and only if azy = 4222 (mod £). So e(wy,wz) # 1 with
probability 1 — 1/¢. Hence, we have a procedure to find a basis of W.

Until now, we have found points z1 € Jo(F,)[¢] and ws,ws € W, such that
W = (ws,w4). Now, choose a random point xzs € Jc[f]. Write xo = a1x1 + oy +
asys + asys. Then e(xq,22) = (*2,i.e. e(x1,22) = 1if and only if ae =0 (mod ¢).
Thus, with probability 1 —¢*/e* = 1 —1/¢, the set {1, 22, w3, w4} is a basis of Jc[/].

Summing up, if £ divides 47, then the following Algorithm 12 outputs generators
of Jc[f] with probability (1 — 1/¢m)2.

Algorithm 12. The following algorithm takes as input a C(¢, q, k, 7 )-curve C, the
numbers ¢, q, k and 1, and a number n € N,

(1) Choose a random point O # x1 € Jc(Fy)[4)
(2) Let i =35 =0. Whilei <n do the following
(a) Choose random points ys,ys € Jcll]; compute x, := q(y, — ©(y,)) —
¢(yo = #(yw)) for v =3,4.
(b) Ife(xs,24) =1 theni:=i+ 1. Elsei:=n and j := 1.
(3) If j = 0 then output “failure” and stop.
(4) Let i =35 =0. Whilei <n do the following
(a) Choose a random point xo € Jc[f].
(b) Ife(z1,22) =1 theni:=i+1. Elsei:=n and j := 1.
(5) If j = 0 then output “failure”. Else output {x1, 2,23, 24}.
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7.3. The complete algorithm. Combining Algorithm 11 and 12 yields the de-
sired algorithm to find generators of J¢[4].

Algorithm 13. The following algorithm takes as input a C(¢, q, k, 7k )-curve C, the
numbers ¢, q, k and 1, and a number n € N.

(1) If £ 1 1, run Algorithm 11 on input (C, ¢, q,k,Ti,n).

(2) If £ | 1, run Algorithm 12 on input (C, ¢, q, k, T, n).

Theorem 14. Let C be a C(¢, q, k, 7% )-curve. On input (C, €, 1, n), Algorithm 18
finds generators of Jc[f] with probability at least (1 —1/¢)? and in expected running
time O(log¥).

Proof. We may assume that the time necessary to perform an addition of two
points on the Jacobian, to multiply a point with a number or to evaluate the g¢-
power Frobenius endomorphism on the Jacobian is small compared to the time
necessary to compute the (Weil-) pairing of two points on the Jacobian. By [4],
the pairing can be evaluated in time O(log ¢). Hence, the expected running time of
Algorithm 13 is of size O(log¥). O

8. IMPLEMENTATION ISSUES

To implement, Algorithm 13, we need to find a ¢*- Weil number (cf. Definition 2).
On Jacobians generated by the complex multiplication method [17, 7, 3], we know
the Weil numbers in advance. Hence, Algorithm 13 is particularly well suited for
such Jacobians.

If ¢ divides 47, then we have to check if ¢ ramifies in L = Q(wy), where wy is a
¢*-Weil number. Notice that L C K = Q(w), where w is a g-Weil number. Thus,
if ¢ ramifies in L, then ¢ ramifies in K; cf. e.g. [13, Corollary 2.10, p. 202]. Hence,
if £ does not ramify in K, then we do not have to find a ¢*-Weil number. This may
reduce computing time.

Assume / divides 47 and is unramified in L. Then wy € Z; cf. Theorem 5. So
wh € Z, ie. w=/qge " for some n € Z with 0 < n < k. Assume k divides mn
for some m < k. Then w?™ = ¢™ € Z. Since the ¢-power Frobenius endomorphism
is the identity on the F,-rational points on the Jacobian, it follows that w?™ = 1
(mod ¢). Hence, ¢™ =1 (mod ¢), i.e. k divides m. This is a contradiction. So n
and k has no common divisors. Let ¢ = w?/q = e™#*. Then ¢ is a primitive k™
root of unity, and Q(¢) C K. Since [K : Q] < 4 and [Q(&) : Q] = ¢(k), where ¢
is the Euler phi function, it follows that k < 12. Hence, if ¢ is of multiplicative
order k£ > 12 modulo ¢, then ¢ does not divide 473, and we may skip this check. On
the other hand, if k& < 12, then both wj, = w* and the characteristic polynomial of
the ¢*-power Frobenius endomorphism are easy to compute, and we can check if ¢
divides 47, directly.
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