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The SIP security enhanced by using pairing-assisted
Massey-Omura signcryption

Alexandre M. Deusajute

Abstract—Voice over IP (or VoIP) has been adopted progres-
sively not only by a great number of companies but also by an
expressive number of people, in Brazil and in other countries.
However, this crescent adoption of VoIP in the world brings
some concerns such as security risks and threats, mainly on the
privacy and integrity of the communication. The risks and threats
(which we can emphasize the man-in-the-middle attack, because
his high danger degree) already exist in the signalling process
to the call establishment. This signalling process is executed by
specific types of protocols, like SIP (Session Initiation Protocol).
After doing a bibliographical revision of the current SIP security
mechanisms and analyzing some proposals to improve these
mechanisms, we verified that the SIP vulnerability to the man-
in-the-middle was not totally solved. Then we propose a new
security mechanism for SIP in this paper, aiming both to be an
alternative security mechanism and to solve the vulnerability to
the man-in-the-middle attack. In our proposal we use a protocol
for secure information exchange – the Massey-Omura protocol –
which, when combined with Pairing-based Cryptography (PBC),
provides a high security level for SIP in all its aspects.

Index Terms—man-in-the-middle, Massey-Omura, pairing,
SIP, VoIP

I. INTRODUCTION

VOICE over IP (VoIP) is being adopted by an increasingly
great number of enterprises to replace the traditional

circuit switched infrastructure used for telephony services.
Many service providers are seeking to enhance their messag-
ing capabilities through the new IP telephony infrastructure
instead of investing further in the traditional infrastructure.
At the same time, the evolving IP Telephony infrastructure
provides the opportunities of introducing new value added
services, such as conferencing, web collaboration and online
gaming. [1]

Nevertheless, as VoIP is based on normal IP networks,
VoIP applications inherit the known and unknown security
weaknesses that are associated to the IP protocol [2]. The
signalling/control and the media data might be the major target
of attacks. Even if we try to secure the VoIP traffic based on
the IPsec security framework, two main factors would affect
voice traffic when IPsec was used: the increase of the packet
size and the prolonged time required to encrypt payload and
headers. Besides this, the authentication as provided with IPsec
is point-to-point (not end-to-end), that is, it protects machines
only (logical address), whereas the users themselves are not
identified as it should be desired in an end-to-end security [3].
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The same occurs with SSL (Secure Sockets Layer) and TLS
(Transport Layer Security).

VoIP calls are susceptible to DoS (Denial-of-Service) at-
tacks, hacked gateways leading to unauthorized free calls, call
eavesdropping, malicious call redirection, SPIT (Spam over
Internet Telephony), and so forth. VoIP also presents certain
specific security challenges. In order to avoid these kinds of
attacks, both parties of a VoIP call – the call setup and the
media stream itself – must be inspected. [4], [5]

The concern about the VoIP security increases if we con-
sider the current scenario of expansion and adoption of the
IP Telephony. It is estimated that in the year 2010 25% of all
households in Western Europe will have abandoned traditional
Public Switched Telephone Network (PSTN) services in favor
of VoIP [6]. In Brazil, at the end of 2006, there were about
262.000 VoIP telephony subscribers. It is estimated that this
number has increased to 600.000 subscribers till September
2007. Moreover, the VoIP providers have provoked a fall in
the price of the minute in Embratel’s international calls. [7]

In view of this whole crescent adoption of VoIP in the
world (and, consequently, the increase of security risks and
threats, including incidents and attacks), efforts to create
security patterns for VoIP and for the media traffic were started
some years ago. Several work groups of the IETF (Internet
Engineering Task Force) have approved a series of RFCs
(Request for Comments) aiming to establish security patterns
for the protocols, which can be signalling (to make the call
setup) or transport (to transfer the media from one place to
the other) protocols.

The media transport protocol normally used is the RTP
(Real-time Transport Protocol [8]). For this protocol it was
established a specific security profile, the SRTP (Secure Real-
time Transport Protocol [9]). This profile provides authentica-
tion and privacy to the media data transported. It was designed
to add small overload on the packet size and to minimize the
number of cryptographic keys that should be shared between
two communication nodes. But the own profile does not define,
in its specification, a scheme to exchange cryptographic keys
and other security parameters between the nodes.

The solution for a key exchange scheme came from another
work approved by IETF: the MIKEY (Multimedia Internet
KEYing [10]). MIKEY offers mechanisms for a safe and
reliable key management. Other advantages of MIKEY are
the good use of the band and the low computational effort.
The scheme offered by MIKEY was studied and has evolved,
according to the RFC-4650 [11] and, more recently, according
to a new improvement proposal that was submitted to the
IETF [12]. It is interesting to note that the most recent
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improvements in MIKEY have a common point: the concern
about man-in-the-middle type attacks. Such improvements are
making the MIKEY’s cryptographic key exchange scheme
stronger, by solving the little that remained from the SRTP
vulnerabilities.

Another protocol, but of signalling type, that was bene-
fited with SRTP and MIKEY was the H.323 one. With the
establishment of the H.235 version 2 standard in November
2000, the ITU-T (International Telecommunications Union –
Telecommunication Standardization sector) took a step to-
wards interoperability by defining different security profiles to
the H.323. This was necessary because the standard itself did
not mandate particular features. The defined profiles provided
different security levels and described a subset of possible
security mechanisms. The H.235 version 3 already forecasts
improvements as the introduction of AES (Advanced Encryp-
tion Standard). And, even although in discussion, the H.235v3
appendix G already forecasts the use of SRTP and of MIKEY
in a combined way. [13]

However, for SIP (Session Initiation Protocol [14]), other
promissory signalling protocol which is reaching acceptance
by the market, the security is a subject that is not totally solved.
Security problems with SIP refer to the RFC-2543 [15], which
originated the SIP. In that RFC, the main mechanism to
provide security was the PGP (Pretty Good Privacy). Although
it was efficient which concern to the privacy (since it uses
the foundations of the asymmetrical cryptography and RSA
cryptographic keys), PGP is vulnerable to the man-in-the-
middle attack. The RFC-3261 [14] makes obsolescent the
RFC-2543. One of the improvements introduced by that new
RFC was the change of the main security mechanism, passing
from PGP to S/MIME (Secure Multi-purpose Internet Mail
Extension). Although the change has brought gains in terms
of security, the own RFC-3261 [14, p.247] admits that the
vulnerability to the man-in-the-middle continues affirming that
the security mechanisms foreseen by SIP are not completely
unfailing against that attack type.

In this paper we propose an alternative security mechanism
so that two parties communicating one with the other by VoIP,
in a peer-to-peer (or, more precisely, endpoint-to-endpoint)
mode, can, during the SIP signalling process to establish and
setup the call, exchange a certain secret information in a
safe way and not vulnerable to the man-in-the-middle attack.
This secret information exchanged could be, for example, a
cryptographic key to be used after in a RTP session to provide
privacy to the conversation between two parties. Or could
also be any information such as an encrypted SDP message.
Thus, our collaboration is both to provide SIP a cryptographic
key exchange scheme by using the own signalling process
(that is, without needing an additional scheme, like MIKEY)
and to offer an alternative to the current security mechanism
(the S/MIME) which is used to give privacy to the signalling
process. Our proposed scheme was based on another protocol
to information exchange, the Massey-Omura protocol, whose
sequence of message exchange is similar to the sequence
of message exchange in a typical SIP signalling process.
Although the Massey-Omura protocol already have certain
security degree, this one is improved with the use of Pairing-

based Cryptography (PBC).
Besides the Introduction, the rest of the paper is organized

as follows: in section II we present some related works. In
section III we show the fundamental concepts that will allow a
better understanding of our proposal. In section V we describe
our proposal in details, with comments about security and
performance aspects. In section VI we summarize and suggest
the future works that can be derived from this work.

II. RELATED WORKS

The RFC-3329 [16] tries to solve the vulnerability to the
man-in-the-middle attack in a SIP signalling scenario by using
TLS and IKE (Internet Key Exchange) which is an IPsec’s
protocol and it is similar to MIKEY. However, IKE is more
appropriate for SIP signalling scenarios using Proxies and not
for peer-to-peer scenarios (like our proposal). Besides this,
IKE is not a general end-to-end proposal, even for scenarios
with Proxies. In order to provide end-to-end security for SIP
signalling scenarios using Proxies, there are some good works
proposed, as the one from Kim and Kim [5].

In another related work it is proposed the use of MIKEY
messages both in the SDP and in the SIP message body [17].
We are going to explore this work a little bit because, even
though our proposal was not based or inspired on that work,
the motivations and the initial problems were similar.

The work presented by Bilien, Eliasson, Orrblad and
Vatn [17] indicates that MIKEY messages need to be carried
inside SIP messages as part of the signalling process for the
call establishment by using SIP. The question is how to do
that ? There are two project aspects related with this: how
the MIKEY messages should be codified / encapsulated and
which SIP messages should be used to carry those codified
MIKEY messages.

As for how to code/encapsulate, there are two approaches.
The first one is based on the RFC-4567 [18], which has
instituted the use of specific extensions on SDP aiming the
cryptographic key management. One of these extensions is the
“key management attribute” (or “key-mgmt” for short) which
allows MIKEY messages to be codified / encapsulated in SDP,
as shown in the following example:
v=0
s=Secret discussion
t=0 0
c=IN IP4 lost.example.com
a=key-mgmt:mikey AQAFgM0XflABAAAAAAAAAAAAAAsAyO...
a=key-mgmt:keyp1 727gkdOshsuiSDF9sdhsdKnD/dhsoSJokdo7eWD...
a=key-mgmt:keyp2 DFsnuiSDSh9sdh Kksd/dhsoddo7eOok727gWsJD...
m=audio 39000 RTP/SAVP 98
a=rtpmap:98 AMR/8000
m=video 42000 RTP/SAVP 31
a=rtpmap:31 H261/90000

Note that the attribute “key-mgmt” can be used to offer, be-
sides MIKEY, two more possibilities of protocols to exchange
cryptographic keys, inside the SDP. Each attribute “key-mgmt”
carries the data of the pertinent protocol, codified in base64.

The previous scheme works well when MIKEY is used as
key exchange protocol on SRTP. However, when MIKEY is
used with IPSec plus ESP (Encapsulation Security Payload),
perhaps the SDP attribute is not the most correct location for
a MIKEY message.
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In order to use the MIKEY as an IPSec/ESP key manage-
ment protocol, it was proposed a different approach, which is
the second approach about how to code/encapsulate MIKEY
messages. [19]

The second approach suggests that the MIKEY message
be codified as a MIME message (Multipurpose Internet Mail
Extensions) of multiple parts in the SIP message body. That
is, instead of carrying a MIKEY message as a SDP attribute, it
is suggested that the MIKEY message be carried in the MIME
body of a SIP message. This approach is a more suitable
solution for the established connections case using IPSec/ESP.
And, in order to have MIKEY messages carried as a MIME
payload, a correspondent MIME type has to be registered. The
possibility of this approach was proved by Orrblad [19].

About which SIP messages to be used, Bilien, Eliasson,
Orrblad and Vatn have proposed the use of an INVITE
message to carry the initial MIKEY message [17]. As response
to the initial MIKEY message (that is, the ending of the key
exchange process) the following possibilities are offered, all
of them associated with some SIP response: “200 Ok”, “180
Ringing” ou “183 Session in Progress”. We will explain these
SIP basic concepts in subsection III-A.

III. BACKGROUND

In this section, we will show the basic knowledge concern-
ing the concepts which will be used in the paper, so that the
reader can better understand our proposal. The concepts will
be presented in a very objective way. If the reader wants to
know more about the concepts, we recommend the additional
reading of bibliographical references mentioned during the
concepts explanation.

A. SIP

1) General features: signalling protocols are used to ses-
sion establishment, modification and ending. One of these
signalling protocols is SIP.1 After the session was established,
the media (audio, video, etc) can be transmitted by using some
specific media transport protocol, like RTP.

Fig. 1 shows an example of signalling procedure using SIP.
Note that, after having finished the signalling process, the
media transport starts. And soon after the media transport ends,
SIP is used again to end the session established previously. The
scenario presented in the figure is of peer-to-peer type, which
will be treated in this paper.

In a peer-to-peer scenario, each communicating party is
called user agent (UA). An UA takes an instruction or in-
formation supplied by an user and acts as an agent on the
behalf of that user to establish and to end media sessions with
other user agents. An UA can assume a client role (user agent
client – UAC) when emitting requests for another UA that, in
this case, assumes a server role (user agent server – UAS) and
it answers the requests made by the user agent client.

The interaction between user agents in a SIP session is made
by messages. A SIP message can be a request or a response.

1Except for some eventual specific mention – or citation – the content of
this subsection was based mainly on the RFC-2068 [20], on Johnston [21]
and on the RFC-3261 [14].

Fig. 1. Example of signalling process using SIP

Fig. 2. SIP message – request or response – general structure (CLFR –
Carriage Return/Line Feed – corresponds to a line change)

The requests are considered “verbs” in the protocol, because
they request that a specific action be executed by another user
agent. In the signalling process from Fig. 1 there are three
types of SIP requests: INVITE (an “invitation” to establish
the media session between the user agents), ACK (to confirm
the reception of an INVITE’s response) and BYE (to end a
session previously established). But there are other requests
such as CANCEL (to finish pending surveys or attempts for
the session establishment)2.

The responses are messages generated by an user agent
server, to answer a request made by an user agent client.
SIP admits several response types, grouped in six classes. The
first five classes (“Provisional”, “Successful”, “Redirection”,
“Request Failure” and “Server Failure”) were copied from the
HTTP (HyperText Transfer Protocol [20]). The sixth class
(“Global Failures”) was created exclusively for SIP.

The general structure of a SIP message (showed in Fig. 2)

2In the original SIP’s RFC (the RFC-3261 one) there was only six requests.
Before that, other RFCs were published and they have introduced more SIP
requests.
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is compounded by the following parts:
Initial line: its composing depends on the message type

and it can be:

1) Request-Line: is a request name, followed by a
Request-URI (Universal Resource Indicator) plus the
protocol version. All information is separated by a
simple space character (SP) and, at the end, there is a
CLRF (Carriage Return/Line Feed). A Request-URI (or
SIP-URI) indicates the user or the service to which the
request is addressed. In other words, it is the request
receiver.

2) Status-Line: is the protocol version followed by three
digits numeric code (Status-Code) plus a text which
explains the meaning of the numeric code. All of these
elements also are separated by a simple space character
(SP) and, at the end, there is a CRLF as well. This
kind of Initial Line is normally presented in responses.

Header fields: SIP admits one or more header fields in only
one message (request or response). That is one of the SIP
features which make it very flexible. In the SIP specification
there are a lot of header fields, grouped by their types. Thus,
there are the following header field types: generic (since they
can be used in any SIP message type), specific for requests,
specific for responses and those ones for entities.

The mandatory header fields for an INVITE request are
“Call-ID”, “Contact”, “CSeq”, “From”, “Supported”, “To” and
“Via”. Except for “Supported”, all the other header fields have
a common characteristic: they are copied ipsis litteris to the
response which is given for the INVITE request, no matter
which response is. Besides this, it is possible to add other
“tags” to the header field “To”.

In an ACK request case, the mandatory header fields are
“Call-ID”, “CSeq”, “From”, “To” and “Via”.

It is important to emphasize that INVITE and ACK requests
also have some optional header fields but they need some
values to avoid undesirable situations. These optional header
fields are: “Authorization” (to carry authentication credentials
of an user agent); “Content-Disposition” (to describe the
SIP message body’s function on the communication that was
established); “Content-Encoding” (to specify the codification
scheme applied to the SIP message body); “Content-Length”
(to indicate the number of octets in the SIP message body);
“Content-Type” (to indicate the SIP message body’s media
type).

Referring to the header field “Content-Length”: when the
number of octets is 0 (zero), it means that the SIP message
does not have a body. This header field is optional because
it is possible the generation of message bodies in a dynamic
way, where the body size cannot be known a priori. However,
if it is not supplied, an unnecessary consumption of bytes can
occur in the message. For example, if the number of octets
is not indicated in an UDP message, it is assumed that the
SIP message body continues until the end of the datagram,
even if the body payload is smaller than the datagram payload.

Body: is the part of a SIP message that can contain several
types of information, including SDP (Session Description
Protocol) information. This information can be about the
media (not the media itself), or about QoS (Quality of
Service), or even about security. It is important to emphasize
that SDP is a protocol and, thus, it serves to describe the
media streaming initialization parameters, which, in practice,
is the content that we see or listen. SDP is the SIP message
body default format and the more recent RFC which treat it
is the RFC-4566 [22].

Requests must have an initial line, one or more header
fields (some of them are exclusive for requests, we mean,
they cannot be used in response messages) and a body.
Responses must have an initial line, header fields and can
or cannot have a body, depending on the response numeric
code. For example, the response “200 – OK” have a body
when the previous request is an INVITE request message.

2) Security threats: the information transmitted in the sig-
nalling protocols messages can be as sensitive and important
as the own content of the session, that is, the media itself. Both
the header fields and the body in a SIP message can contain
secret information which must be protected.

Butcher, Li and Guo [3] have presented and described a
series of threats against SIP, such as registration hijacking,
message modification, CANCEL/BYE attacks, redirects, and
others. Most of the time, the difficulty to defend is caused by
the own SIP message structure. As SIP incorporates elements
from HTTP to carry command data, it is very flexible and
extensible to implement VoIP characteristics. On the other
hand, it becomes very difficult for a SIP parser to test all
the possible entries. Eavesdroppers can explore these vul-
nerabilities by creating and sending packets with malformed
commands inside them to some networks nodes. These actions
will certainly degrade the attacked nodes (perhaps causing “out
of order” on the nodes) and a whole VoIP system can become
unavailable .

Another attack type which SIP is susceptible to is the man-
in-the-middle attack, as we can see in next subsection.

B. The man-in-the-middle attack
The man-in-the-middle is a kind of attack that occurs over a

communication between two parties (a sender and a receiver)
and it is performed by someone who wants to monitor the
communication between two parties without tampering with
the data and without exposing its own existence. It may modify
the ciphertext stream in any manner whatsoever (deleting,
delaying, substituting, or inserting ciphertexts) as long as it
does not change the cleartexts received by the communicating
parties. But, if it wants to monitor the communications for
a long period of time, it would have to try to behave as
transparently as possible, since any trace it leaves in the
cleartexts is likely to arise suspicion [23]. In other words, the
cleartext received by both communicating partiess does not
suffer any modification.

The SIP is also susceptible to man-in-the-middle attacks.
In those scenarios where there is a Proxy, an eavesdropper
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can impersonate a legitimate user agent, register itself with
the Proxy and replace the legitimate registration with its own
address. This way, those who access the Proxy to communicate
with the legitimate user agent, will communicate with the
malicious user agent. In peer-to-peer SIP scenarios, the eaves-
dropper can intercept the messages and modify some or all of
the message attributes. Yet in this scenario attack, other actions
can be performed by the eavesdropper, such as to redirect
the messages to a third party. A serious problem coming
from the impersonation is that the eavesdropper can send
BYE messages at any moment, ending the communication and
generating a kind of “scheduled DoS (Denial of Service)”. [3]

In VoIP specific case, a man-in-the-middle attack can take
place where the attacker is able to listen to the conversation
between the two victims and also alter the communication.
This includes playback of previously captured speech so that
the receiver hears a different message from that the sender
sent. Due to the unpredictable nature of human conversations,
this attack may be difficult to be detected and it is much more
efficient in a conversation as minor is the voice piece captured
and reproduced later. Let’s take for instance a situation where
it is possible to change “no” to “yes” in response to a question
of participation or “sell” to “buy” in a conversation with a
financial advisor. The attack in those scenarios can be more
disastrous if in the voice piece captured there is financial
information, not coming from the victim but from the other
communicating party [3]. The attacker could even introduce
messages like “Sorry, the system cannot conclude the transac-
tion.” in the place of an authentic message indicating that the
transaction was successfully concluded... but on the attacker
behalf.

C. The Massey-Omura protocol

The Massey-Omura scheme [24], [25] is a three-stage en-
cryption protocol that, like the Diffie-Hellman key agreement
scheme [26], allows two parties which do not share any
secret data to exchange confidential information over a non-
secure channel. Despite having been published in the 80th
decade, the Massey-Omura protocol had already been reported
(not publicly) in the previous decade [27]. The most general
form of the Massey-Omura protocol requires a commutative
encryption scheme.

An encryption scheme is a tuple (K,M, E) where K is the
set of keys, M is the set of messages, and E : K×M→M
is a mapping (the cipher) such that, for each k ∈ K, E defines
a permutation over M . Thus, it makes sense, for each k ∈ K,
to speak of the inverse cipher satisfying E−1(k, c) = m ⇔
E(k,m) = c for all m, c ∈ M (m is the plaintext and c is
the ciphertext).

An encryption scheme is commutative if, for any two keys
sA, sB ∈ K and any message m ∈ M, the same ciphertext
results from encrypting m first under sA and then under sB ,
or else encrypting m first with sB and then with sA, i.e.
E(sB , E(sA,m)) = E(sA, E(sB ,m)).

If Alice wants to send a message M to Bob by using the
Massey-Omura protocol, she encrypts the message with her
key (sA) and sends the result to Bob; Bob encrypts what he

Fig. 3. Secret information exchange by using the Massey-Omura protocol

has received with his key (sB) and sends the new result back
to Alice; she decrypts Bob’s response (and gets the message
encrypted by Bob’s key only) and sends the result back to
Bob, who finally decrypts and gets the original message. Note
that Alice does not know (and does not need to know) Bob’s
key to communicate with him – and vice-versa.

Fig. 3 illustrates the Massey-Omura protocol.

1) The Massey-Omura protocol against the man-in-the-
middle attack: there is nothing in the Massey-Omura basic
scheme that Bob can use to check if it was really Alice who
sent him the message (in a similar manner, Alice cannot know
whether the reply comes from Bob or from someone else).
Bob cannot even check whether he gets the correct message
without asking Alice. These restrictions prevent Bob and Alice
to check each other and leave the protocol susceptible to some
attack types, as the man-in-the-middle one.

Following, we will describe some attack scenarios where it
is possible to understand better the Massey-Omura protocol
vulnerabilities and its susceptibility to the man-in-the-middle
attack. In these scenarios, let MITM be the abbreviation for
man-in-the-middle. So, sX is the MITM private key generated
randomly. And Mλ is a generated spurious message.

Scenario 1: MITM sends a spurious message indistinguish-
able from an authentic message, taking advantage over a
legitimate information.

1) MITM begins the communication.
It computes MX = sXMλ and sends MX to Alice,
pretending to be somebody else (note that here Alice
is the receiver, that is, she is “Bob”)

2) Alice receives MX .
Following the protocol as the receiver, she computes
MAX = sAMX and sends the result back.

3) MITM receives MAX .
It applies s−1

X over MAX : s−1
X MAX = s−1

X sAMX =
s−1

X sAsXMλ = s−1
X sXsAMλ = sAMλ.

Now, if MITM wants, it can send a spurious message to
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Bob, impersonating more “truly” Alice (because it can
sign the spurious message Mλ with Alice private key).
And, if MITM applies the same technique to attack Bob,
it can impersonate more “truly” Bob as well, assuming
a communication from Bob to Alice.

ANALYSIS: MITM does not recover sA (neither does sB).
But it can create a spurious message and “sign it” indirectly.
That is, supposing that Bob has capacity to authenticate
Alice’s message, depending on the authentication technique,
Bob will conclude that the message is indeed from Alice.
This is an interesting attack scenario because by simply
applying any methods of authentication it does not solve the
vulnerability.

Scenario 2: MITM gets the authentic message not directly.

1) Alice computes MA = sAM and sends the result to Bob.
2) MITM intercepts the communication and captures MA,

but does not interrupt the communication.
3) Bob receives MA.

He follows the protocol and computes MBA = sBMA

and sends it back to Alice.
4) MITM intercepts the communication once more, cap-

tures MBA, discarding it, and it interrupts the com-
munication. So, it computes MX = sXMA (MA was
captured in step 2) and sends MX to Alice, pretending
to be Bob.

5) Alice receives MX .
She follows the protocol and computes:
MB = s−1

A MX = s−1
A sXsAM = s−1

A sAsXM = sXM.
Alice sends MB to MITM thinking that it is Bob.

6) MITM receives MB .
Thus, to get the original message, it computes:
s−1

X MB = s−1
X sXM = M.

ANALYSIS: note that MITM could get the authentic
message by interrupting the communication in step 2, not
allowing Bob to receive anything. But MITM prefers not to
do this because could there is an extra process or procedure
(e.g., a confirmation phone call) which ensures Alice to
check if Bob received something from her after the first
communication. So, if Bob does not receive anything from
Alice, she would notice that there is something suspicious
and she would interrupt the communication in the beginning.
However, even in cases like that (where MITM does not
interrupt the first communication between Alice and Bob)
and even supposing that there is an extra checking procedure
or process, the MITM attack is done successful. Thus, the
use of additional verifications, some of them out-of-system,
cannot resolve totally the protocol susceptibility to the
man-in-the-middle attack.

Those are some possible attack scenarios. Other ones were
identified and detailed by Deusajute and Barreto [28].

D. Pairing Based Cryptography

Pairings have been attracting the interest of the international
cryptography community because it enables the design of

original cryptographic schemes and makes well-know cryp-
tographic protocols more efficient. Due this, Pairing-Based
Cryptography (PBC) has been considered an emerging field of
Elliptic Curve Cryptography (ECC) that allows a wide range
of applications. [29]

In a mathematical point of view, pairings are mappings over
elliptic curves, because they map a pair of points from two
elliptic curves (sometimes, from only one elliptic curve) over
an element belonging to a multiplicative group in a finite field.
On the other hand, it is a special sort of mapping because it has
certain particular peculiarities which distinguish them solely.

Formally, a pairing (or bilinear pairing) can be defined as
a map e : G0 ×G1 → GT , where G0 and G1 are two groups
of order q for some large prime q, satisfying the following
properties [30]:

1) Bilinearity: e(aP, bQ) = e(P,Q)ab for all P ∈ G0, Q ∈
G1, and a, b ∈ Z.

2) Non-degeneracy: for every P ∈ G0 there is Q ∈ G1

such that e(P,Q) 6= 1. Observe that, if G0 = 〈P 〉
(i.e., G0 is generated by P ) and G1 = 〈Q〉, then
GT = 〈g〉 with g = e(P,Q).

3) Computability: there is an efficient algorithm to compute
e(P,Q) for all P ∈ G0, Q ∈ G1.

The “bilinear” designation comes from the fact that the
mapping is linear in each of the two points included in the
mapping, that is, e(αP ) = e(P )α and e(αQ) = e(Q)α – in a
multiplicative notation. In some literatures, to make a mapping
be bilinear it is enough to consider the “Bilinearity” property.
So, in those literatures, the properties “Computability” and
“Non-degeneracy” are not considered basic properties from
bilinear pairings, but only desirable properties so that the
pairings can be computationally implemented. In practice,
the fact is that “Bilinearity” property is the most important,
because it is essential to protocols definitions, no matter
what their type are (key agreement, encrypting, decrypting,
signature verification, etc).

The property “Computability” is accepted by some authors
when it refers to a bilinear mapping computationally im-
plementable. When a bilinear pairing is not computationally
implementable, it is to hard to be used that it is inappropriate
to use in practice. In other words, although some intractable
pairing can be useful in a theoretical analysis (e.g., to prove
that there is a finite process to calculate something, even if in
an exponential time), in an applied area as cryptography it is
not so useful to consider such pairing type.

About the “Non-degeneracy” property, it must exist because
there is no sense in using degenerate pairings for cryptographic
applications due to the result e(P, P ) = 1.

The typical form to implement bilinear pairings in practice
is by using Weil or Tate pairing derivations. Among them, the
Tate pairing is the most used.

An important corollary aroused from the definition previ-
ously presented is: if e : G0×G1 → GT is a bilinear pairing,
then:

e(cP,Q) = e(P, cQ) (1)

for all P ∈ G0, Q ∈ G1, and c ∈ Z.
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Proof. Specializing the bilinearity condition e(aP, bQ) =
e(P,Q)ab to a = c and b = 1 we get e(cP, Q) = e(P,Q)c, and
similarly taking a = 1 and b = c we get: e(P, cQ) = e(P,Q)c.
Therefore, e(cP, Q) = e(P, cQ) �.

IV. PAIRING-ASSISTED MASSEY-OMURA SIGNCRYPTION

In III-C1 we have shown some scenarios where the Massey-
Omura protocol can be attacked by the man-in-the-middle.
The main problem is that both Alice and Bob cannot verify
each other during the stages transitions. And, even though they
can do this, it is not any verification or any authentication
that solves the vulnerability. Even extra systems procedures
or processes would not avoid the man-in-the-middle attack as
we have seen previously.

It is necessary a mechanism which can provide the protocol
some authentication degree. This mechanism must be able to
allow both the sender (Alice) and the receiver (Bob) to verify
each other in the protocol’s transitions. Pairing can be this
mechanism. In particular, we use the result of (1), presented
in previous section.

Let G0 = 〈P 〉, G1 = 〈Q〉, and GT = 〈g〉 (with G0 and
G1 not necessarily distinct) be groups of prime order n, and
e : G0 ×G1 → GT a bilinear pairing. Assume that there is a
bijection π : M→ G0.

Alice wishes to send a message M = π(m) to Bob over a
non-secure channel. Alice’s key pair is (sA ∈ Z∗n, VA = sAQ),
where sA is her private key and VA = sAQ is her public key.
Similarly, Bob has the key pair (sB ∈ Z∗n, VB = sBQ), where
sB is his private key and VB = sBQ is his public key.

The modified Massey-Omura protocol (enhanced) is:

• STEP 1: Alice computes MA = sAM
Alice still computes a Security Parameter
M δ

A = sA h(MA) where h is a conventional “hash”
function
Then, Alice sends the computed results to Bob.

• STEP 2: Bob receives MA and the Security Parameter
M δ

A.
Check 1: Bob checks whether e(M δ

A, Q) =
e(h(MA), VA). If the equality is not maintained
then Bob interrupts the protocol.
Otherwise he computes MBA = sBMA and sends the
result back to Alice.

• STEP 3: Alice receives MBA.
Check 2: Alice checks whether e(MBA, Q) =
e(MA, VB). If the equality is not maintained then
Alice interrupts the protocol.
Otherwise she computes MB = s−1

A MBA =
s−1

A sBsAM = s−1
A sAsBM = sBM and sends the

result back to Bob.

• EPILOGUE: Bob receives MB .
Check 3: Bob checks whether e(MA, Q) = e(M,VA).
If the equality is not maintained then Bob interrupts the
protocol, refusing the message.

Fig. 4. The modified (and enhanced) Massey-Omura protocol: note that
the Security Parameter only persists until the end of the first transition (that
occurs because its function is just to make the Check 1 feasible)

Observe that the check points arise from bilinear pairing
properties and also from (1):

(Check 1) e(M δ
A, Q) = e(sA h(MA), Q) =(1)

e(h(MA), sAQ) = e(h(MA), VA).

(Check 2) e(MBA, Q) = e(sBMA, Q) =(1)

e(MA, sBQ) = e(MA, VB).

(Check 3) e(MA, Q) = e(sAM,Q) =(1) e(M, sAQ) =
e(M,VA).

Fig. 4 shows schemetically the modified Massey-Omura
protocol.

The attack scenarios presented in III-C1 are now exhibited
under another optic.

Scenario 1 (revised): MITM sends a spurious message
indistinguishable from an authentic message, taking advantage
over a legitimate information.

1) MITM begins the communication.
It computes MX = sXMλ and M δ

X = sXh(MX). So, it
sends MX and M δ

X to Alice, pretending to be somebody
else (notice that here Alice is the receiver, that is, shes
“Bob”).

2) Alice receives MX and M δ
X .

Following the modified protocol as the receiver role, she
has to perform the Check 1. To do this she has to use
the public key from whom is trying to communicate with
her. But, who is trying to communicate with her ?
Let T = {VK |VK = sKQ} be the set of all public key
in which Alice knows and trusts. VX /∈ T , where VX =
sXQ is the MITM public key. Then:
e(M δ

X , Q) = e(sXh(MX), Q) = e(h(MX), sXQ) =
e(h(MX), VX) 6= e(h(MX), VK).

As the equality is not maintained for any VK ∈ T , Alice
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interrupts the protocol.
Scenario 2 (revised): MITM gets the authentic message not

directly.
1) Alice computes MA = sAM and M δ

A = sAh(MA).
After doing this, she sends the results to Bob.

2) MITM intercepts the communication capturing MA and
M δ

A, but does not interrupt the communication.
3) Bob receives MA and M δ

A.
He follows the modified protocol, performing the Check
1 without troubles (because no adulteration happens
caused by the MITM). So, Bob computes MBA =
sBMA and sends it back to Alice.

4) MITM intercepts the communication again, captures
MBA, discarding it, and it interrupts the communication.
So, it computes MX = sXMA (MA was captured in
step 2) and sends MX to Alice, pretending to be Bob.

5) Alice receives MX thinking of being MBA.
She also follows the modified protocol and checks
whether e(MBA, Q) = e(MA, VB):

e(MX , Q) = e(sXMA, Q) = e(sXsAM, Q) =
e(sXM, sAQ) = e(sXM, VA) 6= e(MA, VB).

and

e(MX , Q) = e(sXMA, Q) = e(sXsAM, Q) =
e(sAM, sXQ) = e(MA, VX) 6= e(MA, VB).

As the equality is not maintained anyway, Alice inter-
rupts the protocol.

The security for the other scenarios was presented by
Deusajute and Barreto [28]. There is also a detailed expla-
nation in that work about the use of the additional computing
M δ

A = sAHA, which we named Security Parameter.

V. ENHANCING THE SIP SECURITY BY USING THE
MASSEY-OMURA PROTOCOL PLUS PAIRING-BASED

CRYPTOGRAPHY

Consider a VoIP communicating scenario, peer-to-peer, with
two user agents, a caller (or user agent client – UAC) and a
listener (or user agent server – UAS). We will name the caller
“user agent Alice” (UA Alice) and the listener “user agent
Bob” (UA Bob). Assume that the channel through which the
UA Alice communicate with the UA Bob is non-secure and
can be attacked by a third party, the user agent man-in-the-
middle.

Alice (UA Alice’s user) wants to make a call to Bob (UA
Bob’s user), by VoIP. The signalling protocol used for the call
establishment is SIP. During the signalling process, the UA
Alice wants to send to UA Bob a secret content which can
be, for instance, a symmetric cryptographic key. That key was
generated to be used later on a RTP session to provide the
privacy service to the conversation between Alice e Bob, by
using of some symmetric cryptographic algorithm compatible
with RTP (e.g., 3DES).

We will describe in following subsections our proposal to
enable the secure exchange of the secret content between

Fig. 5. Step 1: the UA Alice sends an INVITE to the UA Bob

the UA Alice and the UA Bob, by taking advantage of SIP
dynamic signalling process to establish a call.

A. Step 1: INVITE

1) Pre-existing information:
• Q: a public known value. In practice, it would be any

point in an appropriate selected elliptic curve. This is
very important because when using Elliptic Curve Cryp-
tography nor all curves are appropriate for cryptography.
There are curves which do not offer security with respect
to computational aspects. That is, they are curves where
it is possible to perform a decryption in a computation-
ally feasible polynomial time. The elliptic curves which
must not be used in cryptography are the degenerated,
anomalous and supersingulars ones. [31], [32]
Since Q is a point, there are two values included, one
corresponding to the abscissa and another corresponding
to the ordinate. Those two values could be previously
recorded in suitable electronic circuits of the VoIP
equipments which correspond to the user agents. Or
even they could be built-in as binary “hard-code” in
the executable program of softphones. That is possible,
without generating security problems and vulnerabilities
because, if a suitable elliptic curve was selected, then
any point could be used without the need of periodic
values changes.

2) Verification points: no verifications in this step.

3) Computation:

1) UA Alice’s private key generation – sA: this private
key is generated randomly, but with high security level,
so that it cannot be guessed easily or even “broken” by
a brute-force attack, where the attacker tries all possible
keys on a piece of ciphertext until an intelligible
translation into plaintext is obtained [33]. There are
several algorithms which can be used to generate this
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private key – such as that one in the RFC-1750 [34] –
and that can be easily implemented by software and by
hardware.

2) UA Alice’s public key generation – VA: VA = sAQ.
Once Q is a point and sA is an integer number, even
though reasonably large, VA would be another point on
the elliptic curve which is appropriately selected and
from that one comes the Q point.

3) Secret content encryption: MA = sAM
M represents any secret content. It is important to
emphasize that because, despite all the preoccupation
with the secure exchange of the cryptographic keys
which can be used after in a RTP session, our proposal
enable the exchange of any secret content, depending
on the application requirements. For instance, the UA
Alice could not only transmit a cryptographic key to be
used in an eventual RTP session but could also transmit
a SDP message concatenated to the cryptographic key.
UA Bob would only have the additional work to find
out where the concatenation occurs (e.g., a CRLF could
be the “delimiter” of this concatenation) and, then,
undo it.

4) Security Paramenter computation – M δ
A:

M δ
A = sAh(MA).

The h is a conventional hash function. That is, it is a
hash function (e.g., SHA-1) which receives as its input
the UA Alice’s private key (sA) and returns the value
corresponding to the private key’s cryptographic hash.
The justification for the use of this Security Parameter
is better explained by Deusajute and Barreto [28, p.08].

The UA Alice must be able to retain, in some manner, the
encrypted secret content MA and the other generated data,
because part of the information will be used afterwards.

4) SIP message preparation:

The header fields “Via”, “To”, “From”, “CSeq”, “Contact”
and “Supported” must be prepared according to the
RFC-3261 [14]. The header fields “Content-Disposition”,
“Content-Encoding” and “Content-Type” must contain the
following values respectively: “session”, “compress” and
“text/text”. A brief explanation about the meaning of those
header fields was given in subsection III-A. A detailed
information can be obtained in the RFC-3261.

The other header fields must be prepared appropriately to
carry some of the data which were previously calculated:

“Call-ID” must contain the Security Parameter M δ
A, but not

in the “...@hostname” format.
The use of “Call-ID” by this way could represent a violation

of the specification made in the RFC-3261 for that header field.
However, it is possible to proceed this way with “Call-ID” due
to the following arguments:

• Typically, that header field contains random values
followed by “@hostname”. However, the use of

“@hostname” is not mandatory. This non-obligatoriness
is justified by the use of the keyword “MAY” within
the specification made in the RFC-3261 [14, p.37]) for
the header field “Call-ID” (in some examples of the
own RFC-3261, the authors do not use “Call-ID” in the
format “...@hostname”).

• The RFC-3261 uses the keyword “RECOMMENDED”
to indicate that the header field “Call-ID” should be
a random and cryptographically generated value, as it
is in RFC-1750 [34]. However, the interpretation for
that keyword given in the RFC-2119 [35] allows us to
use an alternative computation mechanism to generate
the “Call-ID” value, because there is a relevant reason
in this particular situation – the security of the our
proposed scheme – to not obey (at least not in this
point) the RFC-1750. Moreover, the way by which we
are proposing the “Call-ID” value corresponds to a
computation result that uses, both direct and indirectly,
a value – sA – which can be generated according to
the own RFC-1750, as it was previously proposed. That
is, “Call-ID” would be a random and cryptographically
generated value anyway.

“Authorization”, specifically the “auth-param” parameter,
must contain the UA Alice’s public key VA. This header field
contains authentication credentials from an UA. When an UAS
(in this case, the UA Bob) receives a request from an UAC
(in this case, the UA Alice), the UAS can authenticate the call
originator before the request is processed by the UAS. [14,
p.194]

In respect to the SIP message body, it must be prepared so
that it is possible to carry the secret content M.

5) SIP message instance for this step:
INVITE sip:alice@larc.usp.br SIP/2.0
Via: SIP/2.0/UDP larc.usp.br:5060
To: Bob the Builder <sip:bob@poli.usp.br>
From: Alice in Wonderland <sip:alice@larc.usp.br>
Call-ID: 082121f32b42a2187835d330a...
CSeq: 1 INVITE
Contact: sip:alice@larc.usp.br
Supported: 100rel
Content-Disposition: session
Content-Encoding: compress
Content-Type: text/text
Authorization: Digest usernament=“UA Alice”,

realm=“larc.usp.br”,
auth-param=“84a4cc6f3082121f32b42a2187831a9e...”

ghyHhHUujhJhjH77n8HHGTrfvbnj756tbB9HG4VQpfyF467GhIGfHfYT6
4VQpfyF467GhIGfHfYT6jH77n8HHGghyHhHUujhJh756tbB9HGTrfvbnj
n8HHGTrfvhJhjH776tbB9HG4VQbnj7567GhIGfHfYT6ghyHhHUujpfyF4
7GhIGfHfYT64VQbnj756...

B. Step 2: 200 OK

1) Pre-existing information:

• Q: a public known value (already explained in Step 1)

• h: the UA Bob has previous understanding that the
UA Alice has used the hash function h to encrypt the
secret content MA. This “previous understanding” can
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Fig. 6. Step 2: the UA Bob responds to the UA Alice

be due to an accepted criterion or due to a previously
established agreement among the user agents.

2) Verification points: :

1) Request type: the UA Bob is waiting for an INVITE
request. If it receives a request different from INVITE,
the UA Bob prepares a SIP response message –
specifically, the “603 Decline” one – and it sends to the
UA Alice. Otherwise, it goes to the next verification
point.

2) Check 1: the UA Bob checks whether
e(M δ

A, Q) = e(h(MA), VA).

In order to perform this checking, the UA Bob must
be able to parse the SIP message received from the
UA Alice aiming to extract the Security Parameter M δ

A

(contained in the header field “Call-ID”), the UA Alice’s
public key VA (contained in the header field ‘Authoriza-
tion”, specifically in the “auth-param” parameter) and
the encrypted secret content MA (contained in the SIP
message body). The UA Bob does not use MA directly.
The UA Bob must apply the hash function on the MA

value and use the result in the checking process.
If e(M δ

A, Q) 6= e(h(MA), VA) then the UA Bob pre-
pares a SIP message response – specifically, the “401
Unauthorized” one – and it sends to the UA Alice.
Otherwise, it goes to the next verification point.
The UA Bob must be able to retain, in some manner,
the parsed data VA e MA, because they will be used
afterwards.

3) UAS evaluation: in this point, the UA Bob notifies its
user (Bob in person) that he has a call. Depending on
the elapsed time Bob has to answer the phone, the UA
Bob may prepare and send to UA Alice a “Provisional”
class response (where the message code have the format
1xx), to report that some action is being taken, but there

is not a definitive answer yet. For instance, if the UA
Bob sends to the UA Alice a “180 Ringing” response,
it means that Bob’s telephone is ringing. That is, the
user Bob has already been notified – by the ring tone –
that there is a call to him, but he has not answered the
phone yet.

3) Computation:

1) UA Bob’s private key generation – sB: this private
key is also generated randomly and the considerations
are the same from UA Alice’s private key generation.

2) UA Bob’s public key generation – VB: VB = sBQ.

Once Q is a point and sB is an integer number, even
though reasonably large, VB would also be another
point on the elliptic curve which is adequately selected
and from that one comes the Q point.

3) Secret content (already encrypted) encryp-
tion: MBA = sBMA.
It can be strange to have to encrypt something that has
already been encrypted. However, the double encrypting
is the great differential of the Massey-Omura protocol,
enabling it to encrypt the exchanged information
between two parties, without these parties to share
their generated secret keys. In other words, each party
generates a private key, keeping it with itself, without
sharing it with the other party (therefore, one party
does not know the private key value of the other party).
And, even thus, it is possible to exchange information
in a secret manner. Secret but not totally secure, due
to the man-in-the-middle attack. Thus, it is necessary
an additional “security layer”, which is provided in our
proposal by using Pairing-Based Cryptography.

The UA Bob must be able to retain, in some manner, the
generated data, because some of them will be used afterwards.

4) SIP message preparation:

The values contained in the header fields “Via”, “To”,
“From”, “CSeq” and “Contact” of the INVITE request
received by the UA Bob must be copied, without any
changes, to the correspondent header fields in the SIP
message response “200 OK”.

The header field “Authentication-Info” must be prepared
in an appropriate manner to carry the UA Bob’s public key
VB . Specifically, the “nextnonce” parameter must be used
specifically to carry the public key. An UAS (in this case,
the UA Bob) may include this header field in a 2xx response
to a request that was successfully authenticated using digest
based on the “Authorization” header field. [14, p.164]

In respect to the SIP message body, it must be prepared so
that it is possible to carry the secret content encrypted for the
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Fig. 7. Step 3: the UA Alice sends an ACK to the UA Bob

second time MBA.

5) SIP message instance for this step:
SIP/2.0 200 OK
Via: SIP/2.0/UDP larc.usp.br:5060
To: Bob the Builder <sip:bob@poli.usp.br>
From: Alice in Wonderland <sip:alice@larc.usp.br>
Call-ID: 082121f32b42a2187835d330a...
CSeq: 1 INVITE
Contact: sip:alice@larc.usp.br
Content-Disposition: session
Content-Encoding: compress
Content-Type: text/text
Authentication-Info: nextnonce=“08212f3a4cc6321783a9e...”

nj756tbB9HG4VQpfyF467GhIGfHfYT6ghyHhHUujhJhjH77n8HHGTrfvb
hyHhHUujhJh756tbB9HGT4VQpfyF467GhIGfHfYT6jH77n8HHGgrfvbnj
n8HHB9HG4VQbnj7567GhIGfHfYT6gGTrfvhJhjH776tbhyHhHUujpfyF4
T64VQbnj7GhIGfHfY756...

C. Step 3: ACK

1) Pre-existing informations:

• Q: a public known value (already explained in Step 1)

• MA: a value already computed by the own UA Alice in
Step 1.

• sA: a value generated and retained by the UA Alice
since Step 1.

2) Verification points: :

1) Request type: the UA Alice is waiting for a SIP
response message, or from the “Provisional” class (1xx)
or even from the “Successful” class (2xx). If it receives
a response from another class different of “Provisional”
and “Successful”, the UA Alice prepares and sends to
the UA Bob a CANCEL type SIP message, aborting the
call establishment process.
If it receives a “Provisional” response (1xx), the UA
Alice keep waiting for a new response from the UA
Bob. When the UA Alice receives a “Successful”

response (2xx), it goes to the next verification point.

2) Check 2: the UA Alice checks whether
e(MBA, Q) = e(MA, VB).

In order to perform this checking, the UA Alice must be
able to parse the SIP message received from the UA Bob
aiming to extract the UA Bob’s public key VB (contained
in the header field ‘Authentication-Info”, specifically in
the “nextnonce” parameter) and the re-encrypted secret
content MBA (contained in the SIP message body).
If e(MBA, Q) 6= e(MA, VB) then the UA Alice
prepares and sends to the UA Bob a CANCEL type
SIP message, aborting the call establishment process.
Otherwise, no more verifications have to be done.

3) Computation: the UA Alice computes a new encrypted
secret content MB .

MB = s−1
A MBA = s−1

A sBsAM = s−1
A sAsBM = sBM

Notice that the result MB in an unique one secret content,
encrypted by the UA Bob’s private key sB . That is, the
UA Alice only has removed the “security layer” that it own
has applied over the initial secret content (M), in Step 1.
However, the UA Alice “see” the result sB M as an unique
one piece, without distinguishing where sB begins and where
it ends, and also where M begins and where it ends.

4) SIP message preparation:

The header fields “Via”, “To”, “From”, “CSeq”, “Contact”
and “Supported” must be prepared according to the
RFC-3261 [14]. The header fields “Content-Disposition”,
“Content-Encoding” and “Content-Type” must contain the
following values respectively: “session”, “compress” and
“text/text”. As mentioned, a brief explanation about the
meaning of those header fields was given in subsection III-A.
Detailed information can be obtained in the RFC-3261.

In respect to the SIP message body, it must be prepared so
that it is possible to carry the new encrypted secret content
MB .

5) SIP message instance for this step:
ACK sip:alice@larc.usp.br SIP/2.0
Via: SIP/2.0/UDP larc.usp.br:5060
To: Bob the Builder <sip:bob@poli.usp.br>
From: Alice in Wonderland <sip:alice@larc.usp.br>
Call-ID: 082121f32b42a2187835d330a...
CSeq: 1 INVITE
Content-Disposition: session
Content-Encoding: compress
Content-Type: text/text

HfYT6ghyHhHUujhJhjH77nnj756tbB9HG48HHGTrfvbVQpfyF467GhIGf
T4VQpfyF467GhIGHhHUujhfHfYTGgrfvbn6jH77n8HHhyJh756tbB9HGj
hyHhHUujpfyF4n8HHB9HG4VQbnj7567GhIGfHfYT6gGTrfvhJhjH776tb
HfY756T64VQbnj7GhIGf...

D. Epilogue: secret content M retrieving
1) Pre-existing information:
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Fig. 8. Epilogue: the UA Bob retrieves the secret content sent by the UA
Alice

• Q: a public known value (already explained in Step 1)

• MA: a value retained by the UA Bob since Step 2.

• VA: a value retained by the UA Bob since Step 2.

• sB : a value generated and retained by the UA Bob since
Step 2.

2) Verification points: :

1) Request type: the UA Bob is waiting for an ACK
request. If it receives a request different from ACK,
the UA Bob prepares a BYE type SIP message and
sends it to the UA Alice. Notice that it is possible to
the UA Bob already to send a BYE because it may
be assumed that a session was established. The UA
Bob has received an INVITE and it has answered these
INVITE with a “200 OK”. [21]

Before it goes to the next (and final) verification, the
UA Bob must retrieve the secret content which, in this
moment, is only encrypted by the UA Bob’s private
key. That is, to retrieve the secret content M, it is
enough that the UA Bob uses its secret key (sB) to
perform a decryption job:

s−1
B MB = s−1

B sBM = M

To be sure that the UA Bob has retrieved, indeed, the
secret content sent by the UA Alice, it is enough to do
the following verification.

2) Check 3: the UA Bob checks whether
e(MA, Q) = e(M,VA).

To perform this checking, the UA Bob uses the
information that was retaining since Step 2 (MA e VA)

plus the secret content M decrypted newly and the well
known public information Q.

If e(MA, Q) 6= e(M,VA) then the UA Bob prepares
and sends to the UA Alice a BYE type SIP message,
ending the established session. Otherwise, the secret
content M can finally be used for its purposes.

Fig. 9 shows all the new proposed signalling process.

E. Security and performance aspects

In the previous subsections, our proposed scheme took
advantage of the big similarity of the Massey-Omura protocol
with the typical SIP signalling process, to enable a secret con-
tent exchange between two user agents (and without sharing
the secret keys which were generated by the own user agents).

The Massey-Omura protocol by itself only ensures the
privacy of the exchanged information. Thus, even if the secret
content is captured, it is not possible to discover it by using
brute-force attack or cryptanalysis. However, a man-in-the-
middle attack could capture not only the secret content but
also other data in traffic between the user agents, so that they
can be compounded to discover the secret content. The same
kind of attack could also be used to try spoofing some of
the user agents, making them think they are communicating
one with the other when, indeed, they are communicating
with the man-in-the-middle (which could take advantage of
this situation to change or replace the data in traffic). To
solve this vulnerability, it was necessary to use Pairing-Based
Cryptography. Thus the security is complete.

All of what was presented in subsection IV. More details
about the security verifications for Massey-Omura enhanced
by using pairing can be obtained in Deusajute and Barreto’s
work [28].

As for about the performance, it is necessary to pay attention
principally to the check points, which use pairing compu-
tations. The other computation jobs can be implemented in
a well optimized manner by several ways. It is important
to notice that the check points may be the “neck” of the
proposal if the pairing computations are not well implemented.
In some practical experiences, the use of pairing has been
an interesting alternative, when well implemented. Just to
illustrate, we emphasize the work of Zhang and Kim [36]
where pairing was used in a practical situation and it was
compared with RSA [36, p.08]. Those authors used the Weil
Pairing which, normally, has a performance smaller than the
Tate pairing (in other words, the results obtained by Zhang
and Kim [36, p.08] could still be better).

Exactly due to its best computational performance, the Tate
pairing is the most used in practical situations. It can be
computed by the Miller’s algorithm in sub-exponential time.
And, as an improvement for the Miller’s algorithm, it was
created a faster algorithm, the BKLS [37].

There are other alternatives for pairings, as the Eta pair-
ing [38] which is based on Tate pairing, but computed by
a more effective manner. That is, under certain conditions
it is computationally faster than the Tate pairing. The final
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Fig. 9. After performing the final verification without troubles, it is possible
to establish the session for secure media traffic

result is enhanced to a different exponent, but can easily be
modified to produce exactly the same value. And an advance
was presented recently: TinyPBC [29], an open source code
which is an implementation of the Eta pairing.

Another proposed pairing was the Ate pairing [39] which
is the Eta pairing with the parameters permuted and that also
permits other kinds of optimization.

VI. SUMMARY AND FUTURE WORKS

In this paper we have presented an alternative for the SIP’s
security mechanisms. Our proposal can provide to SIP real
trustworthy security mechanism in all aspects, including the
vulnerability to one of the scariest and harmful kinds of attack
currently practiced, the man-in-the-middle attack.

One of the benefits of our proposal is that it allows to
embed, already in the signalling process, the cryptographic
key exchange so that they can be used to ensure the privacy
on the media session. Thus, it would not be necessary to use an
additional protocol (like MIKEY) to perform the cryptographic
key exchange. So it is possible to save a stage (it means less
computing and more nimbleness on the user’s point of view)
and to ensure the security. It is important to note that this
saving of one stage is also possible by using the SIP’s native
security mechanisms, according to the RFC-3261. However, it
is not possible to ensure wholly the security. Even if is used
the S/MIME foreseen in the SIP’s RFC to encrypt the media
session key on the own S/MIME envelope, the S/MIME is
vulnerable to the man-in-the-middle, as it was pointed in this
paper.

Moreover, there are other direct and indirect benefits:
• Supposing that there are risks or security problems

which were identified during the typical process for the
call establishment, our proposal allows to anticipate and
avoid the establishment of the session for the media
traffic through a channel which was assumed to be
safe. If the risks or security problems appear after the
conclusion of the call establishment process, the media
session will already be with the privacy insured, once it

already happened the safe exchange of the cryptographic
keys which will be used in such session.

• Although we focused our proposal in the signalling
process for the VoIP’s call establishment, the use of
pairing-based authentication can be expanded for other
SIP transitions. For instance, suppose that a man-in-
the-middle attack happens to end an established media
session abruptly. The MITM can do this by sending a
spurious BYE request at any time. So, the BYE request
does not come from any user agents included in the
peer-to-peer communication. To prevent this situation an
additional check point could be implemented – based on
pairing – to check if the BYE request comes from one
of the trusty user agents or not. That is possible because
both user agents will already have, in this moment of
the communication, enough information one from other
to enable a very well-aimed verification.

• If no changes happen in the signalling protocol, the only
customizations to be made are the verification points
and the computations stipulated by the proposal (such
as the secret keys generation and the check points based
on pairing). Those customizations can be implemented
on the software level by a simple, but optimized,
manner. Due to this, our proposal is direct and easily
applicable in softphones where the customizations and
distribution of the application occur easier and faster, if
compared to a change in a VoIP telephone project. For
instance, consider the ISPs (Internet Service Providers)
which offer VoIP services. Those ISPs would not need
to create a new and specific softphone based on our
proposal. They would only generate a new version for
the application (to include the necessary customizations)
and they would make this new version of the softphone
available on the ISP site. The softphone users could
quickly obtain and easily install the new version by the
habitual processes of download.

In respect to future works, the two last items give, to each
one, interesting possibilities. Particularly in the case of the
previous item, a first future work could be the implementa-
tion of a softphone based on our proposal. And from this
implementation, other works could appear as well, such as
performance measurements and comparison with the other SIP
security mechanisms (existent or even the proposed ones).

Besides this, attack scenarios could be elaborated, simulated
and tested, with formal basis, by using appropriate tools,
as the Casper/FDR2 ("http://web.comlab.ox.ac.uk/oucl/work/
gavin.lowe/Security/Casper/"). Casper is a compiler which
accepts a syntax very similar to the syntaxes that are used
to specify protocols.

For the reader who wants to know more about future works
involving tests, we recommend a reading of Lee et al. [40]
to the establishment of a test environment and to perform
simulations by using SIP.
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