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Abstract

In a proof-of-retrievability system, a data storage center must prove to a verifier that he is
actually storing all of a client’s data. The central challenge is to build systems that are both
efficient and provably secure —that is, it should be possible to extract the client’s data from
any prover that passes a verification check. In this paper, we give the first proof-of-retrievability
schemes with full proofs of security against arbitrary adversaries in the strongest model, that of
Juels and Kaliski. Our first scheme, built from BLS signatures and secure in the random oracle
model, has the shortest query and response of any proof-of-retrievability with public verifiability.
Our second scheme, which builds elegantly on pseudorandom functions (PRFs) and is secure in
the standard model, has the shortest response of any proof-of-retrievability scheme with private
verifiability (but a longer query). Both schemes rely on homomorphic properties to aggregate a
proof into one small authenticator value.

1 Introduction

In this paper, we give the first proof-of-retrievability schemes with full proofs of security against
arbitrary adversaries in the Juels-Kaliski model. Our first scheme has the shortest query and
response of any proof-of-retrievability with public verifiability and is secure in the random oracle
model. Our second scheme has the shortest response of any proof-of-retrievability scheme with
private verifiability (but a longer query), and is secure in the standard model.

Proofs of storage. Recent visions of “cloud computing” and “software as a service” call for
data, both personal and business, to be stored by third parties, but deployment has lagged. Users
of outsourced storage are at the mercy of their storage providers for the continued availability of
their data. Even Amazon’s S3, the best-known storage service, has recently experienced significant
downtime.1

In an attempt to aid the deployment of outsourced storage, cryptographers have designed sys-
tems that would allow users to verify that their data is still available and ready for retrieval if needed:
Deswarte, Quisquater, and Säıdane [15], Filho and Barreto [16], and Schwarz and Miller [28]. In
these systems, the client and server engage in a protocol; the client seeks to be convinced by the
protocol interaction that his file is being stored. Such a capability can be important to storage
providers as well. Users may be reluctant to entrust their data to an unknown startup; an auditing
mechanism can reassure them that their data is indeed still available.

1See, e.g., http://blogs.zdnet.com/projectfailures/?p=602.
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Evaluation: formal security models. Such proof-of-storage systems should be evaluated by
both “systems” and “crypto” criteria. Systems criteria include: (1) the system should be as efficient
as possible in terms of both computational complexity and communication complexity of the proof-
of-storage protocol, and the storage overhead on the server should be as small as possible; (2) the
system should allow unbounded use rather than imposing a priori bound on the number of audit-
protocol interactions2; (3) verifiers should be stateless, and not need to maintain and update state
between audits, since such state is difficult to maintain if the verifier’s machine crashes or if the
verifier’s role is delegated to third parties or distributed among multiple machine.3 Statelessness
and unbounded use are required for proof-of-storage systems with public verifiability, in which
anyone can undertake the role of verifier in the proof-of-storage protocol, not just the user who
originally stored the file.4

The most important crypto criterion is this: Whether the protocol actually establishes that any
server that passes a verification check for a file — even a malicious server that exhibits arbitrary,
Byzantine behavior— is actually storing the file. The early cryptographic papers lacked a formal
security model, let alone proofs. But provable security matters. Even reasonable-looking protocols
could in fact be insecure; see Appendix C for an example.

The first papers to consider formal models for proofs of storage were by Naor and Rothblum,
for “authenticators” [25], and by Juels and Kaliski, for “proofs of retrievability” [20]. Though the
details of the two models are different, the insight behind both is the same: in a secure system if
a server can pass an audit then a special extractor algorithm, interacting with the server, must be
able (w.h.p.) to extract the file.5

A simple MAC-based construction. In addition, the Naor-Rothblum and Juels-Kaliski papers
describe similar proof-of-retrievability protocols. The insight behind both is that checking that
most of a file is stored is easier than checking that all is. If the file to be stored is first encoded
redundantly, and each block of the encoded file is authenticated using a MAC, then it is sufficient
for the client to retrieve retrieves a few blocks together with their MACs and check, using his
secret key, that these blocks are correct. Naor and Rothblum prove their scheme secure in their
model.6 The simple protocol obtained here uses techniques similar to those proposed by Lillibridge
et al. [22]. Signatures can be used instead of MACs to obtain public verifiability.

The downside to this simple solution is that the server’s response consists of λ block-authenticator
pairs, where λ is the security parameter. If each authenticator is λ bits long, as required in the
Juels-Kaliski model, then the response is λ2 ·(s+1) bits, where the ratio of file block to authenticator
length is s : 1.7

2We believe that systems allowing a bounded number of interactions can be useful, but only as stepping stones
towards fully secure systems. Some examples are bounded identity-based encryption [19] and bounded CCA-secure
encryption [12]; in these systems, security is maintained only as long as the adversary makes at most t private key
extraction or decryption queries.

3We note that the sentinel-based scheme of Juels and Kaliski [20], the scheme of Ateniese, Di Pietro, Mancini,
and Tsudik [5], and the scheme of Shah, Swaminathan and Baker [29]lack both unbounded use and statelessness. We
do not consider these schemes further in this paper.

4Ateniese et al. [3] were the first to consider public verifiability for proof-of-storage schemes.
5This is, of course, similar to the intuition behind proofs of knowledge.
6Juels and Kaliski do not give a proof of security against arbitrary adversaries, but this proof is trivial using the

techniques we develop in this paper; for completeness, we give the proof in Appendix D.
7Naor and Rothblum show that one-bit MACs suffice for proving security in their less stringent model, for an

overall response length of λ · (s + 1) bits. The Naor-Rothblum scheme is not secure in the Juels-Kaliski model.
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Homomorphic authenticators. Ateniese et al. [3] describe a proof-of-storage scheme that im-
proves on the response length of the simple MAC-based scheme using homomorphic authenticators.
In their scheme, the authenticators σi on each file block mi are constructed in such a way that a
verifier can be convinced that a linear combination of blocks

∑
i νimi (with arbitrary weights {νi})

was correctly generated using an authenticator computed from {σi}.8
When using homomorphic authenticators, the server can combine the blocks and λ authentica-

tors in its response into a single aggregate block and authenticator, reducing the response length by
a factor of λ. As an additional benefit, the Ateniese et al. scheme is the first with public verifiability.
The homomorphic authenticators of Ateniese et al. are based on RSA and are thus relatively long.

Unfortunately, Ateniese et al. do not give a rigorous proof of security for their scheme. In
particular, they do not show that one can extract a file (or even a significant fraction of one) from
a prover that is able to answer auditing queries convincingly. The need for rigor in extraction
arguments applies equally to both the proof-of-retrievability model we consider and the weaker
proof of data possession model considered by Ateniese et al.9

Our contributions. In this paper, we make two contributions.

1. We describe two new short, efficient homomorphic authenticators. The first, based on PRFs,
gives a proof-of-retrievability scheme secure in the standard model. The second, based on
BLS signatures [8], gives a proof-of-retrievability scheme with public verifiability secure in
the random oracle model.

2. We prove both of the resulting schemes secure in a variant of the Juels-Kaliski model. Our
schemes are the first with a security proof against arbitrary adversaries in this model.

The scheme with public retrievability has the shortest query and response of any proof-of-retrievability
scheme: 20 bytes and 40 bytes, respectively, at the 80-bit security level. The scheme with private
retrievability has the shortest response of any proof-of-retrievability scheme (20 bytes), matching
the response length of the Naor-Rothblum scheme in a more stringent security model, albeit at
the cost of a longer query. We believe that derandomizing the query in this scheme is the major
remaining open problem for proofs of retrievability.

1.1 Our Schemes

In our schemes, as in the Juels-Kaliski scheme, the user breaks an erasure encoded file into n blocks
m1, . . . ,mn ∈ Zp for some large prime p. The erasure code should allow decoding in the presence
of adversarial erasure. Erasure codes derived from Reed-Solomon codes have this property, but
decoding and encoding are slow for large files. In Appendix B we discuss how to make use of more
efficient codes secure only against random erasures.

The user authenticates each block as follows. She chooses a random α ∈ Zp and PRF key k for
function f . These values serve as her secret key. She calculates an authentication value for each
block i as

σi = fk(i) + αmi ∈ Zp .

8 In the Ateniese et al. construction the aggregate authenticator is
Q

i σνi
i mod N .

9For completeness, we give a correct and fully proven Ateniese-et-al.–inspired, RSA-based scheme, together with
a full proof of security, in Appendix E.
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The blocks {mi} and authenticators {σi} are stored on the server. The proof of retrievability
protocol is as follows. The verifier chooses a random challenge set I of l indices along with l random
coefficients in Zp.10 Let Q be the set {(i, νi)} of challenge index–coefficient pairs. The verifier sends
Q to the prover. The prover then calculates the response, a pair (σ, µ), as

σ ←
∑

(i,νi)∈Q

νi · σi and µ←
∑

(i,νi)∈Q

νi ·mi .

Now verifier can check that the response was correctly formed by checking that

σ
?= α · µ +

∑
(i,νi)∈Q

νi · fk(i) .

It is clear that our techniques admit short responses. But it is not clear that our new system
admits a simulator that can extract files. Proving that it does is quite challenging, as we discuss
below. In fact, unlike similar, seemingly correct schemes (see Appendix C), our scheme is provably
secure in the standard model.

A scheme with public verifiability. Our second scheme is publicly verifiable. It follows the
same framework as the first, but instead uses BLS signatures [8] for authentication values that
can be publicly verified. The structure of these signatures allows for them to be aggregated into
linear combinations as above. We prove the security of this scheme under the Computational
Diffie-Hellman assumption over bilinear groups in the random oracle model.

Let e : G×G→ GT be a computable bilinear map with group G’s support being Zp. A user’s
private key is x ∈ Zp, and her public key is v = gx ∈ G along with another generator u ∈ G. The
signature on block i is σi =

[
H(i)umi

]x. On receiving query Q = {(i, νi)}, the prover computes
and sends back σ ←

∏
(i,νi)∈Q σνi

i and µ←
∑

(i,νi)∈Q νi ·mi. The verification equation is:

e(σ, g) ?= e
( ∏
(i,νi)∈Q

H(i)νi · uµ, v
)

.

This scheme has public verifiability: the private key x is required for generating the authenticators
{σi} but the public key v is sufficient for the verifier in the proof-of-retrievability protocol.

Parameter selection. Let λ be the security parameter; typically, λ = 80. For the scheme with
private verification, p should be a λ bit prime. For the scheme with public verification, p should be
a 2λ-bit prime, and the curve should be chosen so that discrete logarithm is 2λ-secure. For values
of λ up to 128, Barreto-Naehrig curves [6] are the right choice; see the survey by Freeman, Scott,
and Teske [17].

Let n be the number of blocks in the file. We assume that n � λ. Suppose we use a rate-ρ
erasure code, i.e., one in which any ρ-fraction of the blocks suffices for decoding. (Encoding will
cause the file length to grow approximately (1/ρ)×.) Let l be the number of indices in the query Q,
and B ⊆ Zp be the set from which the challenge weights νi are drawn.

Our proofs — see Section 4.2 for the details —guarantee that extraction will succeed from any
adversary that convincingly answers an ε-fraction of queries, provided that ε − ρl − 1/#B is non-
negligible in λ. It is this requirement that guides the choice of parameters.

10Or, more generally, from a subset B of Zp of appropriate size; see Section 1.1.
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A conservative choice is ρ = 1/2, l = λ, and B = {0, 1}λ; this guarantees extraction against any
adversary.11 For applications that can tolerate a larger error rate these parameters can be reduced.
For example, if a 1-in-1,000,000 error is acceptable, we can take B to be the set of 22-bit strings
and l to be 22; alternatively, the coding expansion 1/ρ can be reduced.

A tradeoff between storage and communication. As we have described our schemes above,
each file block is accompanied by an authenticator of equal length. This gives a 2× overhead
beyond that imposed by the erasure code, and the server’s response in the proof-of-retrievability
protocol is 2× the length of an authenticator. In the full schemes of Section 3, we introduce
a parameter s that gives a tradeoff between storage overhead and response length. Each block
consists of s elements of Zp that we call sectors. There is one authenticator per block, reducing the
overhead to (1 + 1/s)×. The server’s response is one aggregated block and authenticator, and is
(1+ s)× as long as an authenticator. The choice s = 1 corresponds to our schemes as we described
them above and to the scheme given by Ateniese et al. [3].12

Compressing the request. A request, as we have seen, consists of an l element subset of [1, n]
together with l elements of the coefficient set B, chosen uniformly and independently at random.
In the conservative parametrization above, a request is thus λ ·

(
dlg ne + λ

)
bits long. One can

reduce the randomness required to generate the request using standard techniques,13 but this will
not shorten the request itself. In the random oracle model, the verifier can send a short (2λ bit)
seed for the random oracle from which the prover will generate the full query. Using this technique
we can make the queries as well as responses compact in our publicly verifiable scheme, which
already relies on random oracles.14 Obtaining short queries in the standard model is the major
remaining open problem in proofs of retrievability.

We note that, by techniques similar to those discussed above, a PRF can be used to generate
the per-file secret values {αj} for our privately verifiable scheme and a random oracle seed can be
used to generate the per-file public generators {uj} in our publicly verifiable scheme. This allows
file tags for both schemes to be short: O(λ), asymptotically.

We also note that subsequent to our work Bowers, Juels, and Oprea [9] provided a framework,
based on “inner and outer” error correcting codes, by which they describe parameterizations of our
approach that trade off the cost of a single audit and the computational efficiency of extracting a
file a series of audit requests. In our work we have chosen to put emphasis on reducing single audit
costs. We envision an audit as a mechanism to ensure that a file is indeed available and that a file
under most circumstances will be retrieved as a simple bytestream.

11The careful analysis in our proofs allows us to show that, for 80-bit security, the challenge coefficients νi can be
80 bits long, not 160 as proposed in [4, p. 17]. The smaller these coefficients, the more efficient the multiplications or
exponentiations that involve them.

12It would be possible to shorten the response further using knowledge-of-exponent assumptions, as Ateniese et al.
do, but such assumptions are strong and nonstandard; more importantly, their use means that the extractor can
never be implemented in the real world.

13For example, choose keys k′ and k′′ for PRFs with respective ranges [1, n] and B. The query indices are the first
l distinct values amongst f ′k′(1), f ′k′(2), . . .; the query coefficients are f ′′k′′(1), . . . , f ′′k′′(l).

14 Ateniese et al. propose to eliminate random oracles here by having the prover generate the full query using PRF
keys sent by the verifier [4, p. 11], but it is not clear how to prove such a scheme secure, since the PRF security
definition assumes that keys are kept secret.
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1.2 Our Proofs

We provide a modular proof framework for the security of our schemes. Our framework allows us
to argue about the systems unforgeability, extractability, and retrievability with these three parts
based respectively on cryptographic, combinatorial, and coding-theoretical techniques. Only the
first part differs between the three schemes we propose. The combinatorial techniques we develop
are nontrivial and we believe they will be of independent interest.

It is interesting to compare both our security model and our proof methodology to those in
related work.

The proof of retrievability model has two major distinctions from that used by Naor and Roth-
blum [25] (in addition to the public-key setting). First, the NR model assumes a checker can request
and receive specific memory locations from the prover. In the proof of retrievability model, the
prover can consist of an arbitrary program as opposed to a simple memory layout and this program
may answer these questions in an arbitrary manner. We believe that this realistically represents
an adversary in the type of setting we are considering. In the NR setting the extractor needs to
retrieve the file given the server’s memory; in the POR setting the analogy is that the extractor
receives the adversary’s program.

Second, in the proof of retrievability model we allow the attacker to execute a polynomial
number of proof attempts before committing to how it will store memory. In the NR model the
adversary does not get to execute the protocol before committing its memory. This weaker model
is precisely what allows for the use of 1-bit MACs with error correcting codes in one NR variant.
One might argue that in many situations this is sufficient. If a storage server responds incorrectly
to an audit request we might assume that it is declared to be cheating and there is no need to go
further. However, this limited view overlooks several scenarios. In particular, we want to be able to
handle setups where there are several verifiers that do not communicate or if there might be several
storage servers handling the same encoded file that are audited independently. Only our stronger
model can correctly reflect these situations. In general, we believe that the strongest security model
allows for a system to be secure in the most contexts including those not previously considered.15

One of the distinctive and challenging parts of our work is to argue extraction from homomor-
phically accumulated blocks. While Ateniese et al. [3] proposed using homomorphic RSA signatures
and proved what is equivalent to our unforgeability requirement, they did not provide an argument
that one could extract individual blocks from a prover. The only place where extractability is
addressed in their work is a short paragraph in Appendix A, where they provide some intuitive
arguments. Here is one concrete example: Their constructions make multiple uses of pseudorandom
functions (PRFs), yet the security properties of a PRF are never applied in a security reduction.
This gives compelling evidence that a rigorous security proof was not provided. Again, we emphasize
that extraction is needed in even the weaker proof of data possession model claimed by the authors.

Extractability issues arise in several natural constructions. Proving extraction from aggregated
authenticator values can be challenging; in Appendix C we show an attack on a natural but incorrect
system that is very similar to the “E-PDP” efficient alternative scheme given by Ateniese et al.
(which they use in their performance measurements). For this scheme, Ateniese et al. claim only
that the protocol establishes that a cheating prover has the sum

∑
i∈I mi of the blocks.16 We

show that indeed this is all it can provide. Even though Ateniese et al. calculate that a malicious
server attacking the E-PDP scheme would need to store 10140 blocks in order to cheat, our attack

15We liken this argument to that for the strong definition currently accepted for chosen-ciphertext secure encryption.
16They do not elaborate on the usefulness of this guarantee for real-world deployment.
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is entirely practical, requiring no more storage than were the server faithfully storing the file.

2 Security Model

We recall the security definition of Juels and Kaliski [20]. Our version differs from the original
definition in several details:

• we rule out any state (“α”) in key generation and in verification, because (as explained in
Section 1) we believe that verifiers in proof-of-retrievability schemes should be stateless;

• we allow the proof protocol to be arbitrary, rather than two-move, challenge-response; and

• our key generation emits a public key as well as a private key, to allow us to capture the
notion of public verifiability.

Note that any stateless scheme secure in the original Juels-Kaliski model will be secure in our
variant, and any scheme secure in our variant whose proof protocol can be cast as two-move,
challenge-response protocol will be secure in the Juels-Kaliski definition. In particular, our scheme
with private verifiability is secure in the original Juels-Kaliski model.17

A proof of retrievability scheme defines four algorithms, Kg, St, V, and P, which behave thus:

Kg(). This randomized algorithm generates a public-private keypair (pk, sk).

St(sk,M). This randomized file-storing algorithm takes a secret key sk and a file M ∈ {0, 1}∗ to
store. It processes M to produce and output M∗, which will be stored on the server, and a
tag t. The tag contains information that names the file being stored; it could also contain
additional secret information encrypted under the secret key sk.

P, V. The randomized proving and verifying algorithms define a protocol for proving file retriev-
ability. During protocol execution, both algorithms take as input the public key pk and
the file tag t output by St. The prover algorithm also takes as input the processed file
description M∗ that is output by St, and the verifier algorithm takes as input the secret
key. At the end of the protocol run, V outputs 0 or 1, where 1 means that the file is being
stored on the server. We can denote a run of two machines executing the algorithms as:
{0, 1} R←

(
V(pk, sk, t) 
 P(pk, t,M∗)

)
.

We would like a proof-of-retrievability protocol to be correct and sound. Correctness requires
that, for all keypairs (pk, sk) output by Kg, for all files M ∈ {0, 1}∗, and for all (M∗, t) output
by St(sk,M), the verification algorithm accepts when interacting with the valid prover:(

V(pk, sk, t) 
 P(pk, t,M∗)
)

= 1 .

A proof-of-retrievability protocol is sound if any cheating prover that convinces the verification
algorithm that it is storing a file M is actually storing that file, which we define in saying that it

17In an additional minor difference, we do not specify the extraction algorithm as part of a scheme, because we
do not expect that the extract algorithm will be deployed in outsourced storage applications. Nevertheless, the
extract algorithm used in our proofs (cf. Section 4.2) is quite simple: undertake many random V interactions with
the cheating prover; keep track of those queries for which V accepts the cheating prover’s reply as valid; and continue
until enough information has been gathered to recover file blocks by means of linear algebra. The adversary A could
implement this algorithm by means of its proof-of-retrievability protocol access.

7



yields up the file M to an extractor algorithm that interacts with it using the proof-of-retrievability
protocol. We formalize the notion of an extractor and then give a precise definition for soundness.

An extractor algorithm Extr(pk, sk, t,P ′) takes the public and private keys, the file tag t, and
the description of a machine implementing the prover’s role in the proof-of-retrievability protocol:
for example, the description of an interactive Turing machine, or of a circuit in an appropriately
augmented model. The algorithm’s output is the file M ∈ {0, 1}∗. Note that Extr is given non–
black-box access to P ′ and can, in particular, rewind it.

Consider the following setup game between an adversary A and an environment:

1. The environment generates a keypair (pk, sk) by running Kg, and provides pk to A.

2. The adversary can now interact with the environment. It can make queries to a store oracle,
providing, for each query, some file M . The environment computes (M∗, t) R← St(sk,M) and
returns both M∗ and t to the adversary.

3. For any M on which it previously made a store query, the adversary can undertake executions
of the proof-of-retrievability protocol, by specifying the corresponding tag t. In these protocol
executions, the environment plays the part of the verifier and the adversary plays the part of
the prover: V(pk, sk, t) 
 A. When a protocol execution completes, the adversary is provided
with the output of V. These protocol executions can be arbitrarily interleaved with each other
and with the store queries described above.

4. Finally, the adversary outputs a challenge tag t returned from some store query, and the
description of a prover P ′.

The cheating prover P ′ is ε-admissible if it convincingly answers an ε fraction of verification chal-
lenges, i.e., if Pr

[(
V(pk, sk, t) 
 P ′) = 1

]
≥ ε. Here the probability is over the coins of the verifier

and the prover. Let M be the message input to the store query that returned the challenge tag t
(along with a processed version M∗ of M).

Definition 2.1. We say a proof-of-retrievability scheme is ε-sound if there exists an extraction
algorithm Extr such that, for every adversary A, whenever A, playing the setup game, outputs an
ε-admissible cheating prover P ′ for a file M , the extraction algorithm recovers M from P ′ — i.e.,
Extr(pk, sk, t,P ′) = M — except possibly with negligible probability.

Note that it is okay for A to have engaged in the proof-of-retrievability protocol for M in its
interaction with the environment. Note also that each run of the proof-of-retrievability protocol is
independent: the verifier implemented by the environment is stateless.

Finally, note that we require that extraction succeed (with all but negligible probability) from
an adversary that causes V to accept with any nonnegligible probability ε. An adversary that passes
the verification even a very small but nonnegligible fraction of the time —say, once in a million
interactions — is fair game. Intuitively, recovering enough blocks to reconstruct the original file
from such an adversary should take O(n/ε) interactions; our proofs achieve essentially this bound.

Concrete or asymptotic formalization. A proof-of-retrievability scheme is secure if no efficient
algorithm wins the game above except rarely, where the precise meaning of “efficient” and “rarely”
depends on whether we employ a concrete of asymptotic formalization.

8



It is possible to formalize the notation above either concretely or asymptotically. In a concrete
formalization, we require that each algorithm defining the proof-of-retrievability scheme run in at
most some number of steps, and that for any algorithm A that runs in time t steps, that makes at
most qS store queries, and that undertakes at most qP proof-of-retrievability protocol executions,
extraction from an ε-admissible prover succeeds except with some small probability δ. In an asymp-
totic formalization, every algorithm is provided with an additional parameter 1λ for security pa-
rameter λ, we require each algorithm to run in time polynomial in λ, and we require that extraction
fail from an ε-admissible prover with only negligible probability in λ, provided ε is nonnegligible.

Public or private verification, public or private extraction. In the model above, the verifier
and extractor are provided with a secret that is not known to the prover or other parties. This is
a secret-verification, secret-extraction model model. If the verification algorithm does not use the
secret key, any third party can check that a file is being stored, giving public verification. Similarly,
if the extract algorithm does not use the secret key, any third party can extract the file from a
server, giving public extraction.

3 Constructions

In this section we give formal descriptions for both our private and public verification systems. The
systems here follow the constructions outlined in the introduction with a few added generalizations.
First, we allow blocks to contain s ≥ 1 elements of Zp. This allows for a tradeoff between storage
overhead and communication overhead. Roughly the communication complexity grows as s + 1
elements of Zp and the ratio of authentication overhead to data stored (post encoding) is 1 : s.
Second, we describe our systems where the set of coefficients sampled from B can be smaller than
all of Zp. This enables us to take advantage make more efficient systems in certain situations.

3.1 Common Notation

We will work in the group Zp. When we work in the bilinear setting, the group Zp is the support
of the bilinear group G, i.e., #G = p. In queries, coefficients will come from a set B ⊆ Zp. For
example, B could equal Zp, in which case query coefficients will be randomly chosen out of all of Zp.

After a file undergoes preliminary processing, the processed file is split into blocks, and each
block is split into sectors. Each sector is one element of Zp, and there are s sectors per block. If
the processed file is b bits long, then there are n = db/s lg pe blocks. We will refer to individual file
sectors as {mij}, with 1 ≤ i ≤ n and 1 ≤ j ≤ s.

Queries. A query is an l-element set Q = {(i, νi)}. Each entry (i, νi) ∈ Q is such that i is a block
index in the range [1, n], and νi is a multiplier in B. The size l of Q is a system parameter, as is
the choice of the set B.

The verifier chooses a random query as follows. First, she chooses, uniformly at random, an
l-element subset I of [1, n]. Then, for each element i ∈ I she chooses, uniformly at random, an
element νi

R← B. We observe that this procedure implies selection of l elements from [1, n] without
replacement but a selection of l elements from B with replacement.

Although the set notation Q = {(i, νi)} is space-efficient and convenient for implementation,
we will also make use of a vector notation in the analysis. A query Q over indices I ⊂ [1, n] is
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represented by a vector q ∈ (Zp)n where qi = νi for i ∈ I and qi = 0 for all i /∈ I. Equivalently,
letting u1, . . . ,un be the usual basis for (Zp)n, we have q =

∑
(i,νi)∈Q νiui.18

If the set B does not contain 0 then a random query (according to the selection procedure defined
above) is a random weight-l vector in (Zp)n with coefficients in B. If B does contain 0, then a
similar argument can be made, but care must be taken to distinguish the case “i ∈ I and νi = 0”
from the case “i /∈ I.”

Aggregation. For its response, the server responds to a query Q by computing, for each j,
1 ≤ j ≤ s, the value

µj←
∑

(i,νi)∈Q

νimij .

That is, by combining sectorwise the blocks named in Q, each with its multiplier νi. Addition, of
course, is modulo p. The response is (µ1, . . . , µs) ∈

(
Zp

)s.
Suppose we view the message blocks on the server as an n× s element matrix M = (mij), then,

using the vector notation for queries given above, the server’s response is given by qM .

3.2 Construction for Private Verification

Let f : {0, 1}∗×Kprf → Zp be a PRF.19 The construction of the private verification scheme Priv is:

Priv.Kg(). Choose a random symmetric encryption key kenc
R← Kenc and a random MAC key

kmac
R← Kmac. The secret key is sk = (kenc, kmac); there is no public key.

Priv.St(sk,M). Given the file M , first apply the erasure code to obtain M ′; then split M ′ into n

blocks (for some n), each s sectors long: {mij}1≤i≤n
1≤j≤s

. Now choose a PRF key kprf
R← Kprf

and s random numbers α1, . . . , αs
R← Zp. Let t0 be n‖Enckenc(kprf‖α1‖ · · · ‖αs); the file tag is

t = t0‖MACkmac(t0). Now, for each i, 1 ≤ i ≤ n, compute

σi ← fkprf
(i) +

s∑
j=1

αjmij .

The processed file M∗ is {mij}, 1 ≤ i ≤ n, 1 ≤ j ≤ s together with {σi}, 1 ≤ i ≤ n.

Priv.V(pk, sk, t). Parse sk as (kenc, kmac). Use kmac to verify the MAC on t; if the MAC is invalid,
reject by emitting 0 and halting. Otherwise, parse t and use kenc to decrypt the encrypted por-
tions, recovering n, kprf, and α1, . . . , αs. Now pick a random l-element subset I of the set [1, n],

and, for each i ∈ I, a random element νi
R← B. Let Q be the set {(i, νi)}. Send Q to the prover.

Parse the prover’s response to obtain µ1, . . . , µs and σ, all in Zp. If parsing fails, fail by
emitting 0 and halting. Otherwise, check whether

σ
?=

∑
(i,νi)∈Q

νifkprf
(i) +

s∑
j=1

αjµj ;

18We are using subscripts to denote vector elements (for q) and to choose a particular vector from a set (for u);
but no confusion should arise.

19In fact, the domain need only be dlg Ne-bit strings, where N is a bound on the number of blocks in a file.
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if so, output 1; otherwise, output 0.

Priv.P(pk, t,M∗). Parse the processed file M∗ as {mij}, 1 ≤ i ≤ n, 1 ≤ j ≤ s, along with {σi},
1 ≤ i ≤ n. Parse the message sent by the verifier as Q, an l-element set {(i, νi)}, with the i’s
distinct, each i ∈ [1, n], and each νi ∈ B. Compute

µj ←
∑

(i,νi)∈Q

νimij for 1 ≤ j ≤ s, and σ ←
∑

(i,νi)∈Q

νiσi .

Send to the prover in response the values µ1, . . . , µs and σ.

3.3 Construction for Public Verification

Let e : G × G → GT be a bilinear map, let g be a generator of G, and let H : {0, 1}∗ → G be the
BLS hash, treated as a random oracle.20 The construction of the public verification scheme Pub is:

Pub.Kg(). Generate a random signing keypair (spk, ssk) R← SKg. Choose a random α
R← Zp and

compute v ← gα. The secret key is sk = (α, ssk); the public key is pk = (v, spk).

Pub.St(sk,M). Given the file M , first apply the erasure code to obtain M ′; then split M ′ into
n blocks (for some n), each s sectors long: {mij}1≤i≤n

1≤j≤s
. Now parse sk as (α, ssk). Choose

a random file name name from some sufficiently large domain (e.g., Zp). Choose s random

elements u1, . . . , us
R← G. Let t0 be “name‖n‖u1‖ · · · ‖us”; the file tag t is t0 together with a

signature on t0 under private key ssk: t← t0‖SSigssk(t0). For each i, 1 ≤ i ≤ n, compute

σi ←
(
H(name‖i) ·

s∏
j=1

u
mij

j

)α
.

The processed file M∗ is {mij}, 1 ≤ i ≤ n, 1 ≤ j ≤ s together with {σi}, 1 ≤ i ≤ n.

Pub.V(pk, sk, t). Parse pk as (v, spk). Use spk to verify the signature on on t; if the signature
is invalid, reject by emitting 0 and halting. Otherwise, parse t, recovering name, n, and
u1, . . . , us. Now pick a random l-element subset I of the set [1, n], and, for each i ∈ I, a
random element νi

R← B. Let Q be the set {(i, νi)}. Send Q to the prover.

Parse the prover’s response to obtain (µ1, . . . , µs) ∈ (Zp)s and σ ∈ G. If parsing fails, fail by
emitting 0 and halting. Otherwise, check whether

e(σ, g) ?= e
( ∏
(i,νi)∈Q

H(name‖i)νi ·
s∏

j=1

u
µj

j , v
)

;

if so, output 1; otherwise, output 0.
20For notational simplicity, we present our scheme using a symmetric bilinear map, but efficient implementations

will use an asymmetric map e : G1 × G2 → GT . Translating our scheme to this setting is simple. User public keys
v will live in G2; file generators uj will live in G1, as will the output of H; and security will be reduced to co-CDH [8].
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Pub.P(pk, t,M∗). Parse the processed file M∗ as {mij}, 1 ≤ i ≤ n, 1 ≤ j ≤ s, along with {σi},
1 ≤ i ≤ n. Parse the message sent by the verifier as Q, an l-element set {(i, νi)}, with the i’s
distinct, each i ∈ [1, n], and each νi ∈ B. Compute

µj ←
∑

(i,νi)∈Q

νimij ∈ Zp for 1 ≤ j ≤ s, and σ ←
∏

(i,νi)∈Q

σνi
i ∈ G .

Send to the prover in response the values µ1, . . . , µs and σ.

4 Security Proofs

In this section we prove that both of our systems are secure under the model we provided. Intutively,
we break our proof into three parts. The first part shows that the attacker can never give a forged
response back to the a verifier. The second part of the proof shows that from any adversary that
passes the check a non-negligible amount of the time we will be able to extract a constant fraction
of the encoded blocks. The second step uses the fact that (w.h.p.) all verified responses must be
legitimate. Finally, we show that if this constant fraction of blocks is recovered we can use the
erasure code to reconstruct the original file.

In this section we provide an outline of our proofs and state our main theorems and lemmas.
We defer the proofs of these to Appendix A. The proof, for both schemes, is in three parts:

1. Prove that the verification algorithm will reject except when the prover’s {µj} are correctly
computed, i.e., are such that µj =

∑
(i,νi)∈Q νimij . This part of the proof uses cryptographic

techniques.

2. Prove that the extraction procedure can efficiently reconstruct a ρ fraction of the file blocks
when interacting with a prover that provides correctly-computed {µj} responses for a non-
negligible fraction of the query space. This part of the proof uses combinatorial techniques.

3. Prove that a ρ fraction of the blocks of the erasure-coded file suffice for reconstructing the
original file. This part of the proof uses coding theory techniques.

The crucial point is the second and third parts of the proof are identical for our two schemes; only
the first part is different.

4.1 Part-One Proofs

4.1.1 Scheme with Private Verifiability

Theorem 4.1. If the MAC scheme is unforgeable, the symmetric encryption scheme is semantically
secure, and the PRF is secure, then (except with negligible probability) no adversary against the
soundness of our private-verification scheme ever causes V to accept in a proof-of-retrievability
protocol instance, except by responding with values {µj} and σ that are computed correctly, i.e., as
they would be by Priv.P.

We prove the theorem in Appendix A.1.
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4.1.2 Scheme with Public Verifiability

Theorem 4.2. If the signature scheme used for file tags is existentially unforgeable and the compu-
tational Diffie-Hellman problem is hard in bilinear groups, then, in the random oracle model, except
with negligible probability no adversary against the soundness of our public-verification scheme ever
ever causes V to accept in a proof-of-retrievability protocol instance, except by responding with values
{µj} and σ that are computed correctly, i.e., as they would be by Pub.P.

We prove the theorem in Appendix A.2.

4.2 Part-Two Proof

We say that a cheating prover P ′ is well-behaved if it never causes V to accept in a proof-of-
retrievability protocol instance except by responding with values {µj} and σ that are computed
correctly, i.e., as they would be by Pub.P. The part-one proofs above guarantee that all adversaries
that win the soundness game with nonnegligible probability output cheating provers that are well-
behaved, provided that the cryptographic primitives we employ are secure. The part-two theorem
shows that extraction always succeeds against a well-behaved cheating prover:

Theorem 4.3. Suppose a cheating prover P ′ on an n-block file M is well-behaved in the sense
above, and that it is ε-admissible: i.e., convincingly answers and ε fraction of verification queries.
Let ω = 1/#B + (ρn)l/(n − l + 1)l. Then, provided that ε − ω is positive and nonnegligible, it is
possible to recover a ρ fraction of the encoded file blocks in O

(
n

/
(ε−ω)

)
interactions with P ′ and

in O
(
n2s + (1 + εn2)(n)

/
(ε− ω)

)
time overall.

We first make the following definition.

Definition 4.4. Consider an adversary B, implemented as a probabilistic polynomial-time Turing
machine, that, given a query Q on its input tape, outputs either the correct response (qM in vector
notation) or a special symbol ⊥ to its output tape. Suppose B responds with probability ε, i.e., on
an ε fraction of the query-and-randomness-tape space. We say that such an adversary is ε-polite.

The proof of our theorem depends upon the following lemma that is proved in Appendix A.3

Lemma 4.5. Suppose that B is an ε-polite adversary as defined above. Let ω equal 1/#B +
(ρn)l/(n − l + 1)l. If ε > ω then it is possible to recover a ρ fraction of the encoded file blocks in
O

(
n

/
(ε− ω)

)
interactions with B and in O

(
n2s + (1 + εn2)(n)

/
(ε− ω)

)
time overall.

To apply Lemma 4.5, we need only show that a well-behaved ε-admissible cheating prover P ′, as
output by a setup-game adversary A, can be turned into an ε-polite adversary B. But this is quite
simple. Here is how B is implemented. We will use the P ′ to construct the ε-adversary B. Given
a query Q, interact with P ′ according to

(
V(pk, sk, t, sk) 
 P ′), playing the part of the verifier. If

the output of the interaction is 1, write (µ1, . . . , µs) to the output tape; otherwise, write ⊥. Each
time B runs P ′, it provides it with a clean scratch tape and a new randomness tape, effectively
rewinding it. Since P ′ is well-behaved, a successful response will compute (µ1, . . . , µs) as prescribed
for an honest prover. Since P ′ is ε-admissible, on an ε fraction of interactions it answers correctly.
Thus algorithm B that we have constructed is an ε-polite advesrary.

All that remains to to guarantee that ω = 1/#B + (ρn)l/(n − l + 1)l is such that ε − ω is
positive — indeed, nonnegligible. But this simply requires that each of 1/#B and (ρn)l/(n− l + 1)l

be negligible in the security parameter; see Section 1.1.
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4.3 Part-Three Proof

Theorem 4.6. Given a ρ fraction of the n blocks of an encoded file M∗, it is possible to recover
the entire original file M with all but negligible probability.

Proof. For rate-ρ Reed-Solomon codes this is trivially true, since any ρ fraction of encoded file
blocks suffices for decoding; see Appendix B. For rate-ρ linear-time codes the additional measures
described in Appendix B.1 guarantee that the ρ fraction of blocks retrieved will allow decoding
with overwhelming probability.
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A Security Proof Details

In this section we give the proofs of the theorems and lemmas stated in Section 4.

A.1 Proof of Theorem 4.1

Theorem 4.1. If the MAC scheme is unforgeable, the symmetric encryption scheme is semantically
secure, and the PRF is secure, then (except with negligible probability) no adversary against the
soundness of our private-verification scheme ever causes V to accept in a proof-of-retrievability
protocol instance, except by responding with values {µj} and σ that are computed correctly, i.e., as
they would be by Priv.P.

We prove the theorem in a series of games.

Game 0. The first game, Game 0, is simply the challenge game defined in Section 2.

Game 1. Game 1 is the same as Game 0, with one difference. The challenger keeps a list of all
MAC-authenticated tags ever issued as part of a store-protocol query. If the adversary ever submits
a tag t either in initiating a proof-of-storage protocol or as the challenge tag, that (1) verifies as
valid under kmac but (2) is not a tag authenticated by the challenger, the challenger declares failure
and aborts.

Clearly, if there is a difference in the adversary’s success probability between Games 0 and 1,
we can use the adversary to construct a forger against the MAC scheme.

Game 2. In Game 2, the challenger includes in the tags not the encryption of kprf‖α1‖ · · · ‖αs

but a random bit-string of the same length. When given a tag by the adversary, the challenger uses
the values that would (in previous games) have been encrypted in the tag.

Note that the modification made in Game 1 ensures that the challenger never sees a tag except
those it issued through St queries, so it need never actually decrypt a tag portion.

Clearly, if there is a difference in the adversary’s success probability between Games 0 and 1,
we can use the adversary to break the semantic security of the symmetric encryption scheme. Note
that the reduction so obtained will suffer a 1/qS security loss, where qS is the number of St queries
made by the adversary, because we must use a hybrid argument between “all valid encryptions”
and “no valid encryptions.”
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Game 3. In Game 3, the challenger picks uses truly random values in Zp instead of PRF out-
put, remembering these values to use when verifying the adversary’s responses in proof-of-storage
protocol instances. More specifically, the challenger evaluates fkprf

(i) not by applying the PRF

algorithm but by generating a random value r
R← Zp and inserting an entry (kprf, i, r) in a table; it

consults this table when evaluating the PRF to ensure consistency.
If there is a difference in the adversary’s success probability between Games 0 and 1, we can

use the adversary to break the security of the PRF. As before, a hybrid argument necessitates a
security loss in the reduction; this time, the loss is 1/(NqS), where N is a bound on the number of
blocks in the encoding of any file the adversary requests to have stored.

Game 4. In Game 4, the challenger keeps a table of its responses to St queries made by the
adversary. It observes each instance of the proof-of-storage protocol with the adversary — whether
because of a proof-of-storage query made by the adversary, or in the test made of P ′, or as part
of the extraction attempt by Extr. If in any of these interactions the adversary responds with in a
way that (1) passes the verification algorithm but (2) is not what would have been computed by
an honest prover, the challenger declares failure and aborts.

More specifically, suppose the protocol instance involves an n-block file with secret values
α1, . . . , αs, contains sectors {mij}, and the block signatures issued by St are {σi}. Suppose
Q = {(i, νi)} is the query that causes the challenger to abort, and that the adversary’s response to
that query was µ′

1, . . . , µ
′
s together with σ′. Let the expected response — i.e., the one that would

have been obtained from an honest prover —be µ1, . . . , µs and σ, where σ =
∑

(i,νi)∈Q νiσi and
µj =

∑
(i,νi)∈Q νimij for 1 ≤ j ≤ s. If the adversary’s response satisfies the verifier— i.e., if

σ′ =
∑

(i,νi)∈Q νirkprf,i +
∑s

j=1 αjµ
′
j , where rkprf,i is the random value substituted by Game 2 for

fkprf
(i), but µ′

j 6= µj for at least one j, the challenger aborts. (If µ′
j = µj for all j but σ′ 6= σ, it is

impossible that the verification equation holds, so we need not worry about this case.)
By the correctness of the scheme the expected values σ along with {µj} also satisfy the verifica-

tion equation, so we have σ =
∑

i∈I rkprf,i +
∑s

j=1 αjµj . Letting ∆σ
def= σ′ − σ and ∆µj

def= µ′
j − µj

for 1 ≤ j ≤ s and subtracting the verification equation for σ from that for σ′, we have

∆σ =
s∑

j=1

αj∆µj . (1)

We can think of {∆µj} and ∆σ as variables in an (s + 1)-dimensional space. The values for
these variables that are accepted by the verifier are exactly those that satisfy equation (1), i.e.,
those that lie on a certain s-dimensional hyperplane. Any choice of values {∆µj} and ∆σ on this
hyperplane, aside from the all-zero assignment that corresponds to the honest prover’s answer, will
cause the challenger to abort.

We will proceed by induction on the adversary’s proof-of-storage protocol instances for any file,
proving that if the adversary had not caused an abort in its first i protocol instances, it will not
cause an abort in its (i + 1)st protocol instance except with negligible probability.

At the time of the adversary’s first protocol execution, the values α1, . . . , αs are independent of
its view: They are no longer encrypted in the tag, and their only other appearance is in computing
σi = rkprf,i+

∑s
j=1 αjmij for 1 ≤ i ≤ n; but the random value rkprf,i replacing fkprf

(i) (and used only
there) means that σi is independent of α1, . . . , αj . Thus the probability that the values {∆µj} and
∆σ it chooses lie on the abort hyperplane is 1/p, so execution continues with probability 1− 1/p.
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The adversary learns some information about the abort-hyperplane from the rejection of its
response: he learns that the point he queried is not on the hyperplane, and neither is any point
on the line between that point and the origin. For his second protocol execution, he can choose a
point on a plane containing this line but not on the line; this point lies on the abort-hyperplane
with probability 1/(p − 1). No other way of choosing a point allows him a success probabilty so
high.

More generally, after i executions, the adversary has eliminated i lines between his each of his
i points and the origin. Thus for his (i + 1)st execution he can succeed in naming a point on the
abort-hyperplane with probability at most 1/(p− i). To achieve this bound, he must choose all his
points from a single plane passing through the origin; with this strategy, each rejection allows him
to eliminate p points out of the p2 points on the plane.

To complete the induction, we see that the challenger aborts at some point during the adver-
sary’s q protocol executions with probability

1−
(
1− 1

p

)(
1− 1

p− 1

)
· · ·

(
1− 1

p− q + 1

)
,

which is negligible. (This argument is inspired by Cramer and Shoup’s analysis of their encryption
scheme [14].)

Wrapping up. In Game 4, the adversary is constrained from answering any verification query
with values other than those that would have been computed by Priv.P. Yet we have argued that,
assuming the MAC, encryption scheme, and PRF are secure, there is only a negligible difference in
the success probability of the adversary in this game compared to Game 1, where the adversary is
not constrained in this manner. This completes the proof of Theorem 4.1.

A.2 Proof of Theorem 4.2

Theorem 4.2. If the signature scheme used for file tags is existentially unforgeable and the compu-
tational Diffie-Hellman problem is hard in bilinear groups, then, in the random oracle model, except
with negligible probability no adversary against the soundness of our public-verification scheme ever
ever causes V to accept in a proof-of-retrievability protocol instance, except by responding with values
{µj} and σ that are computed correctly, i.e., as they would be by Pub.P.

Once again, we prove the theorem as a series of games.

Game 0. The first game, Game 0, is simply the challenge game defined in Section 2, with the
changes for public verifiability sketched at the end of that section.

Game 1. Game 1 is the same as Game 0, with one difference. The challenger keeps a list of all
signed tags ever issued as part of a store-protocol query. If the adversary ever submits a tag t either
in initiating a proof-of-retrievability protocol or as the challenge tag, that (1) has a valid signature
under ssk but (2) is not a tag signed by the challenger, the challenger declares failure and aborts.

Clearly, if there is a difference in the adversary’s success probability between Games 0 and 1,
we can use the adversary to construct a forger against the signature scheme.
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Game 2. Game 2 is the same as Game 1, with one difference. The challenger keeps a list of its
responses to St queries made by the adversary. Now the challenger observes each instance of the
proof-of-retrievability protocol with the adversary— whether because of a proof-of-retrievability
query made by the adversary, or in the test made of P ′, or as part of the extraction attempt by
Extr. If in any of these instances the adversary is successful (i.e., V outputs 1) but the adversary’s
aggregate signature σ is not equal to

∏
(i,νi)∈Q σνi

i (where Q is the challenge issued by the verifier
and σi are the signatures on the blocks of the file considered in the protocol instance) the challenger
declares failure and aborts.

Before analyzing the difference in success probabilities between Games 1 and 2, we will establish
some notation and draw a few conclusions. Suppose the file that causes the abort is n blocks long,
has name name, has generating exponents {uj}, and contains sectors {mij}, and that the block
signatures issued by St are {σi}. Suppose Q = {(i, νi)} is the query that causes the challenger
to abort, and that the adversary’s response to that query was µ′

1, . . . , µ
′
s together with σ′. Let

the expected response — i.e., the one that would have been obtained from an honest prover— be
µ1, . . . , µs and σ, where σ =

∏
(i,νi)∈Q σνi

i and µj =
∑

(i,νi)∈Q νimij for 1 ≤ j ≤ s. By the correctness
of the scheme, we know that the expected response satisfies the verification equation, i.e., that

e(σ, g) = e
( ∏
(i,νi)∈Q

H(name‖i)νi ·
s∏

j=1

u
µj

j , v
)

;

Because the challenger aborted, we know that σ 6= σ′ and that σ′ passes the verification equation,
i.e., that

e(σ′, g) = e
( ∏
(i,νi)∈Q

H(name‖i)νi ·
s∏

j=1

u
µ′j
j , v

)
,

where v = gα is part of the challenger’s public key. Observe that if µ′
j = µj for each j, it follows

from the verification equation that σ′ = σ, which contradicts our assumption above. Therefore, if
we define ∆µj

def= µ′
j − µj for 1 ≤ j ≤ s, it must be the case that at least one of {∆µj} is nonzero.

With this in mind, we now show that if there is a nonnegligible difference in the adversary’s
success probabilities between Games 1 and 2 we can construct a simulator that solves the compu-
tational Diffie-Hellman problem.

The simulator is given as inputs values g, gα, h ∈ G; its goal is to output hα. The simulator
behaves like the Game 1 challenger, with the following differences:

• In generating a key, it sets the public key v to gα received in the challenge. This means that
it does not know the corresponding secret key α.

• The simulator programs the random oracle H. It keeps a list of queries and responses to
answers consistently. In answering the adversary’s queries it chooses a random r

R← Zp and
responds with gr ∈ G. It also answers queries of the form H(name‖i) in a special way, as we
will see below.

• When asked to store some file whose coded representation comprises the n blocks {mij},
1 ≤ i ≤ n, 1 ≤ j ≤ s, the simulator behaves as follows. It chooses a name name at random.
Because the space from which names are drawn is large, it follows that, except with negligible
probability, the simulator has not chosen this name before for some other file and a query has
not been made to the random oracle at name‖i for any i.
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For each j, 1 ≤ j ≤ s, the simulator chooses random values βj , γj
R← Zp and sets uj ← gβj ·hγj .

For each i, 1 ≤ i ≤ n, the simulator chooses a random value ri
R← Zp, and programs the

random oracle at i as

H(name‖i) = gri
/ (

g
Ps

j=1 βjmij · h
Ps

j=1 γjmij
)

.

Now the simulator can compute σi, since we have

H(name‖i) ·
s∏

j=1

u
mij

j =
s∏

j=1

u
mij

j · gri
/

g
Ps

j=1 βjmij · h
Ps

j=1 γjmij

= g
Ps

j=1 βjmij · h
Ps

i=1 γjmij · gri
/

g
Ps

j=1 βjmij · h
Ps

j=1 γjmij = gri ,

so the simulator computes σi =
(
H(name‖i) ·

∏s
j=1 u

mij

j

)α = (gα)ri .

• The simulator continues interacting with the adversary until the condition specified in the def-
inition of Game 2 occurs: the adversary, as part of a proof-of-retrievability protocol, succeeds
in responding with a signature σ′ that is different from the expected signature σ.

The change made from Game 0 to Game 1 establishes that the parameters associated with
this protocol instance — name, n, {uj}, {mij}, and {σi}— were generated by the simulator as
part of a St query; otherwise, execution would have already aborted. This means that these
parameters were generated according to the simulator’s procedure described above. Now,
dividing the verification equation for the forged signature σ′ by the verification equation for
the expected signature σ, we obtain

e(σ′/σ, g) = e
( s∏
j=1

u
∆µj

j , v
)

= e
( s∏
j=1

(gβj · hγj )∆µj , v
)

.

Rearranging terms yields

e
(
σ′ · σ−1 · v−

Ps
j=1 βj∆µj , g

)
= e(h, v)

Ps
j=1 γj∆µj ,

Noting that v equals gα, we see that we have found the solution to the computational Diffie-
Hellman problem,

hα =
(
σ′ · σ−1 · v−

Ps
j=1 βj∆µj

) 1Ps
j=1

γj∆µj ,

unless evaluating the exponent causes a divide-by-zero. However, we noted already that not
all of {∆µj} can be zero, and the values of {γj} are information theoretically hidden from
the adversary,21 so the denominator is zero only with probability 1/p, which is negligible.

Thus if there is a nonnegligible difference between the adversary’s probabilities of success in Games
1 and 2, we can construct a simulator that uses the adversary to solve computational Diffie-Hellman,
as required.

21Hidden because they are used to compute only the values {uj} in the adversary’s view, and these are Pedersen
commitments and so information-theoretically hiding.
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Game 3. Game 3 is the same as Game 2, with one difference. As before, the challenger tracks
St queries and observes proof-of-retrievability protocol instances. This time, if in any of these
instances the adversary is successful (i.e., V outputs 1) but at least one of the aggregate messages
mj is not equal to the expected

∑
(i,νi)∈Q νimij (where, again, Q is the challenge issued by the

verifier) the challenger declares failure and aborts.
Again, let us establish some notation. Suppose the file that causes the abort is n blocks long,

has name name, has generating exponents {uj}, and contains sectors {mij}, and that the block
signatures issued by St are {σi}. Suppose Q = {(i, νi)} is the query that causes the challenger
to abort, and that the adversary’s response to that query was µ′

1, . . . , µ
′
s together with σ′. Let

the expected response — i.e., the one that would have been obtained from an honest prover— be
µ1, . . . , µs and σ, where σ =

∏
(i,νi)∈Q σνi

i and µj =
∑

(i,νi)∈Q νimij for 1 ≤ j ≤ s. Game 2
already guarantees that we have σ′ = σ; it is only the values {µ′

j} and {µj} that can differ. Define

∆µj
def= µ′

j − µj for 1 ≤ j ≤ s; again, at least one of {∆µj} is nonzero.
We now show that if there is a nonnegligible difference in the adversary’s success probabilities

between Games 2 and 3 we can construct a simulator that solves the discrete logarithm problem.
The simulator is given as inputs values g, h ∈ G; its goal is to output x such that h = gx. The

simulator behaves like the Game 2 challenger, with the following differences:

• When asked to store some file whose coded representation comprises the n blocks {mij},
1 ≤ i ≤ n, 1 ≤ j ≤ s, the simulator behaves according to St, except that For each j,
1 ≤ j ≤ s, the simulator chooses random values βj , γj

R← Zp and sets uj ← gβj · hγj .

• The simulator continues interacting with the adversary until the condition specified in the def-
inition of Game 3 occurs: the adversary, as part of a proof-of-retrievability protocol, succeeds
in responding with aggregate messages {µ′

j} that are different from the expected aggregate
messages {µj}.
As before, we know because of the change made in Game 1 that the parameters associated
with this protocol instance were generated by the simulator as part of a St query. Because of
the change made in Game 2 we know that σ′ = σ. Equating the verification equations using
{µ′

j} and {µj} gives us

e
( ∏
(i,νi)∈Q

H(name‖i)νi ·
s∏

j=1

u
µj

j , v
)

= e(σ, g) = e(σ′, g) = e
( ∏
(i,νi)∈Q

H(name‖i)νi ·
s∏

j=1

u
µ′j
j , v

)
,

from which we conclude that
s∏

j=1

u
µj

j =
s∏

j=1

u
µ′j
j

and therefore that

1 =
s∏

j=1

u
∆µj

j =
s∏

j=1

(
gβj · hγj

)∆µj = g
Ps

j=1 βj∆µj · h
Ps

j=1 γj∆µj

We see that we have found the solution to the discrete logarithm problem,

h = g
−

Ps
j=1 βj∆µjPs
j=1

γj∆µj ,
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unless the denominator is zero. However, not all of {∆µj} can be zero, and the values of
{γj} are information theoretically hidden from the adversary, so the denominator is zero only
with probability 1/p, which is negligible.

Thus if there is a nonnegligible difference between the adversary’s probabilities of success in Games
2 and 3, we can construct a simulator that uses the adversary to compute discrete logarithms, as
required.

Wrapping up. In Game 3, the adversary is constrained from answering any verification query
with values other than those that would have been computed by Pub.P. Yet we have argued that,
assuming the signature scheme is secure and computational Diffie-Hellman and discrete logarithm
are hard in bilinear groups, there is only a negligible difference in the success probability of the
adversary in this game compared to Game 1, where the adversary is not constrained in this manner.
Moreover, the hardness of the CDH problem implies the hardness of the discrete logarithm problem.
This completes the proof of Theorem 4.2.

A.3 Proof of Lemma 4.5

To prove the lemma, we must first introduce some arguments in linear algebra.
For a subspace D of (Zp)n, denote the dimension of D by dim D. Furthermore, let the free

variables of a space, free D, be the indices of the basis vectors {ui} included in D, i.e.,

free D def=
{
i ∈ [1, n] : D ∩ ui = ui

}
.

Observe that if we represent D by means of a basis matrix in row-reduced echelon form, then
we can efficiently compute dim D and free D.

Next, we give two claims.

Claim A.1. Let D be a subspace of (Zp)n, and let I be an l-element subset of [1, n]. If I * free D,
then a random query over indices I with coefficients in B is in D with probability at most 1/#B.

Proof. Let I be the subspace spanned by the unit vectors in I, i.e., by {ui}i∈I . Clearly, dim D ∩ I is
at most l − 1; if it equalled l, then we would have D ∩ I = I and each of the vectors {ui}i∈I

would be in D, contradicting the lemma statement. Suppose dim D ∩ I equals r. Then there exist
r indices in I such that a choice of values for the coordinates at these indices determines the values
of the remaining l− r coordinates. This means that there are at most (#B)r vectors in D∩ I with
coordinate values in B: a choice of one of #B values for each of the r coordinates above determines
the value to each of the other l− r coordinates; if the values of these coordinates are all in B, then
this vector contributes 1 to the count; otherwise it contributes 0. The maximum possible count
is thus (#B)r. By contrast, there are (#B)l vectors in I with coordinates in B, and these are
exactly the vectors corresponding to each random query with indices I. Thus the probability that
a random query is in D is at most 1

/
(#B)l−r ≤ 1

/
(#B), which proves the lemma.

Claim A.2. Let D be a subspace of (Zp)n, and suppose that #(free D) = m. Then for a random
l-element subset I of [1, n] the probability that I ⊆ free D is at most ml/(n− l + 1)l.
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Proof. Color the m indices included in free D black; color the remaining n −m indices white. A
query I corresponds to a choice of l indices out of all these, without replacement. A query satisfies
the condition that I ⊆ free D exactly if every element of I is in free D, i.e., is colored black. Thus
the probability that a random query satisfies the condition is just the probability of drawing l black
balls, without replacement, from a jar containing m black balls and n −m white balls; and this
probability is (

m

l

)/(
n

l

)
=

(
m!/(m− l)!

)(
n!/(n− l)!

) <
ml

(n− l + 1)l
,

as required. Note that if m > n−l then we will have I ⊆ free D with probability 1; the upper bound
given by this lemma is a probability greater than 1 in this case, but of course still correct.

Lemma 4.5. Suppose that B is an ε-polite adversary as defined above. Let ω equal 1/#B +
(ρn)l/(n − l + 1)l. If ε > ω then it is possible to recover a ρ fraction of the encoded file blocks in
O

(
n

/
(ε− ω)

)
interactions with B and in O

(
n2s + (1 + εn2)(n)

/
(ε− ω)

)
time overall.

Proof. We say the extractor’s knowledge at each point is a subspace D, represented by a t × n
matrix A in row-reduced echelon form. Suppose that the query–response pairs contributing to the
extractor’s knowledge are

q(1)M = (µ(1)
1 , . . . , µ(1)

s ) . . . q(t)M = (µ(t)
1 , . . . , µ(t)

s ) ,

or V M = W , where V is the t× n matrix whose rows are {q(i)} and W is the t× s matrix whose
rows are (µ(i)

1 , . . . , µ
(i)
s ). The row-reduced echelon matrix A is related to V by A = UV , where U is

a t× t matrix with nonzero determinant computed in applying Gaussian elimination to V .
The extractor’s knowledge is initially empty, i.e., D = ∅.
The extractor repeats the following behavior until #(free D) ≥ ρn:
The extractor chooses a random query Q. It runs B on Q. Suppose B chooses to respond,

giving answer (µ1, . . . , µs); clearly this happens with probability ε. Let Q be over indices I ∈ [1, n],
and denote it in vector notation as q. Now we classify Q into three types:

1. q /∈ D;

2. q ∈ D but I * free D; or

3. I ⊆ free D.

For queries of the first type, the extractor adds Q to its knowledge D, obtaining new knowledge D′, as
follows. It adds a row corresponding to the query to V , obtaining V ′, and a row corresponding to the
response to W , obtaining W ′; it modifies the transform matrix U , obtaining U ′, so that A′ = U ′V ′ is
again in row-reduced echelon form and spans q. The primed versions D′, A′, U ′, V ′, and W ′ replace
the unprimed versions in the extractor’s state. For queries of type 2 or 3, the extractor does not
add to its knowledge. Regardless, the extractor continues with another query.

Clearly, a type-1 query increases dim D by 1. If dim D equals n then free D = [1, n] and
#(free D) = n ≥ ρn, so the extractor’s query phase is guaranteed to terminate by the time it
has encountered n type-1 queries.
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We now observe that any time the simulator is in its query phase, type-1 queries make up
at least a 1 − ω fraction of the query space. By Claim A.1, type-2 queries make up at most a
(1/#B) fraction of the query space, since

Pr
Q

[
Q is type-2

]
= Pr

Q

[
q ∈ D ∧ I * free D

]
= Pr

Q

[
q ∈ D

∣∣ I * free D
]
· Pr

Q

[
I * free D

]
≤ Pr

Q

[
q ∈ D

∣∣ I * free D
]

≤ 1/#B ,

where it is the last inequality that follows from the claim.22 Here the probability expressions are
all over a random choice of query Q, and I and q are the index set and vector form corresponding
to the chosen query.

Similarly, suppose that #(free D) = m. Then by Claim A.2, type-3 queries make up at most an
ml/(n− l + 1)l fraction of the query space, and since m < ρn (otherwise the extractor would have
ended the query phas) this fraction is at most (ρn)l/(n− l + 1)l.

Therefore the fraction of the query space consisting of type-1 and type-2 queries is at most
1/#B + (ρn)l/(n− l + 1)l = ω. Since query type depends on the query and not on the randomness
supplied to B, it follows that the fraction of query-and-randomness-tape space consisting of type-1
and type-2 queries is also at most ω. Now, B must respond correctly on an ε fraction of the query-
and-randomness-tape space. Even if the adversary is as unhelpful as it can be and this ε fraction
includes the entire ω fraction of type-2 and type-3 queries, there remains at least an (ε−ω) fraction
of the query-and-randomness-tape space to which the adversary will respond correctly and in which
the query is of type 1 and therefore helpful to the extractor. (By assumption ε > ω, so this fraction
is nonempty.)

Since the extractor needs at most n successful type-1 queries to complete the query phase and
it obtains a successful type-1 query from an interaction with B with probability O

(
1/(ε − ω)

)
, it

follows that the extractor will require at most O
(
n/(ε− ω)

)
interactions.

With D represented by a basis matrix A in row-reduced echelon form, it is possible, given
a query q to which the adversary has responded, to determine efficienty which type it is. The
extractor appends q to A and runs the Gaussian elimination algorithm on the new row, a process
that takes O(n2) time [10, Section 2.3].23 If the reduced row is not all zeros then the query is type 1;
the reduction also means that the augmented matrix A′ is again in row-reduced echelon form, and
the steps of the reduction also give the appropriate updates to the transform matrix U ′. Since the
reduction need only be performed for the ε fraction of queries to which B correctly responds, the
overall running time of the query phase is O

(
(1 + εn2)(n)

/
(ε− ω)

)
.

Once the query phase is complete, the extractor has matrices A, U , V , and W such that
V M = W (where M = (mij) is the matrix consisting of encoded file blocks), A = UV , and A is
in row-reduced echelon form. Moreover, there are at least ρn free dimensions in the subspace D
spanned by A and by V . Suppose i is in free D. Since A is in row-reduced echelon form, there
must be a row in A, say row t, that equals the ith basis vector ui. Multiplying both sides of

22The claim gives a condition for a single I satisfying the condition I * free D; the inequality here is over all such I;
but if the probability never exceeds 1/#B for any specific I then it doesn’t exceed 1/#B over a random choice of I,
either.

23More specifically, O(tn) time if A is a t× n matrix; but of course t ≤ n.
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V M = W by U on the left gives the equation AM = UW . For any j, 1 ≤ j ≤ s, consider the
entry at row t and column j in the matrix AM . It is equal to ui · (m1,j ,m2,j , . . . ,mn,j) = mi,j . If
we compute the matrix product UW , we can thus read off from it every block of every sector for
i ∈ free D. Computing the matrix multiplication takes O(n2s) time. The extractor computes the
relevant rows, outputs them, and halts.

Note that while we have described the extraction algorithm as performing row reduction opera-
tions, it could instead collect n successful interactions with the cheating prover and then perform a
single Gaussian elimination using an algorithm specialized for sparse matrices, reducing the asymp-
totic runtime substantially. We do not expect that the extraction algorithm will be used in actual
outsourced storage deployments, so this improvement is not important in practice.

B Erasure Codes

It is easier to verify that a server is storing half the blocks of a file — or any other constant
fraction r — than to verify that it is storing all the blocks of a file: probabilistic checks are unlikely
to uncover a single file block’s being dropped. Before storing it on the server, we would therefore
like to encode an n-block file into a 2n-block file —or, more generally (n/r)-block file —with the
encoding done in such a way that any n blocks suffice for recovering the original file.

Erasure codes are the codes that provide this property [26, 2]. The parameter r is called the
rate. Some erasure codes are rateless in that, for an n-block file, they allow the generation of
arbitrarily many blocks, any n of which suffice for decoding.24

An important property of erasure codes is the efficiency of their encoding and decoding proce-
dures. Ideally, one would like both procedures to have performance linear in n. This is especially
important for our application, where n can be very large. For example, if a block is 1000 bytes and
the file being stored is 1 GB, then we have n ≈ 220. A code where encoding and decoding take
O(n2) time would be unpleasantly slow.

Another important property of erasure codes is what sort of erasures they can correct. Ideally,
we would like the code to correct against arbitrary erasures: any n blocks should suffice for recov-
ering the original file. Some codes, however, correct only against random erasures: any n blocks
suffice for decoding with overwhelming probability, whereas an adversarially selected n block set
will not suffice.

Unfortunately, no codes are known that provide linear decoding time in the presence of arbitrary
erasure. As we show below, we can still make use of codes that correct random erasures only, but
in this case additional secret preprocessing is required that makes public retrievability impossible.

B.1 Codes for Public Retrievability

Traditional Reed-Solomon–style erasure codes can be constructed for arbitrary rates allowing re-
covery of the original file from any r fraction of the encoded file blocks [27]. The encoding and
decoding procedures will take O(n2) time. The code matrix used can be made public and any user
can apply the decoding procedure. This provides public retrievability.

24Some erasure codes, called nearly-optimal, require somewhat more than n blocks for decoding: n(1 + ε) blocks,
where ε is a parameter; a choice of ε has an effect on other code parameters.
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We recommend that a systematic code be used: one in which the first m blocks of the encoded
file are in fact the encoded file itself. This makes recovering the file from a server that isn’t malicious
much more efficient: simply ask for the first m blocks.

B.2 Efficient Codes for Private Retrievability

To employ codes with linear-time encoding and decoding procedures, we will need to take additional
measures to transform adversarial erasure to random erasure.

Given a file M , encrypt M using a semantically-secure symmetric encryption scheme under a
key kenc1. Now apply the erasure code to the encrypted, permuted file. Assuming the encryption
was secure, this is indistinguishable (to any efficient adversary) from applying the erasure code to
a random bitstring of the same length as M .

Each block in the erasure-encoded file M∗ depends on some subset of the blocks in the unen-
coded, encrypted file. Which blocks, precisely, depends on the code family and the particular key
used to instantiate a code from that family. Let the unencoded file consist of blocks with indices
in the range [1,m], and the encoded file of blocks with indices in the range [1, n]. For i ∈ [1, n], let
πk(i) ⊆ [1,m] be the pre-encoding blocks on which encoded block i depends for a choice k of code
key. Suppose that the erasure code is such that:

1. The distribution of πk(i) is independent of the distributions for πk(j) for all j 6= i. More
precisely, the conditional distribution of {πk(i)}k over keys k satisfying a specific assignment
for πk(j) for all j 6= i is statistically indistinguishable from the distribution {πk(i)}k over all
keys k.

2. Each block in the encoded file depends on all blocks in the unencoded file with equal proba-
bility. More precisely, for all a, b ∈ [1,m] and for all i ∈ [1, n], Prk[a ∈ πk(i)] = Prk[b ∈ πk(i)].

Such a code would necessarily have a long key, but that key can be generated from a short seed
using a secure pseudorandom generator. In fact, it is easy to see that the two properties above are
provided by Online Codes [24, 21], a simple nearly-optimal linear-time code.

Now, for any code that provides the two properties above, an adversary could determine which
blocks in the encoded file depend on which blocks in the unencoded file only using the contents of
the encoded blocks. This is because, ignoring the block contents,

Let the encoded blocks be η1, . . . , ηn. We encrypt each block independently under key kenc2,
using a tweakable block cipher [23], with the tweak for the encryption of ηi being the block index i;
the blocks output by this procedure, m1, . . . ,mn are those stored on the server. Assuming the
cipher is secure, the contents of these blocks are indistinguishable from random and independent
of each other.

It is now clear that, without knowledge of kenc1, k, or kenc2, the encoded file m1, . . . ,mn reveals
no information about the code used, and, specifically, about which code blocks depend on which
pre-encoding blocks. Thus no adversary that erases blocks can do better than random erasure,
which is exactly the property we require for decoding to work with overwhelming probability.

C Can We Eliminate B Coefficients?

In both schemes proposed in Section 3, the verifier sends with each index i of a query a coefficient
νi from a set B. If we could avoid sending these coefficients — equivalently, if we could set B = {1},
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then we would obtain a scheme that is more efficient in several respects:

• the verifier would need to flip fewer coins in generating a query;

• the query would be shorter by l · lg #B bits;

• the prover’s computation would be greatly reduced: essentially, one multiplication instead of
l + 1 multiplications in the first scheme; one exponentiation instead of l + 1 exponentiations
in the second scheme25; and

• the verifier’s computation would also be reduced, though not so dramatically.

Unfortunately, it is clear from Lemma 4.5 that the proof techniques of Section 4.2 cannot apply
when #B = 1, since we will not then have ε < 1/#B, however large the adversary’s success
probability ε is.

This is not just a proof problem. Below, we present an attack on the schemes of Section 3 when
B = {1}. In the attack, the server stores n − 1 blocks instead of n, can answer a nonnegligible
fraction of all queries, yet no extraction technique can recover any of the original blocks.

A note on notation. In this section, we will make some simplifications to the notation for the
sake of brevity and clarity. First, obseve that the Part-1 proofs of Section 4.1 do apply in the case
that B = {1}. We will thus elide the authenticators {σi} in our attack; this allows us to address
both the scheme with private verification and the scheme with public verification simultaneously.
Second, we will set the number of sectors per block, s, to 1. Our attack easily generalizes to the
case s > 1, but this simplification allows us to eliminate a subscript and simplify the presentation.

The attack. With the simplifications above, consider an n-block file with blocks (m1, . . . ,mn).
A query will consist of l indices I ⊂ [1, n]; the response will be µ =

∑
i∈I mi. We assume that l is

even.26

The adverary chooses an index i∗ at random from [1, n]. For each i 6= i∗, he chooses τi
R←

{−1,+1} and sets
m′

i ← mi + τimi∗ .

Now the adversary remembers (m′
1, . . . ,m

′
i∗−1,m

′
i∗+1,m

′
n). Clearly, the adversary needs to store

one less block than an honest server would.
Now, consider a query I. If i∗ /∈ I, the adversary responds with µ′ =

∑
i∈I m′

i. Otherwise,
i∗ ∈ I, and the adversary responds with µ′ =

∑
i∈I\{i∗} m′

i.
In our analysis, we will use the following simple lemma:

Lemma C.1 ([1], p. 12). For k ≥ 2 we have
(

k
bk/2c

)
≥ 2k/k.

Proof.
(

k
bk/2c

)
is the largest of the k values

(
k
1

)
,
(
k
2

)
, . . . ,

(
k

k−1

)
, and

(
k
0

)
+

(
k
l

)
; and so it must be at

least as large as their average, 2k/k.
25The l element summation computed by the prover in the first scheme requires work comparable to a multiplication

when l ≈ lg p.
26If l is odd, the adversary can set m′

i ← mi + (l−1 mod p)(mi∗), which allows him to respond to that l/n fraction
of queries where i∗ ∈ I.
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In the case i∗ /∈ I, µ′ will be correct provided that we have
∑

i∈I τi = 0. But this happens when
the number of +1s and the number of −1s are equal in {τi}i∈I , and this happens with probability(

l

l/2

)
·
(

1
2

)l/2

·
(

1
2

)l/2

≥
(

2l

l

)
·
(

1
2l

)
=

1
l

.

In the case i∗ ∈ I, µ′ will be correct provided we have
∑

i∈I\{i∗} τi = 1. This happens when
there are l/2− 1 −1s and l +1s in {τi}i∈I\{i∗}, and this happens with probability(

l − 1
l/2− 1

)
·
(

1
2

)l/2−1

·
(

1
2

)l/2

=
(

l − 1
b(l − 1)/2c

)
·
(

1
2

)l−1

≥
(

2l−1

l − 1

)
·
(

1
2l−1

)
=

1
l − 1

>
1
l

.

Thus the adversary can respond to 1/l fraction of queries where i∗ ∈ I and to a 1/l fraction of
queries where i∗ /∈ I; so he can respond to a 1/l fraction of all queries, which is clearly nonnegligible.

But now it is impossible for any extraction strategy to recover any block, let alone a ρ fraction of
all blocks. This is because the subspace known to the adverary is insufficient to determine any block.
Indeed, the adversary’s knowledge is consistent with any value for any block. Fix (m′

1, . . . ,m
′
i∗−1,

m′
i∗+1,m

′
n) where m′

i = mi + τimi∗ . Suppose we believe that mi∗ = a for any value a. This fixes mi

for each i 6= i∗, as mi = m′
i− τimi∗ . If we believe, for some index λ 6= i∗, mλ = a, then mi∗ is fixed

because m′
λ = mλ + τλmi∗ implies mi∗ = (τλ)(m′

λ−a), and the argument proceeds as before. Since
the adversary’s knowledge is consistent with any choice of value for any (single) block, it cannot
be the case that it allows recovery of the value of any block.

D Proof for the Simple MAC Scheme

In this section we recall the simple MAC scheme described by Naor and Rothblum [25] and Juels and
Kaliski [20] and give a formal proof for its security in the proof-of-retrievability model. We use the
same common notation as in Section 3.1.

D.1 The Construction

Let f : {0, 1}∗ ×Kprf → Zp be a PRF. The construction of the simple scheme Simple is:

Simple.Kg(). Choose a random MAC key kmac
R← Kmac. The secret key is sk = (kmac); there is no

public key.

Simple.St(sk,M). Given the file M , first apply the erasure code to obtain M ′; then split M ′

into n blocks (for some n), each s sectors long: {mij}1≤i≤n
1≤j≤s

. Choose a random file name

name from some sufficiently large domain (e.g., Zp). The file tag is t = (name). Now, for
each i, 1 ≤ i ≤ n, compute

σi ← MACkmac(name‖i‖mi1‖ · · · ‖mis) .

The processed file M∗ is {mij}, 1 ≤ i ≤ n, 1 ≤ j ≤ s together with {σi}, 1 ≤ i ≤ n.

28



Simple.V(pk, sk, t). Parse sk as (kmac). Parse t as (name). Pick a random l-element subset I of
the set [1, n]. Send I to the prover.

Parse the prover’s response to obtain mi1, . . . ,mis and σi, all in Zp, for each i ∈ I. If parsing
fails, fail by emitting 0 and halting. Otherwise, check for each i ∈ I whether

σi
?= MACkmac(name‖i‖mi1‖ · · · ‖mis) ;

if all l equations hold, output 1; otherwise, output 0.

Simple.P(pk, t,M∗). Parse the processed file M∗ as {mij}, 1 ≤ i ≤ n, 1 ≤ j ≤ s, along with {σi},
1 ≤ i ≤ n. Parse the message sent by the verifier as I, an l-element subset of [1, n]. Send to
the prover, for each i ∈ I, the values mi1, . . . ,mis and σi.

Note that it is easy to modify the scheme and the proof to use a signature scheme instead of a
MAC to obtain public verifiability.

D.2 The Proof

Theorem D.1. If the MAC scheme is unforgeable then (except with negligible probability) no adver-
sary against the soundness of the simple scheme ever causes V to accept in a proof-of-retrievability
protocol instance, except by responding with values {mij} and {σi} that are computed correctly, i.e.,
as they would be by Priv.P.

Proof. The simulator is given oracle access to the MAC; its goal is to create a forgery. The
simulator plays the part of the environment in interacting with the attacker, using its MAC-
generation oracle to create the {σi} MACs. Whenever the adversary responds in a proof-of-storage
protocol instance where name is not one of the names issued by the simulator in a store query,
the simulator uses its MAC verification oracle to check whether any σi sent by the adversary, for
i ∈ I, is a valid MAC.27 Such a valid MAC would be a forgery, since the simulator never requests
a MAC on a name not chosen in a store query. Whenever the adversary responds in a proof-of-
storage protocol instance on a file with tag name whose blocks are {mij} and where, for some i ∈
I, the values {m′

ij}j sent by the adversary are different from the values {mij}j in the file, the
simulator uses its MAC verification oracle to check whether the corresponding authenticator is valid.
Such a valid MAC would be a forgery, since the simulator never requested a MAC on any string
beginning “name‖i‖ · · · ” except for “name‖i‖mi1‖ · · · ‖mis”, and (mi1, . . . ,mis) 6= (m′

i1, . . . ,m
′
is)

by assumption. (Because name is drawn from a large space, each file storage query will use a
different value for name, except with negligible probability.) We see that if the adversary ever
causes V to accept in a proof-of-retrievability protocol instance without responding with values
{mij} and {σi} computed as they would be by Priv.P, the simulator finds a MAC forgery.

As before, we say that a cheating prover P ′ is well-behaved if it never causes V to accept in
a proof-of-retrievability protocol instance except by responding with values {mij} and {σi} that
are computed correctly, i.e., as they would be by Simple.P. The theorem above guarantee that all
adversaries that win the soundness game with nonnegligible probability output cheating provers
that are well-behaved, provided that the MAC we employ is secure. The next theorem shows that
extraction always succeeds against a well-behaved cheating prover:

27See Bellare, Goldreich, and Mityagin [7] for why the MAC security definition incorporates verification queries.
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Theorem D.2. Suppose a cheating prover P ′ on an n-block file M is well-behaved in the sense
above, and that it is ε-admissible: i.e., convincingly answers and ε fraction of verification queries.
Then, provided that ε − (ρn)l/(n − l + 1)l is positive and nonnegligible, it is possible to recover a
ρ fraction of the encoded file blocks in O

(
ρn

/ (
ε− (ρn)l/(n− l + 1)l

))
interactions with P ′.

Proof. We turn the ε-admissible, well-behaved cheating prover P ′ into an ε-polite adversary B as
in the proof of Theorem 4.3, by interacting with P ′, checking the MACs {σi} on each block i ∈ I,
and emitting {mij} if all l MACS are valid, ⊥ otherwise.

Against an ε-polite adversary the extractor works as follows. Its knowledge is a subset S ⊆ [1, n],
initially empty. If #S ever reaches ρn, the extractor halts. The extractor repeatedly chooses a
random l-element query I ⊂ [1, n] and sends I to the polite adversary B. If the adversary does not
output ⊥, the extractor updates its knowledge as S′ ← S ∪ I. Regardless, the extractor continues
with another query.

A query is answers as not ⊥ with probability ε. For such a query, #S increases by at least 1
provided that I * S. But if the extractor has not yet halted we have #S < ρn, and the probability
that a random l-element subset I of [1, n] is such that I ⊆ S is at most (ρn)l/(n−l+1)l, by reasoning
identical to that used in the proof of Lemma A.2. This means that on an ε − (ρn)l/(n − l + 1)l

fraction of the query–randomness space the adversary B will give a response that increases #S.
Thus O

(
ρn

/ (
ε − (ρn)l/(n − l + 1)l

))
interactions with the adversary suffice to grow #S to ρn

elements, at which point the extractor halts.
But each element i ∈ S corresponds to a block i for which the extractor has learned the values

mi1, . . . ,mis (since the adversary is polite), so the extractor will have recovered ρn blocks of the
file, as required.

Theorem D.3. Given a ρ fraction of the n blocks of an encoded file M∗, it is possible to recover
the entire original file M with all but negligible probability.

Proof. For rate-ρ Reed-Solomon codes this is trivially true, since any ρ fraction of encoded file
blocks suffices for decoding; see Appendix B. For rate-ρ linear-time codes the additional measures
described in Appendix B.1 guarantee that the ρ fraction of blocks retrieved will allow decoding
with overwhelming probability.

E Construction with RSA Signatures

In this section, we show how the RSA construction of Ateniese et al. [3] can be considered an
instantiation of our framework for proofs of retrievability. The construction closely follows that of
Ateniese et al., and the part-one proof also uses RSA techniques similar to theirs [4, Theorem 4.3].
The benefit of this section is to show that an RSA-based construction very similar to that of
Ateniese et al. admits a full and rigorous proof of security.

E.1 Construction

Let λ1 be a bitlength such that the difficulty of factoring a (2λ1− 1)-bit modulus is appropriate to
the security parameter. Let max B be the largest element in B, and let λ2 be a bitlength equal to
dlg(l ·max B)e.

The construction of the private verification scheme PubRSA is:
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PubRSA.Kg(). Generate a random signing keypair (spk, ssk) R← SKg. Choose two random primes
p′ and q′ in the range

[
2λ1−2, 2λ1−1 − 1

]
, where p′ and q′ are, additionally, Sophie Germain

primes, so that p = 2p′ + 1 and q = 2q′ + 1 are also prime. Let N = pq be the RSA
modulus; we have 22λ1−2 < N < 22λ1 . The group of quadratic residues of N , QRN , has
order p′q′. Let H : {0, 1}∗ → QRN be a full-domain hash, which we treat as a random oracle.
Choose a random (2λ1 + λ2)-bit prime e, and set d = e−1 mod φ(N). The secret key is
sk = (N, d,H, ssk); the public key is pk = (N, e,H, spk).

PubRSA.St(sk,M). Given the file M , first apply the erasure code to obtain M ′; then split M ′

into n blocks (for some n), each s sectors: {mij}1≤i≤n
1≤j≤s

. Each sector mij is an element

of ZN . Now parse sk as (N, d,H, ssk). Choose a random file name name from some suffi-
ciently large domain (e.g., ZN ). Choose s random elements u1, . . . , us

R← QRN . Let t0 be
“name‖n‖u1‖ · · · ‖us”; the file tag t is t0 together with a signature, on t0 under private key
ssk: t← t0‖SSigssk(t0).

Now, for each i, 1 ≤ i ≤ n, compute

σi ←
(
H(name‖i) ·

s∏
j=1

u
mij

j

)d
mod N .

The processed file M∗ is {mij}, 1 ≤ i ≤ n, 1 ≤ j ≤ s together with {σi}, 1 ≤ i ≤ n.

PubRSA.V(pk, sk, t). Parse pk as (N, e, H, spk). Use spk to verify the signature on on t; if the
signature is invalid, reject by emitting 0 and halting. Otherwise, parse t, recovering name, n,
and u1, . . . , us. Now pick a random l-element subset I of the set [1, n], and, for each i ∈ I, a
random element νi

R← B. Let Q be the set {(i, νi)}. Send Q to the prover.

Parse the prover’s response to obtain µ1, . . . , µs and σ ∈ ZN . Check that each µj is in the
range [0, l ·N ·max B]. If parsing fails or the {µj} values are not in range, fail by emitting 0
and halting. Otherwise, check whether

σe ?=
∏

(i,νi)∈Q

H(name‖i)νi ·
s∏

j=1

u
µj

j mod N ;

if so, output 1; otherwise, output 0.

PubRSA.P(pk, t,M∗). Parse the processed file M∗ as {mij}, 1 ≤ i ≤ n, 1 ≤ j ≤ s, along with
{σ1}, 1 ≤ i ≤ n. Parse the message sent by the verifier as Q, an l-element set {(i, νi)}, with
the i’s distinct, each i ∈ [1, n] and each νi ∈ B.

For each j, 1 ≤ s ≤ j, compute

µj ←
∑

(i,νi)∈Q

νimij ∈ Z ,

where the sum is computed in Z, without modular reduction. In addition, compute

σ ←
∏

(i,νi)∈Q

σνi
i mod N .

Send to the prover in response the values µ1, . . . , µs and σ.
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E.2 Part-One Proof

We now give the part one proof of our scheme.
We will use the following lemma (see [18] and Lemma 1 of [13]):

Lemma E.1. Given x, y ∈ ZN , along with a, b ∈ Z such that xa = yb and gcd(a, b) = 1, one can
efficiently compute x̄ ∈ ZN such that x̄a = y.

Theorem E.2. If the signature scheme used for file tags is existentially unforgeable and the RSA
problem with large public exponents is hard, then, in the random oracle model, except with negligible
probability no adversary against the soundness of our public-verification scheme ever ever causes
V to accept in a proof-of-retrievability protocol instance, except by responding with values {µj} and
σ that are computed correctly, i.e., as they would be by PubRSA.P.

Once more, we prove the theorem as a series of games.

Game 0. The first game, Game 0, is simply the challenge game defined in Section 2. By assump-
tion, the adversary A wins with nonnegligible probability.

Game 1. Game 1 is the same as Game 0, with one difference. The challenger keeps a list of
all signed tags ever issued as part of a store-protocol query. If the adversary ever submits a tag t
either in initiating a proof-of-storage protocol or as the challenge tag, that (1) has a valid signature
under ssk but (2) is not a tag signed by the challenger, the challenger declares failure and aborts.

Clearly, if there is a difference in the adversary’s success probability between Games 0 and 1,
we can use the adversary to construct a forger against the signature scheme.

Game 2. Game 2 is the same as Game 1, with one difference. The challenger keeps a list of its
responses to St queries made by the adversary. Now the challenger observes each instance of the
proof-of-storage protocol with the adversary —whether because of a proof-of-storage query made
by the adversary, or in the test made of P ′, or as part of the extraction attempt by Extr. If in any
of these instances the adversary is successful (i.e., V outputs 1) but either

1. the adversary’s aggregate signature σ is not equal to
∏

(i,νi)∈Q σνi
i mod N (where Q is the

challenge issued by the verifier and σi are the signatures on the blocks of the file considered
in the protocol instance) or

2. at least one the adversary’s aggregate block values µ′
1, . . . , µ

′
s is not equal to the expected

block value µj =
∑

(i,νi)∈Q νimij ,

the challenger declares failure and aborts.
Before analyzing the difference in success probabilities between Games 1 and 2, we will establish

some notation and draw a few conclusions. Suppose the file that causes the abort is n blocks long,
has name name, has generating exponents {uj}, and contains sectors {mij}, and that the block
signatures issued by St are {σi}. Suppose Q = {(i, νi)} is the query that causes the challenger
to abort, and that the adversary’s response to that query was µ′

1, . . . , µ
′
s together with σ′. Let

the expected response — i.e., the one that would have been obtained from an honest prover— be
µ1, . . . , µs and σ, where σ =

∏
(i,νi)∈Q σνi

i mod N and µj =
∑

(i,νi)∈Q νimij for 1 ≤ j ≤ s. By the
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correctness of the scheme, we know that the expected response satisfies the verification equation,
i.e., that

σe =
∏

(i,νi)∈Q

H(name‖i)νi ·
s∏

j=1

u
µj

j ;

Because the challenger aborted, we know that σ′ and µ′
1, . . . , µ

′
s passed the verification equation,

i.e., that

(σ′)e =
∏

(i,νi)∈Q

H(name‖i)νi ·
s∏

j=1

u
µ′j
j .

Now observe that condition 1, above, implies condition 2, which means that having the simulator
abort on either condition 1 or 2 is the same as having abort on just condition 2: if condition 2
doesn’t hold then µ′

j = µj for each j, and it follows from the verification equation that (σ′)e = σe;
because e is relatively prime to φ(N), this means that σ′ = σ mod N , and since V checked that
σ′ is in ZN , this means that σ′ = σ, so condition 1 doesn’t hold, either.

Therefore, if we define ∆µj
def= µ′

j − µj for 1 ≤ j ≤ s, it must be the case that if the simulator
aborts at least one of {∆µj} is nonzero.

With this in mind, we now show that if there is a nonnegligible difference in the adversary’s
success probabilities between Games 1 and 2 we can construct a simulator that solves the RSA
problem when the public exponent e is large.

The simulator is given as inputs a 2λ1-bit modulus N and a (2λ1 + λ2)-bit public exponent e,
along with a value y ∈ QRN ; its goal is to output x ∈ QRN such that xe = y. The simulator
behaves like the Game 1 challenger, with the following differences:

• In generating a public key, it sets the modulus and public exponent to N and e; it does not
know the corresponding secret modulus d.

• The simulator programs the random oracle H. It chooses a random generator g of QRN . It
keeps a list of queries and responses to answers consistently. In answering the adversary’s
queries it chooses a random r

R← ZN2 and responds with gr mod N . (The larger space ZN2

means that the distribution of {gr} is statistically indistinguishable from QRN , even though
the simulator does not know the order of QRN because it doesn’t know φ(N).) The simulator
also answers queries of the form H(name‖i) in a special way, as we will see below.

• When asked to store some file whose coded representation comprises the n blocks {mij},
1 ≤ i ≤ n, 1 ≤ j ≤ s, the simulator behaves as follows. It chooses a name name at random.
Because the space from which names are drawn is large, it follows that, except with negligible
probability, the simulator has not chosen this name before for some other file and a query has
not been made to the random oracle at name‖i for any i.

For each j, 1 ≤ j ≤ s, the simulator chooses random values βj , γj
R← ZN2 and sets uj ←

ge·βjyγj . For each i, 1 ≤ i ≤ n, the simulator chooses a random value ri
R← ZN2 , and

programs the random oracle at i as

H(name‖i) = ge·ri
/ s∏

j=1

u
mij

j .
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Now the simulator can compute σi, since we have

H(name‖i) ·
s∏

j=1

u
mij

j = ge·ri ;

if the simulator sets σi = gri , we will have σe
i = ge·ri =

(
H(name‖i) ·

∏s
j=1 u

mij

j

)α, as required.

• The simulator continues interacting with the adversary until the condition specified in the
definition of Game 2 occurs: the adversary, as part of a proof-of-storage protocol, succeeds
in responding with a signature σ′ that is different from the expected signature σ.

The change made from Game 0 to Game 1 establishes that the parameters associated with
this protocol instance — name, n, {uj}, {mij}, and {σi}— were generated by the simulator as
part of a St query; otherwise, execution would have already aborted. This means that these
parameters were generated according to the simulator’s procedure described above. Now,
dividing the verification equation for the forged signature σ′ by the verification equation for
the expected signature σ, we obtain

(σ′/σ)e =
s∏

j=1

u
∆µj

j = ge·
Ps

j=1 βj∆µj · y
Ps

j=1 γj∆µj ;

rearranging terms yields [(
σ′/σ

)
· g

Ps
j=1 βj∆µj

]e
= y

Ps
j=1 γj∆µj ; (2)

Now, provided that gcd
(
e,

∑s
j=1 βj∆µj

)
= 1, we can compute, using Lemma E.1, a value x

from (2) such that xe = y. It remains only to argue that gcd
(
e,

∑s
j=1 βj∆µj

)
6= 1 with negli-

gible probability. First, we noted already that not all of {∆µj} can be zero. Second, the values
of {γj} are statistically hidden from the adversary,28. Thus, provided that gcd(e,∆µj) = 1
for each j where ∆µj 6= 0, we will have gcd

(
e,

∑s
j=1 βj∆µj

)
= 1 except with probability 1/e,

which is negligible. But for any j where ∆µj 6= 0 we have µj , µ
′
j ∈ [0, l ·N ·max B], so

|∆µj | = |µ′
j − µj | ≤ l ·N ·max B < 2dlg Ne · 2dlg(l·max B)e < 22λ1 · 2λ2 < e ,

and since e is prime this means that gcd(∆µj , e) must equal 1.

Thus if there is a nonnegligible difference between the adversary’s probabilities of success in Games
1 and 2, we can construct a simulator that uses the adversary to solve the RSA problem, as required.

Wrapping up. Assuming the signature scheme used for file tags is secure, and that the RSA
problem with large public exponent is hard, we see that any adversary that wins the soundness game
against our public-verification scheme responds in proof-of-storage protocol instance with values
{µj} and σ that are computed according to Pub.P, which completes the proof of Theorem E.2.

28Hidden because they are used to compute only the values {uj} in the adversary’s view, and these are Pedersen
commitments with the blinding factors geβj are drawn statistically close to the uniform distribution on QRN .
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E.3 Part-Two and Part Three Proofs

It is easy to see that the Part-Two proof of Section 4.2 carries over unchanged to the case where
blocks are drawn from ZN instead of Zp. All the matrix operations require is that inversion be
efficiently computable, and this is, of course, the case in ZN using Euclid’s algorithm, provided we
never encounter values in ZN \Z∗

N ; but such a value would allow us to factor N , so they occur with
negligible probability provided the RSA problem —and therefore factoring— is hard.

Similarly, erasure decoding works just as well when blocks are drawn from ZN ; and because
nothing in the proof requires that blocks be distributed uniformly in all of ZN , we could treat each
mij as an element of Zt

p0
where p0 is some prime convenient for whatever erasure code we employ

and t is the largest integer such that pt
0 < N .

F Extensions

In this section we discuss a few possible extensions to our scheme.

Towards adaptively adding storage blocks. In our current scheme the storage algorithm
takes as input a whole file M before storing the data and publishing the random name value. In
some situations it might make sense to be able to incrementally append blocks to the end of the
file. For example, we might want to append to the file itself.

Our current proof relies upon the simulator being able to “program” the random oracle so that
it can sign the blocks of M . The simulator doesn’t not give out the name value until it learns the
whole file M value so that the attacker cannot query the random oracle until the simulator knows
how to program it. However, if we want to allow for appending the simulator will need to disclose
name before learning some values of the block values.

We can overcome this issue by adding a bit of randomness to our system. In addition, to
storing s sectors per data block the storage algorithm will additionally store one more element
that is chosen randomly in Zp. The storage, proof, and verification algorithms will behave just as
though there were s + 1 sectors stored. In the simulation, the simulator will set the program the
oracle so that it can sign a “random” block , and when it gets a request to store a specific block it
will choose the randomness of the last “dummy” sector such that it can sign the entire block. Our
techniques are similar to those used by Coron [11] for tight proofs of signature schemes.

We note that these techniques are useful for validating the integrity of blocks appended to the
end, however, in a complete scheme we still need to concern ourselves with how to redundantly
encode the file such that blocks can be appended to the end.

Towards removing random oracles. One interesting question is whether we can realize our
scheme in the standard model (without random oracles). One step towards this direction is to
use a common random string consisting of nMax group elements h1, . . . , hnMax , where nMax is the
maximum number of blocks used in a file. In this situation, we could replace the call to H(name‖i)
with hi. In addition, the simulator would use the techniques from the paragraph above so that it
could “program” the h values for signing a “random” message and later use the extra sector to
make the proof go through.
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