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Abstract. In this paper, we suggest that all pairings be in a group. It

is possible that our observation can be applied into the implementations

of pairing-based cryptosystems.
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1 Introduction

A bilinear pairing is defined as follows:

e : G1 × G2 → GT

where G1, G2 are additive groups and GT is a multiplicative group. Also, for

any P1, P2 ∈ G1and Q1, Q2 ∈ G2, we require

e(P1 + P2, Q1) = e(P1, Q1)e(P2, Q1),

e(P1, Q1 + Q2) = e(P1, Q1)e(P1, Q2).

In practical cryptographical applications, non-degeneracy and compatibility

are often required for pairings. Since pairings can be constructed from elliptic

curves, pairing-based cryptosystems have been widely studied in elliptic curve

cryptography in recent years. Some detailed summaries on this subject can be

found in [15] and [10]. An elementary problem in the implementation of pairing-

based cryptosystems is to compute the pairings.
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Pairings on elliptic curves can be evaluated in polynomial time by Miller’s

algorithm [14]. Many efficient techniques have been suggested for optimizing the

computation of the pairings. Some excellent summaries about pairing compu-

tations are recommended (see [8, 17]). One of the most elegant techniques for

computing the pairings efficiently is to shorten the iteration loop in Miller’s al-

gorithm. Inspired by the Duursma-Lee method for some special supersingular

curves in [4], Barreto et al. introduce the ηT pairing which has a half length of

the Miller loop compared to the original Tate pairing on supersingular Abelian

varieties [1]. Later, Hess et al. suggest the Ate pairing which shortens the length

of the Miller loop obviously on ordinary elliptic curves [9]. Matsuda et al. opti-

mize the Ate pairing and the twisted Ate pairing and show that both them are

always at least as fast as the Tate pairing [13]. Inspired by the main results of

[13], the authors of [19] give more choices on the Ate pairing.

We now give another look at the techniques of shortening the Miller loop.

Using the fact that a fix power of the pairing is still a bilinear pairing, the Eta

pairing and the Ate pairing are introduced. Factually, the new derivation in [20]

for Scott’s algorithm [16] also take advantage of this fact. Recently, the authors

of [12] give an improvement on the Ate pairing using the fact that the product

of two pairings is a pairing. Inspired by the above ideas, we first show that all

pairings forms a group from an abstract angle. Then we apply it into shortening

the Miller loop of the Ate pairing.

The rest of this paper is organized as follows. Section 2 introduces basic

mathematical concepts of the Ate pairing. Section 3 gives our main results. We

draw our conclusion in Section 4.

2 Ate Pairing and Twisted Ate Pairing

We recall the definition of the Ate pairing and twisted Ate pairing from [9, 13] in

this subsection. The Ate pairing extends the ηT pairing on the ordinary elliptic

curves.

Let Fq be a finite field with q = pm elements, where p is a prime. Let E be

an ordinary elliptic curve over Fq, r a large prime satisfying r | #E(Fq) and let t

denote the trace of Frobenius, i.e., #E(Fq) = q+1−t. Let T = t−1 and then T ≡

q mod r. Let πq be the Frobenius endomorphism, πq : E → E : (x, y) 7→ (xq , yq).

Denote Q ∈ G2 = E[r] ∩ Ker(πq−[q]) and P ∈ G1 = E[r] ∩ Ker(πq − [1]). Let
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N = gcd(T k −1, qk −1) > 0 and T k −1 = LN , where k is its embedding degree.

Denote the normalized function fnorm
T,Q = fT,Q/(zrfT,Q)(O), where Q ∈ G2 and

z is a local parameter for the infinity point O. Then the Ate pairing is defined

as fnorm
T,Q (P ) and

e(Q, P )L = fnorm
T,Q (P )c(qk

−1)/N ,

where c =
∑k−1

i=0 T k−1−iqi mod N .

Let E′ over Fq be a twist of degree d of E, i.e., E ′ and E are isomorphic over

Fqd and d is minimal with this property. Let m = gcd(k, d) and e = k/m. Then

the twisted Ate pairing is defined as fT e,P (Q) and

e(P, Q)L = fT e,P (Q)ct(q
k
−1)/N ,

where ct =
∑m−1

i=0 T e(m−1−i)qei mod N .

The Ate pairing and twisted Ate pairing are both non-degenerate provided

that r - L. The length of the Miller loop of computing the reduced Ate pairing

and the reduced twisted Ate pairing depend on the bit length of T and T e

respectively. Replacing T and T e with T mod r and T e mod r respectively,

Matsuda et al. give the definition of the optimized Ate pairing and the twisted

Ate pairing [13]. This also shows that computing the optimized versions of the

Ate pairing and twisted Ate pairing is always at least as efficient as computing

the Tate pairing. The authors of [19] suggest that T i mod r(1 ≤ i ≤ k) also

introduce new pairings.

3 Main Results

The follow results are very easy to the experts on pairings, but we have not

found a location in the literature. Therefore, we present these facts and speed

up the pairings using them.

A bilinear pairing is defined as follows:

e : G1 × G2 → GT

where G1, G2 are additive groups and GT is a multiplicative group. Also, for

any P1, P2 ∈ G1and any Q1, Q2 ∈ G2, we have

e(P1 + P2, Q1) = e(P1, Q1)e(P2, Q1),

e(P1, Q1 + Q2) = e(P1, Q1)e(P1, Q2).



4

In practical cryptographical applications, non-degeneracy and compatibility

are often required.

Lemma 1. Let G1, G2 and GT be defined as above. Both e1 and e2 are the

pairings from G1 × G2 to GT . Then f = e1/e2 and h = e1e2 are also the

pairings from G1 × G2 to GT . In particular, a fix power of a pairing is still

defined a bilinear pairing.

Proof : For any P1, P2 ∈ G1 and Q1, Q2 ∈ G2, we obtain

f(P1+P2, Q1) =
e1(P1 + P2, Q1)

e2(P1 + P2, Q1)
=

e1(P1, Q1)

e2(P1, Q1)
·
e1(P2, Q1)

e2(P2, Q1)
= f(P1, Q1)·f(P2, Q1).

Similarly, we see that

f(P1, Q1 + Q2) = f(P1, Q1)f(P1, Q2).

This shows that f is a new bilinear pairing from G1 × G2 to GT .

For h = e1e2, we have

h(P1 + P2, Q1) =e1(P1 + P2, Q1) · e2(P1 + P2, Q1)

=e1(P1, Q1)e1(P2, Q1) · e1(P1, Q1)e2(P2, Q1)

=h(P1, Q1) · h(P2, Q1).

Similarly, we see that

h(P1, Q1 + Q2) = h(P1, Q1)h(P1, Q2).

This also shows that his a new bilinear pairing from G1 × G2 to GT .

Finally, Let e be a pairing from G1 × G2 to GT and n is any integer. From

e(P1 + P2, Q1)
n = (e(P1, Q1) · e(P2, Q1))

n = e(P1, Q1)
n · e(P2, Q1)

n

and

e(P1, Q1 + Q2)
n = (e(P1, Q1) · e(P1, Q2))

n = e(P1, Q1)
n · e(P1, Q2)

n,

we conclude that en is also a new pairing. �

From the above lemma, we can easily obtain the following theorem.

Theorem 1. Let I be a pairing from G1 × G2 to GT satisfying I(P, Q) = 1GT

for any P ∈ G1 and any Q ∈ G2. Then all pairings from G1 ×G2 to GT form a

multiplicative group with identity I.
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Proof : from lemma 1, we easily obtain that the product of two pairings is still

a pairing. Also, every pairing e have its inverse elmenet I/e. This completes the

whole proof of Theorem 1. �

Applying Theorem 1 into the bilinear pairing based on elliptic curves, we can

easily obtain the following useful corollary.

Corollary 1. Let e1 · · · en be the pairings from some certain from G1 × G2 to

GT corresponding to their Miller loops λ1 · · ·λn. Then

e =

n∏

i=1

esi

i , si ∈ Z, 1 ≤ i ≤ n

is also a pairing from G1 × G2 to GT with its Miller loop λ =
∑n

i=1 siλi.

In pairing implementations, the short Miller loop are often required. So we

can choose the suitable si ∈ Z making λ as small as possible. We now apply

Corollary 1 into constructing some new pairings from the generalized Ate pair-

ing.

Example 1. Let E be B-N curves over Fp in [3] with k = 12. Also p =

36u4 + 36u3 + 24u2 + 6u + 1 and r = 36u4 + 36u3 + 18u2 + 6u + 1. According to

the main result of [19], we have

– T1 = 6u2

– T10 = 36u3 + 18u2 + 6u + 2

– T11 = 36u3 + 30u2 + 12u + 3

Also, note that all fnorm
Ti,P

give bilinear pairings, which is called the Atei pairing.

Let e1, e2 and e3 be the pairing fnorm
T1,P , fnorm

T10,P and fnorm
T11,P respectively. Then

using Theorem 1, we can define a new pairing e = e3

e1e2

2

.

Since T11 = T10 + 2T1 + λ, whereλ = 6u + 1. we easily have

(fnorm
T11,P ) =(fnorm

T10,P fnorm
2T1+λ,P ·

lnorm
T10P,T1P

vnorm
T11P

)

=(fnorm
T10,P · (fnorm

T1,P )2 · fnorm
λ,P

lnorm
T1P,T1P

vnorm
2T1P

·
lnorm
2T1P,λP

vnorm
(2T1+λ)P

lnorm
T10P,T1P

vnorm
T11P

)
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This shows that

(
fnorm

T11,P

(fnorm
T10,P · (fnorm

T1,P )2)
) = (fnorm

λ,P

lnorm
T1P,T1P

vnorm
2T1P

·
lnorm
2T1P,λP

vnorm
(2T1+λ)P

lnorm
T10P,T1P

vnorm
T11P

)

Therefore, we can see that e indeed defines a new pairing and also e have its

explicit expression

fnorm
λ,P

lnorm
T1P,T1P

vnorm
2T1P

·
lnorm
2T1P,λP

vnorm
(2T1+λ)P

lnorm
T10P,T1P

vnorm
T11P

.

So the Miller loop of the new pairing e is λ = 6u + 1. Since that λ = 6u + 1,

we also enable that the Miller loop of the new pairing e reaches the lower bound

r1/ϕ(k)similar to [12]. However, our technique is not same as the main technique

in [12].

Example 2. The pairing-friendly curves from [11] for k = 16 with a ρ−value

of 5/4 have the following parametrization. r = u8 +48u4 +625 and t = 1
35 (2u5 +

41u + 35). Note that

– T1 = 1
35 (2u5 + 41u) (mod r)

– T5 = 1
35 (u5 + 38u) (mod r)

Then for P ∈ G1 and Q ∈ G2 in the generalized Ate pairing, we see that

e1(P, Q) = fnorm
T1,P (Q)(q

k
−1)/r and e2(P, Q) = fnorm

T5,P (Q)(q
k
−1)/r gives two bilinear

pairings. Therefore, e = e2
2/e1 defines a new pairing with the Miller loop u ac-

cording to lemma 2. Also e has its explicit expression e = (fnorm
u,P

lT2P,uP

v2T1P
)(q

k
−1)/r.

Note the Miller loop u also reach the lower bound r1/ϕ(k).

4 Conclusions

In this paper, we suggest that the set of all pairings be a group. Using this

fact, some new pairing are introduced. It is possible that our observation can be

applied into the implementations of pairing-based cryptosystems.
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