All Pairings are in a Group

Chang-An Zhao, Fangguo Zhang and Jiwu Huang

School of Information Science and Technology, Sun Yat-Sen University, Guangzhou 510275, P.R.China
Guangdong Key Laboratory of Information Security Technology, Sun Yat-Sen University, Guangzhou 510275, P.R.China zhcha@mail2.sysu.edu.cn isszhfg@mail.sysu.edu.cn

Abstract. In this paper, we suggest that all pairings be in a group from an abstract angle. It is possible that our observation can be applied into speeding up the implementations of pairing-based cryptosystems.

Keywords: Pairing-based cryptosystems, Tate pairing, Ate pairing, Elliptic curves.

1 Introduction

A bilinear pairing is defined as follows:

$$e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$$

where \mathbb{G}_1 , \mathbb{G}_2 are additive groups and \mathbb{G}_T is a multiplicative commutative group. Also, for any P_1 , $P_2 \in G_1$ and Q_1 , $Q_2 \in G_2$, we require

$$e(P_1 + P_2, Q_1) = e(P_1, Q_1)e(P_2, Q_1),$$

$$e(P_1, Q_1 + Q_2) = e(P_1, Q_1)e(P_1, Q_2).$$

In cryptographical applications, non-degeneracy and compatibility are often required for pairings. Since pairings can be constructed from elliptic curves, pairing-based cryptosystems have been widely studied in elliptic curve cryptography in recent years. Some detailed summaries on this subject can be found in [15] and [10].

An elementary problem in the implementation of pairing-based cryptosystems is to compute the pairings. Pairings on elliptic curves can be evaluated in polynomial time by Miller's algorithm [14]. Many efficient techniques have been suggested for optimizing the computation of the pairings [2, 4, 1, 9, 13]. Some excellent summaries about pairing computations are recommended (see [8, 17]). One of the most elegant techniques for computing the pairings efficiently is to shorten the iteration loop in Miller's algorithm. Inspired by the Duursma-Lee method for some special supersingular curves in [4], Barreto et al. introduce the η_T pairing which has a half length of the Miller loop compared to the original Tate pairing on supersingular Abelian varieties [1]. Later, Hess et al. suggest the Ate pairing which shortens the length of the Miller loop on ordinary elliptic curves [9]. Matsuda et al. optimize the Ate pairing and the twisted Ate pairing and show that both of them are always at least as fast as the Tate pairing [13]. Inspired by the main results of [13], the authors of [19] give more choices on the Ate pairing.

We now give another look at the techniques of shortening the Miller loop. Using the fact that a fix power of the pairing is still a bilinear pairing, the Eta pairing and the Ate pairing are introduced. Factually, the new derivation in [20] for Scott's algorithm [16] also takes advantage of this fact. Recently, the authors of [12] give an improvement on the Ate pairing using the fact that the Combination of two pairings is also a pairing. Inspired by the above ideas, we first show that all pairings forms a group from an abstract angle. Then we apply it into shortening the Miller loop of the Ate pairing.

The rest of this paper is organized as follows. Section 2 introduces basic mathematical concepts of the pairings on elliptic curves. Section 3 gives our main results. We draw our conclusion in Section 4.

2 Mathematical Preliminaries

2.1 Tate Pairing

Let \mathbb{F}_q be a finite field with $q=p^m$ elements, where p is a prime. Let E be an elliptic curve defined over \mathbb{F}_q and \mathcal{O} be the point at infinity. $\#E(\mathbb{F}_q)$ is denoted as the order of the rational points group $E(\mathbb{F}_q)$ and r is a large prime satisfying $r|\#E(\mathbb{F}_q)$. Let k be the embedding degree, i.e., the smallest positive integer such that $r|q^k-1$.

Let $P \in E[r]$ and $Q \in E(\mathbb{F}_{q^k})$. For each integer i and point P, let $f_{i,P}$ be a rational function on E such that

$$(f_{i,P}) = i(P) - (iP) - (i-1)(\mathcal{O}).$$

Let D be a divisor [18] which is linearly equivalent to $(Q) - (\mathcal{O})$ with its support disjoint from $(f_{r,P})$. The Tate pairing [6] is a bilinear map

$$\hat{e}: E[r] \times E(\mathbb{F}_{q^k}) / rE(\mathbb{F}_{q^k}) \to \mathbb{F}_{q^k}^* / (\mathbb{F}_{q^k}^*)^r,$$
$$\hat{e}(P, Q) = f_{r, P}(D).$$

If P is restricted in $E(\mathbb{F}_q)$, one can define the reduced Tate pairing as

$$e(P,Q) = f_{r,P}(Q)^{\frac{q^k - 1}{r}}$$

according to Theorem 1 in [2]. The above definition is convenient since a unique element of $\mathbb{F}_{a^k}^*$ is often required in many cryptographic protocols.

2.2 Ate Pairing and Twisted Ate Pairing

We recall the definition of the Ate pairing and twisted Ate pairing from [9, 13] in this subsection. The Ate pairing extends the η_T pairing on the ordinary elliptic curves.

Let \mathbb{F}_q be a finite field with $q=p^m$ elements, where p is a prime. Let E be an ordinary elliptic curve over \mathbb{F}_q , r a large prime satisfying $r\mid \#E(\mathbb{F}_q)$ and let t denote the trace of Frobenius, i.e., $\#E(\mathbb{F}_q)=q+1-t$. Let T=t-1 and then $T\equiv q \mod r$. Let π_q be the Frobenius endomorphism, $\pi_q: E\to E: (x,y)\mapsto (x^q,y^q)$. Denote $Q\in \mathbb{G}_2=E[r]\cap Ker(\pi_q-[q])$ and $P\in \mathbb{G}_1=E[r]\cap Ker(\pi_q-[1])$. Let $N=\gcd(T^k-1,q^k-1)>0$ and $T^k-1=LN$, where k is its embedding degree. Denote the normalized function $f_{T,Q}^{norm}=f_{T,Q}/(z^rf_{T,Q})(\mathcal{O})$, where $Q\in \mathbb{G}_2$ and z is a local parameter for the infinity point \mathcal{O} . Then the Ate pairing is defined as $f_{T,Q}^{norm}(P)$ and

$$e(Q, P)^{L} = f_{T,Q}^{norm}(P)^{c(q^{k}-1)/N},$$

where $c = \sum_{i=0}^{k-1} T^{k-1-i} q^i \mod N$.

Let E' over \mathbb{F}_q be a twist of degree d of E, i.e., E' and E are isomorphic over \mathbb{F}_{q^d} and d is minimal with this property. Let $m = \gcd(k, d)$ and e = k/m. Then the twisted Ate pairing is defined as $f_{T^e, P}(Q)$ and

$$e(P,Q)^L = f_{T^e,P}(Q)^{c_t(q^k-1)/N},$$

where $c_t = \sum_{i=0}^{m-1} T^{e(m-1-i)} q^{ei} \mod N$.

The Ate pairing and twisted Ate pairing are both non-degenerate provided that $r \nmid L$. The length of the Miller loop of computing the reduced Ate pairing and the reduced twisted Ate pairing depend on the bit length of T and T^e respectively. Replacing T and T^e with T mod r and T^e mod r respectively, Matsuda et al. give the definition of the optimized Ate pairing and the twisted Ate pairing [13]. This also shows that computing the optimized versions of the Ate pairing and twisted Ate pairing is always at least as efficient as computing the Tate pairing. The authors of [19] suggest that $T^i(T^{ei})$ mod $r(1 \leq i \leq k)$ induce to some variants of the (twisted) Ate pairings.

3 Main Results

The follow results are very easy to the experts on pairings, but we have not found a location in the literature. Therefore, we present these facts and then shorten the Miller loop of the pairing on elliptic curves using them.

Let e be a bilinear pairing defined as follows:

$$e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$$

where \mathbb{G}_1 , \mathbb{G}_2 are additive groups and \mathbb{G}_T is a multiplicative commutative group. Also, for any P_1 , $P_2 \in G_1$ and Q_1 , $Q_2 \in G_2$, we have

$$e(P_1 + P_2, Q_1) = e(P_1, Q_1)e(P_2, Q_1),$$

$$e(P_1, Q_1 + Q_2) = e(P_1, Q_1)e(P_1, Q_2).$$

Now we consider all pairings from $\mathbb{G}_1 \times \mathbb{G}_2$ to \mathbb{G}_T and show that they forms a multiplicative group.

Lemma 1. Let \mathbb{G}_1 , \mathbb{G}_2 and \mathbb{G}_T be defined as above. Both e_1 and e_2 are the pairings from $\mathbb{G}_1 \times \mathbb{G}_2$ to \mathbb{G}_T . Then $f = e_1/e_2$ and $h = e_1e_2$ are also the pairings from $\mathbb{G}_1 \times \mathbb{G}_2$ to \mathbb{G}_T . In particular, a fix power of a pairing still defines a bilinear pairing.

Proof: For any $P_1, P_2 \in G_1$ and $Q_1, Q_2 \in G_2$, we obtain

$$f(P_1+P_2,Q_1) = \frac{e_1(P_1+P_2,Q_1)}{e_2(P_1+P_2,Q_1)} = \frac{e_1(P_1,Q_1)}{e_2(P_1,Q_1)} \cdot \frac{e_1(P_2,Q_1)}{e_2(P_2,Q_1)} = f(P_1,Q_1) \cdot f(P_2,Q_1).$$

Similarly, we see that

$$f(P_1, Q_1 + Q_2) = f(P_1, Q_1)f(P_1, Q_2).$$

This shows that f is a new bilinear pairing from $\mathbb{G}_1 \times \mathbb{G}_2$ to \mathbb{G}_T .

For $h = e_1 e_2$, we have

$$\begin{split} h(P_1+P_2,Q_1) = & e_1(P_1+P_2,Q_1) \cdot e_2(P_1+P_2,Q_1) \\ = & e_1(P_1,Q_1)e_1(P_2,Q_1) \cdot e_2(P_1,Q_1)e_2(P_2,Q_1) \\ = & h(P_1,Q_1) \cdot h(P_2,Q_1). \end{split}$$

Similarly, we see that

$$h(P_1, Q_1 + Q_2) = h(P_1, Q_1)h(P_1, Q_2).$$

This also shows that $h = e_1 e_2$ is a new bilinear pairing from $\mathbb{G}_1 \times \mathbb{G}_2$ to \mathbb{G}_T . Finally, Let e be a pairing from $\mathbb{G}_1 \times \mathbb{G}_2$ to \mathbb{G}_T and n be an integer. From

$$e(P_1 + P_2, Q_1)^n = (e(P_1, Q_1) \cdot e(P_2, Q_1))^n = e(P_1, Q_1)^n \cdot e(P_2, Q_1)^n$$

and

$$e(P_1, Q_1 + Q_2)^n = (e(P_1, Q_1) \cdot e(P_1, Q_2))^n = e(P_1, Q_1)^n \cdot e(P_1, Q_2)^n$$

we conclude that e^n is also a new pairing. \square

From the above lemma, we can easily obtain the following theorem.

Theorem 1. Let I be a pairing from $\mathbb{G}_1 \times \mathbb{G}_2$ to \mathbb{G}_T satisfying $I(P,Q) = 1_{G_T}$ where $P \in G_1$, $Q \in G_2$ and $1_{\mathbb{G}_T}$ is the identity in \mathbb{G}_T . Then the set of all pairings from $\mathbb{G}_1 \times \mathbb{G}_2$ to \mathbb{G}_T is a multiplicative group with identity I.

Proof: From Lemma 1, we easily obtain that the product of two pairings is still a pairing. Also, every pairing e from $\mathbb{G}_1 \times \mathbb{G}_2$ to \mathbb{G}_T has its inverse element I/e. This completes the whole proof of Theorem 1. \square

Applying Theorem 1 into the bilinear pairing on elliptic curves, we can easily obtain the following useful corollary.

Corollary 1. Let $e_1 \cdots e_n$ be the pairings from $\mathbb{G}_1 \times \mathbb{G}_2$ to \mathbb{G}_T corresponding to their Miller loops $\lambda_1 \cdots \lambda_n$. Then

$$e = \prod_{i=1}^{n} e_i^{s_i}, \ s_i \in \mathbb{Z}, \ 1 \le i \le n$$

is also a pairing from $\mathbb{G}_1 \times \mathbb{G}_2$ to \mathbb{G}_T with its Miller loop $\lambda = \sum_{i=1}^n s_i \lambda_i$.

In the implementations of pairings on elliptic curves, the short Miller loop are often required. So we can choose the suitable $s_i \in \mathbb{Z}$ making λ as small as possible. Note that λ can not be equal to 0 or ± 1 since they will define a trivial pairing.

4 Applications

We now apply Corollary 1 into constructing some new pairings from the generalized Ate pairing. Denote $Q \in \mathbb{G}_2 = E[r] \cap Ker(\pi_q - [q])$ and $P \in \mathbb{G}_1 = E[r] \cap Ker(\pi_q - [1])$. Then $f_{T_i,Q}^{norm}(P)$ define the generalized Ate pairing [19]. We gives two examples where the Miller loop can also reach $r^{1/\varphi(k)}$. In these examples, the new defined pairings have the Miller loop as short as in [12]. It should be pointed out that our idea is inspired by [12]. Using Theorem 1, we can define more pairings than before.

Example 1. Let *E* be B-N curves over \mathbb{F}_p in [3] with k = 12. Also $p = 36u^4 + 36u^3 + 24u^2 + 6u + 1$ and $r = 36u^4 + 36u^3 + 18u^2 + 6u + 1$.

According to the main result of [19], we have

$$- T_1 = 6u^2$$

$$- T_{10} = 36u^3 + 18u^2 + 6u + 2$$

$$- T_{11} = 36u^3 + 30u^2 + 12u + 3$$

Also, note that all $f_{T_i,Q}^{norm}$ give bilinear pairings, which is called the Ate_i pairing. Let e_1 , e_2 and e_3 be the pairing $f_{T_1,Q}^{norm}$, $f_{T_{10},Q}^{norm}$ and $f_{T_{11},Q}^{norm}$ respectively. Using Theorem 1, we can define a new pairing $e = e_1^{-2} e_2^{-1} e_3$.

Since $T_{11} = T_{10} + 2T_1 + \lambda$ where $\lambda = (-2)T_1 + (-1)T_{10} + T_{11} = 6u + 1$, we easily have

$$\begin{split} (f_{T_{11},Q}^{norm}) = & (f_{T_{10},Q}^{norm} f_{2T_{1}+\lambda,Q}^{norm} \cdot \frac{l_{T_{10}Q,T_{1}Q}^{norm}}{v_{T_{11}Q}^{norm}}) \\ = & (f_{T_{10},Q}^{norm} \cdot (f_{T_{1},Q}^{norm})^{2} \cdot f_{\lambda,Q}^{norm} \frac{l_{T_{10}Q,T_{1}Q}^{norm}}{v_{2T_{1}Q}^{norm}} \cdot \frac{l_{2T_{1}Q,\lambda_{Q}}^{norm}}{v_{(2T_{1}+\lambda)_{Q}}^{norm}} \frac{l_{T_{10}Q,T_{1}Q}^{norm}}{v_{T_{11}Q}^{norm}}). \end{split}$$

This shows that

$$(\frac{f_{T_{10},Q}^{f_{norm}}}{(f_{T_{10},Q}^{norm} \cdot (f_{T_{1},Q}^{norm})^2)}) = (f_{\lambda,Q}^{norm} \frac{l_{T_{1Q},T_{1Q}}^{norm}}{v_{2T_{1Q}}^{norm}} \cdot \frac{l_{2T_{1Q},\lambda_Q}^{norm}}{v_{(2T_{1}+\lambda)Q}^{norm}} \frac{l_{T_{10},T_{1Q}}^{norm}}{v_{T_{11}Q}^{norm}})$$

Therefore, we can see that e indeed defines a new pairing and also e has its explicit expression

$$f_{\lambda,Q}^{norm} \frac{l_{T_1Q,T_1Q}^{norm}}{v_{2T_1Q}^{norm}} \cdot \frac{l_{2T_1Q,\lambda Q}^{norm}}{v_{(2T_1+\lambda)Q}^{norm}} \frac{l_{T_1Q,T_1Q}^{norm}}{v_{T_{11}Q}^{norm}}.$$

So the Miller loop of the new pairing e is $\lambda = 6u + 1$. Since $\lambda = 6u + 1$, we also enable that the Miller loop of the new pairing e reaches $r^{1/\varphi(k)}$ similar to [12].

Example 2. The pairing-friendly curves from [11] for k=16 with a ρ -value of 5/4 have the following parametrization. $r=u^8+48u^4+625$ and $t=\frac{1}{35}(2u^5+41u+35)$. Note that

$$-T_1 = \frac{1}{35}(2u^5 + 41u) \pmod{r}$$
$$-T_5 = \frac{1}{35}(u^5 + 38u) \pmod{r}$$

Then for $P \in G_1$ and $Q \in G_2$ in the generalized Ate pairing, we see that $e_1(Q,P) = f_{T_1,Q}^{norm}(P)^{(q^k-1)/r}$ and $e_2(Q,P) = f_{T_5,Q}^{norm}(P)^{(q^k-1)/r}$ gives two bilinear pairings. Therefore, $e = e_1^{-1}e_2^2$ defines a new pairing with the Miller loop $\lambda = (-1)T_1 + T_5 = u$ according to lemma 2. Also e has its explicit expression $e = (f_{u,Q}^{norm} \frac{l_{T_1Q,uQ}}{v_{2T_5Q}})^{(q^k-1)/r}$. Note that the Miller loop u also reaches $r^{1/\varphi(k)}$.

5 Conclusions and Further Work

In this paper, we suggest that the set of all pairings be a multiplicative group. Using this fact, some new pairings are introduced. It is possible that our observation can be applied into other aspects of pairing-based cryptosystems. It is an open problem how to construct a pairing on elliptic curves with the Miller loop shorter than $r^{1/\varphi(k)}$.

References

- P.S.L.M. Barreto, S. Galbraith, C. ÓhÉigeartaigh, and M. Scott. Efficient pairing computation on supersingular Abelian varieties. *Designs, Codes and Cryptography*, volume 42, number 3. Springer Netherlands, 2007.
- P.S.L.M. Barreto, H.Y. Kim, B. Lynn, and M. Scott. Efficient algorithms for pairing-based cryptosystems. Advances in Cryptology-Crypto'2002, volume 2442 of Lecture Notes in Computer Science, pages 354-368. Springer-Verlag, 2002.

- P.S.L.M. Barreto and M. Naehrig. Pairing-friendly elliptic curves of prime order. Proceedings of SAC 2005-Workshop on Selected Areas in Cryptography, volume 3897 of Lecture Notes in Computer Science, pages 319-331. Springer, 2006.
- 4. I. Duursma, H.-S. Lee. Tate pairing implementation for hyperelliptic curves y² = x^p x + d, Advances in Cryptology-Asiacrypt'2003, volume 2894 of Lecture Notes in Computer Science, pages 111-123. Springer-Verlag, 2003.
- D. Freeman. Constructing Pairing-Friendly Elliptic Curves with Embedding Degree 10, Algorithmic Number Theory Symposium ANTS-VII, volume 4076 of Lecture Notes in Computer Science, pages 452-465. Springer-Verlag, 2006.
- G. Frey and H-G. Rück. A remark concerning m-divisibility and the discrete logartihm in the divisor class group of curves. Math. Comp., 62(206):865-874, 1994.
- S. Galbraith, K. Harrison, and D. Soldera. Implementing the Tate pairing, Algorithm Number Theory Symposium ANTS V, volume 2369 of Lecture Notes in Computer Science, pages 324-337. Springer-Verlag, 2002.
- 8. S.D. Galbraith. *Pairings Advances in Elliptic Curve Cryptography*. Cambridge University Press, 2005.
- 9. F. Hess, N.P. Smart and F. Vercauteren. The Eta pairing revisited. *IEEE Transactions on Information Theory*, vol 52, pages 4595-4602, Oct. 2006.
- 10. A. Joux. The Weil and Tate pairings as building blocks for public key cryptosystems. ANTS-5: Algorithmic Number Theory, volume 2369 of Lecture Notes in Computer Science, pages 20-32. Springer-Verlag, 2002.
- 11. E.J. Kachisa, E.F. Schaefer and M. Scott. Constructing Brezing-Weng pairing friendly elliptic curves using elements in the cyclotomic field. Preprint, 2007. Available from http://eprint.iacr.org/2007/452.
- E. Lee, H.-S. Lee, and C.-M. Park. Efficient and Generalized Pairing Computation on Abelian Varieties. Preprint, 2008. Available at http://eprint.iacr.org/2008/040
- 13. S. Matsuda, N. Kanayama, F. Hess, and E. Okamoto. Optimised versions of the Ate and twisted Ate pairings. Preprint, to appear in the 11th IMA International Conference on Cryptography and Coding, 2007. Also available from http://eprint.iacr.org/2007/013.
- 14. V.S. Miller. Short programs for functions on curves. Unpublished manuscript, 1986. Available from http://crypto.stanford.edu/miller/miller.pdf.
- 15. K.G. Paterson. Cryptography from Pairing Advances in Elliptic Curve Cryptography. Cambridge University Press, 2005.
- M. Scott. Faster Pairings Using an Elliptic Curve with an Efficient Endomorphism. Progress in Cryptology - INDOCRYPT 2005, volume 3797 of Lecture Notes in Computer Science, pages. 258-269. Springer-Verlag, 2005.
- 17. M. Scott. Implementing cryptographic pairings. The 10th Workshop on Elliptic Curve Cryptography, 2006.

- 18. J.H. Silverman, *The arithmetic of elliptic curves*. Number 106 in Graduate Texts in Mathematics. Springer-Verlag, New York, 1986.
- 19. C. Zhao, F. Zhang and J. Huang. A Note on the Ate Pairing. Preprint, 2007. Available at http://eprint.iacr.org/2007/247
- 20. C. Zhao, F. Zhang and J. Huang. Speeding up the Bilinear Pairings Computation on Curves with Automorphisms. Unpublished. 2006. Available at http://eprint.iacr.org/2006/474.