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Abstract

Program hardening for secure execution in remote untrusted environment is an important yet elusive
goal of security, with numerous attempts and efforts of the research community to produce secure solu-
tions. Obfuscation is the prevailing practical technique employed to tackle this issue. Unfortunately, no
provably secure obfuscation techniques currently exist. Moreover, Barak et al. in [1], showed that not
all programs can be obfuscated.

We present a rigorous approach to program hardening, based on a new white box primitive, the
White Box Remote Program Execution (WBRPE), whose security specifications include confidentiality
and integrity of both the local and the remote hosts. WBRPE can be used for many applications, e.g.
grid computing, Digital Rights Management, mobile agents.

We construct a specific program such that if there exists a secure WBRPE for that program, then
there is a secure WBRPE for any program, reducing its security to the underlying WBRPE primitive.
This is the first proof by reduction among two white box primitives and it introduces new techniques
that employ program manipulation.

1 Introduction

The goal of enabling secure execution of programs in remote untrusted environment is of high theoretical
as well as practical importance, and is a basic requirement for many applications, such as Digital Rights
Management (DRM), grid computing, cooperative computing, e.g. file resource sharing (preventing free
riders). This issue has received substantial attention during the last decade in the context of mobile code,
along with proposals for solutions, targeted at addressing the problem in question by employing software or
hardware based techniques, consequently producing a Trusted Computing Base, which essentially provides a
secure haven on which the program is executed.

In hardware based approach, an additional hardware, that constitutes a secure trusted platform, is sup-
plied, e.g. smartcards or trusted third parties, on which the secret data can be stored and the computations
involving it performed. Hardware based approach produces solutions in black box security model, in which
the attacker cannot access and observe the internals of the hardware, e.g. secret keys inside it, and can only
control the input/ output behaviour of the system.

Applications that employ hardware benefit from high security promises. For instance, the deployment of
smartcards in Digital Rights Management (DRM) solutions is extensive. DRM techniques enable software
vendors and publishers to protect their intellectual property and to prevent software piracy, e.g. the smart-
card is used to activate the licensing of a protected application. The secret is located inside the smartcard
and never leaves it, such that all the computations are performed inside, consequently producing black box
attack model. Various solutions based on the existence of a trusted third party were proposed, e.g. [2], where
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they employ a trusted third party which performs computations on behalf of the mobile code but does not
learn anything about the encrypted computation.

Although it seems that an additional hardware addresses the associated security issues in a best possible
way providing provable security, there are disadvantages, which are inherent in high cost, unreliability and
inflexibility of the hardware. In addition the security completely depends on the trust relationship with
the additional hardware, e.g. trusted third party, thus making it inapplicable to many useful scenarios.
Furthermore, in practice hardware alone is often not enough, since even hardware based solutions rely on
software to accomplish the overall security, e.g. according to the DRM example above, the security of the
intellectual property protected with a smartcard, relies on the security and the reliability of the software
installed on the system, which is required to constantly probe the smartcard in order for the protected
application to operate.

Therefore, we seek software only techniques for secure execution of programs in a remote untrusted
environment. In addition to practical importance, understanding the level of security that can be attained
by employing software only techniques is intriguing on its own, especially due to the belief that it is difficult
to attain a reasonable level of security by employing software only approach, let alone a level of security
comparable to black box security.

Specifically we investigate the white-box security model, which essentially means that once the program
leaves the site of the originator, it is completely exposed to the attacker. Thus, in addition to the attacker’s
ability to controll the input/ output behaviour of the system, the code and data can be observed and
manipulated. White box security employs software hardening techniques to withstand attacks in remote
untrusted environments and aims to emulate the black box notion of security, against attackers which have
full access to the software.

The natural question that emerges from the distinction between the two security models is “can we
provide provable security in the white box security model?”. A step towards obtaining provable security is
to follow the cryptographic principles, initiating with the Kerkhoff principle: the secrecy should be in the
keys but not in the algorithm. However, in white box model, as opposed to the black box, the attacker
has access to the code and the data containing the secret keys. Can the software be hardened to hide the
secret keys? The technique employed to harden the software should be known to the attacker, and secrecy
has to rely on computational limitations of the attacker, like in black box security. To answer we recall the
approaches employed to establish (provable) security in the black-box model:

• The unconditional proof of security, e.g. One Time Pad, is the best security one can hope for and holds
for any attacker with infinite resources. However, unconditional security has limited applicability.

• Establishing security by failure to cryptanalyse. Practical building blocks are standardised by with-
standing extensive cryptanalysis efforts, e.g. block ciphers [3] such as AES [4], DES [5].

• Proofs of security of one scheme by reduction to another scheme (building block).

To attain provable security, schemes that employ software hardening techniques should be based on white-box
building blocks. Following the same idea as in black box, research efforts should be focused on standardizing
practical building blocks by failure to cryptanalyze, and on constructing more advanced schemes on top of
these building blocks, reducing the security of the schemes to the security of the (weaker) underlying building
blocks.

Therefore, basing white box security on rigorous foundations, and the investigation of white box building
blocks, is of theoretical and of practical importance and motivates our efforts to identify candidates for white
box building blocks.

1.1 Obfuscation

Obfuscation is a candidate building block for white box security, which received substantial attention from
theoreticians and practitioners. An obfuscator O is an efficient compiler that transforms a program P into
a hardened program O(P ), which pertains the functionality of the original program but is hard to analyse
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and to reverse engineer. Obfuscation is the prevailing practical approach to software hardening, and was
also investigated by theoreticians. However in both theory and practice, obfuscation exhibited insufficient
results.

The impossibility result by Barak et al. [1] states that there does not exist a general obfuscator for any
program. Although there are some positive results, e.g. Wee [6], these are restricted and do not suffice for
practical applications.

In addition, practitioners cannot provide a unequivocal opinion regarding the security of obfuscators.
Experts in practical obfuscation, e.g. Collberg [7], cannot say whether obfuscators can protect even simple
programs, e.g. to hide intermediate state of modular programs, since an obfuscated program may leak
information about the computation that it performs. A special case of obfuscation applied to hide the secret
keys inside encryption programs is White Box Cryptography (WBC) [8, 9]. So far, proposed white box
cryptography solutions were subsequently broken [10, 11]. For a discussion of related works on obfuscation
see Appendix 7. The WBRPE scheme we present can be seen as an extension of white-box cryptography.

1.2 White Box Remote Program Execution (WBRPE)

Since existing obfuscators do not provide the required level of security, we need alternative white-box security
building blocks. In this work, we propose the White Box Remote Program Execution (WBRPE) scheme, as
a candidate for a white box building block. WBRPE can be employed to facilitate a variety of applications,
e.g. grid computing and public online databases, and Digital Rights Management (DRM) applications.

In Remote Program Execution, programs are sent by a local host (a.k.a. the originator) for execution on a
remote host, and possibly use some data available to the remote host; see Figure 1. The local and the remote
hosts may not trust each other, and since the local host loses all control over the program, hence security
issues need to be dealt with. In particular these include confidentiality and integrity of input programs
supplied by the local host and confidentiality of inputs provided by the remote host.

We motivate the introduction of the WBRPE scheme by presenting two trivial solutions to this setting.
One trivial solution, that provides confidentiality and integrity of the input programs, is to execute the
program on the originator’s site and have the remote host transfer the data to the local host. However, this
imposes a heavy burden on the network, and increases the computation time to completion. In addition this
does not protect the confidentiality of the remote input, e.g. a private database, such as [12].

The other trivial solution assumes that the remote host has an access to a black box, e.g. a smartcard.
The local host will encrypt the program; the black box has the corresponding encryption/ decryption key
pair and can therefore decrypt the program, compute the result of the program on the input supplied by the
remote host, encrypt the result and return the response to the remote host, which forwards it to the local
host. Furthermore, to prevent forgery of the input programs or of the result, the local host and the black
box may employ digital signatures to verify the input programs and to sign the result of the computation.
In addition, the black box can validate the input programs before execution, to prevent execution of invalid
programs, e.g. that attempt to infer unauthorised or secret information about the remote input.

The WBRPE should satisfy similar requirements, employing software only techniques without assuming
secure hardware, i.e. trusted third party or smartcards. The WBRPE scheme is composed of three efficient
procedures, generation, hardening and unhardening, see Figure 1:

• The generation procedure produces two keys, (hardening and verification key) and a program, which
we call the obfuscated virtual machine OVM.

• The hardening key is used by the hardening procedure to harden, e.g. encrypt and/ or authenticate,
the input programs.

• The obfuscated virtual machine receives the hardened input program along with input from the remote
host. It decodes the hardened program, e.g. decrypts and/ or validates it, and returns the result of
the program applied to the inputs. The result is encoded, e.g. encrypted and/or authenticated (within
the OVM).
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• The unhardening procedure unhardens, e.g. decrypts and validates the result received from the remote
host.

In most of this paper we assume that the hardening key is a shared secret between the remote host and a
particular local host. In some applications it is convenient to use a public hardening key, e.g. allowing all
users to send the agents to the remote server; this extension is presented in Section 2.4.

1.3 White Box RPE for ALL Programs

The negative result by Barak et al. [1], shows that an obfuscator for all programs does not exist, however
this result does not imply that there cannot be alternative hardening schemes which would work for any
program. In particular, is there a WBRPE for all programs?

To address this question we present a specific program, denoted UP (for universal program), with param-
eter K (key). Given a WBRPE scheme that works for the family of universal programs {UPK}, we present a
’Universal’ WBRPE scheme that works for any program, i.e. provides the security specifications of WBRPE
for any input program.

We establish the security of the Universal WBRPE scheme by reducing to the security of the underlying
WBRPE scheme. A reduction is a basic technique in cryptography; we believe this to be the first proof by
reduction between two white box primitives. White box reductions differ in several aspects from the classical
cryptographic black box reductions, most notably in the way we construct and represent programs as strings
and introduce code manipulation techniques. These reduction techniques can be applicable in other works
in white box security.

Organisation

The rest of this work is organised as follows. In section 2 we introduce the definition of the WBRPE scheme
along with the security specifications. In section 3 we present a Universal WBRPE construction, and prove
its security for each security specification defined for WBRPE scheme in Section 2. In Section 5, we present
a construction of the Universal WBRRPEwV that employs program validation to provide privacy of the
remote inputs, and prove its security. We then review several applications of WBRPE 6. In Section 7
we review related works and Section 8 provides concluding remarks and open questions that are yet to be
addressed.

2 White-Box RPE Definitions

A WBRPE scheme W is comprised of three efficient algorithms, (G,H,U) for generation, hardening and
unhardening, respectively. The generation procedure G generates the obfuscated virtual machine OVM, the
hardening key hk and the verification key vk. The hardening procedure applied on some input program,
computes the hardened program, e.g. encryption and/ or authentication of the original program, and
produces two outputs, the hardened program and a one time unhardening key. The remote host passes
the hardened program, along with the remote input a to the OVM for execution. The OVM has the required
keys, and can therefore extract and evaluate the program. Next, the OVM computes the result of P on a, and
returns the (hardened) output. The local host, upon receipt the hardened output, applies the unhardening
procedure with the unhardening key, to obtain the final result of the computation.

Given a turing machine P ∈ TM, let P (a) denote a value of the computation of P on a. We introduce
a time parameter, to hide the time that it takes each program to execute, and the length parameter to hide
the length of the result. Let Pt,l(a) = Pt(a)[1...l] denote an l bit value of the t step computation of P on
input a. The definition follows.

Definition 2.1 A White Box RPE (WBRPE) scheme W for programs family Pkk∈N consists of a tuple
W = 〈G,H,U〉 of PPT algorithms satisfying the following conditions:
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For all (hk, vk,OVM) R← G(1k), a ∈ {0, 1}∗, P ∈ TM, t, l ∈ N and (c, uk)← Hhk(P ), holds:

• OVM ∈ PPT
• Pt,l(a) = Uuk,vk(OVM(c, a, t, l))

Hhk

a,t,l

Hhk(P)

OVM(Hhk(P),a,t,l)

G(1k)

Local Host

Remote Host

OVM

Trusted Third Party

P

y

uk

hk OVM

Decode P

Encode y

y=Pt,l(a)

U

Figure 1: WBRPE scheme.
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y

uk
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V,tV

Decode P

y=Pt,l(a)

Encode yU

Figure 2: WBRPE scheme with privacy.

2.1 Indistinguishability of the Local Inputs Specification

The first security specification we consider is to hide the contents of the input programs from the remote host.
To ensure local inputs privacy we employ a variation of the indistinguishability experiment for encryption
schemes [13]. We specify the indistinguishability definition w.r.t. a PPT algorithm A = (A1, A2), denoting by
HO the hardening oracle which the algorithm A obtains access to, during the indistinguishability experiment.
The experiment is described in detail in Figure 3 we now give an informal definition.

As its first step the experiment generates the keys and the obfuscated virtual machine. Next it invokes
the adversarial algorithm and provides it with an oracle access to the hardening functionality for its hard-
ening queries, passes it the obfuscated virtual machine and the public verification key. Each application
of the hardening procedure generates a hardened program and a one time unhardening key. Eventually
the adversary outputs two programs of equal size. The experiment tosses a bit b and one of the programs
is subsequently hardened. During the second phase the adversary keeps an oracle access to HO, obtains
the hardened challenge program and has to distinguish. If the adversary guesses correctly, the experiment
returns 1, i.e. the adversary won, and otherwise returns 0, the adversary lost.

In the Definition 2.2 the experiment obtains in an input a sequence of random coins sequence r, which
it splits between the random coins used by the generation procedure G, the pair of PPT algorithms A =
(A1, A2), the bit b chosen by the experiment and the hardening procedure applied by the experiment to
generate the challenge. Therefore given the same r the execution of the experiment is a deterministic
function of the inputs.

Definition 2.2 (Indistinguishability) Let W = (G,H,U) be a WBRPE scheme and let A = (A1, A2) be
a pair of PPT algorithms. For k ∈ N, r ∈ {0, 1}∗ we define the advantage of the adversary A in the
WB − IND − CPA experiment as follows:

AdvWB−IND−CPA
W,A (k) = 2 ∗ Pr[ExpWB−IND−CPA

W,A (k; r) = 1]− 1

Where the probabilities are taken over r and the experiment ExpWB−IND−CPA
W,A (k; r) is defined in Figure

3. A WBRPE scheme W is WB − IND − CPA secure if the advantage function AdvWB−IND−CPA
W,A (·) is

negligible over all PPT adversarial algorithms A.
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ExpWB−IND−CPA
W,A (k; r){

(rG ||rHO||rA1 ||rb||rH||rA2)← r

〈hk, vk,OVM〉 ← G(1k; rG)

(P0, P1, s)← A
HO(·,hk;rHO)
1 (1k,OVM, vk, rA1)

b← rb

(cb, ukb)← Hhk(Pb; rH)

b′ ← A
HO(·,hk;rHO)
2 (cb, s; rA2)

if ((b = b′) ∧ (|P0| = |P1|)){
return 1

}
return 0

}

Figure 3: WBRPE indistinguishability experiment.
Where HO(P, hk) = Hhk(P ) is the hardening oracle.

ExpWB−UNF−OUT
W,A (k; r){

(rG ||rHO||rA)← r

〈hk, vk,OVM〉 ← G(1k; rG)

(ω, P, t, uk)← AHO(·,hk;rHO)(1k,OVM, vk; rA)

y ← Uuk,vk(ω, P, t)

if (y = ⊥){
return 0

}
if (∀a ∈ {0, 1}∗, y 6= Pt,|y|(a)){

return 1

}
return 0

}

Figure 4: WBRPE output unforgeability experiment.

2.2 Unforgeability Specification

In typical scenarios, e.g. shopping mobile agent, the adversary may try to change the programs sent by the
originator to programs of his choice, such that instead of looking for the best offer the agent purchases the
most expensive item. Further, the adversary may try to change the result of the computation to some other
result. Our goal is to circumvent adversarial attempts to forge the result output by the scheme, and this is
achieved by the unforgeability specification.

We extend the definition of WBRPE scheme, such that the unhardening procedure U can obtain additional
optional parameters in an input, when validation of the inputs is required. More specifically, the local host
can validate the result, i.e. the result of the computation is indeed of the input program P that it supplied
for the specified number of steps t. To perform validation, the unhardening procedure U will use the public
verification key vk. The implication is that everyone can validate the result, but one the possessor of the
secret unhardening key uk can obtain the final result. The validation of the result is optional and can only
be performed when P and t are supplied in addition to ω, i.e. the output of OVM. The validation is required
if the result of the program that the originator sends for execution is forwarded to some other recipient. To
verify the integrity of the result the recipient can apply the unhardening procedure, on ω, an input program
P , and the t that was used for programs execution. The unhardening procedure uses the verification key vk,
that is public and the unhardening key uk, which can be transfered securely by the originator.
We consider two types of forgery of WBRPE scheme W : in particular, we introduce the notion of output
forgery, i.e. the result of the computation is an incorrect output and could not have been generated by the
input program on any remote input, and of program forgery. Below, we give an intuitive description of the
unforgeability experiment, followed by the presentation of both types of forgery.

The experiment applies the generation procedure and obtains hardening key, verification key and OVM.
It then invokes the adversary with an oracle access to hardening functionality and the OVM and the verifi-
cation key in an input. Eventually the adversary outputs the hardened result of the computation ω, input
program P , the number of steps t and the unhardening key uk. The experiment applies the unhardening
procedure U on ω, P and t, and obtains the result of the computation y. If y is valid the experiment checks
if it is a forgery and if yes, returns 1, i.e. the adversary successfully generated a forgery, otherwise returns
0, the adversary failed.
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2.2.1 Output Forgery

Consider a public online database, where a user queries the database with some query, and the adversary
changes the result of the computation to some other value of his choice. We prevent this using the “correct
output” specification.

This type of forgery means that the output is not a result of the computation of the input program on
any remote input. Specifically, the adversary successfully generated an output tuple (ω, P, t, uk), s.t. the
result y ← Uuk,vk(ω) could not have been generated by the hardened program P , i.e. ∀a y 6= Pt,|y|(a).

Definition 2.3 (Unforgeability - Correct Output) Let W = (G,H,U) be a WBRPE scheme and let A be a
PPT algorithm. For k ∈ N we define the advantage of the adversary A in the unforgeability experiment as
follows:

AdvWB−UNF−OUT
W,A (k) = Pr[ExpWB−UNF−OUT

W,A (k) = 1]

Where ExpWB−UNF−OUT
W,A (k) as defined in Figure 4. A WBRPE scheme W is WB − UNF −OUT secure,

if the advantage AdvWB−UNF−OUT
W,A (·) is a negligible function for all PPT adversarial algorithms A.

2.2.2 Program Forgery

In this type of forgery, the legitimate party never queried the hardening oracle with a program for which
the result was generated. Instead, the adversary replaces the authentic hardened program with some other
program (replay or a forgery). We consider two variants:

• The adversary successfully generated a new unhardening key uk, which was not output by the hardening
oracle. Namely, it generated a tuple (ω, P, t, uk), s.t. y ← Uuk,vk(ω) and y = Pt,|y|(a) for some a, t, l.

• The adversary successfully generated an output (ω, P, t, uk) s.t. y ← Uuk,vk(ω), and y = Pt,|y|(a),
where the unhardening key uk was generated for a different program P ′. In both cases, the adversary
did not perform a hardening oracle query on P .

Let UK denote the set of second argument (uk) of HO responses and let P [uk] be an array containing the
queries submitted by the adversary to the hardening oracle during the experiment, indexed by a correspond-
ing key uk generated by the oracle as a reply.

Definition 2.4 (Unforgeability - Correct Program) Let W = (G,H,U) be a WBRPE scheme and let A be
a PPT algorithm. For k ∈ N, r ∈ {0, 1}∗ we define the advantage of the adversary A in the unforgeability
experiment as follows:

AdvWB−UNF−PRG
W,A (k) = Pr[ExpWB−UNF−PRG

W,A (k; r) = 1]

Where ExpWB−UNF−PRG
W,A (k; r) is defined in Figure 5. A WBRPE scheme W is WB−UNF −PRG secure,

i.e. provides output integrity, if the advantage AdvWB−UNF−PRG
W,A (·) is a negligible function for all PPT

adversarial algorithms A.

2.3 White Box RPE with Validation (WBRPEwV)

In various scenarios, e.g. when the remote input is a database that contains private medical or personal
information, it is necessary to limit the information about the remote input that the local host may obtain.
To address this, we allow the owner of the remote input to specify the set of valid queries on the database
during the generation phase of the scheme, thus the obfuscated virtual machine is confined to executing valid
programs only. Defining the valid queries set, also prevents manipulation of the database by the adversary,
i.e. deleting or modifying entries.
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ExpWB−UNF−PRG
W,A (k; r){

(rG ||rHO||rA)← r

UK = ∅
〈hk, vk,OVM〉 ← G(1k; rG)

(ω, P, t, uk)← AHO(·,hk;rHO)(1k,OVM, vk; rA)

y ← Uuk,vk(ω, P, t)

if (y 6= ⊥){
return 0

}
if ((uk /∈ UK) ∨ (P /∈ P [uk])){

return 1

}
return 0

}

Figure 5: WBRPE program unforgeability specification.

Oracle HO(P, hk){

〈c, uk〉 ← Hhk(P )

P [uk]← P

UK = UK ∪ {uk}
return 〈c, uk〉

}

Figure 6: The hardening oracle HO used in WB−UNF−
PRG experiment.

To restrict the execution to valid programs, we introduce the following supplementary parameters to the
definition 2.1 of WBRPE: the validation program V ∈ TM and the number of steps tV to execute V , which
are given to the trusted party that performs the generation phase. On input a program P ∈ TM and a
validation parameter σ ∈ {0, 1}∗, VtV ,1(P, σ) ∈ {0, 1} returns 1 if the program is valid and 0 otherwise. The
OVM will only execute valid programs. In addition, the signature of the hardening procedure H is modified
and along with the input program P , it will also receive the validation parameter σ. The definition below:

Definition 2.5 (WBRPE with Validation) A white box RPE with Validation (WBRPEwV) scheme W ,
consists of a tuple 〈G,H,U〉 of PPT algorithms satisfying the following conditions:

For all 〈hk, vk,OVM〉 ← G(1k, V, tV ), s.t. V ∈ TM, tV ∈ N, a ∈ {0, 1}∗, P ∈ TM, σ ∈ {0, 1}∗, t, l ∈ N, and
(c, uk)← Hhk(P, σ), holds:

• OVM ∈ PPT
• if (VtV ,1(P, σ) = 1) then Pt,l(a) = Uuk,vk(OVM(c, a, t, l))

The WBRPEwV scheme provides the indistinguishability and the unforgeability specifications that were
defined for the WBRPE scheme, and also the privacy of remote inputs specification.

2.3.1 Privacy of Remote Inputs Specification

In the definition of the privacy specification below we require that the adversary gains no additional informa-
tion about the remote input than what is already a-priori known to it, given the result of the computation
and access to the scheme. We formalize this using the simulation paradigm: the WBRPE scheme W is
semantically secure w.r.t. privacy of remote inputs, if everything an adversary can learn about the remote
input given an access to the scheme for the computation of the result, the simulator could learn without any
access to the scheme, by resorting to the help of a trusted third party to execute and validate programs on
its behalf.
In the definition below the function f is the information about the remote input that the adversary attempts
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to learn and the function h represents the adversary’s a-priori knowledge regarding the remote input. We
denote by {REMk}k∈N the probability ensemble representing the distribution of the remote inputs and there
exists a single polynomial p(·) such that for all sufficiently large k’s, |REMk| ≤ p(k), which essentially im-
plies that there exists a polynomial bound on the length of the strings in this distribution. The adversary’s
inability to learn information about the remote input should hold for any distribution of remote inputs.

In the definition of privacy of remote inputs we present two environments, the white box environment
which emulates the the real execution, and the black box environment that emulates the ideal execution,
such that the black box environment provides no access to the scheme but simulates a trusted third third
party which carries out the computations and the validations of the input programs on behalf of the local
host, whereas the white box environment simulates an adversary which exploits the scheme to gain some
additional information about the remote input. The advantage that the adversary gains in the white box,
i.e. real, environment should be almost the same, as the advantage that the simulator gains in the black
box, i.e. ideal, environment.
The adversary may have, a possibly limited, control over the remote input, e.g. consider a scenario where
the remote input supplied by the executing remote host is a database. Clearly, the adversary may insert or
update entries in the database. We model this by introducing the aADV parameter, which is the part of the
remote input that is under the control of the adversary.

Definition 2.6 (Privacy of Remote Inputs) Let WV = (GV,HV,UV) be a WBRPEwV scheme. Let A =
(A1, A2, A3) and S = (S1, S2) be PPT algorithms, let {REMk}k∈N be a polynomial time sampleable random
variable and let h : 1k ×REMk → {0, 1}∗ be a polynomial time computable function and f : 1k ×REMk →
{0, 1}∗ some function and p(·) positive polynomial. For k ∈ N we define the advantage of the adversary in
the privacy of remote inputs experiment as follows:

AdvWB−PRV
WV,A (k) =

∣∣∣Pr[ExpWB−PRV
WV,A (k,REMk, h) = f(1|REMk|, REMk)]−

−Pr[ExpBB−PRV
A1,S (k,REMk, h) = f(1|REMk|, REMk)]

∣∣∣
Where ExpWB−PRV

WV,A (·) and ExpBB−PRV
A1,S (·) are defined in Figures 7 and 8. A WBRPEwV scheme WV is

WB−PRV secure if the advantage function AdvWB−PRV
WV,A (·) is negligible for all PPT adversarial algorithms

A, every polynomial time sampleable random variable {REMk}k∈N, every polynomial time computable func-
tion h : 1k ×REMk → {0, 1}∗ and every function f : 1k ×REMk → {0, 1}∗.

2.3.2 Indistinguishability of Local Inputs with Validation Specification

This definition is similar in nature to the Definition 2.2, with the following modifications, the algorithm A1

along with two challenge programs outputs two validation parameters for each program, s.t. the validation
parameters are equal in length. The experiment tosses a bit and the corresponding input program along with
the validation parameter are hardened by the experiment and are given to the algorithm A2 in an input,
which has to distinguish which of the challenge pair (program and validation parameters) was hardened.
The formal definition is presented below, and for completeness we also present the indistinguishability with
privacy experiment 9, which differs from the indistinguishability experiment defined in 3 in the validation
parameter σ.

Definition 2.7 (Indistinguishability with Validation) Let WV = (GV,HV,UV) be a WBRPEwV scheme
and let A = (A1, A2) be a pair of PPT algorithms. For k ∈ N we define the advantage of the adversary A in
the WB − IND − CPA experiment as follows:

AdvWB−IND−CPA
WV,A (k) = 2 ∗ Pr[ExpWB−IND−CPA

WV,A (k) = 1]− 1

Where the probabilities are taken over the coin tosses of A, the scheme WV and the experiment ExpWB−IND−CPA
WV,A (k)

as defined in Figure 9. A WBRPE scheme WV is WB − IND − CPA secure if the advantage function
AdvWB−IND−CPA

WV,A (·) is negligible over all PPT adversarial algorithms A.

9



ExpWB−PRV
WV,A (k,REMk, H){

a
R← REMk

τ ← H(1|a|, a)

(V, tV , s)← AREMk
1 (1k, τ)

(hk, vk,OVM)← GV(1k, V, tV )

(c, aADV , t, l, uk, s)← AREMk
2 (OVM, hk, vk, s)

a← (a||aADV )

ω ← OVM(c, a, t, l)

return AREMk
3 (ω, uk, s)

}

Figure 7: WBRPE WB − PRV privacy experiment.

ExpBB−PRV
A1,B (k,REMk, H){

a
R← REMk

τ ← H(1|a|, a)

(V, tV , s)← AREMk
1 (1k, τ)

(P, σ, aADV , t, l, s)← SREMk
1 (V, tV , τ, s)

a← (a||aADV )

if (VtV ,1(P, σ)){
y ← Pt,l(a)

}
else {

y ← ⊥
}
return S2(y, s)

}

Figure 8: WBRPEwV BB − PRV privacy experiment.

2.3.3 Unforgeability with Validation Specification

The definitions of output and program unforgeability specifications of the WBRPEwV scheme are similar
to the ones defined for WBRPE scheme. Further, since the validation parameter σ is only of importance
when input to OVM along with the program P , it has no effect neither on the output nor on the program
forgeries. Therefore the unforgeability experiments are identical to the ones defined for WBRPE scheme,
in Figures 4, 5. The only difference is introduced in the definition of the hardening oracle of the program
forgery experiment, where an adversary can forge the pair (P, σ). Intuitively, if the adversary replaces (P, σ)
with an invalid P for σ then the validation will fail. Therefore as long as the supplied σ is valid, we do not
consider this a forgery. Therefore, both the correct output and the correct program requirements hold for
WBRPEwV definition.

Definition 2.8 (Unforgeability with Validation - Correct Output) Let WV = (GV,HV,UV) be a WBRPEwV
scheme and let A be a PPT algorithm. For k ∈ N we define the advantage of the adversary A in the output
unforgeability with validity experiment similarly to definition 2.3 and the experiment ExpWB−UNF−OUT

WV,A (k)
is defined analogously to the unforgeability experiment of the WBRPE scheme in Figure 4.

Definition 2.9 (Unforgeability with Validation - Correct Program) Let WV = (GV,HV,UV) be a WBR-
PEwV scheme and let A be a PPT algorithm. For k ∈ N, r ∈ {0, 1}∗ we define the advantage of the
adversary A in the program unforgeability with validity experiment similarly to definition 2.4 and the exper-
iment ExpWB−UNF−OUT

WV,A (k) is defined analogously to the unforgeability experiment of the WBRPE scheme
in Figure 5.

2.4 Asymmetric White Box RPE

In the security specifications presented in section 2 we focused on the symmetric WBRPE in which, there
was a shared key hk between the OVM and the local host. This hk key is secret and is employed by the local
host to harden programs and by the OVM to subsequently unharden them for execution. This implies that
there is a unique OVM for every local host. In this section we introduce the WBRPE which supports the

10



ExpWB−IND−CPA
WV,A (k){

〈hk, vk,OVM〉 ← GV(1k)

(P0, σ0, P1, σ1, s)← A
HVO(·,hk)
1 (1k,OVM, vk)

b ∈R {0, 1}
(cb, ukb)← HVhk(Pb, σb)

b′ ← A
HVO(·,hk)
2 (cb, s)

if ((b = b′) ∧ (|P0| = |P1|)){
return 1

}
return 0

}

Figure 9: WBRPEwV indistinguishability experiment;
HVO(P, σ, hk) = HVhk(P, σ) is the hardening oracle.

extended definition where the hardening key is public. The definition of the signature of WBRPE remains
the same, and the modification is introduced in the definitions of security specifications, where the attacking
algorithm obtains the public hardening key hk in an input. In the asymmetric WBRPE the hardening key
hk is public, and there is a corresponding unhardening key embedded inside the OVM. Namely, everyone
can harden programs and send to OVM for execution, and only the OVM can unharden the programs, which
implies the asymmetry. The obvious advantage of the asymmetric WBRPE is in its flexibility, i.e. new hosts
can join the system without any effort, e.g. a marketplace scenario where everyone can work with one central
remote host and the same OVM.

In the sequel we introduce a flag ϕ ∈ {PK,SK}, and when ϕ = PK we refer to an asymmetric WBRPE,
while ϕ = SK denotes a symmetric WBRPE. This introduces several modifications in the implementation of
indistinguishability and unforgeability security specifications. More specifically when ϕ = PK the adversary
receives the public hardening key hk in an input and can harden the programs by itself.

Definition 2.10 (Indistinguishability) Let W = (G,H,U) be a WBRPE scheme and let A = (A1, A2) be a
pair of PPT algorithms. For ϕ ∈ {PK,SK} and for k ∈ N we define the advantage of the adversary A in
the WB − IND − CPA− ϕ experiment as follows

AdvWB−IND−CPA−ϕ
W,A (k) = 2 ∗ Pr[ExpWB−IND−CPA−ϕ

W,A (k) = 1]− 1

Where the probabilities are taken over the coin tosses of A, the scheme W and the experiment ExpWB−IND−CPA−ϕ
W,A (k)

is defined in Figure 10. A WBRPE scheme W is WB − IND − CPA− ϕ secure if the advantage function
AdvWB−IND−CPA−ϕ

W,A (·) is negligible over all PPT adversarial algorithms A.

Definition 2.11 (Unforgeability - Correct Output) Let W = (G,H,U) be a WBRPE scheme and let A be
a PPT algorithm. For ϕ ∈ {PK,SK} and for k ∈ N we define the advantage of the adversary A in the
unforgeability experiment as follows

AdvWB−UNF−OUT−ϕ
W,A (k) = Pr[ExpWB−UNF−OUT−ϕ

W,A (k) = 1]

Where Exp
WB−UNF−OUT−ϕ
W,A (k) is defined in Figure 12. A WBRPE scheme W is WB − UNF − OUT −

ϕ secure, i.e. provides input programs integrity, if the advantage AdvWB−UNF−OUT−ϕ
W,A (·) is a negligible

function for all PPT adversarial algorithms A.
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ExpWB−IND−CPA−ϕ
W,A (k):

〈hk, vk,OVM〉 ← G(1k)

(P0, P1, s)← A
HO(·,hk,ϕ)
1 (1k,OVM, vk)

b ∈R {0, 1}
(cb, ukb)← Hhk(Pb)

b′ ← A
HO(·,hk,ϕ)
2 (cb, s)

If ((b = b′) ∧ (|P0| = |P1|)) return 1 else return
0

Figure 10: The WBRPE indistinguishability experiment
for ϕ.

Oracle HO(P, hk)

if (ϕ = PK)

return (hk)

else

return (Hhk(P ))

Figure 11: The implementation of HO.

ExpWB−UNF−OUT−ϕ
W,A (k)

〈hk, vk,OVM〉 ← G(1k)

(ω, P, t, uk)← AHO(·,hk,ϕ)(1k,OVM, vk)

y ← Uuk,vk(ω, P, t)

if ((y 6= ⊥) ∧ (∀a ∈ {0, 1}∗, y 6= Pt,|y|(a)))

return 1

return 0

Figure 12: The WBRPE output unforgeability experi-
ment. Relevant for symmetric and asymmetric cases.

Let UK denote the set of second argument (uk) of HO responses and let P [uk] be an array containing the
queries submitted by the adversary to the hardening oracle during the experiment, indexed by a correspond-
ing key uk generated by the oracle as a reply.

Definition 2.12 (Unforgeability - Correct Program) Let W = (G,H,U) be a WBRPE scheme and let A be
a PPT algorithm. For k ∈ N we define the advantage of the adversary A in the unforgeability experiment as
follows

AdvWB−UNF−PRG
W,A (k) = Pr[ExpWB−UNF−PRG

W,A (k) = 1]

Where ExpWB−UNF−PRG
W,A (k) is defined in Figure 13. A WBRPE scheme W is WB −UNF −PRG secure,

i.e. provides output integrity, if the advantage AdvWB−UNF−PRG
W,A (·) is a negligible function for all PPT

adversarial algorithms A.

The definition for privacy of remote inputs security specification trivially applies to public hardening key
setting, and is presented in Definition 2.6.

3 Universal WBRPE

In this section we show that if there exists a WBRPE scheme that satisfies the security specifications for a
specific family of universal programs, UP then there exists a Universal WBRPE scheme that satisfies the
security specifications for every program.

12



ExpWB−UNF−PRG
W,A (k)

UK = ∅
〈hk, vk,OVM〉 ← G(1k)

(ω, P, t, uk)← AHO(·,hk)(1k,OVM, vk)

y ← Uuk,vk(ω, P, t)

if ((y 6= ⊥) ∧ ((uk /∈ UK) ∨ (P /∈ P [uk])))

return 1

return 0

Figure 13: The WBRPE program unforgeability exper-
iment. Relevant for symmetric case only (the adversary
obtains an oracle access to the hardening functionality)

Oracle HO(P, hk)

〈c, uk〉 ← Hhk(P )

P [uk]← P

UK = UK ∪ {uk}
return 〈c, uk〉

Figure 14: The hardening oracle HO.

The Universal Program UP

Let Π = (GAE ,AE ,VD) be an authenticated encryption scheme, that performs encryption and authentica-
tion, and decryption and validation of inputs, see Bellare and Rogaway [14]. The universal program UPK

(in Figure 15) is a Turing machine, that is created and instantiated with a secret key K, by the hardening
procedure H. When invoked by the obfuscated virtual machine OVM, the universal program UPK reads a′

of the input tape, and parses it to obtain (a, t, l, cP ), i.e. the remote input, the number of steps of program’s
execution, the length of the output and the encrypted program. UP decrypts and validates cP using the
key K. The UP then runs a virtual machine VM with (P, t, l, a), i.e. the VM runs P on a for t steps, and
halts with an l bit output written on its output tape, and obtains y, the result of the computation. Finally,
UP writes y′ = 〈y, P, t,K〉 on the output tape and halts. The parameters P, t,K are output to allow the
unhardening procedure U ′ to verify that the result of the computation is authentic. The output y′ of UP
is encoded, i.e. encrypted and/ or authenticated, by the OVM (the encoded value returned by the OVM is
denoted ω). The function createUP , given a secret key K, generates and returns the Turing machine UPK ,
represented as a string. The secret key K, is instantiated during the generation and is concatenated to the
constant parts of the string. The parameter K is emphasised to separate it from other constant parameters
of the string.

createUP (K) {

return “read a’

(a, t, l, cP)← parse a’

P← VD(“‖[K]‖”, cP)

y← VM(P, t, l, a)

write y’ = 〈y, P, t, “‖[K]‖”〉”

}

Figure 15: The createUP function, creating the UP for a
given K by string concatenation denoted by ‖.

We show that given a WBRPE for {UPK} we construct a WBRPE for any program securely.
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Theorem 3.1 Let φ ∈ {WB−IND−CPA,WB−UNF−OUT, (WB−UNF−PRG & WB−IND−CPA)}
and let Π = (GAE ,AE ,VD) is an IND − CPA secure authenticated encryption scheme. If W = (G,H,U)
is a φ secure WBRPE scheme for the universal program UP, then W ′ = Univ(W ) is a φ secure WBRPE
scheme for every program.

Proof We prove the theorem for each of the three values of φ, in Lemmas 4.1, 4.11, 4.13 respectively.

Theorem 3.2 Let φ ∈ {WB − IND −CPA,WB − UNF −OUT, (WB − UNF − PRG & WB − IND −
CPA),WB−PRV } and let Π = (GAE ,AE ,VD) be an IND−CPA secure authenticated encryption scheme.
If W = (G,H,U) is a φ secure WBRPE scheme with privacy of remote inputs for the universal program UP,
then W ′ = Univ(W ) is a φ secure WBRPE scheme with privacy of remote inputs for every program.

Proof We prove the theorem for φ = WB − PRV in Lemma 5.1, and present a proof sketch for φ =
(WB − IND − CPA,WB − UNF −OUT,WB − UNF − PRG) in propositions 5.3, 5.4, 5.5.

Given a specific WBRPE scheme W = (G,H,U) for UP we define the Universal WBRPE scheme W ′ =
(G′,H′,U ′) for all programs, such that the scheme W’ is defined as a function of (G,H,U). Specifically, we
present an efficient mapping from any WBRPE scheme for UPd to a Universal WBRPE scheme. If W is a
WBRPE scheme, then W ′ = Univ(W ) is a Universal WBRPE scheme such that Univ(W ) = (G′,H′,U ′). See
Figures 18, 19, 16, for detailed description of Univ(W ). Below is an informal description of the computations
performed by Univ.

3.1 The Generation Procedure

The generation procedure G′ of the Universal WBRPE scheme W ′ applies G of the specific WBRPE W and
obtains the hk and vk, i.e. the hardening and the verification keys, and the OVM. It applies the createOVM ′

function on the OVM of the specific WBRPE scheme to generate the OVM’ of the Universal WBRPE scheme
W ′ and returns the tuple 〈hk, vk,OVM’〉. See Figure 17. The createOVM ′ function generates the OVM’
Turing machine encoded in a string. The OVM’ reads (c, a, t, l) of the input tape and generates an input for
the OVM Turing machine. The OVM decodes cUP and runs the universal program on input a′, for t′ steps
and writes an l′ bit output on its output tape, where t′ comprised of the number of steps performed by UP,
the number of steps the input program P is executed and of the number of steps it takes the virtual machine
to execute P , i.e. bounded by some polynomial p(·) in t. The output length l′ is the length of UP’s output,
which is the tuple 〈y, P, t,K〉.

The OVM’ is comprised of two concatenated strings with the OVM.

3.2 The Hardening Procedure

The input to the hardening procedure H′ of the Universal WBRPE scheme W ′ is a program P supplied by
the local host. The universal hardening procedure first applies the generation procedure of the authenticated
encryption scheme, e.g. in [14], obtains the secret key K and then encrypts the input program P using K,
which results in cP . Next, it generates the universal program, given the secret key K, and hardens it using
H to obtain the pair cUP and uk, subsequently returning the ordered pairs 〈cUP , cP 〉 and 〈uk,K〉. Details
in Figure 18.
We employ authenticated encryption in order to prevent forgery of the input programs, and to ensure that
the input program P of the Universal WBRPE was not modified on transit, and replaced with some other
input program P ′.

3.3 The Unhardening Procedure

The unhardening procedure receives an ω and optional [P, t] in an input. It applies the unhardening procedure
U of the specific WBRPE scheme W on ω, and obtains the tuple (y, P̃ , t̃, K̃). It then checks if the P, t
parameters were supplied, if not it simply returns y, otherwise the validation of the input is also performed.
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G′(1k) {

(hk, vk,OVM)←G(1k)

OVM’← createOVM ′(OVM)

return 〈hk, vk,OVM’〉
}

Figure 16: Generation procedure of the Universal
WBRPE

createOVM ′(OVM) {

return “read (c,a,t,l)

(cUP, cP)← parse c

a’← (a, t, l, cP)

t’=p(t)+3

l’=l+|P|+|t|+|K|

write (cUP, a’, t’, l’)”

‖OVM

}

Figure 17: createOVM’ function that generates the OVM’.

U ′ verifies that the pair (P, t) supplied by the adversarial algorithm and the pair (P̃ , t̃) output from the
universal program UPK are identical, and that the secret key K from uk equals to the secret key K̃ from
the output of UP. This is critical in order to verify that the result of the computation is authentic and not a
forgery. If the result is authentic, the U is applied on the universal program UPK t′ and ω, such that UPK

and t′ are generated from the input parameters supplied to U ′. These steps are performed in order to validate
the result ω, i.e. that it is an authentic computation the universal program after a t′ steps execution. The
universal unhardening procedure returns y as its output. See the details of the implementation in Figure 19.

H′hk(P ) {

K←GE(1k)

cP ← EK(P )

UPK ← createUP (K)

(cUP , uk)← Hhk(UPK)

c← 〈cUP , cP 〉
uk′ ← 〈uk,K〉
return (c, uk′)

}

Figure 18: The hardening procedure of the Universal
WBRPE.

U ′uk′,vk(ω, [P, t]) {

〈uk,K〉 ← uk′〈
y, P̃ , t̃, K̃

〉
← Uuk,vk(ω)

if ((P, t) = NULL) { return y }
if ((P̃ , t̃, K̃) 6= (P, t,K)) { return ⊥ }
UPK ← createUP (K)

t′ = t+ 3〈
y, P̃ , t̃, K̃

〉
← Uuk,vk(ω,UPK , t

′)

return y

}

Figure 19: The uhhardening procedure of the Universal
WBRPE.
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4 Analysis of the Universal WBRPE

In this section we present the construction of the Universal WBRPE scheme given a WBRPE scheme for
a specific universal program UP presented in Section 3, Figure 15. We prove the security of the Universal
WBRPE by reduction to the security of the underlying building block, the specific WBRPE. This is a
first reduction between two white box primitives and it employs techniques of code manipulation, that are
essential in white box security, since the programs are transfered for execution to remote host.

4.1 Indistinguishability

If the specific WBRPE provides indistinguishability for a specific program family UPK , then the Universal
WBRPE provides indistinguishability for any program.

Lemma 4.1 (Indistinguishability) Let W = (G,H,U) be an WB−IND−CPA−ϕ secure WBRPE scheme
for UPd and let Π = (GAE ,AE ,VD) be an IND − CPA secure encryption scheme. Then W ′ = (G′,H′,U ′)
is an WB − IND − CPA− ϕ secure WBRPE scheme for any program.

Proof We reduce the security of the Universal WBRPE scheme W ′ to the security of the primitives that
underlie the construction of W ′, i.e. the specific WBRPE W and the encryption scheme Π. More specifically,
we show that given a PPT algorithm A′ against W ′ we construct three PPT algorithms, AL, AR and AΠ,
showing that the advantage that A′ gains in the indistinguishability experiment ExpWB−IND−CPA−ϕ

W ′,A′ (k)
against W ′, is bounded by the sum of the advantages that AL and AR gain in indistinguishability experi-
ment against W along with the advantage that AΠ gains in the indistinguishability experiment against Π.
Therefore, if the advantages of these algorithms are negligible, their sum is also negligible, implying that the
advantage of the algorithm A′ against the Universal WBRPE W ′ is negligible. Details follow.

For every PPT algorithm A′ let AdvWB−IND−CPA−ϕ
W ′,A′ (k) be the advantage that the algorithm A′ gains

during the WB − IND − CPA− ϕ experiment against the Universal WBRPE W ′, as in definition 2.2:

AdvWB−IND−CPA−ϕ
W ′,A′ (k) = 2 ∗ Pr[ExpWB−IND−CPA−ϕ

W ′,A′ (k) = 1]− 1

Where the probabilities are taken over G′ and A′’s coins tosses.
In the ExpWB−IND−CPA−ϕ

W ′,A′ (k) = 1 experiment, the algorithm A′ picks two challenge programs P0 and
P1, then the experiment tosses a bit, and the corresponding program is hardened. Then the challenge
(cUP ,AEe(Pb)) is given to A′, which has to distinguish which of the input programs was hardened, i.e. if it
is a hardening of P0 or of P1.

Given a PPT algorithm A′ = (A′1, A
′
2) we construct PPT algorithms AR = (AR1, AR2) and AL =

(AL1, AL2) against the specific WBRPE scheme W , and a PPT algorithm AΠ = (A1,Π, A2,Π) against Π.
The proof follows from the following inequality

AdvWB−IND−CPA−ϕ
W ′,A′ (k) ≤

≤ AdvWB−IND−CPA−ϕ
W,AR (k) + AdvWB−IND−CPA−ϕ

Π,AΠ
(k) + AdvWB−IND−CPA−ϕ

W,AL (k) (1)

The proof that inequality 1 holds, follows from claim 4.2.

Claim 4.2 The advantage Adv
WB−IND−CPA−ϕ
W ′,A′ (k) of the PPT algorithm A = (A1, A2) is bounded by the

sum of the advantages of the algorithms AR, AL and AΠ against the schemes W and Π respectively:

Adv
WB−IND−CPA−ϕ
W ′,A′ (k) ≤ Adv

WB−IND−CPA−ϕ
W,AL (k) + Adv

IND−CPA−ϕ
Π,AΠ

(k) + Adv
WB−IND−CPA−ϕ
W,AR (k)
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Proof From proposition 4.3 below follows that:

AdvWB−IND−CPA−ϕ
W ′,A′ (k) =

∣∣∣Pr[ExpWB−IND−CPA−ϕ
W ′,A′ (k) = 0|b = 0]−Pr[ExpWB−IND−CPA−ϕ

W ′,A′ (k) = 1|b = 1]
∣∣∣

By triangle inequality we obtain:∣∣∣Pr[ExpWB−IND−CPA−ϕ
W ′,A′ (k) = 0|b = 0]− Pr[ExpWB−IND−CPA−ϕ

W ′,A′ (k) = 1|b = 1]
∣∣∣ ≤

≤
∣∣∣Pr[ExpWB−IND−CPA−ϕ

W ′,A′ (k) = 0|b = 0]− Pr[ExpWB−IND−CPA−ϕ
W,AL (k) = 1|b = 1]

∣∣∣+

+
∣∣∣Pr[ExpWB−IND−CPA−ϕ

W,AL (k) = 1|b = 1]− Pr[ExpIND−CPA−ϕ
Π,AΠ

(k) = 1|b = 1]
∣∣∣+

+
∣∣∣Pr[ExpIND−CPA−ϕ

Π,AΠ
(k) = 1|b = 1]− Pr[ExpWB−IND−CPA−ϕ

W ′,A′ (k) = 1|b = 1]
∣∣∣

We proof follows from claims 4.4, 4.6, 4.8.

Proposition 4.3

Adv
WB−IND−CPA−ϕ
W ′,A′ (k) =

∣∣∣Pr[ExpWB−IND−CPA−ϕ
W ′,A′ (k) = 0|b = 0]− Pr[ExpWB−IND−CPA−ϕ

W ′,A′ (k) = 1|b = 1]
∣∣∣

Proof By Definition 2.2, AdvWB−IND−CPA−ϕ
W ′,A′ (k) = 2 ∗ Pr[ExpWB−IND−CPA−ϕ

W ′,A′ (k) = 1] − 1. Denote for
simplicity E ≡ ExpWB−IND−CPA−ϕ

W ′,A′ (k). Then

2 ∗ Pr[E = 1]− 1 = Pr[E = 1] + Pr[E = 1]− 1 =
= Pr[E = 1]− (1− Pr[E = 1]) = Pr[E = 1]− Pr[E = 0] =
= Pr[E = 1|b = 0] ∗ Pr[b = 0] + Pr[E = 1|b = 1] ∗ Pr[b = 1]−

−(Pr[E = 0|b = 0] ∗ Pr[b = 0] + Pr[E = 0|b = 1] ∗ Pr[b = 1]) =
= Pr[E = 1|b = 0] ∗ Pr[b = 0] + Pr[E = 1|b = 1] ∗ Pr[b = 1]−

−Pr[E = 0|b = 0] ∗ Pr[b = 0]− Pr[E = 0|b = 1] ∗ Pr[b = 1] =

=
1
2

(Pr[E = 1|b = 1]− Pr[E = 0|b = 0] + Pr[E = 1|b = 0]− Pr[E = 0|b = 1]) =

=
1
2

(Pr[E = 1|b = 1]− Pr[E = 0|b = 0] + 1− Pr[E = 0|b = 0]− 1 + Pr[E = 1|b = 1]) =

=
1
2

(2 ∗ Pr[E = 1|b = 1]− 2 ∗ Pr[E = 0|b = 0]) = Pr[E = 1|b = 1]− Pr[E = 0|b = 0]

Claim 4.4 Let W ′ = (G′,H′,U ′) be a Universal WBRPE scheme. For any pair of PPT algorithms A′ =
(A′1, A

′
2), there exists a pair of PPT algorithm AL = (AL1, AL2) s.t. holds:

Adv
WB−IND−CPA−ϕ
W,AL (k) ≥

∣∣∣Pr[ExpWB−IND−CPA−ϕ
W ′,A′ (k) = 0|b = 0]−Pr[ExpWB−IND−CPA−ϕ

W,AL (k) = 1|b = 1]
∣∣∣

Proof Given a PPT algorithm A′ = (A′1, A
′
2) against the Universal WBRPE scheme W ′ we construct a

PPT algorithm AL = (AL1, AL2) against the WB − IND − CPA− ϕ secure specific WBRPE scheme W ,
s.t. ∣∣∣Pr[ExpWB−IND−CPA−ϕ

W,AL (k) = 0|b = 0]− Pr[ExpWB−IND−CPA−ϕ
W,AL (k) = 1|b = 1]

∣∣∣ ≥
≥
∣∣∣Pr[ExpWB−IND−CPA−ϕ

W ′,A′ (k) = 0|b = 0]− Pr[ExpWB−IND−CPA−ϕ
W,AL (k) = 1|b = 1]

∣∣∣
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The algorithm AL is presented in Figures 4.1, 4.1. According to proposition 4.3 the advantage of AL is:

AdvWB−IND−CPA−ϕ
W,AL (k) =

∣∣∣Pr[ExpWB−IND−CPA−ϕ
W,AL (k) = 0|b = 0]−Pr[ExpWB−IND−CPA−ϕ

W,AL (k) = 1|b = 1]
∣∣∣

The algorithm AL obtains an oracle access to hardening procedure HO of the specific WBRPE scheme W
and black box access to A′.

We reduce the security of the Universal WBRPE to the security of the specific WBRPE when the bit
that the experiment of the specific WBRPE tosses is always 0, i.e. b = 0.

During the simulation, A′ obtains black box access to HP ′ as defined in Figure 21. The HP ′ is a
hardening procedure of the Universal WBRPE scheme W ′ that AL simulates for A′, using the hardening
oracle HO of the specific WBRPE scheme W and the encryption scheme Π, which it has in its possession.

In proposition 4.5 we show that the simulation run by AL is identical to the execution of the experiment
of A′, when the challenge bit b is 0. Namely, when b = 0, the view of A′ when invoked by our implementation
of the algorithm AL, is identical to its view in its original experiment, when b = 0 and the challenge string
that it obtains is always of the form (cUP , Ee(P0)) where cUP ← Hhk(UPK).c and K is a key generated by
GAE .

Since the view of the algorithm A′, when invoked by AL against W , is identical to its view in the
indistinguishability experiment against W ′, it performs the same computation and therefore returns the
same output. The claim follows.

Algorithm AL
HO(·)
1 (1k,OVM, vk, ϕ){

K
R← GAE(1k)

K ′ ∈R {0, 1}k

UPK ← createUP (K)

UPK′ ← createUP (K ′)

s←
〈
1k,OVM, vk,K,K ′, ϕ

〉
return (UPK ,UPK′ , s)

}

Algorithm AL
HO(·)
2 (cUP , s){〈

1k,OVM, vk,K,K ′, ϕ
〉
← parse s

OVM’← createOVM ′(OVM)

(P0, P1, s
′)← A′

HP′(·)
1 (1k,OVM’, vk)

cP ← AEK(P0)

c← 〈cUP , cP 〉

return A′
HP′(·)
2 (c, s′)

}

Figure 20: Implementation of AL = (AL1, AL2) using A′ = (A′1, A
′
2) in ExpWB−IND−CPA−ϕ

W,AL (k).

Proposition 4.5 Let A′,AL be as in claim 4.4. Then:

Pr[ExpWB−IND−CPA−ϕ
W,AL (k) = 0|b = 0] ≥ Pr[ExpWB−IND−CPA−ϕ

W ′,A′ (k) = 0|b = 0]

Proof When AL is invoked in the indistinguishability experiment of the Universal WBRPE scheme W ′, it
runs A′, simulating for it the indistinguishability experiment of the Universal WBRPE scheme W ′, eventually
returning A′ output.

We do not make any assumption on the internal behaviour of the algorithm A′ but only outline the
following observation, given a sequence of random coins the execution of the algorithm A′ is a deterministic
function of the inputs. Therefore the computation performed by A′ is determined by a random string, which
the experiment supplies to it, and by the responses that it obtains to its hardening oracle queries. Hence
if AL accurately simulates the steps of the indistinguishability experiment of W ′ for A′, and implements
the hardening procedure for A′ as specified in the construction of the H′, then given the same random
string r, A′ will see the same execution in both cases, and will therefore perform the same computation and
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Hardening HP ′HO(·,hk,ϕ)(P,ϕ)

K
R← GAE(1k)

cP ← AEK(P )

UPK ← createUP (K)

if (ϕ = PK)

return HO(UPK , hk, ϕ)

else

(cUP , uk)← HO(UPK , hk, ϕ)
c← 〈cUP , cP 〉
return (c, 〈uk,K〉)

Figure 21: The hardening procedure HP ′ of algorithm
AL, using oracle HO.

subsequently return the same results. Hence when the challenge bit is b = 0 the view of A′ when invoked
by A is distributed identically to its view in ExpWB−IND−CPA−ϕ

W ′,A′ (k) and in both executions the hardened
challenge that it obtains is of the form: (cUP , Ee(P0)). Therefore in both cases A′ will return the same
response and the proposition follows.

Claim 4.6 Let W ′ = (G′,H′,U ′) be a Universal WBRPE scheme. For any pair of PPT algorithms A′ =
(A′1, A

′
2) there exists a pair of PPT algorithms AΠ = (A1,Π, A2,Π) s.t. holds:

Adv
IND−CPA−ϕ
Π,AΠ

(k) ≥
∣∣∣Pr[ExpWB−IND−CPA−ϕ

W,AL (k) = 0|b = 0]− Pr[ExpIND−CPA−ϕ
Π,AΠ

(k) = 1|b = 1]
∣∣∣

Proof Given a PPT algorithm A′ = (A′1, A
′
2) that gains advantage AdvWB−IND−CPA−ϕ

W ′,A′ (k) in the indstin-
guishability experiment of the Universal WBRPE W ′, construct a PPT algorithm AΠ = (A1,Π, A2,Π), that
gains a related advantage AdvIND−CPA−ϕ

Π,AΠ
(k) in the indistinguishability experiment of the authenticated

encryption scheme Π as defined in [14], s.t.∣∣∣Pr[ExpIND−CPA−ϕ
Π,AΠ

(k) = 0|b = 0]− Pr[ExpIND−CPA−ϕ
Π,AΠ

(k) = 1|b = 1]
∣∣∣ ≥

≥
∣∣∣Pr[ExpWB−IND−CPA−ϕ

W,AL (k) = 1|b = 1]− Pr[ExpIND−CPA−ϕ
Π,AΠ

(k) = 1|b = 1]
∣∣∣

The algorithm AΠ is presented in Figures 4.1, 4.1. According to definition 2.2 and proposition 4.3, the
advantage of AΠ is:

AdvIND−CPA−ϕ
Π,AΠ

(k) =
∣∣∣Pr[ExpIND−CPA−ϕ

Π,AΠ
(k) = 0|b = 0]− Pr[ExpIND−CPA−ϕ

Π,AΠ
(k) = 1|b = 1]

∣∣∣
The algorithm AΠ obtains an oracle access to the encryption AEO oracle of the authenticated encryption
scheme Π and black box access to A′. We reduce the security of the Universal WBRPE W ′ to the security
of the authenticated encryption scheme Π when the challenge bit b that is chosen by the experiment of
W ′ is 0. In this case the challenge message that the algorithm A′ obtains is of the form (cUP ′ ,AEK(P0)),
where cUP ′ ← Hhk(UPK′).c and K ′ ∈ {0, 1}k is not the secret key that was used to encrypt the challenge.
During the simulation A′ obtains a black box access to the HP ′ defined in Figure 23, that AΠ simulates
for it, using the authenticated encryption scheme Π and the specific WBRPE scheme W which it has in
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its possession. In proposition 4.7 we show that when the challenge bit b = 0 in the indistinguishability
experiment for Π, the simulation run by AΠ is identical to the simulation that AL runs for A′ in the
indistinguishability experiment against WBRPE scheme W , when the challenge bit is b = 1. Therefore,
the view of A′ is distributed identically to its view when invoked by AL and the ciphertext that it sees is
of the form (cUP ′ , EK(P0)) where cUP ′ is the result of the hardening procedure H applied on UPK′ and
K ′ ∈R {0, 1}k.

Since the view of the algorithm A′, when invoked by AΠ against Π, is identical to its view when invoked
by AL against W , it performs the same computation and therefore returns the same output. The claim
follows.

Algorithm A
AEO(·)
1,Π (1k)

(hk, vk,OVM)← G(1k)

OVM’← createOVM ′(OVM)

(P0, P1, s
′)← A′

HP′(·)
1 (1k,OVM’, vk)

s← 〈hk, vk,OVM’〉
return (P0, P1, 〈s, s′〉)

Algorithm A
AEO(·)
2,Π (cP , 〈s, s′〉)

〈hk, vk,OVM’〉 ← parse s

K ′ ∈R {0, 1}k

UPK′ ← createUP (K ′)

(cUP ′ , uk)← Hhk(UPK′)

c← 〈cUP ′ , cP 〉

return A′
HP′(·)
2 (c, s′)

Figure 22: The implementation of A = (A1,Π, A2,Π) using A′ = (A′1, A
′
2) in ExpIND−CPA

Π,AΠ
(k).

Proposition 4.7 Let AL, AΠ be as in claim 4.6. Then:

Pr[ExpIND−CPA−ϕ
Π,AΠ

(k) = 0|b = 0] ≥ Pr[ExpWB−IND−CPA−ϕ
W,AL (k) = 1|b = 1]

Proof Given a sequence of random coins r the simulation is determined, and maps the computation for the
specific r to the same result. The computations performed by A′ are determined by the sequence of random
coins and the inputs that it obtains in response for its queries. Hence, if AΠ accurately simulates the steps
specified in the indistinguishability experiment of W ′ for A′, and implements the hardening procedure for A′

as specified in the construction of H′, then given the same random string r, A′ will see the same execution
in both cases and will therefore perform the same computation and subsequently return the same results.
Therefore, when the challenge bit b is 0 in the indistinguishability experiment of AΠ against Π, the view
of A′ is identical to its view in the simulation that AL runs for A′ in the indistinguishability experiment
against the WBRPE scheme W and the challenge bit b is 1 and in both executions the hardened challenge
that it obtains is of the form (cUP ′ , EK(P0)). Hence, holds:s

AdvIND−CPA−ϕ
Π,AΠ

(k) ≥
∣∣∣Pr[ExpWB−IND−CPA−ϕ

W,AL (k) = 1|b = 1]− Pr[ExpIND−CPA−ϕ
Π,AΠ

(k) = 1|b = 1]
∣∣∣

The proof is similar to the proof of proposition 4.5.

Claim 4.8 Let W ′ = (G′,H′,U ′) be a Universal WBRPE scheme. For any pair of PPT algorithms A′ =
(A′1, A

′
2) there exists a pair of PPT algorithms AR = (AR1, AR2), s.t. holds:

Adv
WB−IND−CPA−ϕ
W,AR (k) ≥

∣∣∣Pr[ExpIND−CPA−ϕ
Π,AΠ

(k) = 1|b = 1]− Pr[ExpWB−IND−CPA−ϕ
W ′,A′ (k) = 1|b = 1]

∣∣∣
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Hardening Procedure HP ′(P, hk, ϕ)

K ← GAE(1k)

if (ϕ = PK)

return hk

else

cP ← AEK(P )
UPK ← createUP (K)
(cUP , uk)← Hhk(UPK)
c← 〈cUP , cP 〉
return (c, 〈uk,K〉)

Figure 23: The implementation of the hardening proce-
dure HP ′.

Proof Given a PPT algorithm A′ = (A′1, A
′
2) against the Universal WBRPE scheme W ′ we construct a

PPT algorithm A = (A1, A2) against the WB − IND − CPA− ϕ secure specific WBRPE W , s.t.∣∣∣Pr[ExpWB−IND−CPA−ϕ
W,AR (k) = 0|b = 0]− Pr[ExpWB−IND−CPA−ϕ

W,AR (k) = 1|b = 1]
∣∣∣ ≥

≥
∣∣∣Pr[ExpIND−CPA−ϕ

Π,AΠ
(k) = 1|b = 1]− Pr[ExpWB−IND−CPA−ϕ

W ′,A′ (k) = 1|b = 1]
∣∣∣

The algorithm AR is presented in Figures 4.1, 4.1. According to proposition 4.3, the advantage of AR is:

AdvWB−IND−CPA−ϕ
W,AR (k) =

∣∣∣Pr[ExpWB−IND−CPA−ϕ
W,AR (k) = 0|b = 0]−Pr[ExpWB−IND−CPA−ϕ

W,AR (k) = 1|b = 1]
∣∣∣

The algorithm AR obtains an oracle access to hardening procedure HO of the specific WBRPE scheme W
and a black box access to A′. In this step we reduce the security of the Universal WBRPE scheme W ′ to
the security of the specific WBRPE scheme W , where the bit that the experiment of the specific WBRPE
chooses is always 1, i.e. b = 1.

During the simulation A′ obtains black box access to HP ′ defined in Figure 21, which is the hardening
procedure of the Universal WBRPE scheme W ′, that AR simulates for it, using the hardening oracle HO of
the specific WBRPE scheme W and the encryption scheme Π, which it has in its possession. In proposition
4.9, we claim that the simulation run by AR is identical to the execution of the experiment of A′, when the
challenge bit in Pr[ExpWB−IND−CPA−ϕ

W,AR (k) is b = 0, i.e. the view of A′ when invoked by our implementation
of the algorithm AR is identical to its view in its original experiment Pr[ExpWB−IND−CPA−ϕ

W ′,A′ (k) when b = 1,
and the challenge string that A′ obtains is of the form (cUP , EK(P1)), where cUP ← Hhk(UPK).c and K is
a key generated by GAE . Furthermore, in proposition 4.10, we claim that when b = 1, the view of A′ when
invoked by the simulation run by AR, is identical to its view in the simulation of AΠ, and the ciphertext
that it obtains is of the form (cUP ′ , EK(P1)), where cUP ′ ← EK(UPK′) and K ′ ∈R {0, 1}k.

Since the view of the algorithm A′ when invoked by AR against W , is identical to its view in the
indistinguishability experiment against W ′ or to its view in the simulation of AΠ, it performs the same
computation and therefore returns the same output. The claim follows.

Proposition 4.9 Let A′, AR be as in claim 4.8, then:

Pr[ExpWB−IND−CPA−ϕ
W,AR (k) = 0|b = 0] ≥ Pr[ExpWB−IND−CPA−ϕ

W ′,A′ (k) = 1|b = 1]
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Algorithm AR
HO(·)
1 (1k,OVM, vk, ϕ)

K ← GAE(1k)

K ′ ∈R {0, 1}k

UPK ← createUP (K)

UPK′ ← createUP (K ′)

s←
〈
1k,OVM, vk,K,K ′

〉
return (UPK ,UPK′ , s)

Algorithm AR
HO(·)
2 (cUP , s)〈

1k,OVM, vk,K,K ′
〉
← parse s

OVM’← createOVM ′(OVM)

(P0, P1, s
′)← A′

HP′(·)
1 (1k,OVM, vk)

cP ← AEK(P1)

c← 〈cUP , cP 〉

return A′
HP′(·)
2 (c, s′)

Figure 24: Implementation of AR = (AR1, AR2) using A′ = (A′1, A
′
2) in ExpWB−IND−CPA−ϕ

W,AR (k)

Proposition 4.10 Let AΠ, AR be as in claim 4.8, then:

Pr[ExpWB−IND−CPA−ϕ
W,AR (k) = 1|b = 1] ≥ Pr[ExpWB−IND−CPA−ϕ

Π,AΠ (k) = 1|b = 1]

4.2 Unforgeability Specification

If the WBRPE provides output unforgeability for a specific program family UPK , then the Universal WBRPE
provides output unforgeability for any program. In contrast to achieve program unfogreability we need the
specific WBRPE to provide indistinguishability of inputs. Intuitively, if the adversary can observe the secret
key K inside the universal program, then it can forge a tuple (cUP , EK(P )) for some P ′.

Lemma 4.11 (Correct Output) Let W = (G,H,U) be an WB − UNF −OUT − ϕ secure WBRPE scheme
for UP and let Π = (GAE ,AE ,VD) be a secure authenticated encryption scheme. Then W ′ = (G′,H′,U ′) is
a WB − UNF −OUT − ϕ secure WBRPE scheme for any program.

Proof The proof of lemma follows from claim 4.12.

Claim 4.12 For every PPT algorithm A′ and any program P , let AdvWB−UNF−OUT−ϕ
W ′,A′ (k) be the advantage

that the algorithm A′ gains during the WB − UNF −OUT − ϕ experiment against W ′, then

Adv
WB−UNF−OUT−ϕ
W,A (k) ≥ Adv

WB−UNF−OUT−ϕ
W ′,A′ (k)

Proof Given a PPT algorithm A′ = (A′1, A
′
2) against the Universal WBRPE scheme W ′, we construct a

PPT algorithm A = (A1, A2) against the WBRPE scheme W in the ExpWB−UNF−OUT−ϕ
W,A (k) experiment.

The algorithm A obtains an oracle access to A′ and to the hardening functionality HO of the WBRPE
scheme and simulates the execution of the Universal WBRPE UNF − OUT − ϕ experiment for A′. The
implementation of A and HP ′ in 25, 26.

Next, we show that the view of A′ when run by A is distributed identically to its view when invoked
in the environment of its experiment Furthermore, given the successful forgery of the Universal WBRPE
scheme, which is output by A′, A can essentially construct a forgery for WBRPE scheme. This holds only
if A precisely simulates the experiment for A′ and if the result output by A complies with the definition of
output forgery, defined in 4.

Given a random coins sequence r the execution is determined and therefore the experiment computes a
deterministic function of the input. Given the same random coins, the experiment of WBRPE for A maps
the inputs to the same output values, and thus performs the same computation.

Upon initiation of the WBRRPE WB − UNF − OUT − ϕ experiment, first the keys hk, vk and the
OVM are generated and A is invoked with the security parameter, the constant string OVM, and the public
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Algorithm AHO(·,hk,ϕ)(1k,OVM, vk){

OVM’← createOVM ′(OVM)

(ω, P̂ , t̂, ûk)← A′
HP′(·,hk,ϕ)(1k,OVM’, vk)〈

y, P̃ , t̃, K̃
〉
← U

ûk,vk
(ω)

UPK̃ ← createUP (K̃)

t′ = t̂+ 3

return (ω,UPK̃ , t
′, ûk)

}

Figure 25: The implementation of A in
ExpWB−UNF−OUT

W,A (k).

Hardening Procedure HP ′(P, hk, ϕ){

K
R← GAE(1k)

cP ← AEK(P )

UPK ← createUP (K)

(cUP , uk)← HO(UPK)

c← 〈cUP , cP 〉
return (c, 〈uk,K〉)

}

Figure 26: The implementation of HP ′.

verification key vk. As its first step A generates the OVM’ for A′ and runs A′ with the newly generated
OVM’ and the rest of the parameters which it obtained in an input.
For each hardening query that A′ submits, A simulates for A′ the hardening oracle of the Universal WBRPE
scheme. HP ′ generates the encryption key pair and encrypts the input program P . Then UPK is generated
and the hardening oracle is queried with this universal program. Then A′ obtains a pair (c, uk). Since
the same computation is performed by the hardening procedure H′ of the Universal WBRPE, when both
executions are given the same random string, the same parameters are generated in both executions and
both the HP ′ and the HO′ perform the same computation and therefore in both executions A′ will see
the same values. Clearly the view of A′ is distributed identically in both experiments and therefore A′ will
perform the same computation in both cases. Which implies that it generates a successful forgery with the
same probability in both executions.

Given the forgery of the Universal WBRPE scheme W ′ output by A′, the result computed by A is a
forgery of WBRPE scheme W . When A receives a tuple (ω, P, t, uk) from A′ it computes the unhardening
using the unhardening key uk and obtains

〈
y, P̃ , t̃, K

〉
which is the output of the universal program. Next,

given the secret key K it constructs the universal program (it can do this, since the design of the universal
program is public), computes the number of execution steps t′ for UPK with t and returns (ω,UPK , t

′, uk).
To check if the tuple given by A constitutes a successful forgery, the WBRPE WB − UNF −OUT − ϕ

experiment first unhardens and validates the forgery
〈
y, P̃ , t̃, K

〉
← Uuk,vk(ω,UPK , t

′) consequently per-
forming the following test

∀a′,
〈
y, P̃ , t̃, K

〉
6= UPKt′,|y,P̃ ,t̃,K|

(a′)

Which of course holds except with a negligible probability, since the input program P constitutes part of
the output.

Lemma 4.13 (Correct Program) Let W = (G,H,U) be an WB−IND−CPA−SK and an WB−UNF −
PRG secure WBRPE scheme for UP and let Π = (GAE ,AE ,VD) be an WB − IND − CPA authenticated
encryption scheme. Then W ′ = (G′,H′,U ′) is a WB−UNF−PRG secure WBRPE scheme for any program.

Proof The proof of lemma follows from claim 4.14.

Claim 4.14 For every PPT algorithm A′ and any program P , let AdvWB−UNF−PRG
W ′,A′ (k) be the advantage

that the algorithm A′ gains during the WB − UNF − PRG experiment against W ′, then

AdvWB−UNF−PRG
W,A (k) ≥ AdvWB−UNF−PRG

W ′,A′ (k)
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Proof Given a PPT algorithm A′ = (A′1, A
′
2) against the Universal WBRPE scheme W ′, construct a PPT

algorithm A = (A1, A2) against the WBRPE scheme W in the ExpWB−UNF−PRG
W,A (k) experiment. A obtains

oracle access to A′ and to the hardening procedure HO of the WBRPE scheme and simulates the execution
of the Universal WBRPE WB − UNF − PRG experiment for A′. The implementation of the algorithm A
and HP ′ is in Figures 27, 28. We next show that the view of A′ when run by A is distributed identically

Algorithm AHO(·)(1k,OVM, vk){

OVM’← createOVM ′(OVM)

(ω, P̂ , t̂, ûk)← A′
HP′(·)(1k,OVM’, vk)〈

y, P̃ , t̃, K̃
〉
← U

ûk,vk
(ω)

UPK̃ ← createUP (K̃)

t′ = t̂+ 3

return (ω,UPK̃ , t
′, ûk)

}

Figure 27: The implementation of A in
ExpWB−UNF−PRG

W,A (k).

Hardening Procedure HP ′(hk, P, ϕ){

K
R← GAE(1k)

cP ← AEK(P )

UPK ← createUP (K)

(cUP , uk)← HO(UPK)

c← 〈cUP , cP 〉
return (c, 〈uk,K〉)

}

Figure 28: The implementation of HP ′.

to its view when invoked in the environment of its experiment. Furthermore, given a successful forgery of
the Universal WBRPE scheme, which is output by A′, A can construct a forgery for WBRPE scheme. This
holds only if A precisely simulates the experiment for A′ and if the result output by A complies with the
definition of output forgery defined in 5.

Given the random coins sequence r the execution is determined and the experiment computes a deter-
ministic function of the input. Furthermore, we do not make any assumption on the internal behaviour of the
adversary but only claim that given a random string its computation is a deterministic function of the inputs
that it sees. Therefore, given a random r, when the HP ′ is implemented according to the construction and A
accurately follows the steps of the experiment defined in 5, the advantage of A is identical to the advantage
of A′. This is because the view of A′ is distributed identically in both experiments and therefore A′ will
perform the same computation in both cases. Moreover, if A′ generates a successful forgery of the Universal
WBRPE, A outputs a successful forgery of the specific WBRPE. When A receives a tuple (ω, P, t, uk) from
A′ it computes the unhardening using the unhardening key uk and obtains

〈
y, P̃ , t̃, K

〉
which is the output

of the universal program. Next, given the secret key K it constructs the universal program (it can do this,
since the design of the universal program is public), computes the number of execution steps t′ for UPK

with t and returns (ω,UPd, t
′, uk).

To check if the tuple given by A constitutes a successful forgery, the WBRPE WB−UNF −PRG exper-
iment first unhardens and validates the forgery

〈
y, P̃ , t̃, K

〉
← Uuk,vk(ω,UPK , t

′) consequently performing
the following test 〈

y, P̃ , t̃, K
〉
6= ⊥ ∧ ((uk /∈ UK) ∨ (UPK /∈ P [uk]))

Namely, either the adversary generated a successful forgery without obtaining the key uk or it obtained the
key uk but for a different program UPK .
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5 Universal WBRPE with Validation (WBRPEwV)

The Universal WBRPEwV scheme WV ′ with validation provides remote inputs confidentiality, in addition
to confidentiality and integrity properties of local host inputs. The universal program is identical to the
universal program UP, in Figure 15, of the Universal WBRPE scheme, in section 3, which implies that this
extension of the scheme does not require more, than the protection of the original universal program UP,
i.e. if we can protect the same universal program then we obtain a Universal WBRPEwV for any program,
which in addition to the properties of confidentiality and integrity also provides privacy of the remote inputs.

The scheme WV ′ will perform inputs validation, by running the validation procedure V ′ on input pro-
grams P . In addition, the specific WBRPEwV scheme WV which underlies the construction of WV ′ will
perform validation of the universal programs UP generated in the hardening procedure HV ′, in 32, by per-
forming validation thereof with V .
Provided both the universal and the input program are valid, the originator will obtain the final result of
the computation, i.e. Pt,l(a) for some a. The universal program in Figure 15. During the generation phase
of the Universal WBRPEwV scheme WV ′, with privacy of remote inputs, the generation procedure GV ′
obtains in an input the security parameter and a pair V ′, tV ′ . It then generates the validation procedure
V to validate the inputs of the specific WBRPEwV scheme WV , applies GV with V, tV and generates the
OVM for the specific WBRPEwV and the keys. The OVM has the validation procedure V inside. Next it
writes the OVM’ of the Universal WBRPEwV that will merely perform parsing and formatting of the input
and will execute OVM on the formatted input. The validation of programs will be performed by the OVM.
The obfuscated virtual machine OVM’ of the Universal WBRPEwV scheme, is constructed in the generation

Program G′(1k, V ′, tV ′) {

V ← createV (V ′, tV ′)

tV = tV ′ + 4

(hk, vk,OVM) R← GV(1k, V, tV )

OVM’← createOVM ′(OVM)

return 〈hk, vk,OVM’〉
}

Figure 29: Generation procedure of the Universal WBR-
PEwV.

createV (V’, tV’) =′′ V (UPd, σUP ) {

(K̃, cP )← parse σUP

(P, σ)← VDK(cP )

if (V’tV’,1
(P, σ) = 1)

if (createUP (K̃) = UPK) {return 1}
return 0

}′′

Figure 30: The validation program of the Universal WBR-
PEwV.

procedure using createOVM ′, in Figure 31.

5.0.1 Hardening Procedure

The hardening procedure of the universal scheme obtains the input program and the validation parameter.
It applies the generation procedure GAE of the authenticated encryption and generates a pair of keys, next
the input program is encrypted and authenticated along with the validation parameter. The universal
program is generated for the corresponding secret key. At this stage, the hardening procedure H′ generates
a validation parameter of the universal program that will be used by the OVM of the specific WBRPEwV.
The validation parameter of the universal program UP is comprised of the secret key embedded inside UP
and of the encryption (computed earlier of the input program and its corresponding validation parameter)
therefore binding the particular UPK that will be passed to the OVM in an input along with the input
program P and the key pair generated during this phase. In particular, this bond prevents an adversary
from tampering with the string, by substituting the validation parameter and the input program with other
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createOVM ′(OVM) {

return “read (c, a, t, l)

(cUP, cP)← parse c

a’← (a, t, l, cP)

t’=p(t)+4

l’=l+|P|+|t|+|K|

write (cUP, a’, t’, l’)′′

‖OVM

}”

Figure 31: The createOVM’ function, that generates the
OVM’.

values. Then the validation parameter and the UP are hardened and the HV ′ outputs the encrypted input
program, hardened universal program, the ephemeral unhardening key concatenated with the secret key.

Program HV ′(P, σ, hk) {

K
R← GAE(1k)

cP ← AEK(P, σ)

UPK ← createUP (K)

σUP ← (K, cP )

(cUP , uk)← HVhk(UPK , σUP )

c← 〈cUP , cP 〉
return (c, 〈uk,K〉)
}

Figure 32: The hardening procedure of the Universal
WBRPEwV.

Program UV ′uk,vk(ω, P, t) {〈
y, P̃ , t̃, K̃

〉
← UVuk,vk(ω)

if ((P, t) = NULL) { return y}
if ((P̃ , t̃, K̃) 6= (P, t,K)) { return ⊥
UPK′ ← createUP (K ′)

t′ = t+ 3〈
y, P̃ , t̃, K

〉
← UVuk,vk(ω,UPK , t

′)

return y

}

Figure 33: The unhardening procedure of the Universal
WBRPEwV.

5.0.2 The Unhardening Procedure

Identical to the unhardening procedure U ′ of the Universal WBRPEwV in section 3, Figure 19.

Lemma 5.1 Let WV = (GV,HV,UV) be a WB − PRV secure specific WBRPEwV scheme WV for UP
and let Π = (GAE ,AE ,VD) be a secure authenticated encryption scheme. Then WV ′ = (GV ′,HV ′,UV ′) is a
WB − PRV secure WBRPEwV scheme WV ′y for any program.

.

Proof The proof of lemma follows from claim 5.2.
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Claim 5.2 For every PPT algorithm A and every program P , let AdvWB−PRV
WV ′,A′ (k) be the advantage that the

algorithm A′ gains during the WB − PRV experiment against WV ′, then

AdvWB−PRV
WV,A (k) ≥ AdvWB−PRV

WV ′,A′ (k)

Proof Given a PPT algorithm A′ = (A′1, A
′
2) against the Universal WBRPEwV scheme WV ′, construct a

PPT algorithm A = (A1, A2) against the WBRPEwV scheme WV the ExpWB−PRV
WV,A (k) experiment.

A receives all the keys in an input and uses A′ as a black box. We show that the view of A′ when exe-

Algorithm AREMk
1 (1k, τ)

(V ′, tV ′ , s′)← A′
REMk

1 (1k, τ)

V ← createV (V ′, tV ′)

tV = tV ′ + 4

s← 〈V ′, tV ′ , τ〉
return (1k, V, tV , 〈s, s′〉)

Algorithm AREMk
3 (ω, 〈s, s′〉)

return A′
REMk

3 (ω, uk, s′)

Algorithm AREMk
2 (hk,OVM, vk, 〈s, s′〉)

〈V ′, tV ′ , τ〉 ← parse s

OVM’← createOVM ′(OVM)

(c, aADV , t, l, uk, s
′) ←

A′
REMk

2 (OVM’, hk, vk, s)

(cUP , cP )← parse c

t′ = t+ 4

l′ = l + |P |+ |t|+ |K|
aADV ← (aADV , t, l, cP )

s← 〈s,OVM’, hk, vk〉
return (cUP , aADV , t

′, l′, uk 〈s, s′〉)

Figure 34: The implementation of A = (A1, A2, A3) in ExpWB−PRV
WV,A (k).

cuted in the environment of ExpWB−PRV
WV ′,A′ (k) is distributed identically to its view when invoked by A in

ExpWB−PRV
WV,A (k). We briefly present the course of the WB−PRV experiment of the Universal WBRPEwV

scheme WV ′, and subsequently compare it to the execution simulated by A.
The ExpWB−PRV

WV ′,A′ (k) experiment invokes A′1 and obtains (V ′, tV ′ , s′) back, where V ′ is the validation
program, tV ′ is the number of steps to execute V ′ and s′ is the state information. It subsequently constructs
V and computes the number of steps tV to execute V . It then generates the keys and the OVM and invokes
A′2 with (hk, vk,OVM, s) in an input, which in turn returns (c, uk, aADV , t, l, s), where aADV is the part of
the remote input which the adversary has control over.

The experiment runs OVM’ on (c, aADV , t, l), obtains ω, invokes A′3 with input ω and returns whatever
A′3 returns.

Now consider the simulation of A which runs in the environment of the ExpWB−PRV
WV,A (k) experiment.

Initially the ExpWB−PRV
WV,A (k) experiment invokes A1 with input that is comprised of the security parameter

and the τ , which in turn invokes A′1 and obtains (V ′, tV ′ , s′) back. It then generates s, V , computes tV and
returns these to the experiment.
During the next stage, the experiment applies G, generates the keys and the OVM and invokes A2.

A2 generates the OVM’ for A′2 according to the construction, and executes A′2. At this stage it obtains
c of the universal scheme along with other parameters returned by A and has to generate the remote input
and the hardened program which will be compatible with the design of the experiment for WBRPE, i.e. the
hardening procedure obtains universal programs as input and the experiment executes them in OVM and
invokes A3 with ω, i.e. the result of the execution. Since the result of the execution of P on a is identical
to the result of UPK on a′, where a′ ← (a, aADV , t, l, cP , V, tV ), A3 will invoke A′3 on this ω and will return
its response back to its experiment. Given the function of the remote input of the Universal WBRPEwV
scheme WV ′ output by A′, the result computed by A is a function of the remote input of the WBRPEwV
scheme WV , since whatever A′ learns about the remote input a can essentially be applied to A and the
remote input a′ to WBRPEwV scheme.
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Lemma 5.3 Let WV = (GV,HV,UV) be a WB − IND − CPA − ϕ secure specific WBRPEwV scheme
WV for UP and let Π = (GAE ,AE ,VD) be a secure authenticated encryption scheme. Then WV ′ =
(GV ′,HV ′,UV ′) is a WB − IND − CPA− ϕ secure WBRPEwV scheme WV ′ for any program.

Intuitively, since the σ parameter is hardened along with the input program P , this should not leak any
information about P to the adversary. Next, the σ is only unhardened inside the OVM, which is assumed
to be secure, therefore the indistinguishability specification is trivially obtained.

Lemma 5.4 Let WV = (GV,HV,UV) be a WB − UNF − OUT − ϕ secure specific WBRPEwV scheme
WV for UP and let Π = (GAE ,AE ,VD) be a secure authenticated encryption scheme. Then WV ′ =
(GV ′,HV ′,UV ′) is a WB − UNF −OUT − ϕ secure WBRPEwV scheme WV ′ for any program.

Lemma 5.5 Let WV = (GV,HV,UV) be a WB − IND − CPA − ϕ and a WB − UNF − PRG secure
specific WBRPEwV scheme WV for UP and let Π = (GAE ,AE ,VD) be a secure authenticated encryption
scheme. Then WV ′ = (GV ′,HV ′,UV ′) is a WB − UNF − PRG secure WBRPEwV scheme WV ′ for any
program.

If there is an adversary B′ that can forge the output of a computation of program P then it is trivial to
construct an adversary A′ that will forge the output of P , when the input is P and σ. Furthermore, if B′

can forge the tuples P, σ then we can construct A′ that returns P ||σ such that σ is a forgery for WV ′.

6 Applications of WBRPE

We present two selected applications, and show how these could be securely implemented with the WBRPE
scheme. The implementations presented below are on a conceptual level and aimed at providing of the
general feeling on the applicability of the WBRPE scheme.

6.1 Online Publicly Accessible Database

Generally applications based on the setting of online database, involve two parties, a server which holds the
database and a client who wishes to query the database. The privacy and the integrity of both the local and
the remote hosts should be provided. Much research was devoted to this issue, focusing on the protection
of the query submitted by the user to the remote database, e.g. the model of Private Information Retrieval
in [15], as well as on the protection of the database from malicious users, i.e. Data Mining, [16], [17]. Other
solutions address both requirements [18].

We next present how to apply the WBRPE directly in order to map the security requirements of appli-
cations based on online databases.

In WBRPE scheme, the client is the local host and the server is the remote host. The input supplied by
the client is a query, and the remote input of the server is a database, and the client wishes to compute the
result of its query on the database.
The owner of the database defines the set of valid queries which can be performed on the database. More
specifically, it generates the validation program V that will validate each submitted query. This is typical
in applications where it is required to enable the involved parties to perform statistical analysis on the data
without compromising the individual records of the database, e.g. [19], [20].

During the generation phase the hardening and the verification keys along with the obfuscated virtual
machine are generated. The OVM has the embedded validation procedure, and is installed on the server.

The client generates the query, performs hardening and submits for execution on the server. The OVM
upon input a hardened query, unhardens it with the corresponding unhardening key and validates the query,
e.g. to make sure that the query result does not exceed some predefined size, [21] or that the query does
not compromises the privacy of individual records, [22]. If the validation process succeeds then the OVM
queries the database with that query, hardens the result and sends back to the originator. The originator
upon receipt the hardened query, unhardens to obtain the final result of the computation. The client can
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also perform the validation of the result, i.e. to make sure that the result is indeed the computation based
on the query that it submitted. To accomplish this, it simply supplies the original query as an additional
input to the unhardening procedure.

Clearly the privacy and the integrity of both inputs of the client and the server are obtained, since the
server cannot observe the queries submitted by the client, further since the database is queried inside the
OVM the server cannot observe the process of the computation. Furthermore, the scheme ensures that only
valid queries can be executed, by defining the valid queries set prior to the generation process, s.t. each
query will be validated according to that set.

6.2 Grid Computing

In a grid computing environment, a large number of users (nodes) donate their idle CPU cycles to perform
computation on behalf of a third party (the client).In this work we focus on (distributed) computing tasks
where the jobs require only CPU cycles (i.e., we exclude jobs that need user input/output or large scale
storage). From a commercial perspective, cryptanalysis of keys seems to be a major application of such
scenarios.

In a typical scenario based on this model, the participating nodes decide what and how much of their
resources they are willing to devote. A job scheduler then distributes standalone programs (jobs) P to
each of these nodes, along with an input a “hardwired”. In most cases, P can run uninterrupted for days
without requiring any input from the nodes (the only input needed is a). For simplicity, we consider a single
centralized scheduler, although this model can be extended to multiple grids/schedulers. There are two main
security concerns for the client.

1. (confidentiality) The job (P, a) may contain sensitive information that needs to be protected from the
user.

2. (Integrity) A user may tamper with the execution of the job and/or submit incorrect results. That is,
it may submit a result that is 6= P (a).

A WBRPE satisfying IND and UNF-OUT may be used to satisfy both the above requirements. The
scheduler embeds (P, a) into a program P ′ that simply computes P (a) and sends (OVM,Hhk(P ′) to the
attacker. If the IND requirement for WBRPE is satisfied, then it is guaranteed that the attacker cannot
learn much about (P, a) except the length. Similarly, if the UNF-OUT requirement is satisfied then it can
be shown that the attacker cannot make the scheduler accept anything apart from P (a) or ⊥.

From the nodes’ perspective, there are some security issues too- a job might contain malicious code,
which the node is not willing to execute. This issue is addressed by the Validity requirement of WBRPE.

7 Related Works

Program obfuscation was formally defined by Barak et al. [1] based on black box simulation, which also
proved that obfuscation is theoretically impossible for general purpose functions and for some specific func-
tions. Following the definition presented by Barak et al., Wee, [23], presented a positive result for point
functions obfuscation. The definition presented by Barak et al. [1] was further extended to include auxiliary
inputs by Goldwasser and Kalai in [24], which in addition proved that the construction presented by Wee
[23] holds in their model. Furthermore, the prominent impossibility result of Barak et al. [1] also holds in
their weaker model.

In contrast to the impossibility result of Barak et al. [1] and Goldwasser and Kalai, [24], there are other
positive solutions, e.g. an NP-hardness result of Wang [25], Ogiso [26], a PSpace hardness result of Chow
et al. [27]. There are also alternative weaker definitions of obfuscation, e.g. Hohenberger et al. [28], that
present a positive obfuscation result for cryptographic re-encryption functionality, obfuscation for access
control Lynn [29], also a weaker definition of Best Possible Obfuscation in Goldwasser em et al. [30], which
makes a relaxed requirement that the obfuscated program leaks as little information as any other program
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with the same functionality, present a separation between black box and best possible obfuscation, and show
tasks which can be achieved under this new definition.

It is conjectured that obfuscation alone does not provide a solution to remote program execution concept,
and should be used in tandem with other techniques to obtain provably secure protocols and frameworks for
execution of programs in remote untrusted environments, and in particular it is not a substitution to these
techniques.

Theoretical solutions also focus on mobile code cryptography (a.k.a. encrypted computation) that aims
at providing black box security by employing provably secure cryptographic techniques. This approach
allows a program to be executed securely on a remote untrusted host by transforming program’s code into
an encrypted form, consequently obtaining encrypted executable program that consists of instructions and
operate on encrypted inputs, such that the remote host cannot inspect the original program.

Sander and Tschudin [31], [32], initiated mobile code research and were the first to identify the possi-
bility of securely executing a code on a remote untrusted host, by proposing an application of encrypted
computation techniques to the problem of protecting intellectual property, secret functions and mobile code
from malicious hosts. They pointed out that protocols for secure multi-party computation could be useful
in the design of a software only solution to protect mobile code against malicious hosts. Initially they found
that polynomial functions can be encrypted for non-interactive evaluation if an algebraic homomorphic trap-
door one-way functions exist. Sander and Tschudin presented a non-interactive Computing with Encrypted
Functions (CEF) protocol for computing polynomials and rational functions, using homomorphic encryption
scheme. However their solution is limited to evaluation of polynomials and rational functions and is highly
inefficient for practical use. Similar solutions were presented in [33], [34]. This approach can be further
employed by function hiding as is extended by Sander and Tschudin in [35], which essentially means that
the result of the computation is returned to the remote host upon receipt of the encrypted result by the
originator. A subsequent work by Sander et al [36] gave a non-interactive CED protocol for all NC1 func-
tions. Based on that, a non-interactive CEF protocol can be implemented by letting Client’s private input
be its function f and server’s function be a universal circuit. However due to the logarithmic limitation on
the depth of the circuit being evaluated , its application is limited.

Although mobile code cryptography provides black box security, it is still difficult to achieve, and in
particular, existing techniques exhibit various problems for practical applications, such as lack of efficiency,
restriction to limited set of functions, and more.

In homomorphic encryption scheme for polynomial functions the possible number of terms in a function
is exponential to the number of inputs, therefore the encrypted function to be transfered will be large.
There is also a technical difficulty to find encryption schemes that can transform arbitrary functions to their
encrypted executable versions.

Other approaches are based on Yao’s secure function evaluation protocol [37] present solutions to protect
program’s code and data as well as host’s data, and it is more powerful in terms of the type of functions it
can compute.
Other works based on secure circuit evaluation in tandem with oblivious transfer, e.g. [38], [2], [39]. Un-
fortunately there are inherent disadvantages, e.g. Yao’s [37] non-interactive protocol, in order to reduce
interactiveness, leaks the whole circuit structure.

An additional common limitation of both secure distributed computation and encrypted computation
schemes is the representation of programs as functions. When a program is represented by a function the
encoding size may be exponential, thus increasing both computation and communication complexity.

8 Conclusions and Open Questions

In this work we focus on layering rigorous foundations of white box cryptography, by investigating the
building blocks in white box security and presenting constructions, along with reductions to the underlying
building blocks. At the moment there does not exist a proof showing that any white-box scheme is realizable,
even by a reduction showing equivalence to a problem which is considered hard. On the other hand, there
is no proof, even by reduction, that any of the white-box schemes is unrealizable. This motivates exploring

30



other, related, weaker or stronger notions of white-box security, to try to find some notion that we can prove
realizable or unrealizable.

As we discussed in section 7, the existing results in mobile code are insufficient for practical applications,
therefore we raise the question whether better results can be obtained with our white box primitive, the
WBRPE scheme. In addition, the question whether there exists a WBRPE scheme for any program seems
an interesting open problem.

Below outlined several open research directions which we find particularly important and interesting

• Currently the generation phase is performed by the trusted third party, and it is interesting to consider
variations that would not rely on a strong trust assumption.

• Our scheme does not support state, which is crucial for computations performed by mobile agents, and
is an essential extension to explore.

• Another interesting direction is the investigation of weaker white box primitives. In particular, to find
the minimal assumption necessary to obtain security, i.e. the weakest building block, like a one way
function in traditional cryptography.

• In parallel to theoretical research it is interesting to build a WBRPE candidate.
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