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Abstract. How to define the security of undeniable signature schemes
is a challenging task. This paper presents two security definitions of un-
deniable signature schemes which are more useful or natural than the
existing definition. It then proves their equivalence.
We first define the UC-security, where UC means universal composability.
We next show that there exists a UC-secure undeniable signature scheme
which does not satisfy the standard definition of security that has been
believed to be adequate so far. More precisely, it does note satisfy the
invisibility defined by [19]. We then show a more adequate definition of
invisibility which captures a wider class of (naturally secure) undeniable
signature schemes.
We finally prove that the UC-security against non-adaptive adversaries
is equivalent to this definition of invisibility and the strong unforgeabil-
ity in FZK-hybrid model, where FZK is the ideal ZK functionality. Our
result of equivalence implies that all the known proven secure undeni-
able signature schemes (including Chaum’s scheme) are UC-secure if the
confirmation/disavowal protocols are both UC zero-knowledge.
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1 Introduction

The concept of undeniable signature schemes was introduced by Chaum
and van Antwerpen [15]. In an undeniable signature scheme, the signer
issues an undeniable signature σ which is not publicly verifiable. She then
proves the validity or invalidity of σ to the verifier in zero-knowledge (ZK)
by running a confirmation protocol or disavowal protocol. Undeniable
signature schemes have found various applications in cryptography such
as in licensing software [15], electronic cash [16, 2, 34], electronic voting
and auction. Then there have been a wide range of research covering a
variety of different schemes for undeniable signatures over the past 15
years [12, 1, 14, 13, 24, 19, 23, 30, 9, 22, 21, 27, 3, 31, 32].

Recently, the security of Chaum’s undeniable signature scheme is
proved formally in the random oracle model under the decisional Diffie-
Hellman (DDH) assumption by [33]. In the standard model, Laguillaumie
and Vergnaud showed an undeniable signature scheme which is secure



under a decisional variant of the strong Diffie-Hellman (DH) assump-
tion [28]. Kurosawa and Takagi showed an undeniable signature scheme
which is secure under the strong RSA assumption and the decisional Nth
residuosity assumption [26].

However, how to define the security of undeniable signature schemes
is a challenging task. For example, it is not known if the security of these
schemes is maintained under a general protocol composition. This concern
is serious because undeniable signatures are often used as a building block
in a more complicated protocol as shown above.

This paper presents two security definitions of undeniable signature
schemes which are more useful or natural than the existing definition. It
then proves their equivalence.

We first present an ideal functionality of undeniable signature schemes
Σ in the universally composable (UC) framework [4, 5]. We next show
that there exists a UC-secure undeniable signature scheme which does
not satisfy the standard definition of security that has been believed to
be adequate so far. More precisely, it does not satisfy the invisibility
defined by [19]. The invisibility means that, for a message m, the receiver
cannot tell if σ is a valid signature or a simulated signature. We then show
a more adequate definition of invisibility which captures a wider class of
(naturally secure) undeniable signature schemes.

We finally prove that the UC-security against non-adaptive adver-
saries is equivalent to this definition of invisibility and the strong un-
forgeability in FZK-hybrid model where FZK is the ideal ZK functional-
ity. For adaptive adversaries, we show that it is impossible to construct a
UC-secure undeniable signature scheme even in the FZK-hybrid model.

Our result of equivalence implies that all the known proven secure
undeniable signature schemes (including Chaum’s scheme) [33, 28, 26] are
UC-secure against non-adaptive adversaries if the confirmation protocol
and the disavowal protocol are UC zero-knowledge. Hence the security of
these schemes is maintained under a general protocol composition against
non-adaptive adversaries.

2 Preliminaries

2.1 Undeniable Signature Scheme

According to [19], an undeniable signature scheme is denoted by

Σ = (Gsign,Sign,Check,Sim, πcon, πdis).



It consists of a key generation algorithm Gsign, a signing algorithm Sign, a
validity check algorithm Check, a signature simulator Sim, a confirmation
protocol πcon and a disavowal protocol πdis.

The key generation algorithm Gsign is a PPT (probabilistic polynomial-
time) algorithm which outputs (vk, sk), where vk is a verification key and
sk is the signing key. 1 The message space M is specified by vk.

The signing algorithm Sign is a PPT algorithm which generates a
signature σ on input a message m ∈M and the signing key sk.

We say that (m,σ) is valid if σ is an output of Sign(sk,m) for some
random string r. Otherwise, we say that (m,σ) is invalid. The validity
check algorithm Check is a deterministic polynomial time algorithm such
that

Check((vk,m, σ), sk) =

{
1 if (m, σ) = valid
0 if (m, σ) = invalid

The signature simulator Sim is a PPT algorithm which outputs a
simulated signature such that σ′ = Sim(vk,m).

An undeniable signature scheme must satisfy unforgeability and in-
visibility. Invisibility means that for a message m, the receiver cannot tell
if σ is a valid signature or a simulated signature.

This implies that the receiver cannot verify the validity of (m,σ)
by himself. Instead, the cooperation of the signer is needed to verify
the validity and invalidity of (m,σ) by running a confirmation proto-
col πcon and a disavowal protocol πdis with the receiver respectively.
πcon is a zero-knowledge interactive proof system (ZKIP) on a language
L0 = {(vk,m, σ) | (m,σ) is valid}, and πdis is a ZKIP on a language
L1 = {(vk,m, σ) | (m, σ) is invalid}. Each ZKIP must satisfy complete-
ness, soundness and zero-knowledgeness.

2.2 Security of Undeniable Signature

Unforgeability The unforgeability is defined as follows. Consider the
following game between a challenger and an adversary A.

1. The challenger generates a key pair (vk, sk) randomly, and gives the
verification key vk to A.

2. For i = 1, 2, . . . , qs for some qs, A queries a message mi to the signing
oracle adaptively and receives a signature σi.

3. Eventually, A outputs a forgery (m∗, σ∗).

1 We assume that sk is uniquely determined by vk.



We allow the adversary A to query (mj , σj) to the confirmation/disavowal
oracle adaptively at step 2, where the confirmation/disavowal oracle re-
sponds as follows.

– If (mj , σj) is a valid pair, then the oracle returns a bit µ = 1 and
proceeds with the execution of the confirmation protocol πcon with A.

– Otherwise, the oracle returns a bit µ = 0 and executes the disavowal
protocol πdis with A accordingly.

We say that A succeeds in strong forgery if (m∗, σ∗) is valid and
(m∗, σ∗) is not among the pairs (mi, σi) generated during the signing
oracle queries. 2

Definition 1. We say that Σ is strongly unforgeable if Pr[A succeeds in
strong forgery ] is negligible for any PPT adversary A in the above game.

Invisibility Damg̊ard and Pedersen defined the invisibility by using the
following game between a challenger and an adversary A [19].

1. The challenger generates a key pair (vk, sk) randomly, and gives the
verification key vk to A.

2. A is permitted to issue a series of signing queries mi to the signing
oracle adaptively and receives a signature σi.

3. At some point, A chooses a message m∗ and sends it to the challenger.
4. The challenger chooses a random bit b.

If b = 1, then he computes a real signature σ∗ = Sign(sk,m∗).
Otherwise, he computes a fake signature σ∗ = Sim(vk,m∗).
He then returns σ∗ to A.

5. A performs some signing queries again
6. At the end of this attack game, A outputs a guess b′.

We allow the adversary A to query (mj , σj) to the confirmation/disavowal
oracle adaptively at step 2 and at step 5.

However, A is not allowed to query the challenge (m∗, σ∗) to the con-
firmation/disavowal oracle at step 5. Also A is not allowed to query m∗

to the signing oracle.

Definition 2. We say that Σ is invisible if for any PPT adversary A,
|Pr[b = b′]− 1/2| is negligible in the above game.
2 We say that A succeeds in weak forgery if (m∗, σ∗) is valid and m∗ has never been

queried to the signing oracle. Weak unforgeability and strong one are equivalent if
the signing algorithm is deterministic, and there exists a unique signature for each
message that is verified correctly.



2.3 Universal Composability

The security of a protocol π = (P1, · · · , Pn) is maintained under a general
protocol composition if π is secure in the universally composable (UC)
security framework [4, 5]. See Appendix A.

3 UC Undeniable Signature

3.1 Ideal Functionality

Suppose that there exists a trusted third party (TTP) who has magical
ink such that anything written by it is not visible. Only TTP can see it by
using a special pair of glasses. Then the ideal functionality of undeniable
signature schemes can be illustrated as follows.

1. A signer, Alice, first receives a registered number vk from TTP.
2. Upon signing request on a message m from Alice, TTP makes a sig-

nature σ on m (on behalf of vk) by using the magical ink.
3. Upon verification request on (m,σ, Bob) from Alice, TTP checks if σ

is a correct signature (on behalf of vk) by using the special pair of
glasses. Then it tells Bob if (m,σ) is valid or not.

We now present the ideal functionality Fusig of undeniable signature
schemes in the UC framework.

Key Generation: 1. Upon receiving a value (KeyGen, sid) from some
party P , verify that sid = (P, sid′) for some sid′. If not, then
ignore the request. Else, hand (KeyGen, sid) to the adversary.

2. Upon receiving (Keys, sid, vk, Sim) from the adversary, output
(VerifyKey, sid, vk, Sim) to P , where vk is a verification key and
Sim is a PPT algorithm.

Signature Generation: Upon receiving a value (Sign, sid, m) from P ,
verify that sid = (P, sid′) for some sid′. If not, then ignore the request.
Else do:
1. If (m,σ, 1) is recorded, then output (Signature, sid, m, σ) to P . 3

2. Else, if P is not corrupted, generate σ = Sim(vk,m) randomly such
that no entry (m,σ, 0) is recorded. Then output (Signature, sid, m, σ)
to P and the adversary.

3 Ignore this step if the signing algorithm is probabilistic.



3. Else send (Sign, sid, m) to the adversary.
Upon receiving (Signature, sid, m, σ) from the adversary, verify
that no entry (m,σ, vk, 0) is recorded. If it is, then output an error
message to P and halt. Else, output (Signature, sid, m, σ) to P ,
and record the entry (m,σ, vk, 1).

Verification: Upon receiving a value (Verify, sid, m, σ, V ) from P , where
V is a verifier, verify that sid = (P, sid′) for some sid′. If not, then
ignore the request. Else do:
1. If (m,σ, flag′) is recorded, then set flag = flag′.
2. Else, if P is not corrupted, then set flag = 0 and record (m,σ, 0).

(This condition guarantees strong unforgeability: if the signer is
not corrupted, and never signed m, then the verification fails.)

3. Else, hand (Verify, sid, m, σ, V ) to the adversary.
Upon receiving (AdVerified, sid, m, σ, φ) from the adversary,
let flag = φ and record (m,σ, φ).

Finally output (Verified, sid, (m, σ), f lag) to V and the adversary.

3.2 Remarks

The main differences between Fusig and Fsig are as follows, where Fsig is
defined in Appendix A.1.

– At key generation, Fsig receives vk from the adversary, and hands it
to P . On the other hand, Fusig receives (vk,Sim) from the adversary,
and hands it to P .

– At signature generation, Fsig receives σ from the adversary, and hands
it to P . On the other hand, Fusig computes σ = Sim(vk,m), and hands
it to P . This is because σ must be invisible in undeniable signature
schemes.

– The signer (P ) issues Verify command to Fusig while the verifier (V )
issues it to Fsig. This is because V should not be able to verify the
validity of (m,σ) without the cooperation of P in undeniable signature
schemes.

The adversary returns (Keys, sid, vk, Sim) to Fusig at key generation.
Hence Sim depends on vk. This means that we can write σ = Sim(m)
instead of σ = Sim(vk,m) at signature generation.

4 Subtlety on Invisibility and New definition

4.1 Problem of Previous Definition

The standard definition of invisibility (Def. 2) was given by Damg̊ard
and Pedersen [19], where Sim is a part of Σ. However, we show that there



exists a UC-secure (and naturally secure) undeniable signature scheme
which does not satisfy this definition of invisibility (Def. 2).

Let Σ be an undeniable signature scheme which satisfies the strong
unforgeability and the invisibility defined by Def. 1 and Def. 2. Let Σ′

be a strongly unforgeable (usual) signature scheme. Then consider an
undeniable signature scheme Ω based on Σ and Σ′ as follows.

– The public-key of Ω is (vk, vk′), where vk is a public-key of Σ, and
vk′ is a public-key of Σ′.

– The undeniable signature σ̃ on a message m is (σ, sk′, σ′), where σ is
an undeniable signature of Σ on m, sk′ is a secret-key of Σ′ and σ′ is
a (usual) signature of Σ′ on m.

This undeniable signature scheme Ω does not satisfy the invisibility
defined by Def. 2 because any PPT Sim() cannot compute sk′.

However, we can show that Ω is UC-secure. Intuitively, it is strongly
unforgeable because Σ is strongly unforgeable. It is naturally invisible
because σ is invisible, and everyone can compute σ′ for any message by
using sk′ once he obtains sk′ (for example, by known message attack). In-
deed, our ideal process adversary S has only to return Sim which includes
sk′ at Key Generation.

4.2 New Definition of Invisibility

The above difference comes from the fact that Sim is independent of vk
in the previous definition while it is not in the UC framework. Indeed,
the adversary returns (vk,Sim) to Fusig in the UC framework.

We now show a new definition of invisibility. We delete Sim from Σ,
and let Sim be a part of a public-key. That is, we define an undeniable
signature scheme as

Σ = (Gsign,Sign,Check, πcon, πdis)

such that

– the key generation algorithm Gsign outputs (vk, sk) and Sim. The
signer makes (vk,Sim) public, and keeps sk secret.

The other parts of Σ remain the same. Accordingly, we need to modify
step 1 of the attack game of invisibility shown in Sec.2.2 as follows.

1. The challenger generates (vk, sk) and Sim by running Gsign, and gives
(vk,Sim) to A.



We then define invisibility as follows.

Definition 3. We say that Σ is invisible if for any PPT adversary A,
|Pr[b = b′]− 1/2| is negligible in the modified attack game.

Then Ω is invisible under our new definition. More generally, it is easy
to see that our new definition captures a wider class of (naturally secure)
undeniable signature schemes.

4.3 New Definition of Unforgeability

We also need to modify step 1 of the attack game of unforgeability shown
in Sec.2.2 as follows.

1. The challenger generates (vk, sk) and Sim by running Gsign, and gives
(vk,Sim) to A.

We then define strong unforgeability as follows.

Definition 4. We say that Σ is strongly unforgeable if Pr[A succeeds in
strong forgery ] is negligible for any PPT adversary A in the modified
attack game.

4.4 Translation to Protocol

Under our new definition of Sec.4.2 and Sec.4.3, we show how to translate
an undeniable signature scheme Σ = (Gsign,Sign,Check, πcon, πdis) into a
protocol πΣ in FZK-hybrid model, where FZK is the ZK functionality on
the binary relation Check.

1. When party P receives an input (KeyGen, sid), it verifies that sid =
(P, sid′) for some sid′. If not, it ignores the input. Else it generates
(vk, sk) and Sim by running Gsign, and outputs (VerifyKey, sid, vk, Sim).

2. When P receives an input (Sign, sid, m) with sid = (P, sid′),
it sets σ = Sign(sk,m) and outputs (Signature, sid, m, σ).

3. When P receives an input (Verify, sid, m, σ, V ), do:
(a) P sends ((vk,m, σ), sk) to FZK .
(b) FZK then sends (Verified, sid, P, (vk,m, σ), f) to V and the ad-

versary, where f = Check((vk,m, σ), sk).
(c) Finally V outputs (Verified, sid, (m, σ), f).



When a party is corrupted, it reveals its internal state, which includes
all past signing and verification requests and answers, and for P also the
state of the signing algorithm, including the signing key and the random-
ness used to sign past messages.

Definition 5. We say that an undeniable signature scheme Σ is UC-
secure if πΣ securely realizes Fusig.

5 Equivalence

In this section, we prove that our UC-security notion of undeniable signa-
ture schemes is equivalent to the strong unforgeability (given by Def. 1)
and our new definition of invisibility (see Sec.4.2).

Theorem 1. Σ satisfies strong unforgeability and invisibility if Σ is UC-
secure against non-adaptive adversaries in the FZK-hybrid model.

Proof. Assume that Σ does not satisfy strong unforgeability or invisibil-
ity. We show that πΣ does not securely realize Fusig.

This is done by constructing an environment Z and an adversary A
such that for any ideal process adversary S, Z can tell whether it is
interacting with A and πΣ , or with S in the ideal process for Fusig. Our
Z corrupts no parties and gives no inputs to A.

(I) Assume that Σ is not strongly unforgeable, i.e. there exists an ad-
versary G which succeeds in strong forgery with nonnegligible probabil-
ity ε. Z first sets sid = (P, 0), and activates some party P with input
(KeyGen, sid). Z then obtains (vk,Sim) 4 and internally runs an instance
of G. From now on, whenever G asks the sign oracle to sign a message m,
Z activates P with input (Sign, sid = (P, 0),m), and reports the output
to G. Whenever G makes a confirmation/disavowal query (m,σ), Z acti-
vates P with input (Verify, sid, m, σ, V ) for some party V , and reports
the output of V to G.

Finally G outputs (m∗, σ∗). Then Z activates P with input
(Verify, sid, m∗, σ∗, V ) for some party V . Finally Z outputs 1 if and only
if the output of V is valid5 and (m∗, σ∗) is not among the pairs (mi, σi)
generated during the signing oracle queries.

Now suppose that Z interacts with πΣ . It is easy to see that Z simu-
lates the attack game perfectly for G. Further Z outputs 1 if and only if
G succeeds in forgery. Therefore, Z outputs 1 with probability ε.
4 In the ideal world, see step 2 of key generation. In the real world, see step 1 of πΣ .
5 where valid means that the output of V is (Verified, sid, P, (vk, m, σ), 1).



On the other hand, if Z interacts with S in the ideal process for
Fusig, then Z never outputs 1. This means that πΣ does not securely
realize Fusig.

(II) Assume that Σ is not invisible. Then there exists an adversary A
which breaks the invisibility with nonnegligible probability ε.

Z proceeds as above, i.e. Z first sets sid = (P, 0), and activates some
party P with input (KeyGen, sid). Z then obtains (vk,Sim) and internally
runs an instance of A. From now on, whenever A asks the sign oracle to
sign a message m, Z activates P with input (Sign, sid = (P, 0),m), and
reports the output to A. Whenever A makes a confirmation/disavowal
query (m,σ), Z activates P with input (Verify, sid, m, σ, V ) for some
party V , and reports the output of V to A.

At some point, A chooses a message m∗ (which has never been queried
if the signing algorithm is deterministic), and sends it to Z. Then Z
chooses a random bit b and does the following:

– If b = 1, Z activates P with input (Sign, sid = (P, 0),m), and reports
the output of P to A.

– Otherwise, Z computes σ′ = Sim(vk,m) randomly and reports σ′ to
A.

A finally outputs a bit b′. Z then outputs 1 if and only if b = b′.
Suppose that Z interacts with πΣ . Then A sees exactly the attack

game on invisibility on Σ. Therefore,

|Pr(Z outputs 1)− 1/2| ≥ ε.

On the other hand, if Z interacts with S in the ideal process for Fusig.
then it is easy to see that

Pr(Z outputs 1)− 1/2 = 0

because both Fusig and Z compute σ′ = Sim(vk,m) randomly. This
means that πΣ does not securely realize Fusig. This completes our proof.

ut

Corollary 1. Σ satisfies weak unforgeability and invisibility if Σ is UC-
secure against non-adaptive adversaries.

Theorem 2. Σ is UC-secure against non-adaptive adversaries if Σ sat-
isfies strong unforgeability and invisibility in the FZK-hybrid model.



5.1 Proof of Theorem 2

Assume that πΣ does not securely realize Fusig against non-adaptive ad-
versaries. We show that Σ does not satisfy strong unforgeability or in-
visibility. Assume that Σ is invisible (otherwise the theorem is proven).
Then there exists a PPT algorithm Sim which satisfies the definition of
the invisibility. Our goal is to construct a forger G.

Using the equivalent notion of security against the (non-adaptive)
dummy adversary D, 6 we have that for any ideal process adversary S,
there exists an environment Z that can tell whether it is interacting with
Fusig and S, or with πΣ and the non-adaptive dummy adversary D. (Re-
member that non-adaptive adversaries corrupt parties at the beginning
of executions only.)

We consider a particular S as shown below. For this particular S,
there exists an environment ZS that can distinguish the real world and
the ideal world. We will use this ZS to construct a forger G on Σ.

First our particular S behaves as follows.

– Suppose that there are no party corruption instructions by Z. In this
case, S provides Fusig with vk and Sim at key generation. S outputs
nothing other than this.

– Suppose that Z instructs S to corrupt P at the beginning. In this
case, Fusig forwards all commands of Z (to P ) to S. Then S behaves
in the same way as the real signer of πΣ does. That is:

1. At key generation, S generates (vk, sk) randomly and returns vk and
Sim to Fusig.

2. At signature generation, S computes σ = Sign(sk,m) and returns σ
to Fusig.

3. At signature verification, S computes φ = Check((vk,m, σ), sk)) and
returns (AdVerified, sid, m, σ, φ) to Fusig.

Lemma 1. ZS does not corrupt P with nonnegligible probability.

Proof. If ZS always corrupts P (at the beginning), then such ZS cannot
distinguish the real world and the ideal world because our S behaves

6 The dummy adversary D only delivers to parties messages generated by the en-
vironment Z, and delivers to Z all messages generated by the parties. Instead of
quantifying over all possible adversary A, it suffices to require that the ideal pro-
tocol adversary S be able to simulate, for any environment Z, the behavior of the
dummy adversary D. [6]



in the same way as the real signer. Hence ZS does not corrupt P with
nonnegligible probability.

ut

Fig. 1. Forger G

1. G is given (vk, Sim) as an input. G then runs ZS .
2. If ZS corrupts some party P at the beginning, then G outputs failure.

If ZS activates P with input (KeyGen, sid) with sid = (P, sid′) for some sid′,
then G returns (vk, Sim) to ZS .

3. When ZS activates P with input (Sign, sid, m),
then G asks its signing oracle for a signature σ on m, and returns σ to ZS .

4. When ZS activates P with input (Verify, sid, m, σ, V ) for some party V ,
then G queries (m, σ) to its confirmation/disavowal oracle,
and returns the answer to ZS through V .

5. If the answer is valid, and (m, σ) is not a pair generated at step 3,
then G outputs (m, σ) as a strong forgery and stops.

Next let FORGE denote the event that ZS activates P with input
(Verify, sid, m, σ, V ) such that (m,σ) is a strong forgery.

Lemma 2. Suppose that Σ satisfies the invisibility. Also suppose that
ZS does not corrupt P , and can distinguish the real world from the ideal
world. Then FORGE happens in the real world with nonnegligible prob-
ability.

Now we present our forger G in Fig.1. Suppose that ZS does not
corrupt P . Then G simulates the real world for ZS until step 5. Thereofore
the view of ZS of Fig.1 is the same as the view of ZS in the real world until
step 5. Hence from Lemma 1 and Lemma 2, it is clear that G succeeds in
strong forgery with nonnegligible probability if Σ is not UC-secure and
satisfies the invisibility. This completes the proof of Theorem 2.

(Proof of Lemma 2)
It is clear that FORGE never happens in the ideal world. We prove

that ZS cannot distinguish the real world and the ideal world if FORGE
never happens in the real world.

Suppose that FORGE never happens in the real world. Then the
view of ZS in the real world is identical to the view of ZS shown in Fig.2.

We consider a series of games on ZS as follows. Game0 is the same
as Fig.2 except for that σi are all simulated signatures. Assume that ZS



Fig. 2. FORGE never happens

1. When party P receives an input (KeyGen, sid),
it verifies that sid = (P, sid′) for some sid′. If not, it ignores the input.
Else it generates (vk, sk) and Sim by running Gsign,
and outputs (VerifyKey, sid, vk, Sim).

2. When P receives an input (Sign, sid, m) with sid = (P, sid′),
it sets σ = Sign(sk, m) and outputs (Signature, sid, m, σ).
P records (m, σ).

3. When P receives an input (Verify, sid, m, σ, V ), do:
If (m, σ) is recorded, then P outputs valid. Otherwise P outputs invalid.

activates P with input (Sign, sid, mi) and the signing oracle returns σi

for i = 1, · · · , qs. For j = 1, · · · , qs, Gamej is the same as Fig.2 except for
that σi is a real signature for i = 1, · · · , j, and σi is a simulated signature
for i = j + 1, · · · , qs. Note that Gameqs is the same as Fig.2, where σi

are all real signatures.
From a view point of ZS , it is clear that Game0 is the ideal world

and Gameqs is the real world. Therefore from our assumption, ZS can
distinguish Game0 and Gameqs . Then it is easy to show that there exists
J such that ZS can distinguish GameJ−1 and GameJ .

Now we construct an adversary A who can break the invisibility by
using ZS as follows. A engages in the attack game on the invisibility.
First, A is given (vk, Sim) by the challenger. It then runs ZS . When ZS

invokes some uncorrupted P , A returns (vk, Sim) to ZS .
Suppose that ZS activates P with input (Sign, sid, mi).

– If i < J , then A queries mi to his own signing oracle and receives a
real signature σi. A records (mi, σi).

– If i > J , then A computes a simulated signature σi = Sim(vk,mi).
– If i = J , then A sends mJ to the challenger as a challenge message,

and receives σJ from the challenger.

A then returns the above σi to ZS .
Suppose that ZS activates P with input (Verify, sid, m, σ, V ) for

some party V . If (m,σ) is recorded, then A returns valid. Otherwise,
A returns invalid. (Remember that FORGE never happens.)

Let b′ be the final output of ZS . A outputs this b′.
It is clear that the view of ZS is exactly the same as that of GameJ−1

and GameJ according to the challenge bit b of the challenger. Therefore
from the definition of J , |Pr(b′ = b) − 1/2| is nonnegligible. This means



that A wins the attack game on the invisibility. However, this is a con-
tradiciton.

This complets the proof of Lemma 2.

6 Application

In this section, we show that, Chaum’s undeniable signature scheme is
UC-secure against non-adaptive adversaries in the random oracle model
if it uses a confirmation protocol and a disavowal protocol which are UC
zero-knowledge.

Let G be an Abelian group of prime order q, and let g be a generator
of G. We say that (g, gx, gr, gz) is a DH-tuple if z = xr mod q. The CDH
assumption claims that it is hard to compute gxr from (g, gx, gr). The
DDH assumption claims that it is hard to decide if (g, gx, gr, gz) is a
DH-tuple.

Then Chaum’s undeniable signature scheme is described as follows.

– Key Generation. On input the security parameter 1k, choose x ∈ Zq

randomly and compute y = gx. Choose a cryptographic hash function
H : {0, 1}∗ → G. Set the public key as (g, y, H) and the secret key as
x.

– Signing. On input the public key (g, y, H), the secret key x and a
message m ∈ {0, 1}∗, the algorithm returns the signature as σ =
H(m)x.

– Confirmation Protocol. Given a message-signature pair (m,σ), the
signer proves that (g, y, H(m), σ) is a DH-tuple in zero-knowledge.

– Disavowal Protocol. Given a message-signature pair (m,σ), the
signer proves that (g, y, H(m), σ) is not a DH-tuple in zero-knowledge.

It is known that Chaum’s undeniable signature scheme is (strongly)
unforgeable under CDH assumption, and invisible under DDH assumption
in the random oracle model [33]. Hence from Theorem 2, we have the
following corollary.

Corollary 2. Chaum’s undeniable signature scheme is UC-secure against
non-adaptive adversaries under the DDH assumption in the random ora-
cle model if it uses a confirmation protocol and a disavowal protocol which
are UC zero-knowledge.



7 Impossibility Result

In this section, we show that it is impossible to construct an undeniable
signature scheme which is UC-secure against adaptive adversaries.

Theorem 3. There exists no undeniable signature scheme Σ which is
UC-secure against adaptive adversaries even in the FZK-hybrid model.

A proof is given in Appendix B.
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A Universal Composability

In this framework, there exists an environment Z which generates the
input to all parties, reads all outputs, and in addition interacts with an
adversary A in an arbitrary way throughout the computation.



A protocol π is said to securely realizes a given functionality F if
for any adversary A, there exists an ideal-process adversary S such that
no environment Z can tell whether it is interacting with A and parties
running the protocol, or with S and parties that interact with F in the
ideal process.

The following universal composition theorem is proven in [4, 5]. Con-
sider a protocol π that operates in a hybrid model of computation where
parties can communicate as usual, and in addition have ideal access to
(an un unbounded number of copies of) some ideal functionality F . Let
ρ be a protocol that securely realizes as sketched above, and let πρ be
the composed protocol. That is, πρ is identical to π with the exception
that each interaction with some copy of F is replaced with a call to (or
an invocation of) an appropriate instance of ρ. Similarly, ρ-outputs are
treated as values provided by the appropriate copy of F . Then π and
πρ have essentially the same input/output behavior. In particular, if π
securely realizes some ideal functionality G given ideal access to F , then
πρ securely realizes G from scratch.

For more details, see [4, 5].

A.1 UC Signature

We show a definition of the signature functionality Fsig given in [5]. It
proceeds as follows.

Key Generation: Upon receiving a value (KeyGen, sid) from some party
P , verify that sid = (P, sid′) for some sid′. If not, then ignore the
request. Else, hand (KeyGen, sid) to the adversary.
Upon receiving (Verification Key, sid, vk) from the adversary, out-
put (Verification key, sid, vk) to P , and the record the pair (P, vk).

Signature Generation: Upon receiving a value (Sign, sid, m) from P ,
verify that sid = (P, sid′) for some sid′. If not, then ignore the request.
Else send (Sign, sid, m) to the adversary.
Upon receiving (Signature, sid, m, σ) from the adversary, verify that
no entry (m,σ, vk, 0) is recorded. If it is, then output an error message
to P and halt. Else, output (Signature, sid, m, σ) to P , and record
the entry (m,σ, vk, 1).

Signature Verification: Upon receiving a value (Verify, sid, m, σ, vk′)
from some party V , hand (Verify, sid, m, σ, vk′) to the adversary.
Upon receiving (Verified, sid, m, σ, φ) from the adversary, do:
1. If vk′ = vk and the entry (m,σ, vk, 1) is recorded, then set f = 1.



2. Else, if vk′ = vk, the signer is not corrupted, and no entry (m,σ′, vk, 1)
for any σ′ is recorded, then set f = 0 and record the entry (m,σ, vk, 0).

3. Else, if there is an entry (m,σ, vk′, f ′) recorded, then let f = f ′.
4. Else, let f = φ and record the entry (m, σ, vk′, φ).
Output (Verified, sid, m, σ, f) to V .

It is known that a signature scheme securely realizes Fsig if and only
if it is existentially unforgeable against chosen message attack [5].

A.2 UC Zero-Knowledge

We use a definition of the zero-knowledge (ZK) functionality FZK given
in [4]. It proceeds as follows, running with parties P1, · · · , Pn and an
adversary S, given a binary relation R.

1. Upon receiving of a value (prover, sid, Pi, Pj , x, w) from some party
Pi, send (Verified, sid, Pi, x,R(x, w)) to Pj and S, and halt.

It is known that FZK cannot be realized in the UC framework by plain
protocols [4]. On the other hand, in the common random string model,
interactive ZK protocols for any NP language were constructed in [7] and
non-interactive ones were constructed in [8].

B Proof of Theorem 3

Proof. Suppose that there exists an undeniable signature scheme Σ such
that πΣ securely realizes Fusig against adaptive adversaries. Then it se-
curely realizes Fusig against non-adaptive adversaries also. Hence Σ is
strongly unforgeable from Theorem 1. Now we consider an environment
Z and an adaptive adversary A as follows.

1. Z activates some party P with input (KeyGen, sid) with sid = (P, sid′)
for some sid′, and receives (vk,Sim) from P .

2. Z chooses m1 ∈M 7 randomly, and activates P with input (Sign, sid, m1).
Z then receives a signature σ1 on m1 from P .

3. A corrupts P and obtains the signing key sk. A then reports sk to Z.
4. Z lets b = 1 if Check((vk,m1, σ1), sk) = 1. Otherwise he lets b = 0.

Finally Z outputs b and stops.

7 M is the message space specified by vk.



First suppose that Z is interacting A and parties running πΣ . Then
it is clear that

Pr(Z outputs 1) = Pr[Check((vk,m1, σ1), sk) = 1] = 1.

Next suppose that Z is interacting with an ideal process adversary S
and dummy parties that interacts with F . In this case, σ1 = Sim(vk,m1)
for some PPT algorithm Sim. Suppose that Pr[Check((vk,m1, σ1), sk) =
1] is nonnegligible. Then it is easy to see that Σ is strongly forgeable. In-
deed, a forger chooses m1 ∈M randomly and computes σ1 = Sim(vk,m1).
Then (m1, σ1) is a valid pair with nonnegligible probability. Therefore,
Pr(Z outputs 1) = 1 is negligible.

This means that Z can distinguish two worlds. This is against that
πΣ securely realizes Fusig against adaptive adversaries. Therefore, there
exists no undeniable signature scheme Σ which is UC-secure against adap-
tive adversaries. ut


