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Abstract. In this paper we introduce the concept of an optimal pairing,
which by definition can be computed using only log2 r/ϕ(k) basic Miller
iterations, with r the order of the groups involved and k the embedding
degree. We describe an algorithm to construct optimal ate pairings on
all parametrized families of pairing friendly elliptic curves. Finally, we
conjecture that any non-degenerate pairing on an elliptic curve without
efficiently computable endomorphisms different from powers of Frobenius
requires at least log2 r/ϕ(k) basic Miller iterations.
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1 Introduction

Ever since the inception of pairing based cryptography, there has been a huge
interest in developing fast algorithms to compute bilinear pairings. A bilinear
pairing (or simply pairing) is a map of the form

e : G1 ×G2 −→ GT

where G1, G2 are typically additive groups and GT is a multiplicative group.
Bilinearity means that the map is linear in each component. We only consider
pairings between groups of large prime order r, which are non-degenerate, i.e.
for which there exists P ∈ G1 and Q ∈ G2 such that e(P,Q) 6= 1. Note that
due to bilinearity, there is essentially only one pairing. Indeed, every pairing
is completely determined by its value on one set of generators of G1, G2: let
G1 = 〈P 〉, G2 = 〈Q〉 and z = e(P,Q), then by bilinearity e(aP, bQ) = zab. If
a second pairing is specified by P ′, Q′, z′ and P ′ = αP , Q′ = βQ, then clearly
e′ = eαβ .

All fast algorithms are based on Miller’s algorithm [19, 20] to compute the
Weil and Tate pairings on (hyper)elliptic curves. Since then a large number
of papers [3, 12, 6, 22, 23, 2, 15, 14, 18, 24, 17, 25] have incrementally improved ef-
ficiency, interspersed with the occasional jumps caused by fundamentally new
approaches. One line of research is focused on shortening the loop in Miller’s
algorithm, which was initiated by Duursma-Lee [6] and extended by Barreto et
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al. [2] to supersingular abelian varieties using the ηT approach. The ate pairing
introduced in [15] for elliptic curves and in [14] for hyperelliptic curves gener-
alises this to all ordinary curves. More recently, several variants of the ate pairing
were introduced thereby further reducing the loop length in Miller’s algorithm,
such as the optimized ate pairing [18], the atei pairings [24] and finally the R-ate
pairing [17].

So far, all variants of the ate pairing have a Miller loop of length at least
log2 r/ϕ(k), with k the embedding degree. In this paper, we introduce the no-
tion of optimal pairings, which by definition attain this lower bound. Further-
more, we describe an algorithm to automatically construct optimal ate pairings
on parametrized families of pairing friendly elliptic curves. This algorithm also
explains why the bound log2 r/ϕ(k) is a natural lower bound and we conjec-
ture that any non-degenerate pairing on an elliptic curve without extra effi-
ciently computable endomorphisms different from Frobenius requires at least
log2 r/ϕ(k) basic Miller operations, thereby justifying the term “optimal pair-
ing”. Since pairings on elliptic curves seem more useful than pairings on hyper-
elliptic curves [13], we limit the exposition to elliptic curves. It should be clear
however that all results in this paper easily generalise to Jacobians of curves.

The remainder of this paper is organised as follows: Section 2 recalls the
necessary background on pairings, including all variants of the ate pairing. Sec-
tion 3 formally defines the notion of optimal pairing and describes an algorithm
to automatically construct such pairings for families of pairing friendly elliptic
curves. Section 4 applies the algorithm to an extensive list of families of pair-
ing friendly curves and exhibits in each case an optimal ate pairing. Finally,
Section 5 concludes the paper.

2 Background on Pairings

In this section, we briefly recall the definition of the Tate pairing, all variants of
the ate pairing and Miller’s algorithm to compute them. The necessary math-
ematical background can be found in [1] and an excellent overview on pairings
is [11].

2.1 Tate Pairing

Let Fq be a finite field with q = pn elements where p is prime and let E be an
elliptic curve defined over Fq. The point at infinity is denoted by O. Consider a
large prime r such that r | #E(Fq) and denote the embedding degree by k, i.e.
the smallest positive integer such that r divides qk − 1. Note that this implies
that r | Φk(q) with Φk(x) ∈ Z[x] the k-th cyclotomic polynomial. Throughout
we will assume that r2 - (qk − 1). The embedding degree k is chosen in this way
so as to ensure that both eigenspaces of Frobenius are Fqk -rational. When k > 1,
this implies that the full r-torsion E[r] of the elliptic curve is defined over the
field Fqk , i.e. E[r] ⊂ E(Fqk).
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For every P ∈ E(Fqk) and integer s, let fs,P be an Fqk -rational function with
divisor

(fs,P ) = s(P )− ([s]P )− (s− 1)O .

Such function fs,P is called a Miller function and is determined uniquely up to
multiplication by non-zero elements of Fqk .

Let P ∈ E(Fqk)[r] and Q ∈ E(Fqk), and consider the divisor D = (Q + R)−
(R) with R a random point in E(Fqk) such that D is coprime with (P ) − (O).
Then the Tate pairing [9] is a well-defined, non-degenerate, bilinear pairing

〈·, ·〉r :
{

E(Fqk)[r]× E(Fqk)/rE(Fqk) → F∗qk/(F∗qk)r

(P,Q) 7→ 〈P,Q〉r = fr,P (D).
(1)

The output of this pairing is only defined up to a coset of (F∗qk)r, however for
protocols we will require a unique element of F∗qk . Hence to obtain a unique
representative, one defines the reduced Tate pairing as

t(P,Q) = 〈P,Q〉(q
k−1)/r

r = fr,P (D)(q
k−1)/r ∈ GT . (2)

If the function fr,P in the definition is normalised, i.e. (ur
Ofr,P )(O) = 1 for

some Fq-rational uniformizer uO at O, then one can ignore working with the
divisor D and simply work with the point Q, i.e. the reduced Tate pairing is

t(P,Q) = fr,P (Q)(q
k−1)/r .

Remark 1. In the remainder of the paper we will assume that all Miller functions
are normalised.

2.2 Ate Pairing

The ate pairing [15, 14] and its variations [18, 24, 17] are simply optimized ver-
sions of the Tate pairing when restricted to the eigenspaces of Frobenius. Denote
with πq the Frobenius endomorphism, i.e. πq : E → E : (x, y) 7→ (xq, yq) and
define G1 = E[r] ∩Ker(πq − [1]) = E(Fq)[r] and G2 = E[r] ∩Ker(πq − [q]).

A somewhat non-standard way to derive the ate pairing is the following:
consider a fixed power m ∈ Z of the Tate pairing on G2 × G1 (so with the
arguments swapped)

t(Q,P )m = fr,Q(P )m(qk−1)/r = fmr,Q(P )(q
k−1)/r , (3)

where the last step follows from fmr,Q = fm
r,Q · fm,[r]Q and rQ = O. In fact, it is

easy to see that this holds in general, i.e. for all a, b ∈ Z we can take

fab,Q = f b
a,Q · fb,[a]Q . (4)

Since the Tate pairing is non-degenerate, the right hand side of (3) also defines
a non-degenerate pairing for any m ∈ Z with r - m. The main idea is then to
find a nice multiple of r such that the evaluation fmr,Q(P ) can be written as
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a power of the evaluation of a simpler function fλ,Q(P ). This can be achieved
by exploiting the fact that q-th powering corresponds to multiplication by q on
G2 and leaves G1 invariant. Finally, multiplication by q on G2 is the same as
multiplication by any λ such that λ ≡ q mod r.

Therefore, fix any λ such that λ ≡ q mod r and note that r|(λk − 1), since
r|(qk − 1). Define m = (λk − 1)/r, then by the above derivation we have

t(Q,P )m = fmr,Q(P )(q
k−1)/r = fλk−1,Q(P )(q

k−1)/r = fλk,Q(P )(q
k−1)/r .

Repeated application of (4) and using [λi]Q = [qi]Q gives

fλk,Q = fλk−1

λ,Q fλk−2

λ,[q]Q · · · fλ,[qk−1]Q .

Finally, by exploiting the action of q-th powering on both G1 and G2 we obtain

fλk,Q(P ) = fλ,Q(P )
Pk−1

i=0 λk−1−iqi

.

In conclusion: let λ ≡ q mod r and m = (λk − 1)/r, then the (reduced) ate
pairing aλ

aλ : G2 ×G1 → µr : (Q,P ) 7→ fλ,Q(P )(q
k−1)/r ,

defines a bilinear pairing which is non-degenerate for r - m. Note that the action
of aλ simply corresponds to a fixed power of the reduced Tate pairing.

A similar derivation also shows that when k | #Aut(E) the twisted ate
pairing at

λ

at
λ : G1 ×G2 → µr : (P,Q) 7→ fλ,P (Q)(q

k−1)/r ,

defines a bilinear pairing that is non-degenerate for r - m.
By choosing different multiples of r, other variants [18, 24] can be obtained

such as setting λ ≡ qi mod r for any i ∈ Z, since then r | (λi)k/ gcd(i,k) − 1.
Furthermore, by multiplying or dividing several variants of the ate pairing, one
obtains new pairings as shown in [17] and [25]. All of these variants have a
common goal, namely to make the constant λ as small as possible since this
determines the length of the loop in Miller’s algorithm.

The main idea in Section 3 will be to consider other multiples of r, in par-
ticular where the base-q expansion of mr has very small digits.

2.3 Miller’s Algorithm

To compute the function fs,P for s > 0, one can use Miller’s algorithm [19, 20],
which is a double-and-add approach based on the following observation

fm+n,P = fm,P · fn,P ·
l[m]P,[n]P

v[m+n]P
,

where l[m]P,[n]P is the equation of the line through [m]P and [n]P (or the tangent
line when [m]P = [n]P ) and v[m+n]P the equation of the vertical line trough
[m + n]P .
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Algorithm 1 Miller’s algorithm for elliptic curves
Inputs: s ∈ N and P, Q ∈ E[r] with P 6= Q
Outputs: fs,P (Q)

Write s =
PL

j=0 sj2
j , with sj ∈ {0, 1} and sL = 1.

T ← P , f ← 1.
for j = L− 1 down to 0 do

f ← c2 · lT,T (Q)/v[2]T (Q).
T ← [2]T
if sj = 1 then

f ← f · lT,P (Q)/vT⊕P (Q).
T ← T ⊕ P

end if
end for
Return f .

For s < 0 it suffices to remark that (fs,P ) = −(f−s,P )− (v[s]P ) with v[s]P the
vertical line through [s]P , so we can take fs,P = 1/(f−s,P v[s]P ).

One execution of the main loop in Algorithm 1 will be called a basic Miller it-
eration, during which one doubling and at most one addition (and corresponding
evaluation of the functions) is computed.

3 Optimal Pairings

3.1 Definition

It is not difficult to see that for the ate pairings with Miller function fλi,Q where
λi ≡ qi mod r, we have

r | Φk/d(λi) where d = gcd(i, k) ,

which implies that the minimal value for λi is roughly r1/ϕ(k/d). For gcd(i, k) = 1
we therefore obtain the smallest lower bound of roughly r1/ϕ(k). This bound
is attained for several complete families of elliptic curves such as cyclotomic
families [8]. Motivated by these bounds, we give the following definition.

Definition 1. Let e : G1 ×G2 → GT be a non-degenerate, bilinear pairing with
|G1| = |G2| = |GT | = r, where the field of definition of GT is Fqk , then e(·, ·) is
called an optimal pairing if it can be computed in log2 r/ϕ(k)+ε(k) basic Miller
iterations, with ε(k) ≤ log2 k.

Note that the above definition does not specify that the pairing e should be
computed as the evaluation of one Miller function fλ,Q as is the case for the ate
pairings, but also allows for products of fλi,Q or other combinations as long as
all fλi,Q can be computed in log2 r/ϕ(k) + ε(k) basic Miller iterations.

As will be shown in the next section, the bound log2 r/ϕ(k) is a natural one.
The central idea for loop reduction in Miller’s algorithm it to exploit efficiently
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computable endomorphisms, such as powers of the Frobenius endomorphism πi
q

for i = 0, . . . , k − 1 by decomposing a multiple of r as a sum of these endomor-
phisms. However, since Φk(q) ≡ 0 mod r, higher powers of πj

q for j ≥ ϕ(k) act on
G2 as a linear combination with small coefficients of the ϕ(k) endomorphisms
πi

q for i = 0, . . . , ϕ(k) − 1. Therefore, only the latter ones should be considered
as “independent”, since the size of the coefficients of a linear combination of
πj

q for j ≥ ϕ(k) will only very slightly increase by reduction modulo Φk. Since
this is essentially the best one can obtain for powers of Frobenius, we make the
following conjecture, which also explains the terminology “optimal pairing”.

Optimality Conjecture: any non-degenerate pairing on an elliptic curve with-
out efficiently computable endomorphisms different from powers of Frobenius,
requires at least (1− ε) log2 r/ϕ(k) basic Miller iterations for some 0 < ε < 1/4.

More generally, we can consider any set E ⊂ End(E) of efficiently computable
endomorphisms and remove those endomorphisms that satisfy linear dependen-
cies with small coefficients when restricted to G2. The optimality conjecture can
then be generalised by replacing ϕ(k) with #E . Note that this is only useful when
#E > ϕ(k). In this case, the corresponding pairings are called super-optimal. An
example of a super-optimal family of pairings will be given in Section 4.

3.2 More Ate Pairings

The basic idea to construct optimal ate pairings is to exploit equation (3) by
finding a multiple λ = mr that has base-q expansion λ =

∑l
i=0 ciq

i with small
coefficients. Any such expansion gives rise to a bilinear pairing as shown in the
following theorem.

Theorem 1. Let λ = mr with r - m and write λ =
∑l

i=0 ciq
i then

a[c0,...,cl] : G2×G1 → µr : (Q,P ) 7→

(
l∏

i=0

fqi

ci,Q
(P ) ·

l−1∏
i=0

l[si+1]Q,[ciqi]Q(P )
v[si]Q(P )

)(qk−1)/r

(5)
with si =

∑l
j=i cjq

j, defines a bilinear pairing. Furthermore, if

mkqk−1 6≡ ((qk − 1)/r) ·
l∑

i=0

iciq
i−1 mod r ,

then the pairing is non-degenerate.

Proof. Consider the m-th power of the reduced Tate pairing on G2 ×G1, then

t(Q,P )m = fλ,Q(P )(q
k−1)/r = fPl

i=0 ciqi,Q(P )(q
k−1)/r .

The latter sum can be rewritten using the fact that

fciqi,Q(P ) = fci

qi,Q(P )fci,[qi]Q(P ) = fci

qi,Q(P )fqi

ci,Q
(P )
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so we obtain

t(Q,P )m =

(
l∏

i=0

fci

qi,Q(P )

)(qk−1)/r

· a[c0,...,cl](Q,P ) .

Note that the factor between brackets is a product of powers of ate pairings and
thus bilinear, which shows that a[c0,...,cl] is also bilinear. Furthermore, a[c0,...,cl]

will be non-degenerate unless t(Q,P )m equals the pairing between brackets. This
can be computed explicitly by expressing both pairings as a power of the reduced
ate pairing aq. For the left hand side we obtain

t(Q,P )m = aq(Q,P )mkqk−1((qk−1)/r)−1 mod r .

And for the pairing in between brackets

(
l∏

i=0

fci

qi,Q(P )

)(qk−1)/r

= a
Pl

i=0 iciq
i−1

q .

In conclusion: if mkqk−1 6≡ ((qk − 1)/r) ·
∑l

i=0 iciq
i−1 mod r, then is a[c0,...,cl]

non-degenerate. �

Note that for k even, denominator elimination applies, so we can ignore all ver-
tical lines v[si]Q(P ). Furthermore, in the computation of the lines l[si+1]Q,[ciqi]Q

one should replace all multipications by powers of q by Frobenius actions.
Since r | Φk(q), it would be tempting to take λ = Φk(q), for which the

corresponding ci will be extremely small and thus a[c0,...,cl] extremely efficient.
Unfortunately, this choice of λ will always result in a degenerate pairing, which
can be seen as a corollary of the following trivial lemma.

Lemma 1. For all k ∈ N0 we have

kxk−1 ≡ (xk − 1)
Φk(x)

· Φ′k(x) mod Φk(x) .

Proof. Write (xk − 1) = ((xk − 1)/Φk(x)) · Φk(x) and take derivatives of both
sides by applying the Leibniz’ rule to the right hand side.

Corollary 1. For λ = Φk(q) =
∑ϕ(k)

i=0 ciq
i, the pairing a[c0,...,cl] is degenerate.

Proof. Since m = Φk(q)/r, we can rewrite the non-degeneracy condition in The-
orem 1 as

mkqk−1 6≡ m(qk − 1)/Φk(q)Φ′k(q) mod r ,

which is false by the above lemma.

Note that any multiple of Φk(q) will also lead to a degenerate pairing.
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3.3 An Algorithm for Optimal Ate Pairings

To avoid degenerate pairings and since modulo r the powers of qi are related via
Φk(q) ≡ 0 mod r, which is a relation with tiny coefficients, it suffices to consider
the powers qi for i = 0, . . . , ϕ(k)− 1 in Theorem 1.

It is clear that a necessary (but not sufficient) condition to obtain an optimal
pairing is that the ci in Theorem 1 should not be larger in absolute value than
r1/ϕ(k). Such small ci can be obtained in general by finding short vectors in the
following ϕ(k)-dimensional lattice (spanned by the rows)

L :=


r 0 0 · · · 0
−q 1 0 · · · 0
−q2 0 1 · · · 0

...
...

. . .
−qϕ(k)−1 0 . . . 0 1

 .

The volume of L is easily seen to be r, so by Minkowski’s theorem [21], there
exists a short vector V ∈ L with ‖ V ‖∞≤ r1/ϕ(k), where ‖ V ‖∞= maxi |vi|.
This proves that the first condition can be satisfied for all pairing friendly elliptic
curves. However, finding small ci does not directly imply that the corresponding
pairing a[c0,...,cl] is optimal. This conclusion is only valid in a parallel computing
model, but clearly not in a serial one.

The first approach to partially solve this problem is to look for short vectors
with a minimal number of coordinates of size r1/ϕ(k). This can easily be achieved
by listing all short vectors with norm smaller than δλ1(L) where λ1(L) is the
length of the shortest vector in the lattice and δ a small integer. Note that
this approach automatically finds the best linear combination by exhibiting the
minimal number of “essential” ci’s.

If the above approach results in a vector with only one ci of size r1/ϕ(k)

we clearly obtain an optimal pairing. However, if there is more than one such
ci, it not clear how to compute the Miller functions using only log2 r/ϕ(k) basic
Miller iterations. If the ci are completely independent, then the only optimisation
possible would be to use some form of multi-exponentiation, and we would thus
fail to attain the optimal number of basic Miller operations.

For pairing friendly elliptic curves in parametrized families however, the
above approach can be executed on the polynomial representations of r(x) and
qi(x) mod r(x), thereby leading to short vectors where the ci(x) are automati-
cally related since they are polynomial expressions in the same variable x. Ex-
ploiting this explicit relation often gives an optimal pairing, since all fci(x),Q

in (5) will typically follow directly from fx,Q.
The above reasoning shows that the bound r1/ϕ(k) can be achieved, but it

provides no information on how good this bound is, i.e. how short the shortest
vector is compared to Minkowski’s bound. The following theorem resolves this
problem.
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Theorem 2. The shortest vector V in L satisfies

‖V ‖2 ≥
r1/ϕ(k)

‖Φk‖2
and ‖V ‖∞ ≥ r1/ϕ(k)

(ϕ(k) + 1)‖Φk‖∞
. (6)

Proof. To obtain a lower bound on the length of the shortest vector, we consider
the following equivalent problem. Let ξk denote a primitive k-th root of unity
and consider the cyclotomic number field Q[ξk] ' Q[x]/Φk(x). For the prime r,
we have Φk(q) ≡ 0 mod r, so Φk(x) splits completely modulo r (since Q(ξk) is
Galois). The ring of integers of Q[ξk] is Z[ξk] and the ideal rZ[ξk] factors as a
product of ϕ(k) different prime ideals pi = (r, ξk − si) with si the roots of Φk(x)
modulo r. Consider the prime ideal p = (r, ξk − q), then we have a one-to-one
correspondence between vectors in L and elements in p by

Λ : L → p : V = [v0, . . . , vϕ(k)−1] 7→
ϕ(k)−1∑

i=0

viξ
i
k .

Finding short vectors in L therefore corresponds to finding elements in p of small
norm. But the norm of elements in p is always divisible by r (the norm of p) and
thus we obtain

r ≤ |N (
ϕ(k)−1∑

i=0

viξ
i
k)| = |Res(V (x), Φk(x))| .

By bounding the size of the resultant we finally obtain

r ≤ ‖V ‖ϕ(k)
2 ‖Φk‖ϕ(k)−1

2 ≤ (ϕ(k) + 1)ϕ(k)‖V ‖ϕ(k)
∞ ‖Φk‖ϕ(k)−1

∞ ,

which is precisely the bound given in (6). This shows that the shortest vector in
the lattice can never be much shorter than Minkowski’s bound. �

We can now combine Theorem 1 and 2 to provide further evidence for the
optimality conjecture. Let λ = mr with r - m and write λ =

∑l
i=0 ciq

i as in
Theorem 1. Let λ(x) =

∑l
i=0 cix

i and consider the division by Φk(x), i.e.

λ(x) = α(x) · Φk(x) + β(x) ,

with deg(β(x)) < ϕ(k). Since r|λ and r|Φk(q), we conclude that r|β(q) and thus
that the coefficient vector of β(x), denoted by β, is contained in L. There are now
two possibilities for β(x): either β(x) = 0 and we obtain a degenerate pairing
as shown before, or β(x) 6= 0, but then ‖β‖∞ ≥ (r/ϕ(k))1/ϕ(k) since β ∈ L.
However, this implies that not all original coefficients ci can be very small either,
since reduction modulo Φk(x) only causes a small increase in coefficient size. This
shows once more that considering more general expressions λ =

∑l
i=0 ciq

i for
l ≥ ϕ(k) will not lead to more efficient pairings than with the above algorithm.
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4 Examples

In this section we apply the algorithm of the previous section to several polyno-
mial families obtaining optimal ate pairings for all of them. An excellent overview
of pairing friendly curves is given in [8].

BN-curves The family of BN-curves [4] has k = 12 and is given by the following
parameterisations:

p(x) = 36x4 + 36x3 + 24x2 + 6x + 1 r(x) = 36x4 + 36x3 + 18x2 + 6x + 1 .

The shortest vectors in the lattice L for the Euclidean norm are given by

V1(x) = [x + 1, x, x,−2x] V2(x) = [2x, x + 1,−x, x] .

Since there is such an easy relation between the ci(x), we already obtain an
optimal pairing, since all fci(x),Q follow immediately from fx,Q. Alternatively,
we can look for short vectors with minimal number of coefficients of size x and
obtain

W (x) = [6x + 2, 1,−1, 1] ,

which gives another possibility for an optimal pairing. Since f1,Q = 1 and
f−1,Q = 1/f1,QvQ (which disappears after final exponentiation), the pairing
aW can be computed as

aW =
(
f6x+2,Q(P ) · lQ3,−Q2(P ) · l−Q2+Q3,Q1(P ) · lQ1−Q2+Q3,[6x+2]Q

)(qk−1)/r
,

where Qi = Qqi

for i = 1, 2, 3.

Freeman curves The family of Freeman curves [7] has k = 10 and is given by
the following parameterisations:

p(x) = 25x4 + 25x3 + 25x2 + 10x + 3 r(x) = 25x4 + 25x3 + 15x2 + 5x + 1 .

The shortest vector in the lattice L for the Euclidean norm is given by

V = [x + 1, x,−x,−x] ,

so again we obtain an optimal pairing since it suffices to compute fx,Q. Listing
all short vectors gives the following alternative: W = [1, 1,−1,−5x− 1].

Supersingular elliptic curves with k = 3 The following family represents
supersingular curves with embedding degree k = 3 over Fq = Fp2 :

q(x) = (3x− 1)2 r(x) = 9x2 − 3x + 1 .

The shortest vector is given by V = [1,−3x + 1], which is already optimal. A
slightly better choice is W = [3x, 1].
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Supersingular elliptic curves with k = 6 These curves are necessarily
defined over F3m for some m and for odd m we have t = ±√q. Popular values
for m are m = 97, 163, 193, 239, 353. If r = 3x + 1 − 3(x+1)/2, then the shortest
vector in L is given by V = [3(x−1)/2, 3(x−1)/2 − 1] and another nice choice is
W = [3(x+1)/2,−1].

Cyclotomic family with k = 10 In [5], the authors describe the family
parametrized by

p(x) =
1
4
(x12 − x10 + x8 − 5x6 + 5x4 − 4x2 + 4) r(x) = Φ20(x) ,

which has embedding degree k = 10. Note that this is the first example where
the degree of the polynomial r(x) does not equal ϕ(k), so we expect to find
ci(x) of degree 2. The shortest vector in L is given by V = [x2 − 1, 1,−1, 1] and
another nice short vector is given by W = [1,−x2, 0, 0].

Cyclotomic family with k = 18 In [16], the authors describe the family
parametrized by

p(x) =
1
21

(x8 + 5x7 + 7x6 + 37x5 + 188x4 + 259x3 + 343x2 + 1763x + 2401)

r(x) =
1

343
(x6 + 37x3 + 343) ,

which for values x ≡ 14 mod 42 parametrises elliptic curves with embedding
degree 18. The shortest vectors in the lattice L are given by three shifts of

V = [2z, 1, 0, z, 0, 0]

where z = x/7. Another nice short vector is given by W = [1, 0, x, 2, 0, 0].

Scott’s NSS curves This example illustrates a family of super-optimal curves,
namely Scott’s NSS curves [22]. These curves are defined over Fp with p ≡ 1 mod
3 and given by an equation of the form y2 = x3 + B. Since these curves have
k = 2, we do not expect any speed-up by exploiting the Frobenius endomorphism
alone. However, these curves admit an efficient endomorphism different from
Frobenius given by φ : (x, y) 7→ (βx, y), where β is a non-trivial cube root of
unity. Furthermore, the action on r-torsion corresponds to multiplication by λ,
where λ is a root of λ2 + λ + 1 ≡ 0 mod r. Scott gives the example of λ = 287

and r = (2174 + 287 + 1)/73. Note that multiplication by 73r corresponds to
φ2 +φ+1 on E[r], so we use a modification of the proof of Theorem 1. Consider
the pairing

t(P,Q)73 = f73r,P (Q)E = fλ2+λ+1,P (Q)E = fλ2+λ,P (Q)E ,
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with E = (p−1)(p+1)/r. The latter function (without the final exponentiation)
can be rewritten as

fλ(λ+1),P = fλ+1
λ,P · fλ+1,[λ]P = fλ+1

λ,P · fλ,[λ]P · l[λ]P,P /v[λ+1]P .

Since [λ]P is given by φ(P ) = (βx, y), we can simply compute fλ,[λ]P (Q) from
fλ,P (Q) by replacing x(P ) by βx(P ). This shows that the Tate pairing on NSS
curves can be computed using only blog2 λc basic Miller iterations and is there-
fore super-optimal. A similar derivation of Scott’s results was described in [23].

Supersingular Genus 2 Curves with k = 12 To illustrate that the algo-
rithm works equally well for hyperelliptic curves, we consider the family of curves
introduced in [10]:

Cd : y2 + y = x5 + x3 + d d ∈ {0, 1} ,

over F2m , with m coprime to 6. These curves are supersingular and have embed-
ding degree k = 12. The order of the Jacobian JC is given by the following table
taken from [10].

#JCd
(F2m) condition

22m + (−1)d2(3m+1)/2 + 2m + (−1)d2(m+1)/2 + 1 m ≡ 1, 7, 17, 23 mod 24
22m − (−1)d2(3m+1)/2 + 2m − (−1)d2(m+1)/2 + 1 m ≡ 5, 11, 13, 19 mod 24

For m = 239 and m = 313 we obtain a prime order Jacobian for d = 1. Since
both cases correspond to the first line of the table, we assume that r(m) =
22m−2(3m+1)/2 +2m−2(m+1)/2 +1. The shortest vector in the lattice L is given
by

V = [2(m−1)/2,−1, 0,−2(m−1)/2 + 1] .

However, a better short vector is given by

W = [2(m+1)/2,−1,−1, 1] ,

which clearly gives an optimal pairing.

5 Conclusion

In this paper we have introduced the concept of optimal pairings, which can
be computed using log2 r/ϕ(k) basic Miller iterations. We described a fully au-
tomatic procedure to construct optimal ate pairings on parametrized families
of pairing friendly elliptic curves by exploiting the Frobenius endomorphism.
In the presence of extra efficiently computable endomorphisms, super-optimal
pairings are possible that require less than log2 /ϕ(k) Miller iterations. Finally,
we conjectured that any non-degenerate pairing requires at least log2 r/#E ba-
sic Miller iterations with E a maximal set of independent efficiently computable
endomorphisms.
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