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Abstract. We define three hard problems in the theory of elliptic divisibility sequences
(EDS Association, EDS Residue and EDS Discrete Log), each of which is solvable in sub-
exponential time if and only if the elliptic curve discrete logarithm problem is solvable in
sub-exponential time. We also relate the problem of EDS Association to the Tate pairing
and the MOV, Frey-Rück and Shipsey EDS attacks on the elliptic curve discrete logarithm
problem in the cases where these apply.

1. Introduction

The security of elliptic curve cryptography rests on the assumption that the elliptic curve
discrete logarithm problem is hard.

Problem 1.1 (Elliptic Curve Discrete Logarithm Problem (ECDLP)). Let E be an elliptic
curve over a finite field K. Suppose there are points P,Q ∈ E(K) given such that Q ∈ 〈P 〉.
Determine k such that Q = [k]P .

This article is inspired by work of Rachel Shipsey in her thesis [13], relating the ECDLP
to elliptic divisibility sequences. An elliptic divisibility sequence is a recurrence sequence
W (n) satisfying the relation

W (n+m)W (n−m) = W (n+ 1)W (n− 1)W (m)2 −W (m+ 1)W (m− 1)W (n)2.

The study of elliptic divisibility sequences was introduced by Morgan Ward [22]. Let Ψn

denote the n-th division polynomial of an elliptic curve E over the rationals. Ward showed
that a sequence WE,P : Z → Z of the form WE,P (n) = Ψn(P ) for some fixed point P on E
is an elliptic divisibility sequence. This relationship is the basis of our work here.

The general theory has been developed by Swart [21], Ayad [1], Silverman [14, 15], Everest,
McLaren and Thomas Ward [5] and, more recently, generalised to higher rank elliptic nets
by Stange [18, 20]. For an overview of research, see [6]. Sections 2 and 3 provide brief
background on elliptic divisibility sequences and elliptic nets, more information about which
can be found in [18, 19, 20].

The primary purpose of the article is to state several hard problems for elliptic divisibility
sequences and relate them to the elliptic curve discrete logarithm problem (ECDLP). These
are
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Problem 1.2 (EDS Association). Let E be an elliptic curve over a finite field K. Suppose
there are points P,Q ∈ E(K) given such that Q ∈ 〈P 〉, Q 6= O, and ord(P ) ≥ 4. Determine
WE,P (k) for 0 < k < ord(P ) such that Q = [k]P .

Problem 1.3 (EDS Residue). Let E be an elliptic curve over a finite field K. Suppose there
are points P,Q ∈ E(K) given such that Q ∈ 〈P 〉, Q 6= O, and ord(P ) ≥ 4. Determine the
quadratic residuosity of WE,P (k) for 0 < k < ord(P ) such that Q = [k]P .

Problem 1.4 (Width s EDS Discrete Log). Given an elliptic divisibility sequence W and
terms W (k), W (k + 1), . . ., W (k + s− 1), determine k.

A perfectly periodic elliptic divisibility sequence is one which has a finite period n and
whose first positive index k at which W (k) = 0 is k = n. If a sequence is not perfectly
periodic, then it has n > k. In Section 10, we prove the following theorem.

Theorem 1.1. Let E be an elliptic curve over a finite field K = Fq of characteristic 6= 2. If
any one of the following problems is solvable in sub-exponential time, then all of them are:

(1) Problem 1.1: ECDLP
(2) Problem 1.2: EDS Association for non-perfectly periodic sequences
(3) Problem 1.3: EDS Residue for non-perfectly periodic sequences
(4) Problem 1.4 (s = 3): Width 3 EDS Discrete Log for perfectly periodic sequences

Section 4 relates Problems 1.4 and 1.2 to the ECDLP. Section 6 expands on Problem 1.2.
Sections 7 and 8 discuss Problem 1.3. Section 9 remarks on Problem 1.4. Section 10 proves
Theorem 1.1.

A second purpose of this article is to relate these hard problems to the MOV and Frey-
Rück attacks (on curves where these apply) by combining results of Rachel Shipsey [13] and
Katherine Stange [19]: this is discussed in Section 5.

2. Background on Elliptic Nets

In this section we state the background definitions and results on elliptic divisibility se-
quences and elliptic nets that are needed for the rest of the paper. For details and examples,
see [18, 19, 20].

Definition 2.1 (Stange, [18, 20]). Let K be a field, n > 0 and integer. An elliptic net is
any map W : Zn → K such that the following recurrence holds for all p, q, r, s ∈ Zn.

(1) W(p+ q + s)W(p− q)W(r + s)W(r)

+W(q + r + s)W(q − r)W(p+ s)W(p)

+W(r + p+ s)W(r − p)W(q + s)W(q) = 0

We refer to n as the rank of the elliptic net. An elliptic net of rank one is called an elliptic
divisibility sequence.

One always has W (−v) = −W (v) and W (0) = 0, and a restriction of an elliptic net to a
sublattice of Zn is again an elliptic net. For more details about elliptic divisibility sequences,
see [21, 22].

The important fact for our purposes is that any elliptic curve E over K and points
P1, . . . , Pn ∈ E(K) gives rise to a unique elliptic net WE,P1,...,Pn : Zn → K. The princi-
pal theorem is as follows.
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Theorem 2.1 (Stange, [18, 20]). Let n > 0 be an integer. Let

E : f(x, y) = y2 + α1xy + α3y − x3 − α2x
2 − α4x− α6 = 0

be an elliptic curve defined over a field K. Let ei be the i th standard basis vector. For all
v ∈ Zn, there are functions Ψv : En → K, elliptic in each variable, which are in the ring

Z[α1, α2, α3, α4, α6][xi, yi]
n
i=1

[
(xi − xj)

−1
]
1≤i<j≤n

/
〈f(xi, yi)〉ni=1 ⊂ K(E),

and are such that

(1) W (v) = Ψv satisfies the recurrence (1).
(2) Ψv = 1 whenever v = ei for some 1 ≤ i ≤ n or v = ei + ej for some 1 ≤ i < j ≤ n.
(3) Ψv vanishes at P = (P1, . . . , Pn) ∈ En if and only if v · P = O on E (and v is not

one of the vectors specified in 2).

In the case of rank n = 1, the Ψv are the familiar division polynomials of an elliptic curve
[16, p. 105]. Since the Ψv satisfy the elliptic net recurrence (1), we may make the following
definition.

Definition 2.2 (Stange, [18, 20]). For any elliptic curve E defined over K and non-zero
points P1, . . . , Pn ∈ E(K) such that no two are equal or inverses, the map

WE,P1,...,Pn : Zn → K

defined by
WE,P1,...,Pn(v) = Ψv(P1, . . . , Pn)

is an elliptic net called the elliptic net associated to E,P1, . . . , Pn.

Elliptic nets or elliptic divisibility sequences associated to elliptic curves (and in fact, all
are [18, 20]) are arrays or sequences of values of K. The zeroes in this array are particularly
important.

Definition 2.3. The zeroes of an elliptic divisibility sequence or elliptic net appear as a
sublattice of the lattice of indices. We call this sublattice the lattice of zero-apparition. In
the case of a sequence, this sublattice is specified by a single positive integer – the smallest
positive index of a vanishing term – and this number is called the rank of zero-apparition.

The rank of zero-apparition of an elliptic divisibility sequence associated to a point P will
equal the order of the point P . In the case of an array associated to points P1, . . . , Pn, the
zeroes (v1, . . . , vn) correspond to linear combinations v ·P that vanish. Although the zeroes
in an elliptic divisibility sequence appear regularly at a specific interval, that interval is not
always a period for the sequence.

Suppose T : Zs → Zt is a Z-linear transformation. The following theorem relates the
elliptic net associated to P ∈ Es to T (P) ∈ Et.

Theorem 2.2 (Stange, [20, 18]). Let T be any t×s integral matrix. Let P ∈ Es and v ∈ Zt.
Then

(2) WE,P(T tr(v)) = WE,T (P)(v)
t∏

i=1

WE,P(T tr(ei))
v2

i−vi(
∑

j 6=i vj)
∏

1≤i<j≤t

WE,P(T tr(ei +ej))
vivj

From this we can derive several useful corollaries.
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Theorem 2.3 (Ward [22], Stange, [17, 20]). Suppose that WE,P (m) = 0. Then for all
l, v ∈ Z, we have

WE,P (lm+ v) = WE,P (v)avlbl
2

where

a =
WE,P (m+ 2)

WE,P (m+ 1)WE,P (2)
, b =

WE,P (m+ 1)2WE,P (2)

WE,P (m+ 2)

Furthermore, am = b2. Therefore, there exists an α ∈ K̄, the algebraic closure of K, such
that α2 = a and αm = b, and so

WE,P (lm+ v) = WE,P (v)α(lm+v)2−v2

.

Theorem 2.4 (Stange, [17, 20]). Suppose r = (r1, r2) ∈ Z2 is such that WE,P,Q(r) = 0. For
l ∈ Z and v = (v1, v2) ∈ Z2 we have

WE,P,Q(lr + v) = WE,P,Q(v)alv1
r blv2

r cl
2

r

where

ar =
W (r1 + 2, r2)

W (r1 + 1, r2)w(2, 0)
, br =

W (r1, r2 + 2)

W (r1, r2 + 1)W (0, 2)
, cr =

W (r1 + 1, r2 + 1)

arbrW (1, 1)
.

3. Perfectly Periodic Sequences and Nets

Definition 3.1. A periodic elliptic divisibility sequence whose rank of zero-apparition is
equal to its period, is called perfectly periodic. A periodic elliptic net is called perfectly
periodic if its lattice of zero-apparition is equal to its lattice of periodicity.

We will often put a tilde over a sequence W̃ (k) to remind the reader that it is perfectly
periodic.

Definition 3.2. Let f : A → K∗ be a quadratic function, and k ∈ K∗ a constant. Two
elliptic nets W and W ′ are called equivalent if W ′(v) = kf(v)W (v).

As an example, let W be a non-degenerate elliptic divisibility sequence with rank of zero
apparition m. Consider the equivalent sequence W ′(n) = αn2−1W (n) where α satisfies
α2 = a, αm = b for a, b from Theorem 2.3. It follows that this sequence is a perfectly
periodic elliptic divisiblity sequence. Suppose that K = Fq and gcd(q − 1,m) = 1. In
this case the conditions of Theorem 2.3 determine such an α uniquely, and it lies in K.
Otherwise (if gcd(q− 1,m) 6= 1), two such α’s will exist, equal up to sign. The two resulting
perfectly periodic sequences will be equal at even-indexed locations and equal up to sign at
odd-indexed locations.

The moral of the last paragraph is that any elliptic divisibility sequence is equivalent to
a perfectly periodic one. We can give an explicit expression for such a perfectly periodic
sequence.

Theorem 3.1. Let K be a finite field of q elements, and E an elliptic curve defined over
K. Suppose #E(K) is relatively prime to q − 1. Define a function

φ : E → K
4



by

φ(P ) =

(
WE,P (q − 1)

WE,P (q − 1 + ord(P ))

) 1
ord(P )2

.

For a point P of prime order not less than 4, the sequence φ([n]P ) is a perfectly periodic
elliptic divisibility sequence equivalent to WE,P (n). Specifically,

(3) φ([n]P ) = φ(P )n2−1WE,P (n).

More generally, let P ∈ E(K)n be a collection of nonzero points, no two equal or inverses,
and all elements of a single cyclic group. The n-array φ(v ·P) (as v ranges over Zn) forms
a perfectly periodic elliptic net equivalent to WE,P(v). Specifically,

φ(v ·P) = WE,P(v)
n∏

i=1

φ(Pi)
v2

i−vi(
∑

j 6=i vj)
∏

1≤i<j≤n

φ(Pi + Pj)
vivj .

Proof. The proof uses Theorem 2.2. We will demonstrate the method of proof in the rank
one case before proceeding to the general case. Take T = (l), so

WE,[l]P (n)WE,P (l)n2

= WE,P (nl).

By symmetry,

WE,[n]P (l)WE,P (n)l2 = WE,P (nl).

Let m = ord(P ). Thus, combining the above and using l = q − 1 and q − 1 +m in turn,

WE,[n]P (q − 1)WE,P (n)(q−1)2

WE,P (q − 1)n2 = WE,[q−1]P (n) = WE,[q−1+m]P (n)

=
WE,[n]P (q − 1 +m)WE,P (n)(q−1+m)2

WE,P (q − 1 +m)n2

Rearranging,

φ([n]P ) = φ(P )n2−1WE,P (n).

Therefore, φ([n]P ) is an elliptic divisibility sequence. By definition, φ([n]P ) has period
ord(P ) which is equal to the rank of apparition of WE,P and φ([n]P ). So φ([n]P ) is perfectly
periodic.

For the rank n case, let m be the order of the cyclic group containing all the points under
consideration. In Theorem 2.2, let t = 1 and s = n and take T = (v1 v2 v3 · · · vn) to
obtain

WE,P(lv) = WE,v·P(l)WE,P(v)l2 .

Now take t = s = n in Theorem 2.2 , and T = lIdn to obtain

WE,P(lv) = WE,lP(v)
n∏

i=1

WE,P(lei)
v2

i−vi(
∑

j 6=i vj)
∏

1≤i<j≤n

WE,P(lei + lej)
vivj .

Note that
WE,P(lei) = WE,Pi

(l), WE,P(lei + lej) = WE,Pi+Pj
(l).

Combining the above, we have

WE,lP(v) =
WE,v·P(l)WE,P(v)l2∏n

i=1WE,Pi
(l)v2

i−vi(
∑

j 6=i vj)
∏

1≤i<j≤nWE,Pi+Pj
(l)vivj

.
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Comparing this in the case of l = q − 1 and l = q − 1 + m gives the required result, as
before. �

Corollary 3.2. Suppose that E is an elliptic curve over a field K = Fq and P ∈ E(K) is
of order m ≥ 4. The period of the sequence WE,P is m ordK∗(φ(P )).

Proof. First, φ([n]P ) has period exactly m. Since, if the period were m′ < m, then
WE,P (m′) = 0, a contradiction. The result then follows directly from equation (3). �

4. The Hard Problems

As we have seen, elliptic nets are closely related to the points on an elliptic curve. In this
Section, we will see specifically how to compute them, and how they relate, algorithmically,
to the points.

Note that the choice of segment 0 < k < ord(P ) is not crucial in Problem 1.2 (EDS
Association): it could be restated for any segment i ord(P ) < k < (i + 1) ord(P ). This

problem is trivial for a perfectly periodic sequence or net (since W̃ (k) = φ(Q) is computable
in log q time). For the non-perfectly periodic case, the problem appears to be much harder.
As for Problem 1.4 (EDS Discrete Log), on the other hand, for non-perfectly periodic elliptic
divisibility sequences, it can be solved by computing an F∗q discrete log. For this problem, it
is the case of perfect periodicity that seems very difficult.

We will see that these hard problems are related according to the following diagram.

perfectly
periodic

[k]P

(log q)3

~~|||||||||||||||||||||||

EDS
Association

!!C
C

C
C

C
C

C
C

C
C

C
C

ECDLP

���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

not perfectly
periodic

{φ([i]P )}k+2
i=k

Width 3
EDS Discrete Log

""E
E

E
E

E
E

E
E

E
E

E

(log q)2

>>|||||||||||||||||||||||
{WE,P (i)}k+2

i=k

F∗qDLP

||xxxxxxxxxxxxxxxxxxxxxxx

k

(log q)3

<<xxxxxxxxxxxxxxxxxxxxxxx

We demonstrate the complexity of solving the problems associated to the solid lines in the
following series of theorems. The solid line labelled F∗qDLP has the complexity of a discrete
logarithm problem in F∗q (this is sub-exponential by index calculus). No sub-exponential
algorithms are known for the dotted lines.

Lemma 4.1. Let E be an elliptic curve defined over K, and P ∈ E(K) be a point of
order not less than 4. The x-coordinate of [n]P , x([n]P ), can be calculated from WE,P (n −
1),WE,P (n),WE,P (n+ 1).
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Proof. See any classic text on elliptic function theory (such as [2]) for the following identity:

(4)
WE,P (n− 1)WE,P (n+ 1)

WE,P (n)2
= x(P )− x([n]P ).

�

Theorem 4.2 (Shipsey [13]). Let E be an elliptic curve over K, and P ∈ E(K) a point of
order not less than 4. Given a value m, the term WE,P (m) in the elliptic divisibility sequence
associated to E,P can be calculated in O((logm)(log q)2) time.

Proof. For completeness, we give a simplified version of Shipsey’s algorithm here. Following
Shipsey, denote by 〈WE,P (n)〉 the segment or block centred at k of eight terms WE,P (k − 3),
WE,P (k− 2), . . ., WE,P (k+ 3), WE,P (k+ 4) of the sequence. The block centred at m can be
calculated from the block centred at 1 via a double-and-add algorithm based on an addition
chain for m. The calculation of the new block from the previous depends on two instances
of the recurrence (one such calculation for each term of the new block):

W (2i− 1, 0) = W (i+ 1, 0)W (i− 1, 0)3 −W (i− 2, 0)W (i, 0)3 ,

W (2i, 0) = (W (i, 0)W (i+ 2, 0)W (i− 1, 0)2 −W (i, 0)W (i− 2, 0)W (i+ 1, 0)2)/W (2, 0) .

To begin we must calculate the block centred at 1. Recalling that W (0) = 0, W (1) = 1 and
W (−n) = −W (n), we must calculate W (i) for i = 2, 3, 4. Precise formulae in terms of the
coordinates of P and the Weierstrass coefficients for E can be found in [16, p.105] or for
long Weierstrass equations in [7, p. 80]. This algorithm takes O(logm) steps, each of which
involves a fixed number of F∗q multiplications and additions, which take O((log q)2) time at
worst. �

Theorem 4.3. Let E be an elliptic curve over K, and P ∈ E(K) a point of order not less

than 4. Given a point Q = [k]P , the term φ(Q) = W̃ (k) can be calculated in O((log q)3)
time.

Proof. The formula for φ(Q) requires calculating two terms of WE,Q, which, by Theorem 4.2,
takes log(q− 1 + ord(Q)) steps. Since ord(Q) is on the order of q, this takes O((log q)3) time
at worst. The other necessary operation is to find the inverse of ord(Q)2 modulo q − 1, and
to raise to that exponent. Both these are also O(log q) operations. �

Theorem 4.4. Let E be an elliptic curve over K, and P ∈ E(K) a point of order not less

than 4. Given terms W̃ (k), W̃ (k + 1), W̃ (k + 2), in a perfectly periodic sequence associated
to E,P , the point Q = [k]P can be calculated in O((log q)2) time.

Proof. This follows from Lemma 4.1. Note that the left hand side of the expression (4)
is invariant under an elliptic divisibility sequence equivalence. Therefore we can calculate
x([k+1]P ). Now we must determine which of the two points with this x-coordinate is actually
[k+1]P . First, take one of the two candidate points, and proceed on the assumption that it is
[k+1]P . Using the addition formula for elliptic curves, calculate x([k+1]P+P ) = x([k+2]P ).

Compare this with (4) to determine W̃ (k + 3). Also determine W̃ (k + 4) in this manner.

Then, if the terms W̃ (k), . . . , W̃ (k + 4) satisfy the recurrence instance

W̃ (k + 4)W̃ (k) = W̃ (k + 1)W̃ (k + 3)W̃ (2)2 − W̃ (3)W̃ (1)W̃ (k + 2)2,
7



our assumption about the point we chose is correct. If this recurrence does not hold, then
the point we chose was incorrect, and the other one is the point [k + 1]P we seek. Finally,
knowing [k + 1]P , we can calculate Q = [k]P = [k + 1]P − P . The number of operations in
the field is bounded by a constant, hence the time taken is O((log q)2) at worst. �

The following theorem is implicit in the work of Shipsey; see Section 5.2 for an explanation.

Theorem 4.5. Suppose P has prime order not dividing q−1, and φ(P ) is a primitive root in
F∗q. Given WE,P (k),WE,P (k+ 1),WE,P (k+ 2), where it can be assumed that 0 < k < ord(P ),

calculating k can be reduced to a single discrete logarithm in F∗q in O((log q)3) time.

Proof. We can deduce the x-coordinate of the point Q = [k]P by Lemma 4.1. Choosing one
of the two possible y-coordinates, we have either Q = [k]P or Q = [−k]P . To determine
which is correct, use the trick of the proof of Theorem 4.4. Suppose it is the former; then,
from 3.1, we have

φ([k + 1]P )

φ([k]P )
= φ(P )2k+1WE,P (k + 1)

WE,P (k)
.

So k satisfies an equation of the form A = B2k+1 where A and B are known, and B has
order q − 1. Therefore, we are reduced to solving a discrete logarithm of the form A = Bx

for 0 ≤ x < q − 1, with the understanding that k will be one of (x− 1)/2 or (x + q − 1)/2.
(In fact, if q − 1 < m, there may be at most two other possible values of k to check: the
above values plus q − 1.) �

Remark 4.1. Let m = ord(P ). Suppose that gcd(m, q − 1) = 1. As an integer k ranges over
representatives of a single coset in Z/mZ, it ranges over all possible cosets of Z/(q − 1)Z.
Therefore, we cannot expect to find the set of k such that Q = [k]P (i.e. a coset in Z/mZ)
by solving an equation of the form A = Bk in F∗q (i.e. solving modulo q−1). One solution to
this problem is to attempt to solve for an integer k (instead of a coset) – say, for example,
the smallest non-negative k with Q = [k]P . This is in essence what the preceeding theorem
does. With this in mind, we set some terminology.

Definition 4.1. Let Q be a multiple of P on an elliptic curve E. The minimal multiplier
of Q with respect to P is the smallest non-negative value of k such that Q = [k]P .

Note that the minimal multiplier satisfies 0 ≤ k < ord(P ).

5. F∗q Discrete Logarithm, The Tate Pairing and MOV/Frey-Rück Attack

Theorem 4.5 uses terms of the elliptic divisiblity sequence to give a discrete logarithm
problem in F∗q. We demonstrate some variations on this theme, and relate these types of
equations to the Tate pairing, and to an ECDLP attack given by Shipsey [13].

5.1. An F∗q DLP equation of the form A = Bk from periodicity properties. The F∗q
DLP equations we consider are consequences of Theorem 2.2, but many can be conveniently
understood in terms of its corollary Theorem 2.4. The following example involves the terms
WE,P (k) and WE,P (k + 1), and requires knowledge of Q = [k]P . The following diagram is
suggestive for the discussion.
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• ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ •
◦ ◦ ◦ •

ujjTTTTTTTTTTTT ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦
◦ • ◦ ◦ ◦ ◦ •

ujjTTTTTTTTTTTT ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ •

ujjTTTTTTTTTTTT ◦ ◦ ◦ ◦ • ◦
◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ •

ujjTTTTTTTTTTTT ◦ ◦ ◦
•

t

OO

◦ ◦ ◦ ◦ •−s
oo ◦ ◦ ◦ ◦ •−s

oo ◦ ◦ ◦ ◦ •−s
oo

ujjTTTTTTTTTTTT

In this picture of Z2, u = (−3, 1), s = (5, 0) and t = (0, 5). Vectors u and s generate the
lattice of zero-apparition Λ for some elliptic net W associated to points P and Q = [3]P of
order 5. The vector t is also in Λ. One coset of Z2 modulo Λ is shown as the solid discs.

Theorem 2.4 shows the transformation relative to translation by a vector r ∈ Λ: it relates
W (v + r) to W (v) for each v. This Lemma can be applied repeatedly, and different ‘paths’
from one point to another must agree. In the picture above, the translation property which
relates W (v+(−15, 5)) to W (v) can be calculated by applying the transformation associated
to u five times (the diagonal path) or by applying the transformation associated to −s three
times followed by that associated to t once (the sides of the triangle).

In the general case, we have Q = [k]P . Then the lattice of zero-apparition Λ for W =
WE,P,Q includes vectors u = (−k, 1), s = (m, 0) and t = (0,m). Suppose r = (r1, r2) is an
element of Λ for W = WE,P,Q. By Theorem 2.4, we have for all l ∈ Z and v ∈ Z2,

(5) W (lr + v) = W (v)alv1
r blv2

r cl
2

r

where

ar =
W (r1 + 2, r2)

W (r1 + 1, r2)W (2, 0)
, br =

W (r1, r2 + 2)

W (r1, r2 + 1)W (0, 2)
, cr =

W (r1 + 1, r2 + 1)

arbrW (1, 1)
.

We expect appropriate relationships between au, bu, cu, as, bs, etc. The F∗p DLP equation
we seek is one such relationship. We have

as =
W (m+ 2, 0)

W (m+ 1, 0)W (2, 0)
, at =

W (2,m)

W (1,m)W (2, 0)
, au =

W (2− k, 1)

W (1− k, 1)W (2, 0)
.

For each i ∈ Z, we apply (5) to obtain

(6)
W (−ik + 1, i− 1)W (0,−1)

W (1,−1)W (−ik, i− 1)
= ai

u

9



Set i = m in (6), and apply (5) four times:

am
u =

W (−mk + 1,m− 1)W (0,−1)

W (1,−1)W (−mk,m− 1)

=

(
W (−mk + 1,m− 1)

W (−mk + 1,−1)

)(
W (−mk + 1,−1)

W (1,−1)

)(
W (0,−1)

W (−mk,−1)

)(
W (−mk,−1)

W (−mk,m− 1)

)
=

a−mk+1
t b−1

t c1ta
−k
s bksc

k2

s

a−mk
t b−1

t c1ta
0
sb

k
sc

k2

s

= ata
−k
s

Setting i = 1 in (6), we obtain an expression

au =
W (−k + 1, 0)W (0,−1)

W (1,−1)W (−k, 0)
= − WE,P (k − 1)

WE,P (k)W (1,−1)

which, when substituted into the last calculation, yields

(7)

(
W (m+ 1, 0)W (2, 0)

W (m+ 2, 0)

)k

=

(
WE,P (k − 1)

WE,P (k)

)m(
− W (1,m)W (2, 0)

W (2,m)W (1,−1)m

)
.

5.2. An F∗q DLP equation from Shipsey’s Thesis. The possibility of such an equation
was observed by Rachel Shipsey in her thesis [13, p.80]. She uses one-dimensional periodicity
properties to derive the following equation:

(8)
WE,P ((m+ 1)(k + 1))WE,P (k)

WE,P ((m+ 1)k)WE,P (k + 1)
= WE,P (m+ 1)2k+1

Shipsey then argues that without knowledge of k the left hand side can be calculated up to
a factor of (

WE,P (k)

WE,P (k − 1)

)m(m+2)

.

This is very much of the same spirit as equation (7), and in fact, Theorem 2.2 can be used
to rewrite (8) in this form:

(9)
WE,P,Q(m+ 1,m+ 1)

WE,P,Q(0,m+ 1)

(
WE,P (k + 1)

WE,P (k)

)m(m+2)

= WE,P (m+ 1)2k+1.

By Lemma 4.1, knowledge of Q,WE,P (k),WE,P (k − 1) determines WE,P (k + 1), and so this
is very much equivalent to Shipsey’s analysis. Note that the unknown terms in (9) are raised
to the exponent m + 2. At first blush, this may appear to lead to an ECDLP attack for
q − 1 = m + 2 (where the unknown terms will disappear). However, this is not allowed by
Remark 4.1. In fact, it turns out that if q−1 = m+2, then WE,P (m+1) = 1 (this eventually
follows from Theorem 2.2 also).

5.3. F∗q DLP equations and the Tate pairing. Choose m ∈ Z+. Let E be an elliptic
curve defined over a finite field K containing the m-th roots of unity. Suppose P ∈ E(K)[m]
and Q ∈ E(K)/mE(K). Since P is an m-torsion point, m(P )−m(O) is a principal divisor,
say div(fP ). Choose another divisor DQ defined over K such that DQ ∼ (Q)− (O) and with
support disjoint from div(fP ). Then, we may define the Tate pairing

τm : E(K)[m]× E(K)/mE(K)→ K∗/(K∗)m

10



and Weil pairing

em : E(K)[m]× E(K)[m]→ µm

by

τm(P,Q) = fP (DQ), em(P,Q) = fP (DQ)fQ(DP )−1.

Both are non-degenerate bilinear pairings, while the Weil pairing is alternating. For details,
see [4, 9].

The Tate pairing and Weil pairing are used in the MOV [12] and Frey-Rück [8] attacks on
the ECDLP. These use the Weil and Tate pairings, respectively, to translate an instance of
the ECDLP into an F∗q DLP equation, where index calculus methods may be used. The basic

idea, illustrated here for the Tate pairing, is that Q = [k]P implies τm(Q,S) = τm(P, S)k

by bilinearity. If S can be chosen so that τm(P, S) is non-trivial, and if the Tate pairing
takes values in a manageably small finite field, then index calculus methods can be used to
determine k. In particular, this attack applies for curves E over Fq where m = q − 1.

In (9) and (7), all the terms may be calculated from knowledge of m, P and Q except for
WE,P (k) and WE,P (k−1). However, notice that these unknown terms are raised to the power
m. Therefore, in the case that m = q − 1, no extra information is needed and the ECDLP
is reduced to an F∗q DLP; this works in exactly the cases that the MOV or Frey-Rück attack
applies.

These sorts of ‘alternate versions’ of the MOV/Frey-Rück attack do have a relation to the
Tate pairing. In [19], Stange proves the following.

Theorem 5.1 (Stange, [19]). Let E be an elliptic curve, m ≥ 4, and P ∈ E[m]. Let
Q,S ∈ E be such that S 6∈ {O, Q}. Let W be an elliptic net of rank n, associated to points
T ∈ E(K)n. Let s,p,q ∈ Zn be such that

P = p ·T, Q = q ·T, S = s ·T.

Let τm : E[m]× E/mE → K∗/(K∗)m be the Tate pairing. Then

τm(P,Q) =
W (mp + q + s)W (s)

W (mp + s)W (q + s)
.

Now equations (7) and (9) can be re-written as statements in terms of the Tate pairing.
Equation (7): Use Theorem 5.1 with p = (1, 0),q = (−1, 0), s = (2, 0) for the left-hand

side and p = (0, 1),q = (−1, 0), s = (2, 0) for the right. This rewrites (7) as

τm(P,−P )k = τm(Q,−P ).

Equation (9): This is somewhat more complicated. From Theorem 2.3 with m = q − 1
and Theorem 5.1 with various parameters,

WE,P (m+ 1)2τm(P, P )−2 =

(
WE,P (m+ 1)2WE,P (2)

WE,P (m+ 2)

)2

= b2 = am = 1,

τm(P,Q) =
WE,P,Q(m+ 1, 1)WE,P,Q(1, 0)

WE,P,Q(m+ 1, 0)WE,P,Q(1, 1)
, τm(Q,P ) =

WE,P,Q(1,m+ 1)WE,P,Q(0, 1)

WE,P,Q(0,m+ 1)WE,P,Q(1, 1)
,

1 = τm(P,O) = τm(P, [m]Q) =
WE,P,Q(m+ 1,m+ 1)WE,P,Q(1, 1)

WE,P,Q(m+ 1, 1)WE,P,Q(1,m+ 1)
.
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All of which, taken together, rewrites (9) as

τm(P,Q)τm(Q,P ) = τm(P, P )2k.

Equation (3) does not, however, lend itself to this sort of re-writing in terms of pairings,
as it requires the assumption that gcd(m, q−1) = 1. If we were to redefine it without taking
m2-th roots (in order to avoid this assumption), the equation becomes effectively trivial.

6. ECDLP through EDS Association

The previous sections have demonstrated that there are a variety of ways to translate an
ECDLP into an F∗q DLP. The F∗q DLP equation is in terms of elements of the sequence WE,P .
For example in (7), the elements are WE,P (k) and WE,P (k − 1). The problem of finding
these terms (with knowledge of Q = [k]P but not k) is EDS Association. In this example,
however, it is only their quotient that is needed. Depending on the form of the F∗q DLP
equation, different such information (certain terms or ratios of terms) suffices. We formalise
the most general statement of this in the following theorem.

Proposition 6.1. Fix an elliptic curve E defined over Fq, and P ∈ E(Fq) of order greater
than three and relatively prime to q−1. Suppose φ(P ) has order q−1 in F∗q. With knowledge
of any product

N∏
i=1

WE,P (pi(k))ei ,

where the ei ∈ Z, and pi(x) ∈ Z[x], and t(x) =
∑N

i=1 eipi(x)2 is a non-constant linear
polynomial in Z[x], the value of k can be determined in subexponential time in q.

Proof. By Theorem 3.1, t(k) satisfies an equation in F∗q of the form A = Bt(k). The left
hand side A is the known product in the hypothesis of the theorem, while B = φ(P ) (whose
computation takes time O((log q)3) by Theorem 4.3). Solving this discrete logarithm for t(k)
can be done sub-exponentially by index calculus methods. Solving for k from t(k) is direct
since t(k) is linear in k. �

It is evident that the most costly step is the index calculus step, which in many cases has
run time r(q) = exp(c(log q)1/3(log log q)2/3) [3, p.306].

7. ECDLP and Quadratic Residues

We will show that determining only one bit of information – the residuosity – about a
term WE,P (k) may suffice to solve the ECDLP. First, we observe a hypothetical method of
attack for ECDLP.

Proposition 7.1. Let P be a point of odd order relatively prime to q − 1. Given an oracle
which can determine the parity of the minimal multiplier of any non-zero point Q in 〈P 〉 in
time O(T (q)), the elliptic curve discrete logarithm for any such Q can be determined in time
O(T (q) log q + (log q)2).

Proof. Suppose that k is the minimal multiplier of Q with respect to P . The basic algorithm
is:

(1) If Q = P , stop.
12



(2) Call the oracle to determine the parity of k. If k is even, find Q′ such that [2]Q′ = Q.
If k is odd, find Q′ such that [2]Q′ = Q− P .

(3) Set Q = Q′ and return to step 1.

In Step 2, since the cyclic group 〈P 〉 has odd order, there is a unique Q′. It can be found in
O(log q) time (see [11] for methods). Furthermore, Q′ = [k′]P where

k′ =

{
k/2 k even
(k − 1)/2 k odd

.

Then k′ is the minimal multiplier for Q′ with respect to P . At the end of this process, the
value of the original k can be deduced from the sequence of steps taken. For each even step,
record a ‘0’, and for each odd step a ‘1’, writing from right to left, and adding a final ‘1’:
this will be the binary representation of k. The number of steps is log2 k = O(log q). �

Proposition 7.2. Fix an elliptic curve E defined over Fq of characteristic not equal to two,
and P ∈ E(Fq) of order greater than three and relatively prime to q − 1. Suppose that φ(P )
is a quadratic non-residue. Then, with knowledge of the quadratic residuosity of any product
of the form

(10)
N∏

i=1

WE,P (pi(k))ei ,

where the ei ∈ Z, and pi(x) ∈ Z[x] of degree at most D, and t(x) =
∑N

i=1 eipi(x)2 is not
constant as a function Z/2Z→ Z/2Z, the parity of k can be determined in time O(D).

Proof. By Theorem 3.1, the value t(k) satisfies an equation in F∗q of the form A = Bt(k). The
quadratic residuosity of A is known. Now, B = φ(P ) is a quadratic non-residue. The parity
of t(k) can be calculated from these values in constant time (i.e. consider the question in
K∗ modulo (K∗)2). The parity of k is determined by checking the parity of t(0) and t(1).
This final step takes time O(D). �

Corollary 7.3. Let E be an elliptic curve over a field of characteristic not equal to two.
Let P be a point of odd order such that φ(P ) is a quadratic non-residue, and let k be the
minimal multiplier of a multiple Q of P . Given P,Q and an oracle which can determine the
quadratic residuosity of WE,P (k) in time O(T (q)), the elliptic curve discrete logarithm for
any such Q can be determined in time O(T (q) log q + (log q)2).

Proof. This follows from Proposition 7.2 with N = 1, e1 = 1, p1(x) = x and Proposition
7.1. �

A few remarks are in order.

(1) The hypotheses on the t(x) of Proposition 7.2 and Proposition 6.1 are mutually
exclusive.

(2) If φ(P ) is a quadratic residue, one solution to this obstacle is to replace the initial
problem of Q = [k]P with the equivalent problem of [n]Q = [k]([n]P ) for any n
such that φ([n]P ) is a quadratic non-residue. The perfectly periodic sequence can be
calculated term-by-term until such an n is found.

(3) It may be tempting to try to apply this method to the case that the order of P
divides q − 1. Unfortunately, this is not possible. If the order m of the group 〈P 〉
is even, multiplication by 2 is not an automorphism, and so there is no unique ‘half’
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of a point (this is the same difficulty that prevents this sort of parity attack on an
F∗q discrete log). If m|(q − 1) is odd, then k satisfies a discrete logarithm equation

of the form A = Bk in the group K∗/(K∗)m, which has an odd number of elements.
Therefore, this does not determine the parity of k.

8. The EDS Residue Problem

In light of the preceeding section, it is natural to define the problem of EDS Residue
(Problem 1.3). In Section 10 we will show that it is equivalent to the elliptic curve discrete
logarithm in sub-exponential time. How might one determine the quadratic residuosity of
WE,P (k)? Our first observation is that knowledge of the residuosity of one term WE,P (k)
would determine the residuosity of the next term.

Proposition 8.1. Suppose Q is a known element of 〈P 〉, but that its minimal multiplier k is
unknown. The quadratic residuosity of WE,P (k+1)/WE,P (k) can be calculated in O((log q)3)
time.

Proof. From (3) with n = k and n = k + 1, we have

φ(Q)

φ(Q+ P )
= φ(P )2k+1

(
WE,P (k + 1)

WE,P (k)

)
.

The calculation of the terms φ(P ), φ(Q), and φ(P +Q) each take O((log q)3) time. �

Therefore, based on knowledge of Q but not k, the sequence

S(n) =

(
WE,P (n)

q

)(
WE,P (k)

q

)
for n = k, . . . , k +N may be may be calculated in O(N log q) time. Then the sequence(

WE,P (n)

q

)
is either S(n) or −S(n). To determine which is to determine the quadratic residuosity of
WE,P (k).

Therefore, if some bias, or some pattern, for quadratic residues of the elliptic divisibility
sequence WE,P (n) were known, then the correct choice of the two sequences above could
be determined. However, as yet we have no evidence to suggest that the ratio of quadratic
residues among the terms is not 1/2 in general.

9. ECDLP through EDS Discrete Log in the case of Perfect Periodicity

Problem 1.4 (EDS Discrete Log) is less unusual in flavour than the other problems con-
sidered here: general discrete logarithm attacks will apply. Recall the proof of Theorem 4.2,
in which blocks centred at k are defined – denote this as B(k). From B(k), the recurrence
relation can be used to calculate B(2k) or B(2k+1). In fact, Shipsey goes further, and shows
how two blocks B(k), B(k′) can be added to obtain a block B(k + k′) in a similarly efficient
manner (see [13, p. 23]). This means that the sequence of blocks B(n) is a sequence along
which we can move easily by addition and Z-multiplication. Therefore, algorithms such as
Baby-Step-Giant-Step and Pollard’s ρ can be applied to this problem.
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10. Equivalence of Hard Problems

Proof of Theorem 2.2. (3) =⇒ (1): Corollary 7.3. (1) =⇒ (2): If k is known, we
can assume 0 < k ≤ ord(P ), and then WE,P (k) can be calculated in O((log k)(log q)2) =
O((log q)3) time. (2) =⇒ (3): Residuosity of a value in F∗q can be determined in sub-
exponential time (see [10] for algorithms). (1) =⇒ (4): Theorem 4.4. (4) =⇒ (1):
Theorem 4.3 allows calculation of φ([k]P ), φ([k + 1]P ), and φ([k + 2]P ) in sub-exponential
time. �
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