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Abstract

In this work we focus on two basic secure distributed computation tasks- Probabilistic Weak
Secret Sharing (PWSS) and Probabilistic Verifiable Secret Sharing (PVSS). PVSS allows a dealer
to share a secret among several players in a way that would later allow a unique reconstruction
of the secret with negligible error probability. PWSS is slightly weaker version of PVSS where
the dealer can choose not to disclose his secret later. Both of them are well-studied problems.
While PVSS is used as a building block in every general probabilistic secure multiparty com-
putation, PWSS can be used as a building block for PVSS protocols. Both these problems
can be parameterized by the number of players (n) and the fault tolerance threshold (t) which
bounds the total number of malicious (Byzantine) players having unbounded computing power.
We focus on the standard secure channel model, where all players have access to secure point-to-
point channels and a common broadcast medium. We show the following for PVSS: (a) 1-round
PVSS is possible iff t = 1 and n > 3 (b) 2-round PVSS is possible if n > 3t (c) 4-round PVSS is
possible if n > 2t. For the PWSS we show the following: (a) 1-round PWSS is possible iff n > 3t
and (b) 3-round PWSS is possible if n > 2t. All our protocols are efficient. Comparing our
results with the existing trade-off results for perfect (zero error probability) VSS and WSS, we
find that probabilistically relaxing the conditions of VSS/WSS helps to increase fault tolerance
significantly.

Keywords: Verifiable Secret Sharing, Error Probability, Round Complexity.

1 Introduction

This paper studies two basic secure computation primitives: Probabilistic Verifiable Secret Sharing
(PVSS) and Probabilistic Weak Secret Sharing (PWSS). In secret sharing a dealer D wants to
share a secret s among a set of n players, such that no set of t players will be able to reconstruct
s while any set of t + 1 or more players will be able to reconstruct s by combining their shares.
VSS extends ordinary secret sharing to work against active corruption. It is a stronger notion than
standard secret sharing and provides robustness against t malicious players, possibly including D.
In PVSS, each property of VSS holds, but with a negligible error probability. PVSS is essentially a
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2-phase protocol, consisting of a sharing phase and reconstruction phase. In the sharing phase the
dealer distributes a secret among n players in a way that no t of them can infer any information on
the secret. In the reconstruction phase, the players pool together their information to reconstruct
the secret. In PVSS, the following should be true with very high probability: (a) if D is honest,
then collusion of t Byzantine corrupted players should not be able to prevent honest players from
reconstructing the correct secret, (b) moreover, a collusion of dishonest D and additional (t − 1)
dishonest players can not change the reconstructed value once it is decided in sharing phase. In
some scenarios the strong requirement of PVSS specified in (b) can be loosened such that D may
choose not to disclose the secret in reconstruction phase. This means either the committed secret
or “NULL” will be output in reconstruction phase. A protocol that satisfies (a) and weaker form
of (b) is called PWSS protocol. As in [5], we define the round complexity of PVSS/PWSS protocol
as number of communication rounds in its sharing phase. Reconstruction can be done in a single
round wherein every player reveals its entire view generated during sharing phase.

While PVSS is an useful building block in the design of general probabilistic multiparty com-
putation protocols, PWSS being a “weaker” version of PVSS is used for constructing PVSS proto-
cols [7, 3]. In this work, we study trade-offs between number of rounds and fault tolerance threshold
for PVSS and PWSS and show that allowing a negligible error probability increases fault tolerance
significantly in comparison to VSS and WSS respectively. Moreover our results shows noticeable
improvements over existing PVSS and PWSS protocols [7, 3] in terms of number of rounds as well
as communication complexity.

Existing Literature: There is extensive literature on VSS and WSS. In secure channel model
(point-to-point private channel and Broadcast channel), perfect (zero error) VSS is first studied in
[1, 2] where it is proved that perfect VSS is possible iff n > 3t. The exact round complexity of
perfect VSS and tight trade-offs between the round complexity and fault tolerance threshold was
established by Gennaro et. al. [5]. In their work, among many other important results, Gennaro
et. al. has given a 3 round exponential time perfect VSS protocol (with n > 3t) which is later made
polynomial time by Fitzi et. al. [4]. In summary, the trade-offs between the number of rounds and
fault tolerance threshold for perfect VSS and WSS is presented in first two columns of Table 1.

Table 1: The first two columns shows existing characterization for WSS and VSS. The last two
columns summarize results for PWSS and PVSS, where “iff” denotes that the condition is nec-
essary and sufficient where as “sufficient” (“necessary”) denotes that condition is only sufficient
(necessary). ”*” indicates the results given in this work

# Rounds Characterization Characterization PWSS PVSS
for WSS for VSS

1 n > 4t [4] t = 1, n > 4 n > 3t (iff) * t = 1, n > 3 (iff)
for t > 1, impossible [5] for t > 1, impossible *

2 n > 4t [4] n > 4t [5] n > 3t (sufficient) n > 3t (sufficient) *
3 n > 3t [4] n > 3t [5] n > 2t (iff) * n > 2t (necessary)
4 n > 3t [4] n > 3t [5] n > 2t (iff) n > 2t (iff) *
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In VSS, it is possible to obtain better fault tolerance when negligible error probability is allowed.
In [7], it is shown that unconditionally secure VSS with small probability of error (PVSS) can be
realized iff n > 2t. In [7] a PWSS and a PVSS protocol is proposed. Later Cramer et. al. [3]
proposed a more efficient PWSS and PVSS protocol which requires 5 and 9 rounds respectively.

Our Contribution: We bring out the power of allowing negligible error probability by significantly
improving the fault tolerance for VSS and WSS problem in secure channel model (point-to-point
channel + broadcast channel). Specifically, we show the following for PVSS: (a) single round PVSS
is possible iff t = 1 and n > 3 (b) 2-round PVSS is possible if n > 3t (c) 4-round PVSS is possible
if n > 2t. For the PWSS we show the following: (a) single round PWSS is possible iff n > 3t and
(c) 3-round PWSS is possible if n > 2t. In traditional secret sharing scheme, information rate is
defined as the ratio of size of the secret and size of a share [8]. However, in PVSS/PWSS protocols,
since the players also communicate among themselves, we extend the definition of information
rate for PVSS/PWSS protocol as the ratio of total number of bits communicated in the protocol
(excluding the bits which are broadcasted) and the size of the secret(s). We observe that the first
two steps of PVSS protocol of [3] along with some additional checking constitutes a five round
PWSS (with n = 2t + 1) achieving an information rate of O(n3). However, our three round PWSS
(with n = 2t + 1) attains an information rate of O(n), which is a significant improvement over the
PWSS protocol of [3]. Also, our four round PVSS with information rate of O(n3) is a significant
improvement over the existing nine round PVSS with same information rate [3].

Note that as in the case of VSS, there exists a stronger definition of PVSS which guarantees
that at the end of sharing phase, each player locally outputs a share such that the joint shares
output by honest players are consistent with a specified secret sharing scheme, say Shamir’s (see [5]
for this stronger definition of VSS). This definition is convenient to use in the context of general
secure multiparty computation. However, this stronger notion is not needed when VSS (PVSS) is
viewed as a stand alone application. We though stress that all our protocols (with the exception
of 1 round PVSS protocol) can be easily adapted to meet this stronger requirement. Recently
in [6], Katz et.al have designed a perfect VSS protocol with n = 3t + 1 which optimizes the use
of broadcast channel. All our protocols can be easily modified so that they optimize the use of
broadcast channel.

Finally, comparing our results (last two columns of Table 1) with the existing trade-offs between
the round complexity and the achievable fault tolerance for perfect VSS and WSS (first two columns
of Table 1), we find that probabilistically relaxing the conditions of VSS/WSS helps significantly to
increase fault tolerance. Note that for 2 round PVSS and PWSS, we do not know whether n > 3t
is necessary (we show it is sufficient). Similarly for three round PVSS, we do not know whether
n = 2t + 1 is sufficient. We leave these questions as open problems.

2 Model and Definitions

We consider the standard secure channel settings where there are n players P = {P1, P2, . . . , Pn},
who are pairwise connected by perfectly secure channels and an additional broadcast channel is
available to all the players. We assume the dealer D to be any one of the players from P. Our
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protocol will also work for an external dealer where D is an entity outside the set P. The system
is synchronous and the protocol operates in a sequence of rounds, where in each round, a player
performs some local computation, sends new messages to his neighbors through private channel and
broadcast some information over the broadcast channel and receive message sent by his neighbor in
the previous round and receive message sent over broadcast channel in previous round, in that order.
The adversary model is same as in [3]. The adversary, denoted as At has unbounded computing
power and can actively control at most t of the n players (possibly including D) during the protocol.
The adversary is centralized and can pool all the information from the players under its control
and use them in any manner in its computation. The adversary is adaptive [3] and is allowed to
corrupt players during protocol execution (and his choice may depend on the data seen so far). A
player under the control of At will remain so throughout the protocol and can (mis)behave in an
arbitrary manner during protocol execution. The error probability in our protocols is expressed
in terms of an error parameter k and the field size |F| is selected appropriately as a function of
k. Note that in [3], the field size |F| is fixed, which is 2k and the error probability is of the form
2−k+O(log n). However, in this paper the error probability is fixed, which is 2−k and the field size is
|F| ≥ n2(n− 1)2k.

Definition 1 ( [3, 7]) A (n, t)-PWSS scheme for sharing a secret s ∈ F is a pair of protocols
(Sh, Rec) that satisfy the following properties with an negligible error probability (except secrecy
which is perfect) 2−k (k is the error parameter), even in the presence of At:

1. Termination: If D is honest then all honest players will complete Sh and if the honest
players invoke Rec, then each honest player will complete Rec.

2. Secrecy: If D is honest and no honest player has yet started Rec, then At has no infor-
mation about s in information theoretic sense.

3. Once all currently uncorrupted players complete protocol Sh, there exists a value r ∈ F ∪
{NULL} , such that the following requirements hold:
Correctness: If the dealer is uncorrupted throughout protocols Sh and Rec then r is the
shared secret, i.e. r = s and each honest players will output r = s at the end of Rec.
Weak Commitment: If the dealer is corrupted, then all honest players output either same
r or ‘NULL’ upon completion of protocol Rec.

Definition 2 A (n, t)-PVSS scheme for sharing a secret s ∈ F is a pair of protocols (Sh, Rec)
that satisfy the termination, secrecy and correctness property of PWSS and a stronger
commitment property which is as follows: Once all currently uncorrupted players complete Sh,
there exists an r ∈ F, such that the following requirement holds, with an error probability 2−k:
Strong Commitment: If D is corrupted then each honest player outputs r upon completion of
Rec.

Round Complexity and Efficiency: As in [5], we define the round complexity of PVSS and
PWSS protocol as the number of rounds in its sharing phase. Reconstruction can always be done
in a single round wherein every player reveals its entire view generated during sharing phase. A
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PVSS (PWSS) protocol is called efficient if the total computation and communication performed
by all honest players is polynomial in n (the number of players) and error parameter k.

Remark 1 Using the convention of [5], we assume that if D is discarded in the protocol during
sharing phase, then there exists a pre-defined value, say s′ ∈ F, which will be taken as D’s secret.

3 Secret Distribution Protocol

We now design a single round protocol called Secret Distribution, which we use as a black-box
in our PWSS and PVSS protocols. In the protocol, n is at least 2t + 1.

Before proving the properties of protocol Secret Distribution, we first pictorially represent
the values computed by D.

M(x), M(0) = s

M(1) M(2) . . . M(j) . . . M(n)
f1(x) f2(x) . . . fj(x) . . . fn(x)

f1(0) = M(1) f2(0) = M(2) . . . fj(0) = M(j) . . . fn(0) = M(n)
f1(1) f2(1) . . . fj(1) . . . fn(1)
f1(2) f2(2) . . . fj(2) . . . fn(2)
. . . . . . . . . . . . . . . . . .

f1(i) f2(i) . . . fj(i) . . . fn(i)
. . . . . . . . . . . . . . . . . .

f1(n) f2(n) . . . fj(n) . . . fn(n)

F1(x) = f1(1) + f2(1)x + f3(1)x2 + . . . + fj(1)xj−1 + . . . + fn(1)xn−1

F2(x) = f1(2) + f2(2)x + f3(2)x2 + . . . + fj(2)xj−1 + . . . + fn(2)xn−1

. . . . . . . . .

Fi(x) = f1(i) + f2(i)x + f3(i)x2 + . . . + fj(i)xj−1 + . . . + fn(i)xn−1

. . . . . . . . .

Fn(x) = f1(n) + f2(n)x + f3(n)x2 + . . . + fj(n)xj−1 + . . . + fn(n)xn−1

Lemma 1 In protocol Secret Distribution, any t + 1 players can jointly reconstruct s.

Proof: The proof follows from the fact that any t+1 players will know t+1 points on each fi(x),
from the F polynomials given to them. Since each fi(x) is of degree t, the knowledge of t+1 points
is sufficient to construct each fi(x) and hence each M(i). Now using the M(i)’s, M(x) and hence
s can be reconstructed. 2

Lemma 2 In protocol Secret Distribution, any t players will have no information about n − t
coefficients of M(x) in information theoretic sense.
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Protocol Secret Distribution

• D selects a random polynomial M(x) over F of degree n − 1 such that M(0) = s, where s is a secret. D then
computes M(1), M(2), . . . , M(n).

• D selects n random polynomials f1(x), f2(x), . . . , fn(x) over F, each of degree t, such that fi(0) = M(i), 1 ≤ i ≤ n.
D then evaluates each fi(x) at x = 1, 2, . . . , n to form a n tuple fi = [fi(1) fi(2) . . . fi(n)]

• D now constructs an n × n matrix T where ith column of T contains the n tuple fi. Using the ith row of T , D
forms a n− 1 degree polynomial Fi(x) = f1(i) + f2(i)x + f3(i)x

2 + . . . + fn(i)xn−1. D also selects n random and
distinct elements from F, denoted by α1, α2, . . . , αn.

• To Pi, D privately delivers Fi(x), αi and n tuple [v1i v2i . . . vni] where vji = Fj(αi), 1 ≤ j ≤ n.

Proof: From Lemma 1, the knowledge of any t+1 Fi(x)’s is enough to reconstruct M(x). Without
loss of generality, consider the set of first t players, denoted by Pt. We now show that n−t coefficients
of M(x) will be information theoretic secure, even if the players in Pt pool the information received
during sharing phase.

From the protocol, the players in Pt will know F1(x), F2(x), . . . , Ft(x). Hence they will collec-
tively know the first t points on each fi(x), each of degree t. Hence they fall short of one point
to recover fi(x). The players in Pt will also know the random values α1, α2, . . . , αt and values of
Fi(x), 1 ≤ i ≤ n at x = α1, α2, . . . , αt. The values Fi(αj), 1 ≤ i ≤ t, 1 ≤ j ≤ t does not reveal any
new information to these players. However, the values Ft+1(αj), 1 ≤ j ≤ t gives t new independent
equations on Ft+1(x). But Ft+1(x) is an n − 1 degree polynomial, so the players in Pt fall short
of n− t points to completely know Ft+1(x). Now, the remaining polynomials Fj(x), t + 2 ≤ j ≤ n
are linearly dependent on Fk(x), 1 ≤ k ≤ t + 1 because each Fj(x), t + 2 ≤ j ≤ n can be derived
completely by the knowledge of first t+1 Fk(x)’s. Hence the points on Fj(x), t+2 ≤ j ≤ n are linear
combination of the points on Fk(x), 1 ≤ k ≤ t+1. So the knowledge of Fi(αj), t+2 ≤ i ≤ n, 1 ≤ j ≤ t
does not give any new information to the players in Pt. We now formally prove this. Let us use
the following notations:

• gi(x) is the t− 1 degree polynomial defined by the first t values of fi(x). Since Pt knows first
t values of each fi(x), he can compute each gi(x).

• J(x) = (x− 1) ∗ (x− 2) ∗ . . . ∗ (x− t)

Now Fj(x) =
∑n

i=1 fi(j) ∗ xi−1. Let ki(x) = fi(x)− gi(x). Then

∀x ∈ {1, 2, . . . , t} : ki(x) = 0 (1)

As ki(x) is a t degree polynomial and {1, 2, . . . , t} are its roots, so we get

ki(x) = ci ∗ (x− 1) ∗ (x− 2) ∗ . . . ∗ (x− t) =⇒ ki(x) = ci × J(x) =⇒ ci =
ki(x)
Ji(x)

(2)

Now
fi(x) = gi(x) + ki(x) =⇒ fi(x) = gi(x) + ci × J(x) (3)
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Now the players in Pt know the points Ft+1(αj), 1 ≤ j ≤ t. These points can be expressed as:

∀j ∈ {α1 . . . αt} : Ft+1(j) =
∑n

i=1 fi(t + 1) ∗ ji−1

=
∑n

i=1(gi(t + 1) + ci ∗ J(t + 1)) ∗ ji−1 From Equation (3)

We now show that the points Fk(αj), t+2 ≤ k ≤ n, 1 ≤ j ≤ t does not give any new information to
the players in Pt. Consider any k ∈ {t + 2, t + 3, . . . , n} and any j ∈ {α1, α2, . . . , αt}. Now similar
to the last equation, we have

Fk(j) =
n∑

i=1

(gi(k) + ci ∗ J(k)) ∗ ji−1 (4)

Now Fk(j) can be expressed as

Fk(j) =
n∑

i=1

gi(k) ∗ ji−1 − J(k)
J(t + 1)

∗
n∑

i=1

gi(t + 1) ∗ ji−1

+
J(k)

J(t + 1)
∗

n∑

i=1

(gi(t + 1) + ci ∗ J(t + 1)) ∗ ji−1 (5)

=
n∑

i=1

gi(k) ∗ ji−1 − J(k)
J(t + 1)

∗
n∑

i=1

gi(t + 1) ∗ ji−1

+
J(k)

J(t + 1)
∗ Ft+1(j) (6)

We see that in (6) all the terms are known to the players in Pt and hence the t points on the
polynomials Ft+2(x), Ft+3(x), . . . , Fn(x) can be computed from the t points on Ft+1(x) and the
first t Fi(x)’s only. Hence the players in Pt fall short of n− t values to completely recover Ft+1(x)
and hence M(x). 2

4 Single Round PWSS with n = 3t + 1

We now design a single round PWSS protocol called 1-Round-PWSS with n = 3t + 1 and error
probability bounded by 2−k, where |F| ≥ n2(n− 1)2k. From [4], one round perfect WSS is possible
iff n > 4t. Thus probabilistically relaxing the conditions of WSS helps to increase the fault tolerance
of 1-round WSS. The protocol uses protocol Secret Distribution given in Section 3 as black-box.

Remark 2 Let i1, i2, . . . , ik denote the index of the rows which are filled in matrix T during step
4(b) of local computation of protocol 1-Round-PWSS. Let f ′j(i1), f

′
j(i2), . . . , f

′
j(ik) denote the

values in the jth column of the matrix T . Then jth column is said to be t-consistent if there exists a
polynomial wj(x) of degree at most t such that wj(i1) = f ′j(i1), wj(i2) = f ′j(i2), . . . , wj(ik) = f ′j(ik).
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Protocol 1-Round-PWSS: A Single Round PWSS Protocol with n = 3t + 1

Sharing Phase: D executes protocol Secret Distribution. So Pi obtains the following from D: polynomial
Fi(x), the random secret value αi and the n tuple [v1i v2i . . . vni] where vji = Fj(αi), 1 ≤ j ≤ n.
Reconstruction Phase: Pi broadcasts whatever it received during sharing phase; i.e., F ′i (x), α′i and [v′1i v′2i . . . v′ni].
Local Computation (by each player)

1. Construct a directed graph G called approval graph over the set of n players, such that there exists an arc (Pk, Pj)
(k can be equal to j) in G iff F ′j(α

′
k) = v′jk, which indicates that Pk approves the polynomial F ′j(x) broadcasted

by Pj . Since all information are broadcasted, every (honest) player constructs the same graph G.

2. Each player whose in-degree (in G) is at least n− t are included in a set CORE. Next, players in CORE whose
polynomials are not approved by at least n− t players in CORE are removed from CORE. This process continues
until no more players can be removed from CORE. Let CORE = P \ CORE.

3. Player Pj ∈ CORE, who has an arc (Pj , Pk) to player Pk ∈ CORE in G is removed from CORE, but not included
in CORE. If the removal of Pj from CORE reduces the in-degree of some other player Pl ∈ CORE to less than
n− t then remove Pl from CORE. This process continues, until no more player can be removed from CORE.

4. If |CORE| < n − t, then output NULL. Else try to reconstruct the original n × n matrix T (constructed by D
during sharing phase) by doing the following:

(a) Insert the coefficients of F ′j(x) (in increasing power of x) as the jth row of T , if Pj ∈ CORE. Since
|CORE| ≥ n− t, at least 2t + 1 rows will be inserted in T .

(b) Check if each column of T is t-consistent (Remark 2). If not then output NULL. Else recover
M ′(1), M ′(2), . . . , M ′(n) by interpolating the values of each column and recover M ′(x) and compute
s′ = M ′(0).

Claim 1 Let D be honest. Assume that Pi is an honest player and some corrupted player Pj

broadcasts F ′
j(x) 6= Fj(x) in reconstruction phase. Then the probability that the arc (Pi, Pj) may be

present in G is at most 2−k.

Proof: Let D be honest and a corrupted Pj broadcasts F ′
j(x) (6= Fj(x)) during reconstruction

phase, such that there exists an arc (Pi, Pj) in G, where Pi is honest. This implies that F ′
j(x) 6=

Fj(x) broadcasted by Pj is approved by an honest Pi. Let πij be the probability that Pj is approved
by honest Pi. This means that the adversary could ensure that Fj(αi) = F ′

j(αi) with probability
πij . Since there are only n − 1 points at which Fj(x) and F ′

j(x) intersect and αi’s are randomly
selected from F, we have πij ≤ n−1

|F| . Thus total probability that adversary can find Pi, Pj such that

corrupted Pj will be approved by honest Pi is at most
∑

i,j πij ≤ n2(n−1)
|F| . Since F is chosen such

that |F| ≥ n2(n− 1)2k, it follows that arc (Pi, Pj) may be present in G with a probability at most
2−k. 2

Claim 2 If D is honest, then except with probability at most 2−k, an honest Pi is present in CORE

Proof: If D is honest, then he will distribute consistent information to all the players. So a honest
player will have an incoming arc in G from all the honest players (at least n − t). Now the only
reason that an honest player Pi is removed from CORE is that there exists an arc (Pi, Pj) in G,
where Pj(corrupted) ∈ CORE. However, from Claim 1, this can happen with a probability at most
2−k. 2
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Lemma 3 1-Round-PWSS satisfy correctness property with error probability at most 2−k.

Proof: If D is honest, then from Claim 2, each honest player will be present in CORE with very
high probability. Also by Claim 1, a corrupted Pj broadcasting incorrect F ′

j(x) 6= Fj(x), will be
excluded from CORE, with probability more than 1−2−k. So with probability more than 1−2−k,
all the columns of T will be t-consistent and hence m will be reconstructed. However, if a corrupted
Pj who broadcasted F ′

j(x) 6= Fj(x), is included in CORE, then all the columns of partially filled
matrix T will not be t-consistent. This is because at least one of the coefficients of F ′

j(x) will be
different from Fj(x) and each column of partially filled T contains at least 2t + 1 correct values,
corresponding to honest players. This causes NULL to be output which happens with probability
less than 2−k. 2

Claim 3 If D is corrupted and |CORE| ≥ n− t, then at the end of the sharing phase there exists
a unique secret s′ ∈ F ∪ {NULL} defined by the honest players in CORE.

Proof: If D is corrupted and |CORE| ≥ n− t then it contains at least (n− t)− t ≥ t + 1 honest
players. Now polynomial F ′

i (x) possessed by honest player Pi ∈ CORE can be used to fill up the
ith row of T . Since CORE contains at least t + 1 honest players, at least t + 1 rows of T will be
occupied. Now consider the matrix T with only the coefficients of the polynomials corresponding to
the honest players inserted in it. There are two possible cases: (a) The values along each of the
n columns are t-consistent: In this case, the values along each of the n columns on interpolation
will result in a t degree polynomial, f ′i(x), 1 ≤ i ≤ n for ith column. Let M ′(i) = f ′i(0), then a
unique n − 1 degree polynomial M ′(x) can be interpolated from M ′(i), 1 ≤ i ≤ n. The unique
secret defined by the honest players in CORE is s′ = M ′(0). (b) The values along at least one
of the n columns is not t-consistent: In this case, the defined value s′ is NULL. 2

Lemma 4 Protocol 1-Round-PWSS satisfies weak commitment property.

Proof: If D is corrupted then the following cases can happen: (a) |CORE| < n − t: In this
case D has not defined an unique secret and hence is discarded. (b) |CORE| ≥ n − t: From
Claim 3, CORE contains a set C of at least t + 1 honest players. Moreover all the honest players
in CORE define a unique value s′ ∈ F ∪ {NULL} at the end of sharing phase. Also, according
to the protocol, any player in CORE cannot have an outgoing arc to any other player outside
CORE. But the corrupted players (at most t) in CORE, along with the players outside CORE
(which could be at most t) may define some other secret s′′ during reconstruction phase. However,
if this occurs then size of the CORE would be at most 2t < (n− t). Hence, the corrupted players
cannot change the commitment from s′ to s′′ during reconstruction phase. However, the corrupted
players could behave such that NULL gets reconstructed (this happens if the values broadcasted
by the corrupted players in CORE are not t-consistent with the values corresponding to the honest
players in CORE). Hence weak commitment on s′ holds. 2

Theorem 1 If |F| ≥ n2(n− 1)2k, then protocol 1-Round-PWSS is an (n, t) PWSS protocol with
an error probability bounded by 2−k. The protocol communicates O((k+log n)n2) bits and broadcasts
O((k + log n)n2) bits.
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Proof: Properties of PWSS follows from Lemma 2, Lemma 3 and Lemma 4. During sharing phase,
D communicates n2 field elements. Since each field element can be represented by log(|F|) bits and
|F| = n2(n − 1)2k, the communication complexity is O((k + log n)n2) bits. During reconstruction
phase, n2 field elements are broadcasted. So overall O((k + log n)n2) bits are broadcasted. 2

Remark 3 From Lemma 2, n− t coefficients of M(x) are information theoretically secure. So D
can share n−t = Θ(n) secrets incurring the same communication complexity. Thus the information
rate of our single round PWSS protocol is O(n).

5 Single Round PVSS with n = 4 and t = 1

In [5] it is shown that there exists a single round (5, 1) perfect VSS. We now design a single
round (4, 1) PVSS protocol called 1-Round-PVSS, thus showing that probabilistically relaxing
the conditions of VSS helps to increase the fault tolerance. The protocol is designed using the
protocol Secret Distribution given in Section 3 as a black-box and is similar to our single round
PWSS.

Let the players be denoted by P1, P2, P3, P4, where P1 is dealer and s is the secret. The secrecy

Protocol 1-Round-PVSS: A Single Round PVSS Protocol with n = 4 and t = 1

Sharing Phase: Same as the sharing phase of protocol 1-Round-PWSS, with n = 4 and t = 1.
Reconstruction Phase: Player Pi, except P1, who is the dealer, broadcasts F ′i (x), α′i and [v′1i v′2i v′3i v′4i].
Local Computation by players Pi, 2 ≤ i ≤ 4: Construct the approval graph G (as in protocol 1-Round-PWSS)
over P2, P3 and P4, using the information broadcasted by P2, P3 and P4 during reconstruction phase. All the players
who have in-degree at least two in G are included in CORE. Remove all the players from CORE who do not have
an in-coming arc (in G) from at least two players in CORE. Then do the following:

1. If |CORE| = 0, then construct M ′(x) using F ′2(x) and F ′3(x), reconstruct s′ = M ′(0) and terminate.

2. If |CORE| = 2, then construct M ′(x) using the F ′(x) polynomials broadcasted by the players in CORE,
reconstruct s′ = M ′(0) and terminate.

3. If |CORE| = 3 and each player in CORE has an incoming arc from all the players in CORE, then construct
M ′(x) using the F ′(x) polynomials broadcasted by the players in CORE and reconstruct s′ = M ′(0).

4. If |CORE| = 3, but at least one player in CORE do not have an incoming arc from all the players in CORE,
then construct M ′(x) using F ′2(x) and F ′3(x) and reconstruct s′ = M ′(0).

of 1-Round-PVSS follows from the secrecy of 1-Round-PWSS. We now show that the protocol
satisfies correctness and strong commitment property.

Claim 4 Protocol 1-Round-PVSS satisfies correctness property with very high probability.

Proof: If D is honest, then among the remaining three players at most one can be corrupted. Let
P4 be the corrupted player among P2, P3 and P4. Then P2 and P3 will be present in CORE (since
P2 (P3) will have have incoming arcs from P2 and P3 in G). From Claim 1, if P4 is also present in
CORE, then with very high probability, it has broadcasted F ′

4(x) = F4(x). The proof now follows
using similar argument as in Lemma 3. 2
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Claim 5 Protocol 1-Round-PVSS satisfies strong commitment property.

Proof: We have to only consider the case when D (P1) is corrupted. In this case, P2, P3 and P4

are honest and behave correctly in reconstruction phase (recall that D is not allowed to participate
in reconstruction phase). Note that the F ′(x) polynomials corresponding to any two honest players
define a unique secret s′ because here t = 1. Now we divide our argument depending upon the
size of CORE. If |CORE| = 0, then it implies that D has not given consistent values to anybody
during sharing phase. So secret s′ is reconstructed from F ′

2(x) and F ′
3(x), implying that s′ is the

unique secret defined by D in the sharing phase and is reconstructed (in reconstruction phase)
irrespective of the behavior of the corrupted player (D). The similar argument holds for the case
when |CORE| = 3 and at least one player in CORE do not have an incoming arc from all the
players in CORE. For the case when |CORE| = 2 or |CORE| = 3, with each player in CORE
having an incoming arc from all the players in CORE, the committed secret is the one defined by
the polynomials of the players in CORE. 2

6 Two Round PVSS with n = 3t + 1

We now design a two round PVSS protocol called 2-Round-PVSS for n = 3t + 1. The upper
bound for error probability is 2−k and |F| = n2(n − 1)2k. The protocol uses protocol 1-Round-
PWSS of Section 4 as a black-box. In [5], it is shown that 2 round (n, t) perfect VSS exists iff
n ≥ 4t + 1. Thus allowing a negligible error probability significantly increases the fault tolerance
of two round VSS.

The principle behind our two round PVSS protocol is similar to the three round perfect (where
error probability is 0) VSS protocol proposed in [4]. The secret s is hidden by D in a bivariate
polynomial F (x, y) and each player Pi gets the univariate polynomials F (x, i) and F (i, y). Then
every pair of players compare their common shares by ”binding” them with a random pad and
broadcasting them. In the reconstruction phase the random pads are revealed, allowing the players
to compute the shares and finally reconstruct the secret. To ensure that Pi discloses the same
random pads in reconstruction phase, Pi shares a random field element using 1-Round-PWSS and
chooses his random pads as points on the respective polynomials which are given to the individual
players as part of protocol 1-Round-PWSS. During reconstruction phase, players whose instance
of protocol 1-Round-PWSS fails, get disqualified from the main protocol. On the other hand,
players whose instance of single round PWSS succeeds, disclose their original pads. Note that if D
is corrupted, then he can distribute inconsistent values to the honest players during first round. So
when the honest players compare their common shares during second round, they may find them
to be inconsistent. In the three round perfect VSS protocol of [4], such inconsistencies are resolved
by D during third round, which cannot be done here because sharing phase has now only two
rounds. However, inspite of this, our protocol satisfies the requirement of PVSS. Before discussing
the proofs of protocol 2-Round-PVSS, we first give the following definition.

Definition 3 In protocol 2-Round-PVSS, we say that a player Pi is consistent with bivariate
polynomial F (x, y) if the polynomials given to Pi during sharing phase, namely fi(x) and gi(y) lie
on F (x, y); i.e., fi(x) = F (x, i) and gi(y) = F (i, y).
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Protocol 2-Round-PVSS: A Two Round PVSS with n = 3t + 1
Sharing Phase:
Round 1:

• D chooses a random bivariate polynomial F (x, y) over F of degree t in each variable such that F (0, 0) = s. D
privately sends to player Pi the polynomials fi(x) = F (x, i) and gi(y) = F (i, y).

• Player Pi, 1 ≤ i ≤ n, acting as a dealer, starts single round PWSS protocol 1-Round-PWSSPi in order to
share a random value si ∈ F. Let the polynomials distributed by Pi to the n players in 1-Round-PWSSPi

be denoted by F iW
1 (x), F iW

2 (x), . . . , F iW
n (x), where Pj , 1 ≤ j ≤ n receives F iW

j (x).

Round 2: Player Pi, 1 ≤ i ≤ n broadcasts the following: aij = fi(j) + F iW
j (0) and bij = gi(j) + F jW

i (0).
/* F iW

j (0) denotes constant term of the polynomial F iW
j (x) received by Pj from Pi in 1-Round-PWSSPi . */

Local Computation (by each player):

• Player Pi and Pj are said to be consistent if aij = bji and bij = aji. Form a consistency graph G over the set
of n players, where there exists an edge between Pi and Pj if they are consistent with each other. Since aij ’s
and bij ’s are public information, same G will be constructed by all (honest) players.

• Construct a set CORESh (= ∅ initially) and add Pi in CORESh if degree of Pi (in G) is at least n−t. Remove
Pj from CORESh if Pj is not consistent with at least n− t players in CORESh. Continue this process till no
more players can be removed. If |CORESh| < n− t then discard D and terminate the protocol.

Reconstruction Phase: Only the players in CORESh participate.

• For each Pi ∈ CORESh, concurrently run the reconstruction phase of 1-Round-PWSSPi . If reconstruction
phase fails, then remove Pi from CORESh.

• If the reconstruction phase of 1-Round-PWSSPi does not fail, then the polynomials F iW
j (x), 1 ≤ j ≤

n, distributed by Pi in 1-Round-PWSSPi to the n players are recovered. Now compute fi(j) = aij −
F iW

j (0) , 1 ≤ j ≤ n using the values aij , which Pi broadcasted during second round of sharing phase. If there
exists a polynomial fi(x) of degree at most t passing through the fi(j)’s, then include Pi in a set CORERec

(= ∅ initially)

• Consider all players from CORERec and use their reconstructed fi(x)’s to construct a bivariate polynomial
F ′(x, y). If F ′(x, y) is of degree at most t in both x and y, then reconstruct s′ = F ′(0, 0). Otherwise, output
some standard (predefined) value s∗ ∈ F.

Lemma 5 If D is honest then except with probability 2−k, CORERec contains each honest player,
consistent with the bivariate polynomial F (x, y) defined by D. Moreover even a dishonest player is
in CORERec is consistent with F (x, y).

Proof: If D is honest, then the information received by each honest player during sharing phase
will be consistent with bivariate polynomial F (x, y) and hence they will be pairwise consistent and
will be included in CORESh. From Lemma 3, for each honest player Pi, 1-Round-WSSPi will
succeed with probability at least (1 − 2−k) and their corresponding recovered polynomials fi(x)
will be t-consistent. So all the honest players (at least 2t + 1) will be in CORERec and will define
F (x, y).

Now consider a dishonest player Pj ∈ CORERec. This implies that Pj is consistent with at
least (n− t)− t ≥ t + 1 honest players in CORERec, who define the bivariate polynomial F (x, y).
Also Pj ∈ CORERec implies that 1-Round-PWSSPj is successful and the recovered fj(x) is t-
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consistent. Since 1-Round-PWSSPj is successful, it implies that the polynomials F jW
i (x), 1 ≤ i ≤

n given by Pj to the individual players during PWSS are recovered correctly. Since Pj is consistent
with at least t + 1 honest players in CORERec, who define F (x, y) and since recovered fj(x) is
t-consistent, it follows that recovered fj(x) is consistent with F (x, y). 2

Claim 6 If D is dishonest and does not get disqualified during sharing phase, then CORESh

contains at least t + 1 honest players. Moreover, except with probability 2−k, each honest player in
CORESh will be present in CORERec.

Proof: If D is dishonest and does not get disqualified during sharing phase then it implies that
CORESh contains at least n−t players, of which (n−t)−t ≥ t+1 are honest. Now a player Pi gets
removed from CORERec in only two cases: (a) the reconstruction phase of 1-Round-PWSSPi fails
or (2) the reconstruction phase of 1-Round-PWSSPi is successful but the resulting polynomial
fi(x) is of degree larger than t. However, from the properties of single round PWSS, for an honest
Pi, the first event can occur with probability at most 2−k, where as the second event cannot occur
at all. Hence, each honest player (in fact at least t + 1 honest players) present in CORESh will
also be present in CORERec with very high probability. 2

Lemma 6 If D is dishonest and does not get disqualified during sharing phase, then except with
probability 2−k, the protocol satisfies strong commitment property.

Proof: From Claim 6, if D is dishonest and does not get disqualified during sharing phase, then
except with probability 2−k, each honest player (at least t + 1) of CORESh will also be present in
CORERec. Now there are three possible cases:

1. CORESh contains exactly t+1 honest players: In this case |CORESh| = 2t+1 and it contains
t corrupted players. It also implies that the honest players in CORESh are consistent with
each other and define a bi-variate polynomial F ′(x, y) of degree at most t in both x and
y. Moreover, the corrupted players in CORESh are also consistent with these t + 1 honest
players. From Claim 6, these t + 1 honest players will be present in CORERec. Now if the
remaining t corrupted players in CORESh are also present in CORERec, it implies that these
corrupted players are also consistent with F ′(x, y) (following the argument provided for the
second part of Lemma 5). So in reconstruction phase, s′ = F ′(0, 0) will be reconstructed.

2. CORESh contains more than t + 1 honest players, who are all consistent with each other:
Similar to previous case, here also all honest players in CORESh define a unique bi-variate
polynomial F ′(x, y). Also if a corrupted player is present in CORESh, then it implies that
it is consistent with at least (n − t) − t ≥ t + 1 honest players in CORESh and hence with
F ′(x, y). Now following the same argument given in the previous case s′ = F ′(0, 0) will be
reconstructed.

3. CORESh contains more than t + 1 honest players, but are not consistent with each other:
Hence the fi(x) polynomials of all honest players in CORESh does not define a bivariate
polynomial of degree at most t in both x and y. In this case, D has committed a secret
which is a predefined (standard) value s∗ from F. From Claim 6, each honest player from
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CORESh will be present in CORERec, except with probability at most 2−k. Now irrespective
of whether the corrupted players in CORESh are present in CORERec or not, the fi(x)
polynomials corresponding to the honest players in CORERec will not reconstruct a bivariate
polynomial of degree at most t in both x and y. Hence s∗ will be reconstructed and so the
strong commitment on s∗ is satisfied. 2

Remark 4 Note that the third case in the proof of Lemma 6 is different from the weak com-
mitment property of PWSS. In the weak commitment property, there exists a r ∈ F which is
defined after the sharing phase, such that depending upon the the behavior of corrupted players dur-
ing reconstruction phase, either r or NULL is reconstructed. On the other hand, in the third case
of Lemma 6, the shares given by D to the players in CORESh does not define a unique secret. So
it can be viewed as D committing a fixed s∗ ∈ F. Now irrespective of the behavior of the corrupted
players during reconstruction phase, D’s commitment on s∗ is not violated.

Lemma 7 Protocol 2-Round-PVSS satisfies perfect secrecy.

Proof: We have to only consider the case when D is dishonest. The proof follows from the
properties of bivariate polynomial of degree t. Without loss of generality, assume that the first t
players are under the control of At. Let Viewk

A, 1 ≤ k ≤ 2 denote the view of At at the end of
round k of sharing phase. During first round of sharing phase, At will know about the polynomials
F (x, i), 1 ≤ i ≤ t and F (i, y), 1 ≤ i ≤ t. With these polynomials At can form t(t + 1) + t = t2 + 2t
independent equations on the coefficients of F (x, y). ThusAt falls short of one independent equation
to completely know F (x, y) and hence s.

Now during first round, each player Pi executes the protocol 1-Round-WSSPi . Thus At also
knows the polynomials F jW

1 (x), F jW
2 (x), . . . , F jW

t (x), t + 1 ≤ j ≤ n given by the honest players to
the corrupted players. Note that for all j, 1 ≤ j ≤ t, the polynomials F jW

1 (x), F jW
2 (x), . . . , F jW

t (x)
are used by player Pj to blind values which are already known to At and hence does not add any
new information to the knowledge of At. Also from secrecy property of 1-Round-PWSS (see
Theorem 1 and Lemma 2), at least n− t coefficients of F jW

t+1(x) (and hence F jW
t+2(x), . . . , F jW

n (x)),
which are distributed by players Pj , t+1 ≤ j ≤ n to players Pk, t+1 ≤ k ≤ n during the execution
of 1-Round-WSSPj are information theoretically secure. Hence at the end of round 1 of sharing
phase, it holds that for every Pj , Pk, t + 1 ≤ j, k ≤ n, the entropy H(F (x, j)|V iew1

A) = log(|F|) =
H(F kW

j (x)|V iew1
A) = H(F kW

j (0)|V iew1
A) = log(|F|).

During round 2, each player Pj , 1 ≤ j ≤ n reveals the values F (k, j) + F jW
k (0), 1 ≤ k ≤ n.

Since for each t+1 ≤ j, k ≤ n, the entropy H(F kW
j (0)|V iew1

A) = log(|F|) and H(F (x, j)|V iew1
A) =

log(|F|), it is still the case that for each Pj , t+1 ≤ j ≤ n, the entropy H(F (x, j)|V iew2
A) = log(|F|)

and hence H(F (0, 0)|V iew2
A) = log(|F|). Hence perfect secrecy follows. 2

Theorem 2 If |F| = n2(n − 1)2k, then protocol 2-Round-PVSS is an efficient two round (n, t)
PVSS protocol, with an error probability of at most 2−k. The protocol communicates O((k+log n)n3)
bits and broadcasts O((k + log n)n3) bits.

Proof: The secrecy of 2-Round-PVSS follows from Lemma 7. The “correctness” and “Strong
Commitment” properties follow from Lemma 5 and Lemma 6 respectively. Protocol 2-Round-
PVSS runs n instances of protocol 1-Round-PWSS. Now from Theorem 1, each execution of
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protocol 1-Round-PWSS communicates O((k + log n)n2) bits and broadcasts O((k + log n)n2)
bits. Hence protocol 2-Round-PVSS communicates O((k + log n)n3) bits and broadcasts O((k +
log n)n3) bits. Hence the information rate is O(n3). 2

7 Three Round PWSS with n = 2t + 1

We design a three round PWSS protocol called 3-Round-PWSS which works with error proba-
bility of 2−k, where n = 2t + 1 and |F| ≥ n2(n− 1)2k. From [4], 3 round perfect WSS is possible iff
n > 3t. Thus, probabilistically relaxing the conditions of WSS helps to increase the fault tolerance
of three round WSS protocols significantly. In the protocol, we use the following definition:

Definition 4 (αj-consistent) Let F (x) be a polynomial of degree n− 1 over F. Let αj and v be
two elements in F. Then v is said to be αj consistent with F (x) if F (αj) = v.

Theorem 3 In protocol 3-Round-PWSS, the following holds:

1. D is honest and
(a) If Pi is honest, then Pi ∈ NB and V Sh

i and V Rec
FRi

are same atleast at (t + 1) locations.
(b) If Pi is dishonest, Pi ∈ NB and broadcasted at least one of the polynomial Fi(x) or Ri(x)
incorrectly in reconstruction phase, then V Sh

i and V Rec
FRi

mismatches atleast at (t+1) locations
with probability more than (1− 2−k).

2. D is dishonest and if Pi is honest and Pi ∈ NB then V Sh
i and V Rec

FRi
matches atleast at (t+1)

locations with probability more than (1− 2−k).

Proof: Since n = 2t + 1, among n players at least (t + 1) are honest players. It is obvious that
when both D and Pi are honest then Pi ∈ NB because Pi will broadcast correct information during
second round. Also V Sh

i and V Rec
FRi

will have 1 at (t + 1) locations corresponding to (t + 1) honest
players. Hence they will match at atleast (t + 1) locations. This proves 1(a).

Now consider the case when D is honest, Pi is dishonest and Pi ∈ NB. This implies that D
is satisfied by the values broadcasted by Pi during second round and hence all the honest players
(at least t + 1) will respond with ”Accept”. So V Sh

i will contain 1 at least at (t + 1) locations
corresponding to honest players. Now if Pi discloses at least one of the polynomials Fi(x) and
Ri(x) incorrectly during reconstruction phase, then with very high probability, at least one of the
vector V Rec

Fi(x) or V Rec
Ri(x) will contain zero at a location corresponding to an honest player. Specifically,

if Pi broadcasts incorrect F ′
i (x) 6= Fi(x) (R′

i(x) 6= Ri(x)), then V Rec
Fi(x) (V Rec

Ri(x)) may contain 1 at the
jth position, corresponding to an honest player Pj , provided F ′

i (αj) = Fi(αj) = vij . However, this
can happen with probability πij ≤ n−1

|F|−n . Thus total probability that adversary can find Pi, Pj such

that a corrupted player Pi will be approved by an honest player Pj is at most
∑

i,j πij ≤ n2(n−1)
|F|−n .

Since F is chosen such that |F| = n2(n− 1)2k, it follows that if Pi discloses incorrect Fi(x) (Ri(x))
then each of the (t+1) locations corresponding to the honest player will contain zero in V Rec

Fi(x)⊗V Rec
Ri(x)
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Protocol 3-Round-PWSS: A Three Round PWSS Protocol with n = 2t + 1
Sharing Phase

Round 1: - D executes protocol Secret Distribution of Section 3 with a restriction that each random αi ∈
F−{0, 1, . . . , n− 1}. Hence Pi gets the polynomial Fi(x) of degree n− 1, the random value αi and the n tuple
[v1i, v2i, . . . , vni] from D, where vji = Fj(αi), 1 ≤ j ≤ n. In addition, D also gives another random n − 1
degree polynomial Ri(x) and n tuple [r1i, r2i, . . . , rni] to Pi, where rji = Rj(αi), 1 ≤ j ≤ n.

Round 2: Player Pi chooses a random di ∈ F \ {0} and broadcasts Bi(x) = diFi(x) + Ri(x), along with di.

Round 3: With respect to the values broadcasted by Pi in Round 2, D along with the n players do the following:

- D checks the correctness of the Pi’s broadcasted information. D also checks divij + rij
?
= Bi(αj), for

1 ≤ j ≤ n. If D finds any inconsistency, he broadcasts Fi(x).

- Player Pj , 1 ≤ j ≤ n broadcasts ”Accept” or ”Reject”, depending upon whether divij + rij = Bi(αj) or not.

Local Computation (by each player):

1. Divide the set of players in two sets. Each player Pi whose Fi(x) is broadcasted by D during third round are
included in a set B. The remaining players are included in another set NB.

2. If |B| > t then discard D and terminate the protocol.

3. For each Pi ∈ NB, construct an n length bit vector, denoted by V Sh
i , where the jth, 1 ≤ j ≤ n bit is 1(0),

if Pj has broadcasted ”Accept” (”Reject”) during Round 3 in response to Bi(x) broadcasted by Pi during
second round. The vectors V Sh

i are public as they are constructed using broadcasted information. If there
exist Pi ∈ NB such that V Sh

i contains at least t + 1 0’s, then discard D and terminate the protocol.

Reconstruction Phase: Each Pi ∈ NB broadcasts F ′i (x), R′i(x), [v′1i, v
′
2i, . . . , v

′
ni], [r′1i, r

′
2i, . . . , r

′
ni] and α′i.

Local Computation (by each player):

1. For the polynomial F ′i (x) broadcasted by Pi ∈ NB, construct an n bit response V Rec
Fi(x) where the jth bit of V Rec

Fi(x)

contains 1(0) if F ′i (α
′
j) = v′ij (F ′i (α

′
j) 6= v′ij). Similarly, construct the response vector V Rec

Ri(x) corresponding to

Ri(x). Finally compute V Rec
FRi

= V Rec
Fi(x) ⊗ V Rec

Ri(x), where ⊗ denotes bit wise AND.

2. Construct a set CORERec (= ∅ initially). Pi ∈ NB is included in CORERec if V Sh
i matches with V Rec

FRi
atleast

at t + 1 locations.

3. Set CORE = B ∪ CORERec. If |CORE| < n− t, then output NULL and terminate. Else try to reconstruct
the original n × n matrix T constructed by D in protocol Secret Distribution during first round by doing
the following:

(a) If Pj ∈ NB and included in CORE then insert the coefficients of F ′j(x) (in increasing power of x) as
the jth row of T . Similarly, if Pi ∈ B, insert the coefficients of Fi(x) broadcasted by D in third round
as ith row of T . Since |CORE| > n− t, at least t + 1 rows will be inserted in T .

(b) Check if each column of T is t-consistent (see Remark 2 for the meaning of t-consistency here). If not,
output NULL. Else if all the n columns are t consistent, then reconstruct M ′(1), M ′(2), . . . , M ′(n) by
interpolating the values of each column and recover M ′(x) and finally compute s′ = M ′(0).

with probability at least 1 − 2−k. Hence V Rec
FRi

and V Sh
i will mismatch at those (t + 1) locations.

This proves 1(b).
Now consider the case when D is dishonest and Pi ∈ NB is an honest player. So Pi will

broadcast correct information during second round, using Fi(x), Ri(x) and di. In this case, V Sh
i

and V Rec
Fi(x) ⊗ V Rec

Ri(x) will match at least at (t + 1) locations corresponding to (t + 1) honest players.
For this, consider an honest player Pj . Now there are two possible cases: (a) V Sh

i contains 0 at
jth position. It implies that divij + rij 6= Bi(αj). This further implies that either vij is not αj-
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consistent with Fi(x) or rij is not αj-consistent with Ri(x) or both. So during reconstruction phase
when Pi broadcasts Fi(x), Ri(x) and Pj broadcasts rij , vij , then the jth location in V Rec

Fi(x) ⊗ V Rec
Ri(x)

will contain 0. Hence jth location in both V Sh
i and V Rec

Fi(x)⊗V Rec
Ri(x) will match. (b) V Sh

i contains 1
at jth position. It implies that divij + rij = Bi(αj). Notice that jth location in V Sh

i is 1 iff either
both vij and rij are αj-consistent with Fi(x) and Ri(x) or both vij and rij are not αj-consistent with
Fi(x) and Ri(x). The problem comes in later case, when both vij and rij are not αj-consistent with
Fi(x) and Ri(x) but still jth location in V Sh

i is 1. We claim that this can happen for an unique
di ∈ F − {0} for the pair Fi(x) and Ri(x), which the dishonest D must guess with probability

1
|F|−1 ≈ 2−k during first round. For otherwise, let there exist another ei ∈ F − {0}, such that
eivij + rij is also αj consistent with eiFi(x) + Ri(x). This implies (di − ei)vij is αj consistent with
(di − ei)Fi(x) or vij is αj consistent with Fi(x) which is a contradiction. Hence if V Sh

i contains 1
at jth position, then except with probability 2−k, V Rec

Fi(x)⊗ V Rec
Ri(x) will also contain 1 at jth location.

Hence, we have shown that with very high probability, V Sh
i and V Rec

Fi(x) ⊗ V Rec
Ri(x) will match at the

(t + 1) locations corresponding the honest players. This proves 2. 2

Lemma 8 If D is not discarded in sharing phase then the probability that an honest player Pi will
be included in CORE is at least 1− 2−k.

Proof: Since CORE = B∪CORERec, all honest players in B will be included in CORE. We now
show that all honest players in NB are included in CORERec and hence in CORE, with very high
probability. Now Pi ∈ NB is included in CORERec if V Sh

i matches with V Rec
Fi

⊗ V Rec
Ri

atleast at
t + 1 locations. From Theorem 3, for an honest Pi, this condition will be satisfied with probability
1 for an honest D and with probability at least (1 − 2−k) for a dishonest D. Hence except with
probability 2−k, an honest Pi ∈ NB will be added in CORERec and hence in CORE. 2

Lemma 9 If D is honest then B will contain all corrupted players and CORERec will contain all
players who disclose correct Fi(x) and Ri(x) (as given by D) in reconstruction phase. Moreover,
players in NB who disclose incorrect Fi(x) or Ri(x) or both during reconstruction phase, will not
be included in CORERec with probability at least (1− 2−k).

Proof: It is easy to see that when D is honest, B contains only corrupted players. Now a player
Pi ∈ NB is included in CORERec if V Sh

i matches with V Rec
Fi(x) ⊗ V Rec

Ri(x) at least at t + 1 locations.
Now according to Theorem 3, when D is honest, this property is always true if Pi is honest, where
as it may hold with probability at most 2−k if Pi is corrupted and broadcasted incorrect Fi(x) or
Ri(x) during reconstruction phase. Hence the lemma. 2

Theorem 4 Protocol 3-Round-PWSS is an efficient three round (n, t)-PWSS protocol for n =
2t + 1, with error probability at most 2−k.

Proof: Number of rounds and efficiency is evident from the working of the protocol. Now we
prove each of the three required property of PWSS in turn:

1. Secrecy: We only need to consider the case when D is honest. Without loss of generality
let At controls the first t players. The proof will be similar to the proof of Lemma 2, where
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the secrecy is shown by proving that n− t coefficients of Ft+1(x) are information theoretically
secure. We now prove that same holds here also. Note that n− t coefficients of Rt+1(x) are
information theoretically secure because At knows only t points on n− 1 degree polynomial
Rt+1(x). Since Ft+1(x) and Rt+1(x) are independent of each other and dt+1 is randomly
selected, it implies that Bt+1(x) = dt+1Ft+1(x) + Rt+1(x) has a completely independent dis-
tribution from Ft+1(x) and Rt+1(x). So even the knowledge of Bt+1(x) keeps n−t coefficients
of Ft+1(x) and Rt+1(x) information theoretically secure.

2. Correctness: If D is honest, then from Lemma 9, all the honest players will be present in
CORERec. Also set B will contain only corrupted players Pj and they will be included in
CORERec along with the corresponding correct polynomial Fj(x), broadcasted by D during
third round. Moreover, if a player Pk ∈ NB broadcasts incorrect F ′

k(x) during reconstruction
phase, then from Lemma 9, it might be present in CORERec with probability at most 2−k.
The property now follows from the working of the protocol.

3. Weak Commitment: We need to consider the case when D is dishonest. If D is not
discarded at the end of sharing phase, then from Lemma 8, except with probability 2−k, an
honest player will be present in CORERec, along with its corresponding Fi(x) polynomial. If
Fi(x)’s corresponding to the honest players in CORERec does not define a unique secret s′,
then irrespective of the polynomials broadcasted by corrupted players in CORERec during
reconstruction phase, NULL will be output. On the other hand, if the Fi(x)’s corresponding
to the honest players in CORERec define a unique secret s′, then depending upon whether
the Fi(x)’s broadcasted by corrupted players in CORERec are consistent with s′ or not, either
s′ or NULL is output. Thus weak commitment on s′ is satisfied. 2

2

Theorem 5 Protocol 3-Round-PWSS communicates O((k+log n)n2) bits and broadcasts O((k+
log n)n2) bits.

Proof: During sharing phase, D gives two polynomials of degree n− 1 and two n tuples to each
player. This incurs a communication complexity of O(n2) field elements. Since |F| = n2(n− 1)2k,
the communication complexity of the protocol is O((k + log n)n2) bits. 2

Remark 5 As in protocol 1-Round-PWSS, D can share n− t = Θ(n) secrets using protocol 3-
Round-PWSS by communicating O((k+log n)n2) bits. Thus, the information rate of our protocol
is Θ(n). We observe that the first two steps of PVSS protocol of [3] along with some additional
checking constitutes a five round PWSS (with n = 2t + 1) achieving an information rate of Θ(n3).
Thus our PWSS protocol is a significant improvement over the PWSS protocol of [3] in terms of
round complexity as well as the information rate.

8 Information Checking Protocol with n = 2t + 1

We now describe a generalized Information Checking (IC) protocol which is a slight modification of
the one described in [3]. The GenIC protocol is used in our four round PVSS protocol to generate
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D’s signature on a secret value s. In the protocol INT is a player, who wants D’s signature on a
secret value s, such that at least t + 1 receivers from the set P = {P1, P2, . . . , Pn} will accept the
signature except with error probability 2−k. To bound the error probability by 2−k, it is enough
that |F| ≥ 2k. Before describing the protocol, we recall the following definition from [3].

Definition 5 (1α-consistent [3]) A vector (x, y, z)∈ F3 is 1α-consistent if there exists a degree
one polynomial w over F such that w(0) = x, w(1) = y and w(α) = z.

Protocol GenIC(D, INT,P, s) - Generalized Information Checking Protocol with n = 2t + 1
Protocol GenDistr(D, INT,P, s)

Round 1: Corresponding to each receiver Pi ∈ P, D chooses a random value αi ∈ F − {0, 1} and additional
random values yi, zi ∈ F, such that the three tuple (s, yi, zi) is 1αi -consistent. In addition, corresponding to
each Pi ∈ P, D choose a random 1αi -consistent vector (s′i, y

′
i, z

′
i). D sends s, yi, s

′
i, y

′
i to INT and αi, zi, z

′
i to

the receiver Pi. The n tuple [y1 y2 . . . yn] held by INT is called authentication information. The two
n tuples [y′1 y′2 . . . y′n] and [s′1 s′2 . . . , s′n] held by INT are called as auxiliary information, where as the
values (αi, zi) held by receiver Pi are called verification information.

Protocol GenAuthVal(D, INT,P, s):

Round 2: INT randomly selects n random elements di, 1 ≤ i ≤ n from F − {0} and broadcasts the tuples
(di, s

′
i + dis, y

′
i + diyi).

Round 3: In response to INT s broadcast in Round 2, D checks the correctness of the broadcasted information
and also checks whether (s′i +dis, y

′
i +diyi, z

′
i +dizi) is 1αi -consistent for 1 ≤ i ≤ n. D broadcasts s, along the

n tuple [y1 y2 . . . yn] if he finds any inconsistency. Each Pi ∈ P then adjusts his verification information
(αi, zi), such that (s, yi, zi) is 1αi -consistent and the protocol ends here.

Parallely, Pi ∈ P checks if (s′i + dis, y
′
i + diyi, z

′
i + dizi) is 1αi -consistent and broadcasts ”Accept” or ”Reject”,

depending upon whether (s′i + dis, y
′
i + diyi, z

′
i + dizi) is 1αi -consistent or not.

Round 4: If D has not broadcasted s, along with the tuple [y1 y2 . . . yn] in the previous round, then D broadcasts
(αi, zi) corresponding to all receivers Pi ∈ P, whose response was “Reject” in the previous round. Accordingly
INT will adjust his yi so that (s, yi, zi) becomes 1αi -consistent.

Protocol GenRevealVal(D, INT,P, s):

INT broadcasts s and [y1 y2 . . . yn], whereas each receiver Pi ∈ P broadcasts (αi, zi).

If there exists at least t + 1 distinct j’s such that (s, yj , zj) is 1αj -consistent then D’s signature on s is ”valid”.
Otherwise the signature is ”invalid”.

Theorem 6 1. If D is honest, then except with probability 2−k, a corrupted INT will not be
able to forge D’s signature on some arbitrary value s′ 6= s.

2. If INT is honest, then except with probability 2−k, D’s signature on s which is given to INT ,
will be accepted during GenRevealVal.

3. If D and INT are honest, then at the end of GenAuthVal, the receivers in P will have no
information about s in information theoretic sense.

Proof: Even though GenIC protocol is a slight modification of generalized IC protocol of [3],
the properties of GenIC protocol is similar to the properties of generalized IC protocol of [3] (see
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Lemma 1, Page 318-319). 2

Important Observation: In protocol GenIC, if D does not broadcast s and [y1 y2 . . . yn] during
Round 3, then the signing process will be over at the end of Round 4 and INT will be able to
produce the signature during fifth round (in protocol RevealVal). So the signature can be verified
locally at the end of fifth round. However a careful observation shows that INT can produce the
signature and can get it verified in fourth round itself. This is because if D has not broadcasted
s during Round 3, then it implies that D does not want to change his commitment on s. The
only information which is going to be changed (in Round 4) is the authentication information
(y values) corresponding to the players for which D broadcasts verification information (α
and z values) during Round 4. But s remains same. So INT can reveal (broadcast) s and the
”old” authentication information during Round 4 itself. Parallely, the receivers in P can also
broadcast their ”old” verification information. Now D will broadcast the ”new” verification
information during fourth round. So at the end of Round 4, each player can locally change INT ’s
”old” authentication information according to the ”new” verification information and can
check the validity of D’s signature on s with ”new” verification and “new” authentication
information as in GenIC protocol. Thus, we have the following theorem:

Theorem 7 In protocol GenIC, if D does not broadcast s during Round 3, then INT gets a
signature on s, which can be produced (by INT ) and verified (by n players) during Round 4.

9 Four Round PVSS with n = 2t + 1

We now design a four round PVSS protocol called 4-Round-PVSS, with error probability 2−k

and n = 2t + 1. This is a significant improvement over the existing nine round PVSS protocol
with n = 2t + 1 players given in [3]. The field size |F| ≥ n2(n − 1)2k. In the protocol, D uses
the GenIC protocol to provide its signature on the values which he gives to individual players.
Parallely, each player in P executes the three round PWSS protocol 3-Round-PWSS. We overlap
the execution of GenIC and PWSS protocol, so that the sharing phase takes only four rounds. If
a player (including D) is asked to broadcast some information during any round but he fails to do
so, then he will be discarded.

Claim 7 If |DB| > t then it implies that D is corrupted.

Proof: Obvious because for an honest D, |DB| ≤ t. 2

Claim 8 If the players in DB are not consistent with each other with respect to the polynomials
which D broadcasted for them during Round 3 then it implies that D is corrupted.

Proof: Obvious because for an honest D, this can never happen. 2

Implication 1 D has broadcasted fi(x) and fi(y) for all Pi ∈ DB, during Round 3 and hence
the shares corresponding to these polynomials are public. So the execution of 3-Round-PWSSPi,
which was initiated by Pi, to distribute random pad to each player and check the consistency of
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Protocol 4-Round-PVSS: A Four Round PVSS Protocol with n = 2t + 1
Sharing Phase: Round 1

1. D chooses a random bivariate polynomial F (x, y) of degree t in each variable, such that F (0, 0) = s. D
computes fi(x) = F (x, i) and gi(y) = F (i, y) for 1 ≤ i ≤ n. Considering player Pi as INT , D executes Round
1 of GenIC(D, Pi,P, fi(j)) and GenIC(D, Pi,P, gi(j)) for 1 ≤ j ≤ n.

2. Each Pi ∈ P, acting as a dealer, starts the three round PWSS protocol 3-Round-PWSSPi in order to share
a random value si ∈ F. Let the polynomials distributed by player Pi in 3-Round-PWSSPi to the n players
be denoted by F iW

1 (x), F iW
2 (x), . . . , F iW

n (x), where player Pj , 1 ≤ j ≤ n receives F iW
j (x).

Round 2:

1. In response to the protocols GenIC(D,Pi,P, fi(j)) and GenIC(D,Pi,P, gi(j)) initiated by D in Round 1,
Pi acting as INT , executes Round 2 of GenIC(D, Pi,P, fi(j)) and GenIC(D, Pi,P, gi(j)) for 1 ≤ j ≤ n.

2. Each player Pi, 1 ≤ i ≤ n broadcasts: (a) aij = fi(j) + F iW
j (0), (b) bij = gi(j) + F jW

i (0). /* F iW
j (0) denotes

the constant term of F iW
j (x) received by player Pj from Pi in protocol 3-Round-PWSSPi . */

3. Players in P executes the second round of 3-Round-PWSSPi protocol for 1 ≤ i ≤ n.

Round 3:

1. If D is not satisfied by the broadcast of Pi (as INT ) in previous round (during the execution of Round 2
of GenIC(D, Pi,P, fi(j)) and GenIC(D, Pi,P, gi(j)) for 1 ≤ j ≤ n), then D broadcast fi(x) = F (x, i) and
gi(y) = F (i, y).

2. Third round of 3-Round-PWSSPi , 1 ≤ i ≤ n is executed.

Local Computation At The End of Round 3:

1. Divide the set of players P into two sets DB and DNB . Include Pi in DB if D has broadcasted fi(x) and gi(y)
during third round. If |DB | > t, then discard D and terminate (see Claim 7).

2. Check whether all the players in DB are pair-wise consistent with respect to the polynomials corresponding
to them which are broadcasted by D during Round 3 (two players Pi and Pj are said to be consistent if
fi(j) = gj(i) and gi(j) = fj(i)). If not, then discard D and terminate (see Claim 8)

3. For each Pi ∈ DB , terminate the execution of protocol 3-Round-PWSSPi , GenIC(D, Pi,P, fi(j)) and
GenIC(D, Pi,P, gi(j)) for 1 ≤ j ≤ n (see Implication 1).

common shares on fi(x) can be terminated. Similarly, the execution of GenIC(D, Pi,P, fi(j)) and
GenIC(D, Pi,P, gi(j)) (to obtain D’s signature on fi(j) and gi(j), 1 ≤ j ≤ n) can be terminated,
since D has publicly committed fi(x) and fi(y) to everybody by broadcasting them.

Before giving description of Round 4, we prove the following claim, which is useful in the fourth
round.

Claim 9 If D has not broadcasted Ffi(x) and gi(y) during third round, then during fourth round,
an honest Pi can produce signature on the values fi(j) and gi(j), 1 ≤ j ≤ n, which will be accepted
by an honest player at the end of fourth round with probability more than (1− 2−k).

Proof: Follows from Theorem 7. 2

We now give implication of each step of Round 4.

Implication 2 Since Pi ∈ DNB, D has not broadcasted fi(x) and gi(y) during third round. Now
if Pi finds that the values fi(j) (gi(j)) given by D to him during first round are not t-consistent,
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Round 4:

1. For each Pi ∈ DNB , D executes Round 4 of GenIC(D, Pi,P, fi(j)) and GenIC(D, Pi,P, gi(j)), 1 ≤ j ≤ n.

2. Each Pi ∈ DNB checks whether the values fi(j) and gi(j) given to it during first round are t-consistent. If
not then Pi broadcasts fi(j) and gi(j), 1 ≤ j ≤ n, along with D’s signature on them.

Local Computation by Each Player at the end of Round 4 with respect to this step: Every player
checks whether fi(j), gi(j), 1 ≤ j ≤ n are t-consistent. If not then check whether D’s signature on them are
valid. If yes, then discard D. On the other hand, if either fi(j) (gi(j))’s are found to be t-consistent or D’s
signature on them are found to be in-valid (or both) then discard Pi (see Implication 2).

3. Each Pi ∈ DNB checks whether they are consistent with all the players in DB . If not then Pi broadcasts fi(j)
and gi(j), 1 ≤ j ≤ n, along with D’s signature on them.

Local Computation by Each Player at the end of Round 4 with respect to this step: Every player
checks whether fi(j)’s and gi(j)

′s broadcasted by Pi are consistent with the polynomials corresponding to the
players in DB and checks whether D’s signature on fi(j)’s and gi(j)’s are valid. Now there are following cases:
(a) If fi(j)’s or gi(j)’s (or both) are inconsistent with players in DB and if D’s signature on these values is
valid, then discard D and terminate. (b) If fi(j)’s and gi(j)’s are consistent with DB or if D’s signature is
invalid (or both), then discard Pi (see Implication 3).

4. If ∃Pi, Pj ∈ DNB , such that aij 6= bji or bij 6= aji (these values were broadcasted by Pi, Pj during second
round), then Pi broadcasts fi(j) and gi(j), 1 ≤ j ≤ n along with D’s signature on them. Parallely, Pj

broadcasts fj(i) and gj(i) along with D’s signature on them.

Local Computation by Each Player at the end of Round 4 with respect to this step: Every player

checks fi(j)
?
= gj(i) and gi(j)

?
= fj(i) and checks validity of D’s signature on these values. Now the following

can occur: (a) The values are inconsistent and have valid signature from D on them. In this case discard D
and terminate. (b) The values are inconsistent but D’s signature on them are invalid. In this case, discard
Pi (Pj) if D’s signature on fi(j) or gi(j) (fj(i) or gj(i)) is found to be invalid. (c) The values are consistent
and have valid signature of D on them. In this case, everybody accepts fi(j) and fj(i) as jth and ith share of
fi(x) and fj(x) respectively and these become public points on fi(x) and fj(x) (see Implication 4).

5. If ∃Pi, Pj ∈ DNB , such that during the execution of third round of 3-Round-PWSSPi , Pi (acting as a dealer)
has broadcasted F iW

j (x) (the polynomial received by Pj from Pi during first round of PWSS), then Pi and Pj

broadcast fi(j) and gj(i) respectively along with D’s signature on them.

Local Computation by Each Player at the end of Round 4 with respect to this step: Every player

checks fi(j)
?
= gj(i). In addition, check the validity of D’s signature on these values. Now the following cases

can occur: (a) If the values are inconsistent and have got D’s valid signature on them then discard D and
terminate. (b) If the values are inconsistent but D’s signature on them is invalid then discard Pi (Pj) if D’s
signature on fi(j) (gj(i)) is invalid. (c) If the values are consistent and D’s signature on them are valid then
accept fi(j) as the jth share of fi(x) and it becomes public point on fi(x) (see Implication 5).

If more than t players are discarded during Local Computation, then D is discarded and the protocol
terminates.

then Pi broadcasts these values along with D’s signature on them. Now this can happen in two
scenarios: (a) D is corrupted and Pi is honest: From Claim 9, if Pi is honest and belongs to DNB,
then Pi has got a signature on each fi(j) and gi(j), which can be produced and verified during fourth
round. Moreover the signature will be accepted by every honest players (in fact at least t+1 honest
players) with probability more than 1− 2−k. In this case D will be discarded at the end of Round
4. (b) D is honest and Pi is corrupted: A corrupted Pi can produce fi(j)’s (gi(j)’s) which are not
t consistent and might forge a valid signature of D on these values with probability at most 2−k.
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So an honest D might be discarded with very low probability. Essentially step 2 (during Round
4) ensures that if D is not discarded then every honest player in DNB has t-consistent fi(x)’s and
gi(y)’s.

Implication 3 The condition in step3 can occur in two scenarios: (a) D is corrupted and Pi is
honest: Since Pi is honest and belongs to DNB, then Pi has got a signature on each fi(j) and gi(j),
which can be produced and verified during fourth round. Moreover the signature will be accepted by
every honest players (at least t + 1) with probability more than 1− 2−k. Hence D will be discarded
at the end of Round 4. (b) D is honest and Pi is corrupted: A corrupted player Pi might forge
D’s signature on fi(j)’s or gi(j)’s with probability at most 2−k, and can broadcast some different
values which are not consistent with the polynomials corresponding to the players in DB. Hence an
honest D might be discarded with probability at most 2−k. Essentially step 3 (during Round 4)
ensures that if D is not discarded then every honest player in DNB is consistent with every player
in DB.

Implication 4 During Round 2, the situation aij 6= bji or aji 6= bij (or both) can happen when
(a) D in corrupted and Pi, Pj can be honest/dishonest, (b) D is honest and at least one of Pi and
Pj is corrupted. Now both Pi and Pj are asked to broadcast their common shares, along with D’s
signature on them.

If D is dishonest and given inconsistent values to honest players Pi and Pj, then except with
probability at most 2−k, everybody (at least honest players) will accept D’s signature on these
inconsistent values and discard D. Similarly, if D is honest, then with probability at most 2−k, a
corrupted player Pi might forge D’s signature on inconsistent fi(j) or gi(j). So an honest D might
be discarded with probability at most 2−k. Note that it is possible that a corrupted Pi purposely
broadcast conflicting value against Pj (who also might have behaved incorrectly) during second
round. But during fourth round, both Pi and Pj produce consistent values along with valid signature
of D on them. In this case, everybody will accept these consistent values as the shares of fi(x) and
gj(y). Essentially, step4 (during Round 4) ensures that if D is not discarded then the honest
players in DNB are pair-wise consistent.

Implication 5 If Pi and Pj are two honest players in DNB then both will behave honestly during
the execution of 3-Round-PWSSPi and so Pi (acting as a dealer) will never broadcast F iW

j (x)
(the polynomial which Pj received from Pi during first round of PWSS). However, if Pi broadcasts
F iW

j (x) then it implies that at least one of Pi or Pj is corrupted. Again this case is similar to the
cases explained before. Essentially step5 (during Round 4) ensures that if D is not discarded then
every corrupted player Pi in DNB commits fi(j) = gj(i) to honest player Pj in DNB.

Lemma 10 During local computation (at the end of Round 4) an honest D might get discarded
with probability at most 2−k.

Proof: Follows from Implication 2, Implication 3, Implication 4 and Implication 5. 2

Theorem 8 Let D′NB be the set of players in DNB who are not discarded during local computation
(at the end of Round 4). If D is not discarded, then the following holds:
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1. The probability that an honest player in DNB might be absent in D′NB is at most 2−k.

2. All the players in DB are consistent with each other.

3. All the honest players in D′NB are consistent with each other. Moreover, they are also
consistent with all the players in DB.

4. Every corrupted player Pi in D′NB commits fi(j) to honest player Pj in D′NB (by agreeing
with gj(i)).

5. Every corrupted player Pi ∈ D′NB commits fi(k) to everybody by agreeing with gk(y), where
Pk ∈ DB and gk(y) is broadcasted by D during third round.

Proof: The first property follows from Implication 2, Implication 3, Implication 4 and Implica-
tion 5.

From Claim 8, if the players in DB are in-consistent with each other then D is corrupted and
hence would have been discarded during fourth round itself. So if D is not discarded then it implies
that the players in DB are consistent with each other. So the second property holds.

If Pi, Pj are two honest players in D′NB and if they are not consistent with each other, then
from Implication 4, they would have broadcasted their common shares along with D’s signature
on them. Moreover, with very high probability, during local computation, every player would have
seen these inconsistent common shares, along with D’s signature on them and would have discarded
D. But since D is not discarded, it implies that all the honest players in D′NB are consistent with
each other. Moreover, each honest player Pi in D′NB is also consistent with all the players in DB.
If not, then from Implication 3, Pi would have broadcasted all his shares along with D’s signature
on them and D would have been discarded. But since D is not discarded, each honest player Pi in
D′NB is also consistent with all the players in DB. Hence third property holds.

If Pi, Pj ∈ D′NB, such that Pi is corrupted and Pj is honest and the values broadcasted by
Pi, Pj during second round contradict each other, then from Implication 4, Pi and Pj would have
broadcasted their common shares along with D’s signature on them and either D or Pi would have
been discarded. But since neither D nor Pi is discarded, it implies that the corrupted players in
D′NB have broadcasted correct information during second round, that matches the corresponding
information broadcasted by the honest players in D′NB during second round. Hence fourth property
holds.

If Pk ∈ DB, then it implies that D has broadcasted gk(y) = F (k, y). It also implies that D is
committing the shares gk(j), 1 ≤ j ≤ n. Now if a corrupted Pi ∈ D′NB also agrees with F (k, y), it
implies that he is committing gk(i) = fi(k) = F (k, i) to everybody. 2

Theorem 9 If D is not discarded at the end of sharing phase, then with very high probability,
all the honest players are consistent with each other and define a bivariate polynomial FH(x, y) of
degree at most t in each variable.

Proof: From Theorem 8, except with probability 2−k, each honest player in DNB is present
in D′NB. Also from Theorem 8, all the honest players in D′NB are consistent with each other.
Moreover, each honest player in D′NB is consistent with all the players (and hence with the honest
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players) in DB. This implies that all the honest players are consistent with each other. Since there
are at least t + 1 honest players, they define a bi-variate polynomials FH(x, y) of degree at most t
in each variable. 2

We now describe the reconstruction phase.

Protocol 4-Round-VSS: A Four Round PVSS Protocol with n = 2t + 1

Reconstruction Phase: Only the players from the set DB and D′NB
participate where D′NB

denotes the
set of players in DNB who are not discarded during local computation at the end of Round 4.

1. Set CORE = D′NB
. Run the reconstruction phase of 3-Round-PWSSPi if Pi ∈ CORE. If the reconstruction

phase of 3-Round-PWSSPi fails then remove Pi from CORE.

2. If reconstruction phase of 3-Round-PWSSPi is successful then the polynomials F iW
j (x), 1 ≤ j ≤ n, dis-

tributed by Pi in 3-Round-PWSSPi to the n players are recovered correctly. Now the jth, 1 ≤ j ≤ n share
of fi(x), denoted by fij is computed as follows:

fij = gj(i) if Pj ∈ DB

= fi(j) if fi(j) is known publicly during Round 4

= aij − F iW
j (0) otherwise

Remove Pi from CORE, if fij ’s are not t-consistent. Otherwise reconstruct fi(x) by interpolating fij ’s.

3. Take the recovered fi(x)’s corresponding to the players in CORE, along with the fi(x)’s corresponding to the
players in DB . Using them, interpolate F H(x, y), reconstruct s′ = F H(0, 0) and terminate (see Theorem 10).

Theorem 10 Protocol 4-Round-PVSS is an efficient four round (n, t) PVSS, where n = 2t + 1.
The error probability of the protocol is 2−k where |F| = n2(n−1)2k. The communication complexity
of the protocol is O((k + log n)n3) bits.

Proof: To prove the theorem, we prove each of the desirable properties of PVSS separately.

Lemma 11 Protocol 4-Round-PVSS satisfies perfect secrecy.

Proof: We have to only consider the case when D is honest. Without loss of generality, let At

controls the first t players. It is easy to see that if D is honest then DB will contain only corrupted
players. So the polynomials corresponding to these players which are broadcasted by D gives no
new information to At. The proof now follows from the properties of a bivariate polynomial of
degree t and using similar arguments as in Lemma 7 (to prove the secrecy of 2-Round-PVSS). 2

Lemma 12 Protocol 4-Round-PVSS satisfies correctness property except with an error probabil-
ity ≤ 2−k.

Proof: We have to only consider the case when D is honest. From Lemma 10, the probability that
a honest D might get discarded during sharing phase is at most 2−k. Moreover, from Theorem 9,
all the honest players will be consistent with each other and define a unique bivariate polynomial
F (x, y) (originally defined by D) of degree t in both x and y. Also, only corrupted players will
be present in DB and hence all the honest players (at least t + 1) will be present in D′NB. Now
consider a corrupted player Pi ∈ D′NB. From property 4 of Theorem 8, Pi is consistent with all the
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honest players in D′NB, who in turn are consistent with F (x, y). So if during reconstruction phase,
the recovered fi(x) is t-consistent then it implies that it is consistent with F (x, y) also. Hence the
lemma holds. 2

Lemma 13 Protocol 4-Round-PVSS satisfies strong commitment property except with an error
probability ≤ 2−k.

Proof: We have to only consider the case when D is dishonest. If D is discarded during sharing
phase, then the lemma holds. On the other hand if D is not discarded, then from Theorem 9, except
with an error probability of 2−k, each pair of honest players will be consistent. Hence all honest
players will define a bivariate polynomial FH(x, y) of degree at most t in both x and y. Since D
is corrupted, the honest players may be distributed in sets DB and D′NB. However, by property
3, 4 and 5 of Theorem 8, each corrupted player (either in DB or in D′NB) is consistent with all
the honest players, who in turn are consistent with FH(x, y). So if a corrupted Pi ∈ D′NB is not
discarded in the reconstruction phase, then the recovered fi(x) will be consistent with FH(x, y).
Hence the strong commitment on s′ = FH(0, 0) is satisfied. 2

Lemma 14 Protocol 4-Round-PVSS communicates O((k+log n)n3) bits where |F| = n2(n−1)2k

Proof: From Theorem 5, a single execution of 3-Round-PWSS incurs a communication overhead
of O((k+log n)n2) bits. In our protocol, there are n such executions thus incurring a communication
overhead of O((k + log n)n3) bits. It is easy to see that other steps also incur a communication
overhead is O((k + log n)n3) bits. Hence the lemma holds. 2

Theorem 10 now follows from Lemma 11, Lemma 12, Lemma 13 and Lemma 14. 2

10 Lower Bound on Single Round PWSS

In this section, we prove that any single round PWSS is possible only if n > 3t.

Theorem 11 There is no single round (n, t)-PWSS protocol when n ≤ 3t.

Proof: By using a standard player-partitioning argument [4, 5], Theorem 11 can be reduced to
the following lemma.

Lemma 15 There is no single round (3, 1)-PWSS protocol.

Proof: Let Π be a (3, 1)-PWSS protocol with players P1, P2, P3, with P1 as dealer (D). We start
with a formal description of Π:

1. Sharing Phase: D, on input secret s and random input rD, sends α, β, γ to P1, P2 and P3

respectively and broadcasts bD. Each other player Pi, i ∈ {2, 3}, on random input ri, sends a
message pij to each player Pj and broadcasts bi.

2. Reconstruction Phase: Every player broadcasts it’s entire view generated in sharing phase.
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In Π, the broadcasts done by dealer and individual players have no information about the secret s,
otherwise Π violates the secrecy property of PWSS. The secrecy property also implies that when
D is honest, any one of α, β and γ must not have any information about s. According to the
correctness property of Π, when D is honest, if either P2 or P3 deviates from the protocol during
reconstruction phase (and broadcasts a view which is different from the acquired view in sharing
phase), then all the honest players must output D’s secret s with very high probability.

Let s1 and s2 be two independent secrets and (α1, β1, γ1) and (α2, β2, γ2) be the share corre-
sponding to s1 and s2 respectively. Consider two execution Eh

1 and Eh
2 of Π, where D is honest. In

Eh
1 , secret is s1 and D distributes α1, β1 and γ1 to P1, P2 and P3 respectively. Assume that in Eh

1 ,
P2 is corrupted and further assume that P2 broadcasts β2 in reconstruction phase. So according to
correctness property of Π, each honest player should reconstruct s1 with very high probability.

In Eh
2 , secret is s2 and D distributes α2, β2 and γ2 to P1, P2 and P3 respectively. Assume that in

Eh
2 , P3 is corrupted and further assume that P3 broadcasts γ1 in reconstruction phase. So according

to correctness property of Π, each honest player should reconstruct s2 with very high probability.
Now consider another execution Ec

3 of Π where D is corrupted and distributes α1, β2 and γ1

to P1, P2 and P3 respectively. Now in reconstruction phase if every player behaves honestly, then
view of the honest players in the reconstruction phase of Ec

3 will exactly match with the view
of the honest players in the reconstruction phase of Eh

1 . Since the honest players reconstructs
s1 in Eh

1 , they do the same in Ec
3 also. Now according to the weak commitment property, if in

Ec
3, the corrupted player (which is D = P1) deviates from the protocol and broadcasts α2 during

reconstruction phase, then with very high probability all honest players must reconstruct either s1

or NULL. But notice that now, the view of the honest players will be identical as in Eh
2 and thus

s2 should be reconstructed with very high probability. This is a contradiction. Hence Π does not
exist. Thus there is no single round (3, 1)-PWSS and hence single round (3t, t) PWSS protocol. 2

11 Lower Bound on Single Round PVSS

Theorem 12 There is no one round PVSS protocol with with (t = 1 and n < 4) or with t > 1.

Proof: From Theorem 11, we know that there is no single round (n, t)-PWSS protocol when
n ≤ 3t. For t = 1, this implies there is no PWSS for n ≤ 3. Since PVSS is stronger problem that
PWSS, the above implication holds for PWSS.

Now we prove that there is no single round PVSS protocol for t > 1 and n ≥ 4. For that,
we show that if there exist a single round (n, 2) PVSS protocol, then its error probability Perror

must satisfy Perror ≥ 1
n . But according to the definition of PVSS, Perror should be exponentially

small. So this shows a contradiction. Let Π be a single round (n, 2) PVSS, where P1 is the dealer.
According to secrecy property of Π, for an honest D, the broadcasts done by D is independent of
the secret. Since for a honest D, other players do not know the secret in sharing phase (which has
a single round), the broadcasts done by individual players and the private communications done
between any two players from P − {D} are completely independent of the secret. Hence, we can
neglect all of the above mentioned communications and concentrate on the communications done
by D to the players in P. Since Π is single round PVSS, the values given by D to individual players
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can be thought as shares of D’s secret s. Now, let s and s∗ be two secrets where (β1, β2, . . . , βn)
and (θ1, θ2, . . . , θn) be the n shares corresponding to s and s∗, respectively. Let in Π, P1 (= D)
and P2 be the two corrupted players. Now consider three different type of executions of Π. In each
execution, the random coin tosses of all the players are same.

........... ...........

Disclosure of shares in reconstruction phase is same as the distribution of sharing  phase

Distribution of shares in sharing phase:

Distribution of shares in sharing phase:

........... ...........

Disclosure of shares in reconstruction phase is same as the distribution of sharing  phase

Disclosure of shares in reconstruction phase:

........... ...........

P2 P4 P2+i P3+i P4+i Pn

θ3 θ4 β4+iβ3+iθ2 θ2+i βnβ1

P3P1(D)

P1(D) P2 P3 P4 P2+i P3+i P4+i Pn

β1 θ3 θ4 θ2+i β4+iθ3+i

Distribution of shares in sharing phase is same as the distribution done in sharing phase of EB
i :

P2 P3 P4 P2+i P3+i P4+i Pn

β1 θ2 θ3 θ4 θ3+iθ2+i βnβ4+i

βnβ2

0 ≤ i ≤ n − 3

EC
i ,

0 ≤ i ≤ n − 3

EB
i ,

0 ≤ i ≤ n − 2

EA
i ,

P1(D)

Figure 1: Pictorial Representation of three differerent type of executions EA
i ,EB

i and EC
i

1. In execution type EA
i , 0 ≤ i ≤ n− 2, during sharing phase, D gives the shares corresponding

to the secret s∗ to P2, P3, . . . , P2+i. To the remaining players, D gives the shares corresponding
to s. During reconstruction phase, each player behaves honestly and correctly broadcast the
shares received during sharing phase.

2. In execution type EB
i , 0 ≤ i ≤ n− 3, during sharing phase, D gives the shares corresponding

to s∗ to P3, P4, . . . , P3+i. To the remaining players, D gives the shares corresponding to s.
During reconstruction phase, each player behaves honestly and correctly broadcast the shares
received during sharing phase.

3. In execution type EC
i , 0 ≤ i ≤ n − 3, the sharing phase is same as in EB

i , but during
reconstruction phase, P2 (corrupted player) broadcasts share corresponding to s∗. This he
can do because D is also corrupted and hence can collude with P2.
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Let P (s,E) be the probability that secret s is reconstructed during reconstruction phase of an
execution E. Notice that execution EA

i and EB
i are same in the sense that in both the executions,

during sharing phase, D distributes i+1 shares corresponding to s∗ and n−i−1 shares corresponding
to s and during reconstruction phase, each player honestly broadcast the shares received during
sharing phase. Hence

P (s,EA
i ) = P (s,EB

i ) (7)

Next notice that EB
i and EC

i differs only in the behavior of faulty player (P2) during reconstruction
phase. So according to the strong commitment property of Π, if s can be reconstructed in EB

i with
probability p, then s should also be reconstructed with probability at least (1− Perror)× p in EC

i

(from Baye’s Theorem and neglecting the other terms which are positive). This implies that

P (s,EC
i ) ≥ (1− Perror)× P (s,EB

i ) (8)

Finally in EC
i and EA

i+1, the view of the honest players during reconstruction phase is same. Hence

P (s,EA
i+1) = P (s,EC

i ) (9)

Now by correctness property of Π, P (s, EA
0 ) ≥ 1− Perror (10)

Now From Equation (9) , P (s,EA
1 ) = P (s,EC

0 ) (11)
≥ (1− Perror)× P (s,EB

0 ) by (8)
= (1− Perror)× P (s,EA

0 ) by (7)
≥ (1− Perror)2 by (10)

Hence by induction, P (s,EA
n−2) ≥ (1− Perror)n−1. However, EA

n−2 denotes an execution sequence,
where during sharing phase, D has distributed n − 1 shares corresponding to s∗ and one share
corresponding to s. Moreover, during reconstruction phase, all players honestly broadcast the
shares received during sharing phase. From the correctness and commitment property of Π, we get

P (s∗, EA
n−2) ≥ (1− Perror) (12)

Notice that

1 ≥ P (s,EA
n−2) + P (s∗, EA

n−2)
≥ (1− Perror)n−1 + (1− Perror)
≥ 1− (n− 1)× Perror + 1− Perror

This implies that Perror ≥ 1
n . But this is a contradiction because according to the definition of

PVSS, Perror is exponentially small. Hence Π does not exist. 2

29



12 Conclusion and Open Problems

In this work, we have shown that allowing a negligible probability of error in VSS and WSS,
increases the the fault tolerance significantly (which is visible from the Table 1 in Section 1). The
following are the challenging problems left open in this paper: (a) Is n > 3t necessary for two round
PVSS and two round PWSS? (we have proved only sufficiency) (b) Is n > 2t is sufficient for three
round PVSS? (necessity is obvious from [7]).
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