
Degradation and Amplification of Computational Hardness∗

Shai Halevi and Tal Rabin
IBM T.J. Watson Research Center,

Hawthorne, NY USA
shaih@alum.mit.edu, talr@us.ibm.com

March 6, 2008

Abstract

What happens when you use a partially defective bit-commitment protocol to commit to the
same bit many times? For example, suppose that the protocol allows the receiver to guess the
committed bit with advantage ε, and that you used that protocol to commit to the same bit more
than 1/ε times. Or suppose that you encrypted some message many times (to many people),
only to discover later that the encryption scheme that you were using is partially defective,
and an eavesdropper has some noticeable advantage in guessing the encrypted message from
the ciphertext. Can we at least show that even after many such encryptions, the eavesdropper
could not have learned the message with certainty?

In this work we take another look at amplification and degradation of computational hard-
ness. We describe a rather generic setting where one can argue about amplification or degra-
dation of computational hardness via sequential repetition of interactive protocols, and prove
that in all the cases that we consider, it behaves as one would expect from the corresponding
information theoretic bounds. In particular, for the example above we can prove that after
committing to the same bit for n times, the receiver’s advantage in guessing the encrypted bit
is negligibly close to 1− (1− ε)n.

Our results for hardness amplification follow just by observing that some of the known proofs
for Yao’s lemmas can be easily extended also to handle interactive protocols. On the other hand,
the question of hardness degradation was never considered before as far as we know, and we
prove these results from scratch.

Key words. Commitment schemes, Hardness amplification and degradation, Secrecy amplifica-
tion and degradation, Oblivious transfer, XOR lemmas.

1 Introduction

This work discusses the effect of running several executions of a cryptographic protocol sequentially,
on the secrecy or correctness guarantees of that protocol. An illustrating example to keep in mind
is a defective bit-commitment scheme, where the sender may open the commitment in two ways

∗A preliminiary version appeared in the proceedings of TCC’08, LNCS 4948, pages 623–640, Springer 2008.

1

with probability up to δ (binding defect) and the receiver may have probability of up to (1+ε)/2 in
guessing the sender’s bit (secrecy defect). We ask how does sequential repetition of such a protocol
effect ε and δ, in situations where the inputs to the various executions may be dependent.

This question is closely related to the issue of robust combiners for cryptographic protocols. Indeed,
Damg̊ard et al. considered in [2] just this kind of defective protocols (for both commitment and
oblivious transfer), and described how a non-defective protocol can be obtained from them. Two
transformations were described in [2], one running many copies of the defective protocol with the
same input bit, and the other running many copies with randomly chosen inputs whose exclusive-or
equals the original input bit. Damg̊ard et al. proved that in an information-theoretic setting, if the
original defects satisfy ε+δ < 1 then alternating between these two transformations can reduce the
secrecy and binding defects to negligible quantities. Given these results, one would like to prove
the same result also in the computational setting.

To illustrate the problem with moving to the computational setting, consider using a defective bit-
commitment scheme to commit twice to the same input bit. In the information theoretic setting
from [2], it is clear that if the commitment scheme has secrecy defect of ε, then using it twice with
the same input bit yields a secrecy defect of 1− (1− ε)2 = 2ε− ε2. In the computational setting,
however, the simple hybrid argument that is commonly used to reason about “encrypting the same
message many times” can only prove a bound of 2ε on the resulting defect, which is clearly too
weak of a bound. (For example, one needs to show that the resulting scheme offers some secrecy,
even if the original one has secrecy defect of 2

3 .)

In the specific context of robust combiners for commitment and oblivious-transfer, results similar
to those of Damg̊ard et al. were recently proved in the computational setting by Wullschleger [9].
Wullschleger was able to bypass the problem from above to some extent by working in the “honest-
but-curious” model and considering a “randomized” variant of these primitives, where the parties
execute the protocol on random bits, which are considered outputs of the protocol rather than
inputs to it. These variants are known to be equivalent to the standard notions of commitment
and oblivious transfer, but since the parties have no inputs then the different executions are truly
independent. Using results of Holenstein on hardness amplification of independent executions [5, 6],
Wullschleger proved that starting from a defective protocol for the randomized variants, one can
obtain a non-defective protocol for the same variant.

It should be noted that the techniques of Holenstein, which are based on the hard-core-set approach
of Impagliazzo [7], were originated in the non-interactive setting of one-way functions and do not
extend in general to hardness of interactive protocols (see discussion in the appendix). However,
they do extend to interactive protocols in the honest-but-curious attack model, so Wullschleger used
these techniques to get a secure OT protocol in the honest-but-curious model, and then applied the
Goldreich-Micali-Wigderson “compiler” [3] to get a secure protocol against malicious adversaries.

1.1 Our Results

Although sufficient for proving the existence of OT-combiners, Wullschleger’s results still leave
several open problems: Mainly, they do not answer the fundamental question regarding the effect of
sequential repetition on the secrecy and correctness guarantees of protocols (in the face of malicious
adversaries). They also do not answer the question of whether the specific transformations that
were described by Damg̊ard et al. [2] work also in the computational setting. Finally, since it relies

2

on the GMW “compiler” then Wullschleger’s combiner does not preserve in any way the efficiency
properties of the original defective scheme. Closing these gaps is the focus of the current work.

Hardness Amplification/Degradation Lemmas. In Section 3 we describe a rather generic
setting where one can argue about hardness amplification and degradation of interactive proto-
cols. We formulate and prove two new lemmas, showing that the information theoretic bounds
on hardness-degradation (for both secrecy and correctness) carry over also to the computational
setting: Lemma 3.2 asserts that the secrecy degradation from “encrypting the same message t
times” obeys the bound of 1− (1−ε)t. Similarly, Lemma 3.5 asserts that given t interactive puzzles
that are δ-hard to solve, the probability of solving at least one of them is at most 1 − (1 − δ)t.
These lemmas can be thought of as mirroring Yao’s XOR lemma and Yao’s hardness-amplification
lemma for one-way functions [10], respectively. The proofs of these hardness-degradation lemmas
are similar in their high-level structure to the corresponding hardness-amplification proofs. For
Lemma 3.2 we had to prove a new lemma (Lemma 3.3) that plays a role similar to the one played
by Levin’s “Isolation Lemma” in the proof of Yao’s XOR lemma.

We complement the results for secrecy/correctness degradation with results on secrecy/correctness
amplification. Specifically, we observe that some (but not all) of the known proofs for Yao’s
XOR lemma and Yao’s hardness-amplification lemma can be used to prove amplification also for
interactive protocols.1

Improving Defective protocols. We then consider the applicability of our hardness amplifica-
tion and degradation lemmas to the analysis of the transformations from [2]. Roughly, we prove
that these transformations result in a secure protocol whenever the defect parameters of the original
protocol satisfy ε + δ ≤ 1− 1/polylog(k) (with k the security parameter), but our lemmas cannot
be applied to prove security in some cases where ε+δ is bounded away from 1 only by a polynomial
fraction. In Lemma 4.1, we characterize exactly the range of the defect parameters (ε, δ) for which
we can prove that these transformations produce a secure protocol.

2 Notations

The statistical distance between two distributions D1, D2 over a countable domain is the scaled
sum |D1 −D2| def= 1

2

∑
x |D1(x)−D2(x)|, where the sum is taken over all the elements in the union

of the support of the two distributions, and Di(x) is the probability mass of x according to the
distribution Di. We use x ∈R S to denote choosing x from S uniformly at random. A positive
function is negligible if it tends to zero faster than any polynomial, and it is noticeable otherwise.

An algorithm is called efficient if it runs in probabilistic polynomial time. A two-party protocol
is a pair of algorithms, one for each party. We use the following notations to describe a two-party
protocol (A,B):

1Roughly, the proofs that can be extended are those where the single-instance adversary A runs the multiple-
instance adversary A′ on just one vector that includes the instance that A wants to solve. In the interactive case,
this translates to a “non-rewinding” reduction. See more details in the proofs of Lemma 3.1 and Lemma 3.5 and
some discussion in the appendix.

3

• The communication transcript is denoted 〈A(a, ra), B(b, rb)〉.

• The event where A outputs the string x is denoted (A(a, ra), B(b, rb))
A→ x, and similarly

(A(a, ra), B(b, rb))
B→ y for the output of B, and (A(a, ra), B(b, rb)) → (x, y) for the output

of both.

In these notations, a, b are the inputs and ra, rb are the randomness used by the participants. We
often omit the randomness (and sometimes also the input) from these notations. We use ? to denote
a “don’t care” input or output.

3 Amplification/Degradation of Computational Hardness

In this section we prove some lemmas about amplification and degradation of computational hard-
ness for sequential composition of protocols. (By “computational hardness” we roughly mean
breaking either the secrecy or correctness of the protocol.) The amplification lemmas are straight-
forward extensions of Yao’s XOR lemma and Yao’s hardness-amplification lemma for one-way
functions [10, 4], but the degradation lemmas are new.

We deal with two-party protocols, where one player either tries to guess the input of the other party
or tries to break the correctness of the protocol (e.g., in a commitment scheme the goal is either
to learn the committed bit or to open the commitment in two different ways). We study how the
computational-hardness of accomplishing these tasks is amplified or degraded when several copies
of the protocol are run sequentially in various settings. We consider the following four scenarios in
the setting of two parties A and B, where A has input a.

Secrecy. In this setting player B wants to learn the input of player A.

Amplification We examine the effect of running the protocol t times, where in each invocation
player A chooses a random input, subject to the condition that the XOR of the t inputs is
A’s original input a.

When restricted to the non-interactive case of one-way functions, this is exactly the setting
for Yao’s XOR lemma [10]. We note that Levin’s proof [8] can be easily extended to sequential
composition of interactive protocols (see also [4, Lemma 4]).

Degradation We examine the effect of running the protocol t times, but this time player A uses
the same input in every run. This “secrecy degradation” setting is dealt with in Lemma 3.2.

Correctness. In this setting, player A tries to break the correctness of the protocol by outputting
some “forbidden value” at the end of the protocol execution (such as two different opening of the
commitment).

Amplification We consider the setting where after t runs of the protocol, player A needs to break
all the t executions.

When restricted to the non-interactive case of one-way functions, this is exactly the setting
for Yao’s hardness-amplification lemma from weak to strong one-way functions [10]. Here,

4

again, the proof of Canetti et al. [1] can be easily extended to interactive protocols.2

Degradation We consider the setting where after t runs of the protocol, player A needs to break
any one of the t executions. This “hardness degradation” setting is dealt with in Lemma 3.5.
(The proof closely mirrors the “hardness amplification” proof from [1].)

3.1 Secrecy Amplification and Degradation

Let (A,B) be an interactive protocol where A has a single-bit input a ∈ {0, 1} (and B may have no
input), and let t = t(k) be polynomially bounded. Denote by (At

=, Bt) a t-fold sequential repetition
of (A,B), where the protocol (A,B) is run t times sequentially, each time with the same input bit a.
Also denote by (At⊕, Bt) a t-fold sequential repetition of (A,B), where the input of A in each run
is random and independent, subject to the condition that the XOR of the inputs in all the runs
equals to the input bit of At⊕.

Definition 1 (Input Secrecy Defect) The protocol (A,B) has an ε-bounded secrecy defect with

respect to A if, for every efficient B′, it holds that Pr[(A(a), B′) B′→ a] ≤ (1 + ε)/2 + negl(k), where
the probability is taken over the choice of a ∈R {0, 1} and the randomness of A and B′, k is the
security parameter, and negl is a negligible function.

Lemma 3.1 (Yao’s XOR Lemma [10] – Secrecy Amplification) If (A,B) has an ε-bounded
secrecy defect with respect to A and t is polynomially-bounded, then (At⊕, Bt) has an εt-bounded
secrecy defect with respect to At⊕.

Proof (sketch): We observe that Levin’s proof of Yao’s XOR lemma [8] can be extended also to
interactive protocols. (See a description of that proof also in [4, Lemma 4].) The reason that this
particular proof extends to the interactive case (whereas the other proofs from [4] do not seem to
extend) is that this proof does not need to “rewind” A:

Recall that we assume an adversary B′ with advantage better than εt when talking to At⊕, and
we want to construct an adversary B∗ with advantage better than ε when talking to A. In the
non-interactive case, we had a “puzzle” that came from A and we could stick that puzzle anywhere
in a vector of t puzzles and let B′ attempt to solve that vector. We could also stick the same puzzle
in many vectors and run B′ on all oof them. In the interactive case, on the other hand, once we
sent some messages to the real party A, we cannot “take them back” and try another interaction
instead.

On a high level, the reduction following Levin’s approach proceeds as follows: B∗ simulates the
interactions between B′ and At⊕ for several runs, i = 1, 2, . . .: Starting from the state that B′

ended at after the i − 1’st run, B∗ uses repeated sampling to look for a simulated execution of
the i’th run after which B∗ still has advantage better than εt−i in guessing the bit of At−i

⊕ (where
the probability is taken over the remaining runs). It continues in this fashion until it cannot find

2Despite the similarities, the hardness-amplification lemma does not follow from the results for soundness ampli-
fication of interactive proofs. The reason is that in our case the adversary can compute the “forbidden output” at
the very end, after all the executions took place. In the IP setting, on the other hand, the prover needs to “convince
the verifier” after each execution and before the next one starts.

5

such an i’th run (or until it gets to the last run). Then it uses the current state of B′ as a basis
for a single interaction with the “real player” A. If this was the last run then it uses the output
of B′ as the guess of A’s input bit, and otherwise it uses repeated sampling again to estimate the
probability that B′ outputs one (taken over the remaining runs), and compares that probability to
some threshold (that it can also compute using repeated sampling).

Levin’s isolation lemma then proves that if at some point B′ failed to find an i’th run as above,
then there is a threshold that it can set that would give it an advantage better than ε of guessing
the input bit of the “real player” A. 2

Lemma 3.2 (Secrecy Degradation) If (A,B) has an ε-bounded secrecy defect with respect to A
and t is polynomially-bounded, then (At

=, Bt) has an ε′-bounded secrecy defect with respect to At
=,

where ε′ = 1− (1− ε)t.

We emphasize that the simple hybrid argument that is commonly used to reason about “encrypting
the same message many times” can be used in this context to prove a bound of ε′ ≤ tε. The difficulty
in the proof below is in improving the bound from tε to 1− (1− ε)t.

Proof: Let t = t(k) be polynomially bounded, let ε = ε(k), and denote ε′ def= 1− (1− ε)t. We show
that if there exist a randomized adversary B′ of time complexity T ′ such that

Pr
a,ra,rb

[
(
At

=(a, ra), B′(rb)
) B′→ a] ≥ 1 + ε′ + ρ

2
,

where ρ = ρ(k) is noticeable, then there exists a randomized adversary B∗ of time complexity
T = T ′ · poly(kt/ερ) such that

Pr
a,ra,rb

[(A(a, ra), B∗(rb))
B∗→ a] ≥ 1 + ε + ερ/4

2
.

An alternative way to write the condition Pr[(At
=(a), B′) B′→ a] ≥ 1+ε′+ρ

2 is

Pr[
(
At

=(1), B′) B′→ 1]− Pr[
(
At

=(0), B′) B′→ 1] ≥ ε′ + ρ .

Below we always use this alternative formulation.

Consider breaking B′ into two parts: the first part B′
1 interacts with A(a) only once and outputs

the internal state at the end of this interaction, and the second part B′
2 gets this internal state as

input and then interacts with A(a) for t − 1 more times before outputting a guess for the bit a.
Denote by D0,D1 the probability distribution of the internal state s after B′

1 interacts with A(0),
A(1), respectively.

D0
def=

{
s : (A(0), B′

1)
B′1→ s

}
, and D1

def=
{

s : (A(1), B′
1)

B′1→ s

}

(the notation D0,D1 is interpreted both as a probability distribution and as the corresponding
support set). For any given internal state s ∈ D0 ∪ D1, consider the experiment where starting
from this internal state s, B′

2 interacts t − 1 more times with A, but the input of A in all these

6

executions is some bit a′ (which may or may not be equal to the input bit a of the first execution).
We denote by p0(s), p1(s) the probabilities that B′ outputs 1 in this experiment when a′ = 0 and
a′ = 1, respectively. Namely, for every s ∈ D0 ∪ D1 we denote

p0(s)
def= Pr

[(
At−1

= (0), B′
2(s)

) B′2→ 1
]

, and p1(s)
def= Pr

[(
At−1

= (1), B′
2(s)

) B′2→ 1
]

We view p0, p1 as random variables in [0, 1], where each random variable can be chosen over either
of the two probability spaces D0 or D1. Below, we use notations such as PrD0 [p0 > t] to denote the
probability that we get p0(s) > t when setting s ∈R D0, or ED1 [p1] to denote the expected value of
p1(s) taken over the choice s ∈R D1, etc.

The technical Lemma 3.3 below asserts roughly that either there exists some internal state s∗

such that p1(s∗) − p0(s∗) > 1 − (1 − ε)t−1, or there exists some probability threshold τ such that
PrD1 [p1 > τ]− PrD0 [p1 > τ] > ε. If there exists a state s∗ as in the first case, then B′

2(s
∗) guesses

the input bit of At−1
= with advantage better than 1 − (1 − ε)t−1 and we can continue recursively.

Otherwise, we can construct B∗ roughly as follows: B∗ first plays the part of B′
1, interacting with

A(a) and gets the internal state s. Then, it evaluates p1(s) (by repeated sampling), outputs 1 if
p1(s) > τ and 0 otherwise.

The actual statement of the technical lemma below is slightly more complicated, since it also
includes the “slackness parameter” ρ that is needed to get the result in a uniform complexity
setting. Specifically, in the first case there should be a significant probability of finding a state s∗

for which p1(s∗)− p0(s∗) > 1− (1− ε)t−1 + ρ, and in the second case there should be some uniform
way of finding the threshold τ .

Lemma 3.3 Fix any integer t and any ε, ρ ∈ [0, 1] such that ρ < (1 − ε)t. Also let D0,D1 be two
probability distributions and let p0, p1 be two random variables that are defined over both D0 and
D1. If ED0 [p1]− ED1 [p0] > 1− (1− ε)t + ρ, then at least one of the two conditions must hold:

(i) Either Pr
D0

[
p1 − p0 > 1− (1− ε)t−1 + ρ

] ≥ ερ

2
,

(ii) or Eτ

[
Pr
D1

[p1 > τ]− Pr
D0

[p1 > τ]
]

> ε(1 + ρ/2), where the expectation is over choosing τ uni-

formly at random in the interval [1− (1− ε)t−1 + ρ, 1].

We prove Lemma 3.3 later in this section. Using this lemma, we now complete the proof of
Lemma 3.2 as follows: from the assertion we have that ED0 [p1] − ED1 [p0] > 1 − (1 − ε)t + ρ so
we can apply Lemma 3.3. The adversary B∗ will sample poly(k/ερ) internal states s ∈R D0, and
for each will evaluate p0(s) and p1(s) with accuracy poly(ρ/t) and error poly(ερ/tk). If it finds a
state s for which p1 − p0 > 1− (1− ε)t−1 + ρ(1− 1/2t) then it uses B′

2(s) as an adversary against
the (t− 1)-sequential repetition At−1

= (a) and continue by recursion.

Otherwise, B∗ plays the role of B′
1, interacting with A(a) to produce an internal state s. Then

B∗ evaluates p1(s) with accuracy poly(ερ) and error poly(ερ/k). It then chooses at random τ ∈R

[1 − (1 − ε)t−1 + ρ, 1], and outputs 1 if p1(s) > τ and 0 otherwise. It is not hard to see that this
algorithm has expected advantage of ε(1 + ρ/2)− poly(ερ/k) > ε(1 + ρ/4). 2

7

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

1

0

0

1

X

X + ∆
s in D0 s in D1

τ

s*

P1(s)

P0(s)

Figure 1: An illustration of Lemma 3.3. We know that the gray area in the lower-right box is more
than X + (1 − (1 − ε)t). We essentially prove that either there is s∗ such that p1(s∗) − p0(s∗) >
1− (1− ε)t−1 or there is τ such that PrD1 [p1 > τ]− PrD0 [p1 > τ] > ε.

Proof of Lemma 3.3. The proof relies on the identity E[X] ≡ ∫∞
0 Pr[X > τ]dτ , that holds for

any non-negative random variable X. In our case, we have p0, p1 ∈ [0, 1] so we can integrate be-
tween 0 and 1 (rather than 0 and∞). Assume that the premise of the lemma holds but condition (i)
does not, and we prove that then condition (ii) must hold. For the proof below, denote

µ
def= 1− (1− ε)t−1 + ρ

If condition (i) does not hold then with all but probability ερ/2 over choosing s ∈R D0, we have
p1(s)− p0(s) ≤ µ. This implies that, for all τ ∈ [µ, 1], it holds that

Pr
D0

[p1 > τ] ≤ Pr
D0

[p0 > τ − µ] +
ερ

2
,

and therefore also
∫ 1

µ
Pr
D0

[p1 > τ]dt ≤
∫ 1−µ

0

(
Pr
D0

[p0 > τ] +
ερ

2

)
dt =

∫ 1−µ

0
Pr
D0

[p0 > τ]dt +
(1− µ)ερ

2
(1)

Using this inequality and the premise of the lemma, we can write:

1− (1− ε)t + ρ < ED1 [p1]− ED0 [p0]
= ED1 [p1]− ED0 [p1] + ED0 [p1]− ED0 [p0]
= ED1 [p1]− ED0 [p1]

+
∫ µ

0
Pr
D0

[p1 > τ]dτ +
∫ 1

µ
Pr
D0

[p1 > τ]dτ −
∫ 1−µ

0
Pr
D0

[p0 > τ]dτ −
∫ 1

1−µ
Pr
D0

[p0 > τ]dτ

Eq. (1)

≤ ED1 [p1]− ED0 [p1] +
∫ µ

0
Pr
D0

[p1 > τ]dτ +
(1− µ)ερ

2
−

∫ 1

1−µ
Pr
D0

[p0 > τ]dτ

8

≤ ED1 [p1]− ED0 [p1] +
∫ µ

0
Pr
D0

[p1 > τ]dτ +
(1− µ)ερ

2

=
∫ µ

0
Pr
D1

[p1 > τ]dτ +
∫ 1

µ
Pr
D1

[p1 > τ]dτ −
∫ 1

µ
Pr
D0

[p1 > τ]dτ +
(1− µ)ερ

2

≤ µ +
∫ 1

µ

(
Pr
D1

[p1 > τ]− Pr
D0

[p1 > τ]
)

dτ +
(1− µ)ερ

2

= µ
(
1− ερ

2

)
+

∫ 1

µ

(
Pr
D1

[p1 > τ]− Pr
D0

[p1 > τ]
)

dτ +
ερ

2
(2)

Substituting back µ = 1− (1− ε)t−1 + ρ, we conclude that
∫ 1

µ

(
Pr
D1

[p1 > τ]− Pr
D0

[p1 > τ]
)

dτ > (1− (1− ε)t + ρ)− (1− (1− ε)t−1 + ρ)(1− ερ

2
)− ερ

2

= ε(1− ε)t−1 − ερ

2
((1− ε)t−1 − ρ)

= ε((1− ε)t−1 − ρ)− ερ

2
((1− ε)t−1 − ρ) + ερ

=
(
(1− ε)t−1 − ρ

)
︸ ︷︷ ︸

1−µ

(
ε− ερ

2

)
+ ερ > (1− µ)

(
ε +

ερ

2

)

Hence, the expected value of the difference PrD1 [p1 > τ] − PrD0 [p1 > τ], taken over a uniform
random choice of τ ∈R [µ, 1], is at least ε + ερ

2 . 2

3.2 Hardness Amplification and Degradation

Consider an interactive protocol P = (A,B), and let RP be a poly-time recognizable relation that
describes what it means for A to “break the protocol’s correctness”. Namely, after the protocol is
run and B’s output is some string y, a cheating A′ is successful if it outputs a string x such that
(x, y) ∈ RP . (For example, (A,B) is a commitment scheme, A is the sender, B’s output is the
communication transcript y, and (x, y) ∈ RP if x contains two different openings that are both
consistent with y.)

Let (At, Bt) be a t-fold sequential repetition of the protocol (A,B) with A, B having the same
input (if any) but independent randomness. Define ∧t(RP) and ∨t(RP) as the AND and OR of the
t individual relations, namely

∧t(RP) def= {(〈x1, . . . , xt〉 , 〈y1, . . . , yt〉) : ∀i ≤ t, (xi, yi) ∈ RP},
∨t(RP) def= {(x, 〈y1, . . . , yt〉) : ∃ i ≤ t s.t. (x, yi) ∈ RP}

In other words, ∧t(RP) represents the case that all the t copies must be broken, and ∨t(RP)
represents the case that at least one copy is broken.

Definition 2 (RP-defect) The protocol P = (A,B) has a δ-bounded RP-defect with respect to B
if for every efficient A′ it holds that Pr[(A′, B) → (x, y) : (x, y) ∈ RP] ≤ δ + negl(k), where the
probability is taken over the randomness of A′ and B, k is the security parameter, and negl is a
negligible function.

9

Lemma 3.4 (Hardness Amplification) If P = (A,B) has a δ-bounded RP-defect with respect
to B and t is polynomially bounded then (At, Bt) has a δt-bounded ∧t(RP)-defect with respect to Bt.

The proof is nearly identical to the hardness-amplification proof from [1] for the non-interactive
case (and also very similar to the proof for Lemma 3.5 below). Again, the reason that this proof
extends to the interactive case (whereas some other proofs of Yao’s lemma of weak-to-strong-OWFs
do not extend) is that it does not need to “rewind” the player B. 2

Lemma 3.5 (Hardness Degradation) If P = (A, B) has a δ-bounded RP-defect with respect
to B and t is polynomially bounded then (At, Bt) has a δ′-bounded ∨t(RP)-defect with respect to Bt,
where δ′ = 1− (1− δ)t.

Proof (sketch): The proof is very similar to the hardness-amplification proof from [1]. Let
t = t(k) be polynomially bounded, and let δ = δ(k) be a noticeable function and δ′ = 1− (1− δ)t.
Assume that there exists a randomized adversary A′ of time complexity T ′ that satisfies the relation
∨t(RP) with probability δ′ + ρ′ for some noticeable quantity ρ′ = ρ′(k). We then show that there
exists a randomized adversary A∗ of time complexity T ∗ = T ′ · poly(kt/δ′ρ′) that satisfies RP with
probability δ + ρ, where ρ is the solution to (1 − δ − ρ)t = (1 − δ)t − ρ′. Observe that if ρ′ is
noticeable and t is polynomial then also ρ is noticeable. Note also that by definition, the success
probability of A′ is 1− (1− δ − ρ)t.

Denote the state of A′ after the i’th interaction with B by si (with s0 being the initial state of A′).
The adversary A∗ begins by playing the role of B in the first interaction. Repeating the first
interaction up to poly(kt/δρ) times, A∗ is looking for an internal state s1 after the first interaction
such that when proceeding from this state, A′ satisfies RP for one of the last t − 1 runs with
probability at least 1− (1− δ − ρ)t−1. (Note that A′ can estimate that probability by sampling.)

If A∗ succeeds in finding such s1, then it fixes that internal state and keeps looking for internal
states s2, s3, . . . such that when proceeding from si, adversary A′ satisfies RP for one of the last
t− i runs with probability at least 1−(1−δ−ρ)t−i. If A∗ can find an internal state st−1 from which
A′ satisfies RP for the last run with probability ≥ δ + ρ then we are done: A∗ just uses A′ from
this state when interacting with the real B. Otherwise, A∗ has some state si with 0 ≤ i < t − 1
such that A′ satisfies RP for one of the last t− i runs with probability at least 1− (1− δ − ρ)t−i,
and yet for (almost) all continuation states si+1, A′ only satisfies RP for one of the last t − i − 1
runs with probability less than 1− (1− δ − ρ)t−i−1.

We now consider a “matrix” M that represent the interaction of A′ with B on the remaining
t − i runs of the protocol, when A′ starts from this state si. (We assume that si includes all the
randomness that A′ needs for all the runs.) The columns of M are labeled by all the possibilities
for the randomness of B during the i+1’st run, and rows are labeled by all the possibilities for the
randomness of B in runs i + 2, . . . , t. Hence, each entry in the matrix corresponds to a particular
interaction of A′ with B on the remaining t− i runs of the protocol.

Each entry in M is labeled with two bits, where the first bit is 1 if at the end of that interaction
A′ satisfies RP for the i + 1’st run, and the second bit is 1 if A′ satisfies RP for one of the last
t− i− 1 runs. By our assumption on the state si, we know that a random entry in this matrix is
labeled with (0, 0) with probability at most γ = (1 − δ − ρ)t−i. Denote α = (1 − δ − ρ)t−i−1 and
β = (1 − δ − ρ), so α · β = γ. Then, it must be the case that either M has (sufficiently many)

10

columns where the fraction of entries of the form (?, 0) is no more than α, or else the conditional
probability of a (0,0) entry given that the entry is of the form (?, 0) is at most (only slightly more
than) β.

The failure of A∗ to find a continuation state si+1 with sufficient residual success probability
indicates that the first case does not hold, so the second case must hold. Hence, in this case A∗

uses A′ starting from si to interact with the real player B, arriving at some state si+1 after this “real
interaction.” Then, A∗ simulates many more runs of A′ with B starting from this si+1. Adversary
A∗ looks for a run in which A′ does not satisfy RP for any of the last t − i − 1 runs, and uses
the output of A′ in that run in the hope that it satisfies RP for the i + 1’st run. The conditional
probability argument from above says that the odds of satisfying RP for the i+1’st run conditioned
on not satisfying it for the last t − i − 1 runs is (only slightly less than) 1− β = δ + ρ. Indeed, a
detailed argument that mirrors the proof of [1, Lemma 1] shows that this algorithm A∗ has success
probability noticeably larger than δ. 2

“Weakly verifiable” relations. Since the proof of Lemma 3.5 is fashioned after the proof
from [1], it can be used also in settings where the relation RP is only “weakly verifiable”. Namely,
when only B can verify the relation RP (because it depends on some private output of B). This
makes the above lemma applicable also to the setting of commitment with non-perfect functionality,
where even an honest opening may be rejected with some probability (depending on the internal
randomness of the receiver).

4 Fixing Defective Protocols

In [2], Damg̊ard et al. considered defective two-party protocols such as oblivious-transfer and
commitment between a Sender and a Receiver. They suggested reducing the defect by alternating
between two transformations: Roughly, in a “type-R” transformation the parties run t copies of
the protocol with the same input bits for the sender, and in a “type-S” transformation the sender
chooses t random bits whose exclusive-or equals to its input bit and then the parties run one copy
of the protocol for each of these random bits.

Below we assume that the underlying protocol has defect ε for the Sender security and defect δ for
the Receiver security (such as the commitment protocol that was described in the introduction).
In the information-theoretic setting that was considered in [2], it is clear that applying a type-R
transformation results in a protocol with sender defect 1 − (1 − ε)t and receiver defect δt, and
similarly applying a type-S transformation results in a protocol with sender defect εt and receiver
defect 1 − (1 − δ)t. It was shown in [2] that as long as ε + δ < 1 − 1/poly(k), one can alternate
between these transformations several times (with total number of copies polynomial in k) and
reduce both defects to negligible quantities in k.

Our lemmas from Section 3 imply that the same bounds on the effect of type-R and type-S trans-
formations hold also in the computational setting. One could hope, therefore, that the alternation
strategy from [2] can be proven to work also in this setting. Unfortunately, this is not the case. The
reason is the strategy from [2] uses a non-constant number of alternations. The proofs for hardness-
amplification and degradation from Section 3 all incur a polynomial blowup in the complexity of
the adversary for every alternation, and hence a non-constant number of alternations would cause

11

a super-polynomial blowup in the adversary complexity. In Section 4.1 below we analyze the range
of parameters ε, δ for which we can reduce the defect to a negligible amount using only a constant
number of alternations.

Relation to Wullschleger’s work. As we explained in the introduction, Wullschleger recently
was able to extend the results from [2] to the computational setting in the “honest-bu-curious”
model, using a technique based on the hard-core-set lemma of Holenstein [5, 6]. Wullschleger’s
work yield stronger defect-reduction results than the ones that we can obtain from a direct analysis
of the transformations of [2]: he is able to fix a defect of ε + δ < 1 − 1/poly(k), where we can
roughly fix only when ε + δ < 1 − 1/polylog(k). However, Wullschleger’s technique only applied
in the honest-but-curious attack model work, whereas ours applies also in the standard model of
a malicious adversary. Also, Wullschleger’s results do not shed light on what happens when a
defective protocol is run several times on related inputs, and does not say what happens when the
original transformations from [2] are used in the computational setting.

4.1 Iterating the Transformations

Below, we prove that repeating the transformations S and R a constant number of times results in
a scheme with negligible defects as long as ε + δ is bounded away from 1 and, moreover, ε + δ <
1−min(ε, δ)/polylog(k).

We begin by setting a few conventions and notations. First, we can assume without loss of gen-
erality that we always alternate between transformations S and R (since applying two successive
transformations of the same type with parameters t and t′ is the same as just one transformation
with parameter tt′). We also assume, without loss of generality, that for ε > δ we begin with
transformation S and for ε ≤ δ we begin with transformation R. (Namely, we choose the first
transformation to increase the larger value and decrease the smaller one.) This is without loss of
generality, since we can always start with a “dummy transformation” with parameter t = 1.

With these two assumptions, a chain of transformations is completely characterized by the initial
values ε0, δ0 and by the sequence of parameters t1, t2, . . . that indicate how many times we repeat
the scheme from step i in step i + 1. In the analysis below we refer to this representation as a
“chain”.

Definition 3 (Transformation chains) A transformation chain (or just chain) is represented
by a vector C = 〈(ε0, δ0), (t1, t2, . . . , t`)〉 where ε0, δ0 ∈ [0, 1] and ti ≥ 1 for all i. Given C as above,
we can compute the values εi, δi for each i = 1, . . . , ` as follows:

• If ε0 ≥ δ0 then for even i we set εi+1 = 1− (1− εi)ti+1 and δi+1 = δ
ti+1

i , and for odd i we set
εi+1 = ε

ti+1

i and δi+1 = 1− (1− δi)ti+1.

• If ε0 < δ0 then we swap the even and odd rules.

It is clear, however, that not every “chain” corresponds to a sequence of transformations that we can
use. For example, it is clear that

∏
i ti must be polynomial in the security parameter k. Moreover,

all the εi’s and δi’s must be bounded away from 1 (i.e., be at most 1− 1/poly(k)), since our defect

12

definitions imply that a defect of 1 − negl(k) is the same as a defect of 1. These conditions are
captured in the following definition:

Definition 4 (Confined chains) A chain C = 〈(ε0, δ0), (t1, t2, . . . , t`)〉 is confined if there exist
constants c, c′ > 0 such that (a)

∏`
i=1 ti ≤ kc and (b) for all i ≤ `, we have εi, δi ≤ 1− k−c′.

Moreover, the reductions proving lemmas 3.1 and 3.2 increase the size of the adversary by a poly-
nomial factor (even if we only use t = 2), so we can only apply these transformations a constant
number of times. This means that, to get a scheme with negligible defect, we must find a constant-
length confined chain that begins with the given (ε0, δ0) and ends with ε`, δ` = negl(k). The next
lemma asserts a necessary and sufficient conditions on (ε0, δ0) for such a chain to exist.

Lemma 4.1 Fix some ε0 = ε0(k) and δ0 = δ0(k) such that ε0 + δ0 < 1− 1/poly(k). There exist a
constant-length confined chain that begins with these (ε0, δ0) and ends with ε`, δ` = negl(k) if and
only if ε0 + δ0 ≤ 1− Ω

(
min(ε0,δ0)
polylog(k)

)
.

Proof: Roughly, the proof considers the quantity a = 1−max(ε,δ)
min(ε,δ) , and shows that as long as

a = 1 + o(1), then each iteration increases the o(1) part of a by at most a factor of O(log k). Thus,
we must have a ≥ 1 + Ω(1/polylog) if we want a to grow beyond 1 + o(1) in a constant number of
iterations. In the proof below we use the following facts:

1. For every α > −1 and x ≥ 1, (1 + α)x ≥ 1 + αx.

2. For every 0 ≤ α ≤ 1
2 and 1 ≤ x ≤ 1

2α , (1 + α)x ≤ 1 + 2αx.

3. For every 0 ≤ α ≤ 1
2 and 1 ≤ x ≤ 1

α , (1− α)x ≤ 1− αx/2.

4. For every 0 ≤ α ≤ 1, (1− α)1/α < e−1(≈ 0.37)

5. For every 0 ≤ α < 1
2 , (1− α)1/α > 1/4

If (⇒) Assume that, for some constant c ≥ 1, it holds that max(ε0, δ0) ≤ 1 − k−c, and also
ε0 + δ0 ≤ 1 − min(ε0,δ0)

logc(k) . We show a confined chain of length at most c + 5 such that εc+5, δc+5 =

negl(k). Assume that max(ε0, δ0) > k−c′ for some c′ (otherwise we already have ε0, δ0 = negl(k)),
and consider the following procedure for generating such a chain:

1. H0 := max{ε0, δ0}, L0 := min{ε0, δ0}
2. i := 1, t1 := max{t ∈ N : (1−H0)t > k−c} // t1 ≤ dc ln(k)/H0e = O(kc′ log k)
3. H1 := 1− (1−H0)t1 , L1 := Lt1

0 // 1
2 ≤ H1 < 1− k−c

4. while (1−Hi)/Li < 2k do // Li > (1−Hi)/2k > k−c−1/2
5. ti+1 := max{t ∈ N : (1− Li)t > k−c} // ti+1 ≤ dc ln(k)/Lie = O(kc+1 log k)
6. Hi+1 := 1− (1− Li)ti+1 , Li+1 := H

ti+1

i // 1
2 ≤ Hi+1 < 1− k−c

7. i := i + 1

13

8. ti+1 := bk/(1−Hi)c, Hi+1 := 1− (1− Li)ti+1 , Li+1 := H
ti+1

i

9. ti+2 := k, Hi+2 := 1− (1− Li+1)ti+2 , Li+2 := H
ti+2

i+1

Output the chain 〈(ε0, δ0), (t1, t2, . . . , ti+2)〉

We start by establishing some simple invariants that holds throughout all the iterations of the loop.

• For all i we have Li+Hi < 1. This follows since initially we have L0+H0 < 1, and if x+y < 1
then also (1− (1− x)t) + yt < 1 for all t ≥ 1 so this property is preserved.

• For all i we have Li < 1
2 < Hi < 1− k−c:

– The condition Hi < 1− k−c follows since the ti’s are chosen specifically to ensure it.
– On the other hand, we always set Hi := 1−(1−α)ti for some α < 1 and where ti is chosen

as max{t : (1−α)t > k−c}. So either α > 1
2 , in which case Hi ≥ α > 1

2 , or α ≤ 1
2 , in which

case (1−α)d 1
αe > 1

8 > k−c and therefore ti ≥
⌈

1
α

⌉
, so Hi > 1−(1−α)d 1

αe > 1−e−1 > 1
2 .

– Finally, since Hi > 1
2 and Hi + Li < 1 then Li < 1

2 .

• Since Li < 1
2 then (1− Li)

1
Li > 1/4. Thus (1− Li)

c log2 k
2Li > k−c, so ti+1 ≥ c log2 k

2Li
.

• Inside the loop, we always have 1−Hi
Li

< 2k which means that Li > 1−Hi
2k > k−c

2k = 1
2kc+1 .

We now observe that all the ti’s are polynomially bounded: Recall that (1 − H0)dc ln(k)/H0e <
e−c ln(k) = k−c so we must have t1 < dc ln(k)/H0e < ckc′ ln(k) = O(kc′ log k) (since we assume that
H0 ≥ k−c′). Similar argument using Li > 1

2kc+1 shows that in Line 5 we have ti+1 = O(kc+1 log k).

Next, we consider the quantity ai
def= 1−Hi

Li
. First, observe that the condition ε0 + δ0 ≤ 1− min(ε0,δ0)

logc(k)

(which we can re-write as H0 + L0 ≤ 1− L0
logc(k)) implies that

1−H0

L0
− 1 =

1− (H0 + L0)
L0

≥ 1
logc(k)

.

Next, observe that

1−H1

L1
=

1− (1− (1−H0)t1)
Lt1

0

=
(

1−H0

L0

)t1

>
1−H0

L0
≥ 1 +

1
logc(k)

.

We now show that in each iteration of the loop, the quantity ai − 1 increases by at least a factor
of Ω(log k). Denote bi

def= 1−Li
Hi

, and note that

bi − 1 =
1− Li

Hi
− 1 =

1− Li −Hi

Hi

=
Li

Hi
· 1− Li −Hi

Li
=

Li

Hi
·
(

1−Hi

Li
− 1

)
=

Li

Hi
· (ai − 1) .

Observe that for each iteration of the loop, we have

ai+1 =
1−Hi+1

Li+1
=

1− (1− (1− Li)ti+1))

H
ti+1

i

=
(

1− Li

Hi

)ti+1

= b
ti+1

i

14

and therefore

ai+1 − 1 = b
ti+1

i − 1 = (1 + (bi − 1))ti+1 − 1

> [1 + ti+1(bi − 1)]− 1 = ti+1(bi − 1) = ti+1
Li

Hi
· (ai − 1) > ti+1 · Li · (ai − 1)

≥ c log2 k

2Li
· Li · (ai − 1) =

c

2
log2 k · (ai − 1) = Ω(log k) · (ai − 1) .

We have seen that a1 − 1 > Ω(1
logc(k)) and that ai+1 − 1 ≥ Ω(log k) · (ai − 1), so after at most c + 1

iterations of the loop we get ai − 1 ≥ Ω(log k) > 4.

If we still do not have ai > 2k then we will do another iteration of the loop. In this iteration, we
have (as usual) ti+1 ≥ c log2 k

2Li
, but now ai = 1−Hi

Li
> 5, so ti+1 ≥ 5c log2 k

2(1−Hi)
. Therefore, at the end of

this iteration we have

Li+1 = H
ti+1

i = (1− (1−Hi))ti+1 ≤ (1− (1−Hi))
5c log2 k
2(1−Hi)

< e−5c log2 k/2 = e−5c ln(k)/2 ln(2) = k−5c/2 ln(2) < k−3c .

On the other hand, we have (as usual) Hi+1 ≤ 1 − k−c, and therefore ai+1 = 1−Hi+1

Li+1
> k−c

k−3c =
k2c > 2k.

We conclude that the loop terminates after at most c + 2 iterations, so the chain is indeed of
constant length. It is left to show that the chain remains confined in the last two steps, and that
Li+2,Hi+2 are both negligible. Once the loop terminates, we have

Li+1 = H

⌊
k

1−Hi

⌋

i < (1− (1−Hi))
k

1−Hi
−1

< e−k/Hi < 2e−k.

On the other hand, 1−Hi
Li

> 2k so Li < 1−Hi
2k and therefore

Hi+1 = 1− (1− Li)ti+1 < ti+1Li <

⌊
k

1−Hi

⌋
· 1−Hi

2k
≤ 1

2
.

Finally, after the last step we have

Hi+2 = 1− (1− Li+1)k < kLi+1 < 2ke−k, and Li+2 = (Hi+1)k < 2−k.

This concludes the proof of the if direction. 2

Only if (⇐). Assume that ε0 + δ0 ≤ 1 − poly(k), but ε0 + δ0 ≥ 1 − o
(

min(ε0,δ0)
polylog(k)

)
, and assume

that ε0 ≥ δ0 (the other case is symmetric). Let C = 〈(ε0, δ0), (t1, t2, . . .〉 be a confined chain with
constant length.

Instead of analyzing the chain C, it will be more convenient below to analyze an “equivalent
chain” C ′ for which δi ≤ εi for all i. We get C ′ from C as follows: we go over the transformations
one at a time, starting from the first transformation, and maintain the invariant that we always have
δi ≤ εi. If after the next transformation we still have δi+1 ≤ εi+1 then we leave that transformation
unchanged. On the other hand, if after the next transformation (of type R with parameter ti) we
have δi+1 ≥ εi+1 then we break it into two transformation: a type R transformation with parameter
t′i that increases δ and decreases ε until they are exactly equal (t′i could be fractional), and a type S
transformation with parameter t′′i = ti/t′i. In some more detail, instead of computing εi+1 = εti

i

and δi+1 = 1− (1− δi)ti , we do the following:

15

• We compute the real number t′i < ti such that ε
t′i
i = 1− (1− δi)t′i ,

• We set ε′i+1 = ε
t′i
i and δ′i+1 = ε′i+1 = 1− (1− δi)t′i ,

• We compute t′′i = ti/t′i and then set ε′′i+1 = 1− (1− (ε′i+1))
t′′i and δ′′i+1 = (δ′i+1)

t′′i .

• We invert the type of all the transformations until the end of the chain.

Formally, what we do is to remove ti from the chain and replace it with t′i, t
′′
i (so we get a chain

which is one longer than the original one).

It is clear that the change from above only switches the roles of ε and δ (i.e., we have ε′′i+1 = δi+1

and δ′′i+1 = εi+1, and similarly for i + 2, i + 3, . . .). It should also be noted that the resulting chain
does not correspond to transformations that can be applied to the commitment scheme (since we
use fractional values for the ti’s), but all the values of εi, δi are still well defined, and their sum is
equal to what it was in C. Finally, the length of C ′ is at most twice the length of the original C,
so C ′ still has constant length.

From now on, we therefore assume that we have a constant-length confined chain C ′ that starts
from δ0 ≤ ε0 and maintains δi ≤ εi, for all i. Denote the number of transformations in C ′ by `
and assume, without loss of generality, that ` is even (since we can always append a last dummy
transformation with t = 1).

Again, we consider the quantity ai = 1−εi
δi

, and the condition ε0+δ0 ≥ 1−o
(

δ0
polylog(k)

)
implies that

a0−1 ≤ o(1/polylog(k)). We show that the quantity ai−1 grows by at most a factor of O(log k) in
every two successive transformations in the chain. It follows that a`− 1 = (a0− 1) ·O(log`/2(k)) =
o(1/polylog(k)), which in particular means that ε` + δ` ≥ 1− o(1) > 1/2. In more details, we prove
by induction that, for every even i, we have ai − 1 ≤ (8c log k)i/2 · (a0 − 1), where the constant c is
the one from the “confinement” property of the chain C ′ (namely all the εi’s and δi’s are bounded
by 1− k−c).

This holds for i = 0 by definition, and we now proceed to the induction step. Assume that for some
even i < ` it holds that 1−ai ≤ (1−a0)·(8c log k)i/2. This in particular means that εi+δi ≥ 1−o(1),
and therefore (since we have δi ≤ εi) then εi ≥ 1

2 − o(1). We now examine how the quantity 1−ε
δ

evolves over the next two steps.

• The next (odd-numbered) transformation is of type S, so we have δi+1 = δ
ti+1

i and εi+1 =
1 − (1 − εi)ti+1 . Since εi > 1

2 − o(1) then 1 − εi < 2−1/2, and since the sequence is confined
then 1− εi+1 ≤ k−c. Thus we have

2−c log2 k = k−c ≤ (1− εi)ti+1 <
√

1/2
ti+1 = 2−ti+1/2

so it follows that ti+1 < 2c log k < 1/2(ai − 1) (since 1/(ai − 1) = ω(polylog(k)). This means
that we have

ai+1 =
1− εi+1

δi+1
=

(
1− εi

δi

)ti+1

= a
ti+1

i = (1 + (ai − 1))ti+1

Fact 2
< 1 + 2ti+1(ai − 1) < 1 + 2c log k · (ai − 1)

16

Thus ai+1 − 1 < 2c log k(ai − 1) = o(1/polylog(k)). Let us denote bi+1
def= 1−δi+1

εi+1
, so we have

bi+1 − 1 = (ai+1 − 1)δi+1/εi+1.

• The next (even-numbered) transformation is of type R, so we have δi+2 = 1 − (1 − δi+1)ti+2

and εi+2 = (εi+1)ti+2 . Recall that we have δi+2 ≤ εi+2 and therefore δi+2 < 1/2 < 1 − e−1,
so (1− δi+1)ti+2 = 1− δi+2 > e−1, which means that ti+2 < 1/δi+1. Recall also that we have
εi+1 ≥ εi ≥ 1/2− o(1), and therefore

bi+1 − 1 =
(ai+1 − 1)δi+1

εi+1
=

o(1)
Θ(1)

· δi+1 < δ1+1/2

so ti+2 < 1/δi+1 < 1/2(bi+1 − 1). Thus we have

bi+2 = (bi+1)ti+2 = (1 + (bi+1 − 1))ti+2
Fact 2

< 1 + 2ti+2(bi+1 − 1)

Hence

bi+2 − 1 < 2ti+2(bi+1 − 1) =
2ti+2(ai+1 − 1)δi+1

εi+1

<
2ti+2 · 2c log k(ai − 1) δi+1

εi+1
=

4c log k δi+1 ti+2

εi+1
· (ai − 1)

In addition, since δi+1 < 1/2 and 1 ≤ ti+2 < 1/δi+1 then from Fact 3 above we get that

δi+2 = 1− (1− δi+1)ti+2 > δi+1ti+2/2

and we also know that εi+2 ≤ εi+1. Thus, we have

ai+2 − 1 =
(bi+2 − 1)εi+2

δi+2
<

(bi+2 − 1)εi+2

δi+1ti+2/2

<
4 δi+1 ti+2 c log k

εi+1
· (ai − 1) · 2εi+2

δi+1ti+2
= 8c log k(ai − 1) · εi+2

εi+1

≤ 8c log k · (ai − 1) < (8c log k)(i+2)/2 · (a0 − 1) = o

(
1

polylog(k)

)

This concludes the proof of the only if direction. 2

References

[1] R. Canetti, S. Halevi, and M. Steiner. Hardness amplification of weakly verifiable puzzles.
In The 2nd Theory of Cryptography Conference (TCC’05), volume 3378 of Lecture Notes in
Computer Science, pages 17–33. Springer-Velrag, 2005.

[2] I. Damg̊ard, J. Kilian, and L. Salvail. On the (Im)possibility of Basing Oblivious Transfer
and Bit Commitment on Weakened Security Assumptions. In Advances in Cryptography –
EUROCRYPT’99, volume 1592 of Lecture Notes in Computer Science, pages 56–73. Springer-
Verlag, 1999.

17

[3] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yiled nothing but their validity and a
methodology of cryptographic protocol design. In 27th Annual Symposium on Foundations of
Computer Science, pages 174–187. IEEE, 1986.

[4] O. Goldreich, N. Nisan, and A. Wigderson. On Yao’s XOR-lemma. Electronic Colloquium on
Computational Complexity (ECCC), 2(50), 1995.

[5] T. Holenstein. Key agreement from weak bit agreement. In STOC’05, pages 664–673. ACM,
2005.

[6] T. Holenstein and R. Renner. One-Way Secret-Key Agreement and Applications to Cir-
cuit Polarization and Immunization of Public-Key Encryption. In Advances in Cryptology
- CRYPTO’05, volume 3621 of Lecture Notes in Computer Science, pages 478–493, 2005.

[7] R. Impagliazzo. Hard-core distributions for somewhat hard problems. In FOCS, pages 538–545,
1995.

[8] L. A. Levin. One-way functions and pseudorandom generators. Combinatorica, 7(4):357–363,
1987.

[9] J. Wullschleger. Oblivious-Transfer Amplification. In Advances in Cryptology - EURO-
CRYPT’07, volume 4515 of Lecture Notes in Computer Science, pages 555–572. Springer,
2007.

[10] A. C. Yao. Theory and applications of trapdoor functions. In 23rd Annual Symposium on
Foundations of Computer Science, pages 80–91. IEEE, Nov. 1982.

A Hard-core sets and hardness of interactive protocols

In this section we explain the technical difficulty with using arguments based on Impagliazzo’s
hard-core-set approach [7] in the context of hardness amplification of interactive protocols. Recall
that this approach for proving hardness amplification consists of two steps: We begin with the
assumption that computing something is somewhat hard (say every efficient algorithm fails to
recover x from y = f(x) with at least some noticeable probability δ).

• First we prove that this hardness assumption implies the existence of a hard-core set. Namely
a single set S of inputs, of density (almost) δ, such that no efficient algorithm can recover x
from y = f(x) on a random x ∈ S (except with a very small probability).

The intuition for the existence of such a set is quite clear for the example of inverting one-way
functions: It must be the case that all the efficient algorithms fail on the same subset, since
if different algorithms were failing on different subsets then one could always get the right
answer by trying sufficiently many algorithms (and using the fact that for one-way functions
we can verify the right answer when we see it).3

3Impagliazzo proved that a similar strategy of “asking many different algorithm” can be applied even in cases
where we cannot verify the answer. Roughly, one just takes the majority vote.

18

• In the second step, one uses the existence of a hard-core set as above to prove hardness
amplification, roughly arguing that if we choose x1, . . . , xn at random, then at least one of
them will be in the hard-core set S (except with probability δn) and therefore no efficient
algorithm will be able to invert all of the values yi = f(xi) except with probability close to
δn. (Converting this “intuitive argument” to an actual reduction is quite straightforward.)

Consider now applying this argument to hardness of interactive protocols: Let (A,B) be a protocol
(where we assume for simplicity that the parties do not have any inputs), and consider for example
the task of recovering the randomness of B from the interaction. First notice that in the honest-
but-curious attack model we can still use the argument from above: Consider the function that
takes as input x = (ra, rb) and outputs both ra and the transcript:

f(ra, rb) = (ra, 〈A(ra), B(rb)〉).

The output of this function captures exactly the view of an honet-but-curious adversary that
interacts with B, and hence we can apply the results about hardness amplification for the case of
non-interactive functions also to this case.

However, this line of argument does not seem to extend to the malicious attack model. In this case
the transcript of the protocol is not an input which is generated by a fixed known procedure, but
it actually depends on the actions of the adversary. For every fixed cheating adversary A∗ we can
still define the function

fA∗(ra, rb) = (ra, 〈A∗(ra), B(rb)〉)
that captures the view of A∗ when interacting with B, but it is no longer the same function for
all A∗’s. Trying to apply the line of arguments from above, we thus cannot get an analog of the
first step: We can no longer “ask many different algorithms” about the transcript, since these
“algorithms” are now interactive adversaries that expect to actively participate in the creation of
that transcript. We can choose one of these “many different algorithms” and use it to generate the
transcript, but we have only one chance to do so. If this turns out to be the wrong algorithm then
we cannot go back and try a different one, since B cannot be rewound to run the protocol again.

19

