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Abstract. We will give an overview of a recent cryptocomputing method that makes it possible
to cryptocompute every language in L/poly. We give several nontrivial applications, including: (a)
An

(
n
1

)
-CPIR protocol with log-squared communication and sublinear server-computation by giving

a secure function evaluation protocol for Boolean functions with similar performance, (b) A protocol
that makes it possible to compute (say) how similar is client’s input to an element in server’s database,
without revealing any information to the server, (c) A protocol for private database updating with low
amortized complexity.
Keywords. Branching programs, computationally-private information retrieval, extended
computationally-private information retrieval, private database updating, two-party computa-
tion.

1 Introduction

Generic Cryptocomputing Protocol. We start the paper with a different and sim-
pler exposition of the cryptocomputing protocol from [IP07] that is based on earlier pa-
pers [KO97,Ste98,Lip05]. This protocol combines a well-known fact that any functional-
ity in complexity class L/poly can also be computed by polynomial-size branching pro-
grams [Weg00], with a realization that one can privately implement the local selector op-
eration at every node of the branching program by using a suitable two-message 1-out-of-2
computationally-private information retrieval (

(
2
1

)
-CPIR) protocol.

More precisely, several existing
(

n
1

)
-CPIR protocols [KO97,Ste98,Lip05] can be seen as

cryptocomputing a complete ordered binary decision diagram (OBDD), where at every node
one uses an efficient two-message

(
m
1

)
-CPIR protocol on the second messages of the two-

message
(

m
1

)
-CPIR protocols of the previous level. The main difference between the CPIR

protocols in those papers was the value of m and the use of more and more efficient concrete(
m
1

)
-CPIR protocols. In particular, Lipmaa [Lip05] proposed a very efficient underlying

(
2
1

)
-

CPIR protocol, based on a length-flexible homomorphic cryptosystem [DJ01,DJ03]. Because
the length of server’s message in Lipmaa’s

(
2
1

)
-CPIR protocol has additive length expansion

compared to the transmitted message, cryptocomputing an OBDD by using Lipmaa’s
(
2
1

)
-

CPIR protocol results in an
(

n
1

)
-CPIR protocol with total communication Θ(log2 n+` log n)k

where ` is the length of database elements and k is the security parameter [Lip05].
Now, an

(
n
1

)
-CPIR protocol can be used to cryptocompute an arbitrary function f :

{0, 1}log n → {0, 1}`, although with computational cost Θ(n) for the server which is pro-
hibitive especially when f itself is simple. As noted in [IP07], one can often significantly

? First public draft, March 19, 2008. This draft has been public solely for introducing the ideas to the public.
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decrease computation by using, instead of a complete OBDD, an efficient branching pro-
gram [Weg00]. At every internal node of the branching program, one again uses a suitable(
2
1

)
-CPIR protocol on progressively longer inputs. If Lipmaa’s

(
2
1

)
-CPIR protocol is used,

the total communication of this cryptocomputing protocol is quadratic (in the length of
client’s inputs), and assuming the RAM model, server’s computation is linear (in the size of
the branching program). In particular, the protocol has polynomial-time computation iff the
branching program has polynomial size, which is possible if the decided language belongs to
complexity class L/poly. Importantly, the cryptocomputing protocol only reveals the length
(i.e., the depth)—but not the shape or even the size—of the branching program to the client
which makes it possible for the server to use efficient branching programs that are tailored
to her concrete input.

One can use any of the known methods [NP99,AIR01,Kal05,Lip05,IP07,LL07] to transfer
the resulting cryptocomputing protocol from a client-private protocol (that corresponds to
using a CPIR) to a private protocol (that corresponds to using an oblivious transfer proto-
col). “Semisimulated” privacy in malicious model is a standard security notion for oblivious
transfer protocols [AIR01,Lip05,LL07], and similarly to [FIPR05,IP07] we advocate its use
in general cryptocomputing. If needed, however, one can transform the protocols into simu-
latably secure protocols by using the general methodology proposed in [NN01].

This cryptocomputing protocol can be compared with some other known protocols.
By using Yao’s two-party protocol [Yao82], one can cryptocompute every function f in
BPP/poly by using communication that is linear in the circuit complexity C(f) of f .
In the new cryptocomputing protocol, one can cryptocompute every function f in (proba-
bly) smaller class L/poly but by using communication that is quadratic in the branching
program length length(f) that is often significantly smaller than C(f). Sander, Young and
Yung [SYY99] proposed a protocol for cryptocomputing everything in a (probably) smaller
class NC1 ⊆ L/poly but the communication in their protocol was exponential in length(f)
while in the new method it is quadratic. Naor and Nissim [NN01] proposed a protocol that
utilized communication-complexity trees. In their protocol, assuming that the communica-
tion complexity of the nonprivate protocol is c (note that even for very simple problems
c ≥ log n, where n is the summatory input length of both parties), the private version has
communication complexity O(c2), computation complexity O(c2c) and round complexity
that is usually larger than 2. They proposed also another protocol that utilized branching
programs to achieve better computation but it also had somewhat higher communication
and still a larger number of the rounds.

While the same general cryptocomputing protocol was proposed in [IP07] (who were also
the first to realize that many previous CPIR protocols [KO97,Ste98,Lip05] cryptocomputed
a complete OBDD), they did not propose many concrete non-trivial examples of its appli-
cability. Our aim is to popularize this cryptocomputing protocol, and the best way to do it
seems to be to solve a few well-known problems in cryptographic protocol design that are
interesting in their own right.

New Applications.
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Computation-Efficient CPIR. First, we propose a new protocol for
(

n
1

)
-CPIR. Assume that

the client has a query i ∈ {0, . . . , n− 1} and the server has a database D = (D0, . . . , Dn−1)
of bits. A folklore theorem in this area is that per every query, the server must do Ω(n)
online computation since otherwise she’d know that some element was not queried. We show
that this theorem does not hold. Namely, we propose a

(
n
1

)
-CPIR protocol where the online

computational complexity of the server depends heavily on the concrete database itself and
is upperbound by (1 + o(1))n/ log2 n public-key operations in the worst case. The protocol
has log-squared communication in n. We achieve this by writing down a branching program
for the function fD, fD(i) := Di and then using the general methodology. The upperbound
(1 + o(1))n/ log2 n on the number of online computations follows from the upperbound on
the size of a branching program to compute an arbitrary Boolean function [BHR95].

In fact, this result shows that one can implement secure function evaluation of any f :
{0, 1}n → {0, 1} with communication Θ(n2) and computation (1 + o(1))2n/n; the latter
upperbound is also tight [BHR95] because there exist Boolean functions for which the size of
the best branching program is (1−o(1))2n/n. Thus, this gives us also a worst-case lowerbound
for the online computation of

(
n
1

)
-CPIR. One can transform the CPIR protocol into an(

n
1

)
-oblivious transfer protocol, where also server’s privacy is protected, by say using the

computationally efficient transformation of Naor and Pinkas [NP99].

Extended CPIR. Second, we study extended
(

n
1

)
-CPIR, a primitive recently defined

in [BCPT07]. In extended CPIR, the client submits a private index i and a private se-
cret j to the database server, who replies with the value of a predetermined function on j
and server’s database ith element. While [BCPT07] only proposed extended CPIR protocols
for a few simple functions, we show that by using the described general methodology one can
implement any functionality in polynomial-time and log-squared communication. Our results
on extended CPIR can for example applied in the next setting in biometric authentication.
The client of the extended CPIR protocol collects a fingerprint j of some person, together
with her claim that she is the ith employee. Then the client contacts a server who stores
encrypted fingerprints of all employees. At the end of the protocol, the client gets to know
that person’s fingerprint is sufficiently close to the ith fingerprint in database to warrant
access, without getting to know fingerprint templates. On the other hand, the server does
not get to know which person was trying to enter.

Private database updating. Third, we study private database updating where on client’s
private index i and a private secret j, the server updates the ith element of his database to j.
It is assumed that the database is encrypted, so that the server does not know any elements of
the database, nor which database element was updated. Let n be the database size. The first
non-trivial solution to this problem, with Θ(

√
n) communication, was proposed in Crypto

2007 [BKOS07]. Their solution was based on bilinear maps. We propose another non-trivial
solution that, for u updates, achieves amortized communication complexity Θ(u2 log2 n); this
improves upon the protocol of [BKOS07] for u = o( 4

√
n/ log4 n). Importantly, this protocol

only uses a length-flexible additively homomorphic cryptosystem and no bilinear pairings.
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Moreover, one can combine ideas of the two last protocols to let the server to store a
value of some function of the previous value of the database element and of a secret input of
the client. To the best of our knowledge, this problem has not been tackled in the literature
at all.

Other applications. Finally, because under many well-known cryptographic assumptions
there exist say primitives for computing public-key encryption, signing, collision-resistant
hash functions and secret-key encryption in complexity class NC1 ⊆ L/poly, one can
communication-efficiently implement such primitives on encrypted data.

2 Preliminaries, Related Work, Cryptographic Tools

Branching Programs. A branching program/binary decision program on the variable
set Xn = {x1, . . . , xn} consists of a directed acyclic graph G = (V, E) whose inner nodes
(nonsink nodes) have outdegree 2 and a labeling of the nodes and edges. The inner nodes get
labels from Xn and the sinks get labels from {0, 1}. For each inner node, one of the outgoing
edges gets the label 0 and the other one gets the label 1. In a BP/BDD on Xn each node
v represents a Boolean function fv defined in the following way. The computation of fv(a),
a ∈ {0, 1}n, starts at v. At node labeled by xi, the outgoing edge labeled by ai is chosen.
Then fv(a) is equal to the label of the sink which is reached on the considered path. In an
ordered BDD, an order of the labels is chosen, and any node on ith level is labeled by the
ith label.

It is known that any Boolean formula f : {0, 1}n → {0, 1} can be computed by a branch-
ing program of size (1 + o(1))2n/n [BHR95], and that every formula of size ` can be trans-
formed to a branching program of size O(`1+ε) for an arbitrary ε > 0 [Gie01]. In particular,
a language (or a Boolean function) has a polynomial-size branching program iff it belongs
to the complexity class L/poly.

Denote by size(f) the minimal size of any branching program computing f . See [Weg00]
for an extensive coverage of branching programs.

Public-Key Cryptosystems. Let pkc = (gen, enc, dec) be a length-flexible additively-
homomorphic public-key cryptosystem [DJ01], where for every integer s > 0, encs

pk(m) maps
a plaintext from some set Ms to a ciphertext in some set Ms+1. In the case of [DJ01],
Ms = Zs

N for a large prime N , and thus the plaintext length is sk while the ciphertext length
is (s+1)k bits. (In some other length-flexible cryptosystems, the resulting ciphertext is longer,
i.e., (s + 2)k bits in [DJ03].) Recall that in such a cryptosystem, encs

pk(m1) · encs
pk(m2) =

encs
pk(m1 +m2), and moreover, encs

pk(m) is a valid plaintext of encs+1
pk , so that one can legally

multiple-encrypt messages as say in encs+2
pk (encs+1

pk (encs
pk(m))).

In the IND-CPA game, the challenger first generates a random (sk, pk)← gen, and sends
pk to the attacker. Attacker chooses two messages m0, m1 and a length parameter s, and sends
them to the challenger. Challenger picks a random bit b, and sends a ciphertext encs

pk(mb) to
attacker. Attacker outputs a bit b′, and wins if b = b′. A public-key cryptosystem is IND-CPA
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secure if the probability that any polynomial-time attacker wins in the IND-CPA game is
negligibly different from 1/2.

In the α-IND-LFCPA game [Lip05], the challenger first generates a random (sk, pk) ←
gen, and sends pk to the attacker. Attacker chooses α message pairs mi0, mi1 and length
parameters si, and sends them to the challenger. Challenger picks α random bits bi, and
sends ciphertexts encsi

pk(mibi
) to attacker. Attacker outputs α bits b′i, and wins if bi = b′i for

at least one i. A public-key cryptosystem is α-IND-LFCPA secure if the probability that
any polynomial-time attacker wins in the α-IND-LFCPA game is negligibly different from
1− 1/2α.

We will implicitly assume the existence of a function compress that, given encs′

pk(m), pk,

s′ and s for s′ ≥ s, returns encs′

pk(m). Such a function exists for the cryptosystem from [DJ01]
as shown in [Lip05]. In particular, in this case the α-IND-LDCPA assumption can be clearly
reduced to the IND-CPA assumption.

Computationally-Private Information Retrieval And Oblivious Transfer. In a 1-
out-of-n computationally-private information-retrieval protocol,

(
n
1

)
-CPIR, for `-bit strings,

the client has a private input i ∈ Zn and the server has a database D = (D0, . . . , Dn−1).
The client wants to retrieve Di. A CPIR protocol is usually required to be client-private
in the sense of indistinguishability, i.e., that a malicious server cannot distinguish queries
corresponding to any two indexes i1, i2. An oblivious transfer protocol provides additionally
server-privacy.

In [Lip05], Lipmaa proposed the next basic
(
2
1

)
-CPIR protocol for `-bit strings. Let pkc =

(gen, enc, dec) be a length-flexible additively homomorphic public-key cryptosystem. Let s
be an integer such that sk ≥ ` ≥ (s − 1)k. For i ∈ {0, 1}, client sends a new public key
pk and c ← encs

pk(i) to server, who replies with d ← (encs
pk(1)/c)

D0 · cD1 . If i ∈ {0, 1} then
clearly d = encs

pk(D0(1− i) + D1 · i) = encs
pk(Di).(

n

1

)
-CPIR By Using Kushilevitz-Ostrovsky Recursion. Kushilevitz and Ostro-

vsky [KO97] proposed a generic protocol for recursively computing
(

n
1

)
-CPIR. In the first

step of recursion, server’s original database of size n is divided into n/m pieces of m ele-
ments, where the value m is carefully chosen. Next, a more basic two-message

(
m
1

)
-CPIR

is applied to every piece. The second messages of the
(

m
1

)
-CPIR protocols are, instead of

being sent back to the client, stored at server as an intermediate database of smaller size
n/m (but longer string-length). Then a two-message

(
n/m

1

)
-CPIR protocol is applied to this

database. Next, the same step is applied recursively, with the intermediate database of size
n/m being divided into smaller and smaller chunks. The server only returns the answer of
the final CPIR when her database has been reduced to contain a small number of relatively
long elements.

Kushilevitz and Ostrovsky used a relatively inefficient basic CPIR protocol that was based
on the difficulty of the quadratic residuosity problem. A more efficient basic CPIR protocol
was proposed by Stern [Ste98] who used a recently proposed additively homomorphic cryp-
tosystem. Finally, Lipmaa [Lip05] used a length-flexible additively homomorphic cryptosys-
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Fig. 1. Lipmaa’ CPIR is based on a complete OBDD

tem [DJ01] to construct a very efficient basic
(
2
1

)
-CPIR protocol for `-bit database elements.

The crucial feature of Lipmaa’s basic CPIR protocol is that there the server’s communica-
tion grows only additively, which makes it possible to achieve log-squared communication in
the final

(
n
1

)
-CPIR protocol, by applying log n recursive layers of the Kushilevitz-Ostrovsky

basic recursion. In comparison, the protocols from [KO97,Ste98] constructed a basic
(

m
1

)
-

CPIR protocol with multiplicative length expansion, which resulted in sublinear but still
superpolylogarithmic communication for the final

(
n
1

)
-CPIR protocol.

Lipmaa’s
(

n

1

)
-CPIR Protocol. Now, let t := dlog ne. In Lipmaa’s

(
n
1

)
-CPIR proto-

col [Lip05] for `-bit strings, see Fig. 1, the client sends to the server encs+j
pk (σj) for all bits

σj of his index σ =
∑t−1

j=0 σj2
j. Server’s input is a database D = (D0, . . . , Dn−1). We also

denote Di by Dit−1,...,i0 . In this protocol, server’s computation can be seen as the cryp-
tocomputing of a complete ordered binary decision diagram (OBDD), where at the ith
level, the server branches on the value of σi. The leafs are labeled by Di, where Dit−1,...,i0

is at the leaf that corresponds to the branchings made according to tests [σj =? ij] be-
ing true. At the every node on the jth level, the server computes Lipmaa’s

(
2
1

)
-CPIR on

client’s “message” cj = encs+j
pk (σj) and “database” b0, b1, the server’s “message”. That is,

given cj = encs+j
pk (σj) and two inputs b0, b1 to this node, the server computes the value

(encs+j
pk (1)/cj)

b0 · cb1
j = encs+j

pk (σj · b1 + (1− σj) · b0) = encs+j
pk (bσj

). This value is then used as
an input at the level j − 1.

At the end of Lipmaa’s
(

n
1

)
-CPIR protocol, the server obtains the value

encs+t
pk (encs+t−1

pk (. . . encs
pk(Dσt−1,...,σ0) . . . )) ,

and sends it to the client. The client uses the secret key to multiple-decrypt server’s message.

Semisimulatable Security. Within this work we are using the convention of many previous
papers on oblivious transfer protocol [AIR01,Lip05] that only require privacy in the malicious
model. Various papers, e.g., [FIPR05,IP07], also recommend to use this convention for other
cryptographic protocols. According to this convention, client’s privacy is guaranteed in the
sense of indistinguishability, while server’s privacy is guaranteed in the sense of simulatability.
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This assumption makes it possible to design two-message CPIR protocols that are both
communication and computation-efficient.

We now give a definition of this notion for a wider class of two-message protocols. For
client-privacy, a probabilistic polynomial-time server is required not to be able to distinguish
between client’s messages corresponding to any two client’s inputs σ0 and σ1, possibly chosen
by himself. For server-privacy, we require the existence of a simulator that, given client’s
message and client’s legitimate output corresponding to this message, generates server’s
message that is (statistically) indistinguishable from server’s message in the real protocol.
A protocol is semisimulatably private if it is both client-private and server-private according
to these definitions.

3 Universal Cryptocomputing Method

In this section, we describe a concrete universal cryptocomputing protocol, based on Lip-
maa’s efficient

(
2
1

)
-CPIR, and on an arbitrary branching program [Weg00] implementing the

functionality, by following earlier work by [IP07]. Because we only use a
(
2
1

)
-CPIR, our ex-

position is simpler than the more general exposition of [IP07] with almost straightforward
security proofs. Moreover, we allow—and prove that this is correct—the client and the server
to implement many different branching programs, and to share client’s first round message
between several protocols.

Universal Cryptocomputing. Recall that Lipmaa’s
(

n
1

)
-CPIR protocol in essence crypto-

computed a complete ordered binary decision diagram (OBDD). By using a complete OBDD,
one can clearly cryptocompute an arbitrary function. As shown in [IP07], one can general-
ize this computational process to an arbitrary branching program, where at every node
one branches by using an arbitrary but fixed (Boolean) encrypted input of the client. (The
concrete protocol of [IP07] is slightly different.) The leaf values of the branching program
correspond to server’s inputs. Let P be the corresponding branching program, length(P ) its
length (i.e., the depth) and size(P ) its size. At every node of the branching program, given
input values b0, b1, and a (length-flexible additively homomorphic) encryption of some bit σ,
the output value of the node will be a (length-flexible additively homomorphic) encryption
of bσ. The output of the branching program is equal to a length(P )-times encryption of an
input, selected by the encrypted client inputs.

Now, let ` be the output length of the functionality. Then, the client must submit her n in-
puts in a length(i)-times encrypted form, where length(i) is the largest depth at which the in-

put variable σi is used, i.e., as enc
s+length(i)
pk (· · · encs

pk(σi) · · · ). (Recall that given encs+1
pk (m), one

can cryptocompute encs
pk(m) [Lip05], thus one does not have to submit the values encj

pk(m)
for several different j-s.) Thus client-communication is upper-bounded by

∑
i(length(i)+s+

1)k ≤ n · (length(P ) + s + 1)k ≤ n · (length(P )k + ` + k). Server-communication consists of
one length(P ) times encrypted message of length (length(P )+s+1)k ≤ (length(P )+1)k + `.
Server’s computation is linear in size(P ). (Here and in the following we assume that the
server does a unit amount of work at every node.) Therefore, every functionality f has a
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cryptocomputing protocol with total communication ≤ (n + 1)((length(P ) + 1)k + `), where
P is a branching program that implements f .

If we assume that the branching program is read-once (i.e., at every path there is at most
one branch by every variable) then length(P ) ≤ n and the total communication is upper-
bounded by (n + 1)((n + 1)k + `). More generally, if the branching program is read-ρ-times
then the total communication is upper-bounded by (n + 1)((ρn + 1)k + `).

Finally, note that client is completely oblivious of the shape of the branching program,
except the length of it. He just encrypts his input bits by using a length parameter that
depends on the length of the branching program (and on the output length `), and then
receives back a multiple-encryption of the output. This in particular means that client’s
inputs can be re-used in many different branching programs, and that the shape of the
branching program can depend on server’s inputs.

Homomorphic Add-Ons. Because one uses a homomorphic cryptosystem, the server can
potentially apply homomorphic operations to the leafs of the branching program. For exam-
ple, she can let the leaf to be an encryption of 0 iff a certain client’s input decrypts to some
value held by her. Or, it can be equal to the ciphertext of a sum of certain client’s inputs
with certain server’s inputs.

Non-Binary Branching Programs And Generalisation. One can implement non-
binary branching programs by plugging in suitably defined CPIR protocols at the inner
nodes. This does usually not improve the communication significantly, and on the other
hand, makes security proofs more complicated. As a plus-side, however, using suitable

(
n
1

)
-

CPIR protocols in every inner node of the branching program makes it possible to generalise
the approach from using length-flexible cryptosystems to the existence of suitable CPIR
protocols. See [IP07] for more details.

4 Client-Privacy: Statement And Proof

We will prove the security in the same semisimulatability model that is standard for at least
two-message oblivious transfer protocols, see Sec. 2. That is, we require that for a server
it should be computationally hard to distinguish between client’s messages corresponding
to two client’s inputs, chosen by the server herself. On the other hand, for server’s privacy,
there should exist a simulator that, given client’s (possibly incorrectly formed) input and
honest server’s output in ideal world after receiving this input, outputs a message from a
distribution that is statistically close to the message of honest server that corresponds to
client’s message.

As in the case of oblivious transfer protocols, we are first giving a proof of client-privacy
and then showing how one can add server-privacy to it without almost any additional cost
by using universal methods. However, while the proof of client-privacy (presented next) does
not depend significantly on the concrete protocol, the proof of server-privacy will be given
separately for every protocol.
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Client-Privacy Proof. The server only sees (say α) homomorphically encrypted values,
and thus client-privacy is guaranteed by the α-IND-LFCPA security of the cryptosystem.
Because of the existence of the compress function, client’s privacy follows from the IND-CPA
security. More precisely, the server sees up to n ciphertexts enc

sj

pk(σj). Let s = minj sj. By
using the compress function, the attacker computes encs

pk(σj) for all j.

5
(n
1

)
-CPIR Protocol with Less Than n Public-Key Operations

Assume that ` = 1 and the database size is 2n, i.e., that the server’s database consists of 2n

bits. In this case, we can pose CPIR protocol as follows. Assume client has an input i ∈ {0, 1}n
and the server has a Boolean function fD : {0, 1}n → {0, 1} such that fD(i) = Di. The
client needs to retrieve fD(i). It is known that any Boolean function can be computed by a
branching program of size (1+o(1))2n/n that has length Θ(n+log n) [BHR95]. Computation
of such a branching program may take 2n time, but evaluation of the branching program on
concrete input i takes less than 2n operations.

In particular, when applying the above-described universal cryptocomputing method, one
needs to do size(P ) public-key operations. Because in this case size(P ) = (1+ o(1))2n/n, the
number of public-key operations is less than 2n, the size of server’s database, for any possible
database, i.e., Boolean function D. To the best of our knowledge, this is the first

(
2n

1

)
-CPIR

with this property.

Achieving Server-Privacy. Recall that an
(

n
1

)
-CPIR protocol that also achieves server-

privacy is called an
(

n
1

)
-OT protocols. There are many existing CPIR-to-OT transforma-

tions [NP99,AIR01,Kal05,Lip05,IP07,LL07]. In the concrete case, because we are interested
in computation-efficient, we would recommend the use of the transformation from [NP99].

Computation-Efficient CPIR for `-Bit Strings. Let f : {0, 1}n → {0, 1}`. By the upper
bound of [BHR95], clearly size(f) ≤ ` · (1 + o(1))2n/n. By following the proof of [Weg00],
one can easily show that size(f) ≤ (3 + o(1))2n+log `/(n + log `).

Example Application. Many real databases are naturally quite redundant. In addition,(
n
1

)
-CPIR is often used as a part of other cryptographic protocols. As an example, in [AJL04],

the authors studied the next question: server has a bit b =∈ {0, 1}. Client should learn a
coin toss b′ with output Pr[b′ = b] = p/n and Pr[b′ = 1 − b] = 1 − p/n for fixed integers p
and n. A solution proposed in [AJL04] required the server to construct a random Boolean
database D = (D1, . . . , Dn), such that exactly p entries of the database are equal to b. After
that, the client performed an

(
n
1

)
-OT protocol to obtain a random entry from D. Clearly D

is highly structured and thus by applying the new
(

n
1

)
-CPIR protocol, one can often get a

huge win in computation compared to any existing
(

n
1

)
-CPIR.
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Fig. 2. Extended CPIR based on a complete OBDD for CPIR and arbitrary brancing programs to compute the
functionality

6 Extended CPIR

6.1 Protocol And Applications

Preliminaries. In [BCPT07] the authors considered the extended CPIR, where one can
obtain, instead of the database element Dσ itself, some function f(j, Dσ) of client’s second
input and the database element. The authors proposed efficient solutions for equality (based
on homomorphic encryption) and Hamming weight (based on 2-homomorphic encryption).

New Protocol. One can clearly compute any function by using the new methodology.
More precisely, assume that client has two inputs i and j, and server has a database D =
(D0, . . . , Dn−1). The client must obtain f(j, Di). Intuitively, we construct a protocol for
extended CPIR by plugging in branching programs Pf,j for computing f(j, Dσ), instead of
just a leaf with Dσ, at the bottom of the complete OBDD for computing the CPIR itself.
The resulting protocol has length t + maxj length(Pf,j). (See Fig. 2.)

Extensions. One can further optimize this solution by using non-generic techniques. First
of all, the top OBDD can be directly replaced by any secure CPIR protocol, like the protocol
of Gentry and Ramzan [GR05]. Second, based on the fact that all computation uses homo-
morphic encryption, one can use homomorphic operations at the bottom of the branching
program. For example, to compute equality f(j, Dσ) = [j =? Dσ], one can input as leaf
the values ?(j −Dσ), where ? denotes a suitable random value (a random group element if
Elgamal is used, or a slight variation of it when Paillier/Damg̊ard-Jurik is used [LL07]).

Examples. As an example, suppose that the client wants to establish whether j > Dσ,
j = Dσ or j < Dσ, where all values are `-bit long. One can construct a branching program
for this with length ` and size 2` + 1. Thus without optimisation, this method results in a
program with communication ≈ (n+1)((t+`)k+`) = Θ(ntk+n`) and computation Θ(n ·`).
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However, if one uses the Gentry-Ramzan CPIR protocol, the total communication becomes
n(`k + `) + O(log n + `k + ` + k).

As another example, suppose that the client wants to establish whether wh(j, Dσ) < s,
where all values are `-bit long and wh denotes the Hamming distance. One can con-
struct a branching program for this with length ` and size

∑`
j=0

∑s
i=0

(
j
i

)
=

∑s
i=0

(
`+1
i+1

)
=∑s+1

i=0

(
`+1

i

)
− (` + 1). Now, if s < `/2 then

∑s+1
i=0

(
`+1

i

)
is approximately equal to (` −

s)
(

`+1
s+1

)
/(` − 2t − 1). Thus without optimisation, this method results in a program with

communication ≈ (n + 1)((s + `)k + `) = Θ(nsk + n`) and computation Θ(n ·
(

`+1
s+1

)
). How-

ever, if one uses the Gentry-Ramzan CPIR protocol, the total communication becomes again
n(`k + `) + O(log n + `k + ` + k).

7 Private Database Updating

7.1 Protocol And Applications

Preliminaries. Assume that client has outsourced his database to the server. Due to the
privacy requirements, the database is encrypted. We would like the client to be able to
update the database so that the server does not know which element was changed. That is,
client has (σ, ν), server has an encrypted database D = (D0, . . . , Dn−1)). The client has no
output, while server obtains a new encrypted database D′ such that D′

i and Di decrypt to
the same value if i 6= σ, while D′

σ decrypts to ν. It is trivial do construct a protocol for
this with Θ(n) communication. For example, the client and the server first execute a CPIR
protocol, so that the client obtains the current value of Dσ. Then client forwards to the
server n ciphertexts cj, where cσ decrypts to ν −Dσ and other cj-s decrypt to 0. The server
multiplies encryptions of Dj with the new ciphertexts cj. The first non-trivial protocol for
this task was recently proposed in [BKOS07]. Essentially, a variant of it uses bilinear pairings
to send 2

√
n ciphertexts c′j and c′′j —such that the decryption of cj is equal to the product of

decryptions of cj and c′′j —instead of n ciphertexts.

New Protocol. By using our general methodology, we can achieve amortised communica-
tion u2 · log2 n if the number of updates is upper-bounded by u. The idea follows. Client’s
inputs are (σt−1, . . . , σ0; j). Server’s input is an encrypted database D. The server runs n
branching programs Pi in parallel, where Pi returns Di if i 6= σ, and j otherwise. (See
Fig. 3.) Let the new database be D′. Instead of returning D′ to the client, the server stores
D′ instead of D.

Assume that database elements have length `. Then before any updates the server stores a
database with elements of size (s+1)k where s is defined as usually. The first update protocol
has communication complexity ≤ (t + 1) · (length(P )k + `) = (t2 + t) · k + (t + 1)`. The new
database has elements of size (s+t+1)k ≤ (t+1)k+` and thus the next update protocol has
communication complexity (t2+t)·k+(t+1)(tk+k+`). Analogously, the ith update protocol
has communication complexity (t2 + t) ·k+(t+1)(itk+ ik+ `), and thus the first u protocols
have total communication complexity u(t2 + t) · k + (t + 1)

∑u−1
i=0 (itk + ik + `) = O(t2u2k).
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Fig. 3. A branching program that returns j if σ = 6, and D6 otherwise

Thus this protocol is more communication-efficient than the protocol of [BKOS07] if u ≤
4
√

n/ log4 n. Moreover, it does not use pairings. In fact, server’s computation is O(n log n).

Security. Client-privacy follows from the previous general proof. Notice that in this case
we are not interested in server-privacy at all.

8 Open Questions

The presented protocols use Lipmaa’s underlying
(

n
1

)
-CPIR protocol. They could be made

more communication-efficient if in this CPIR protocols, client’s first message’s length would
not depend on `, the length of database elements. One could hope to achieve this by design-
ing a length-flexible public-key cryptosystem where one can compute encs+1

pk (m) given only
encs

pk(m). This would enable to get rid of the dependency from length(P ) in communication
and thus decrease total communication of the protocols from O(n2) to O(n) where n is the
length of client inputs.

Can one use homomorphic properties more extensively? For example, if the client encrypts
values bi, it’d be nice if the server could branch on arbitrary sums

∑
bi. This however needs

an existence of a “suitable” one-out-of-many CPIR where the input is not a vector of bit-
encryptions (as in Lipmaa’s CPIR) but an encryption of the index. If such CPIR could be
constructed, one could in fact get exponential decrease of the branching program length in
some cases. For example, if server’s output has to be the index of the first one in client input
set, the server can do a binary search for it:

∑
i<n/2 bi = 0 iff the first 1 is in the second half,

etc.
Construct even more non-trivial examples of usefulness.

References

[AIR01] William Aiello, Yuval Ishai, and Omer Reingold. Priced Oblivious Transfer: How to Sell Digital Goods. In
Birgit Pfitzmann, editor, Advances in Cryptology — EUROCRYPT 2001, volume 2045 of Lecture Notes
in Computer Science, pages 119–135, Innsbruck, Austria, May 6–10, 2001. Springer-Verlag.

[AJL04] Andris Ambainis, Markus Jakobsson, and Helger Lipmaa. Cryptographic Randomized Response Tech-
niques. In Feng Bao, Robert H. Deng, and Jianying Zhou, editors, Public Key Cryptography 2004, volume
2947 of Lecture Notes in Computer Science, pages 425–438, Singapore, March 1–4, 2004. Springer-Verlag.



On Some Open Questions in Communication-Efficient Cryptocomputing 13
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