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Abstract We polish a recent cryptocomputing method that makes it possible to cryptocompute every language in L/poly.
We give several nontrivial applications, including: (a) A CPIR protocol with log-squared communication and sublinear server-
computation by giving a secure function evaluation protocol for Boolean functions with similar performance, (b) A protocol
that makes it possible to compute (say) how similar is client’s input to an element in server’s database, without revealing
any information to the server, (c) A protocol for private database updating with low amortized complexity.
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1 Introduction

A branching program [Weg00] is a fanout-2 directed acyclic graph where the internal nodes are labeled by variables
from some variable set {ι1, . . . , ιn}, the sinks are labeled by `-bit strings and the two outgoing edges of every internal
node are respectively labeled by 0 and 1. Every source and every assignment of the variables corresponds to one path
from this source to some sink as follows. The path starts from the source. If the current version of path does not
end at a sink, test the variable at the endpoint of the path. Select one of the outgoing edges depending on the value
of this variable, and append this edge and its endpoint to the path. If the path ends at a sink, return the label of
this sink as the value of the branching program. A branching program that has m sources computes some function
f : {0, 1}n → {0, 1}m`; m = ` = 1 by default. It is well known that the class of languages that can be computed by
polynomial-size branching programs is equal to the class L/poly of languages that can be computed by non-uniform
Turing machines in logarithmic space [Cob66,Weg00].

In a (single-database) (N, 1)-computationally-private information retrieval (CPIR) protocol [CGKS95], the client
has a query ι ∈ {0, . . . , N − 1} and the server has a database D = (D0, . . . , DN−1) of `-bit strings for some `. At
the end of the protocol, client obtains Dι while the server remains completely clueless about the value of ι. One can
privately compute any language L in the class L/poly by first fixing the input length n and then designing an efficient
branching program for this length. After that, the local selector/branch operation at every node of the branching
program is implemented by using a suitable two-message (2, 1)-CPIR protocol. More precisely, the client sends to
the server the first message Qi of the (2, 1)-CPIR protocol corresponding to client’s every input variable ιi. At every
node, the server sets a secondary label of the incoming edge of this node to be equal to the second message of the
(2, 1)-CPIR protocol that uses Qi and the database that consists of two labels of the outcoing edges of the same node.
(The secondary label of the incoming edge of a sink is just equal to the label of this sink). The secondary label of
the incoming edge of the source is then returned to the client who recursively applies the local decoding procedure
to this message to obtain the value of the branching program.

This PBP (private branching programs) protocol was first proposed in [IP07]. (The (N, 1)-CPIR protocols
by [KO97,Ste98,Lip05] use exactly the same idea to implement a private version of a complete m-ary (multi-terminal)
ordered decision tree though also this was probably first explicitly stated in [IP07].) Clearly, the PBP protocol is
client-private because the server only sees first messages of n different (2, 1)-CPIR protocols. See Sect. 3 for a precise
description of the PBP protocol.

Currently, Lipmaa’s (2, 1)-CPIR protocol [Lip05] is the most efficient known (2, 1)-CPIR protocol for the purpose
of the PBP protocol. If Lipmaa’s protocol is used, the communication of PBP is linear in the size of client’s input
and in the length of the branching program, and assuming the RAM model, server’s online computation is linear in
the size of the branching program. Importantly, the PBP protocol only reveals the length (that is, the depth)—but
not the shape or even the size—of the branching program to the client. This makes it possible to use the PBP to solve
problems where client’s input can be an arbitrary n-bit string and server’s input is a function f : {0, 1}n → {0, 1}m`
from some set F such that all functions from F can be computed by branching programs of polynomial size and
(possibly) small length.
? Third public draft, May 15, 2008. This draft has been public solely for introducing the ideas to the public. Correlation between this

draft and final publications may be very small.
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Our Contributions. While the PBP protocol was proposed in [IP07], the autors did not propose many concrete
applications. We aim to popularize the PBP protocol by solving a few well-known problems in cryptographic protocol
design that are interesting in their own right. Note that with the next we kill two birds with one stone. First,
we solve long-standing open problems in their own areas. Second, we show that the PBP protocol is useful also in
practice: namely, almost direct applications of the PBP protocol—combined with results from the theory of branching
programs—result in protocols that are more efficient than previously known protocols for the same tasks. This
phenomenon is not common say with Yao’s protocol [Yao82] that is mostly much less efficient than specialized
protocols for the same task. (A comparison with Yao’s protocol is also given in Sect. 3.)

Computation-Efficient CPIR. It is well-known that computation-efficiency is the main bottleneck in deploying (N, 1)-
CPIR in practice; this has motivated quite some attention on this aspect of the CPIR protocols, see e.g. [CS07]. In all
previous protocols, the server needs to do Ω(N) online operations and it has been a long-standing open problem to
prove or disprove that this is also a lower bound for sublinear-communication CPIR protocols. We solve this problem
in negative in the case ` = 1. Namely, we construct a (N, 1)-CPIR protocol where the online computational complexity
of the server depends heavily on the concrete database itself and is upperbounded by O(N/ logN) online public-key
operations in the worst case. This upperbound Θ(N/ logN) follows from the upperbound on the size of ordered
binary decision diagrams to compute an arbitrary Boolean function [Sha49,BHR95]. Moreover, one can implement
secure function evaluation of any f : {0, 1}n → {0, 1} with communication O(n2) and computation O(2n/n); the
latter upperbound is also tight for all but an expontentially small fraction of Boolean functions [Weg00]. Thus, we
also have a worst-case lowerbound for the online computation of CPIR for all but an exponentially small fraction of
databases. The offline computational complexity is also O(N/ logN) while the communication is log-squared in N . We
achieve this by writing down a branching program for the function fD, fD(ι) := Di and then using the PBP protocol
to secure it. One can transform the CPIR protocol into an (N, 1)-oblivious transfer protocol, where also server’s
privacy is protected, by say using a computation-efficient transformation of [NP99], or a communication-efficient
transformation of [NN01].

Extended CPIR. Second, we study extended (N, 1)-CPIR, a primitive recently defined in [BCPT07]. In extended
CPIR, the client submits a private index ι and a private secret j to the server, who replies with the value f(j,Di) of
a predetermined function f on j and server’s database ιth element. While [BCPT07] only proposed extended CPIR
protocols for a few simple functions, we show that by using the PBP protocol one can implement a large class of
functionalities in polynomial-time and log-squared communication. Our results on extended CPIR can for example
be applied in the next setting in biometric authentication that is known as fuzzy private matching [CH08]. The
client of the extended CPIR protocol collects a fingerprint j of some person, together with her claim that she is
the ιth employee. Then the client contacts a server who stores encrypted fingerprint templates of all employees. At
the end of the protocol, the client gets to know that person’s fingerprint is sufficiently close to the ιth fingerprint
template in database to warrant access, without getting to know anything else. On the other hand, the server does
not get to know her fingerprint, or the value of ι. Assume that two fingerprints, represented as Boolean vectors
of dimension ` “match” if at least t of their coordinates match. By using the branching program for threshold
function proposed in [ST97] and the CPIR of [GR05], we get a fuzzy private matching program with communication
Θ(`2 log2 `/ log log ` log log log `+ logN)k and server-side computation Θ(N · ` log3 `/ log log ` log log log `).

Private database updating. Third, we study private database updating where on client’s private index ι and a private
secret j, the server updates the ιth element of his database to j. It is assumed that the database is encrypted, so
that the server does not know any elements of the database, nor which database element was updated. Let N be the
database size. The first non-trivial solution to this problem, with Θ(

√
N) communication, was proposed in Crypto

2007 [BKOS07]. Their solution was based on bilinear maps. We propose another non-trivial solution that, for u
updates, achieves amortized communication complexity Θ(u2 log2N); this improves upon the protocol of [BKOS07]
for u = o( 4

√
N/ log4N). Importantly, this protocol does not use bilinear pairings.

One can combine ideas of the two last protocols to let the server to store a value of some function of the previous
value of the database element and of a secret input of the client. To the best of our knowledge, this problem has not
been tackled in the literature at all.

Other applications. Because under many well-known assumptions there exist say primitives for computing public-
key encryption, signing, collision-resistant hash functions and secret-key encryption in the complexity class NC1 ⊆
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L/poly, one can communication-efficiently implement such primitives on encrypted data. It is however not clear
whether one is interested in communication-efficiency in such applications and thus we do not elaborate on this.
We mention a few other applications. For example, by using the PBP one can solve both Yao’s millionaire’s prob-
lem [Yao82] and the secure vector dominance problem for n-bit vectors with computation Θ(n) and communication
(n+ 1)(n+ 2)k = Θ(n2)k.

Many existing cryptographic protocols are based on the use homomorphic encryption and because of that, are
limited to cryptocomputing affine functions. A more recent trend is to use bilinear-map based cryptosystems [BGN05]
because they make it possible to cryptocompute quadratic functions. Because Lipmaa’s (2, 1)-CPIR protocol is based
on a length-flexible homomorphic cryptosystem, the PBP protocol also demonstrates that by such a cryptosystem, one
can cryptocompute a much larger class of functions. In particular, the PBP protocol uses only one application of such
cryptosystems (an efficient (2, 1)-CPIR protocol); an interesting open question is to find out the precise computational
power of length-flexible cryptosystems.

2 Preliminaries, Related Work, Cryptographic Tools

Notation. Within the paper, n denotes the length of client’s input ι. In CPIR-like applications, N denotes the
database size. All logarithms have base 2. Throughout the paper, the client is going to be a he and the server is going
to be a she.

Branching Programs. A branching program [Weg00] is a fanout-2 directed acyclic graph where the internal nodes
are labeled by variables from some variable set {ι1, . . . , ιn}, the sinks are labeled by `-bit strings and the two outgoing
edges of every internal node are respectively labeled by 0 and 1. Every source and every assignment of the variables
corresponds to one path from this source to some sink as follows. The path starts from the source. If the current
version of path does not end at a sink, test the variable at the endpoint of the path. Select one of the outgoing edges
depending on the value of this variable, and append this edge and its endpoint to the path. If the path ends at a
sink, return the label of this sink as the value of the branching program. A branching program that has m sources
computes some function f : {0, 1}n → {0, 1}`; m = ` = 1 by default.

In an ordered binary decision diagram (OBDD), an order π of the labels is chosen, and for any edge (u, v) ∈ E
it must hold that π(u) < π(v). A branching program is a decision tree if the underlying graph is a tree. For a
branching program P let len(P ) be its length (that is, the length of its longest path) and size(P ) be its size. Denote
by BP(f)/OBDD(f) the minimal size of any branching program/OBDD computing f . Clearly BP(f) ≤ OBDD(f).
It is known that any Boolean function f : {0, 1}n → {0, 1} has OBDD(f) ≤ (3 + o(1))2n/n [Sha49]; for n ≥ 16
this can be improved to OBDD(f) ≤ (2 + o(1))2n/n [BHR95] though in practice even then Shannon’s construction
is as efficient. For n ≥ 25, [BHR95] proved a precise upperbound BP(f) ≤ (1 + o(1))2n/n. The latter upperbound
is also tight because for all but an expontentially small fraction of 2−2n/2

of Boolean functions the size of the best
branching program is (1 − n−1/2)2n/n = (1 − o(1))2n/n [Weg00, Thm. 2.2.2]. A language (or a Boolean function)
has a polynomial-size branching program if and only if it belongs to the complexity class L/poly [Cob66], that is,
if it can be decided by a nonuniform log-space Turing machine. See [Weg00] for an extensive coverage of branching
programs.

Public-Key Cryptosystems. Let P = (G,E,D) be a length-flexible additively-homomorphic public-key cryptosys-
tem [DJ01], where for every integer s > 0, Espk(·) maps a plaintext from set Ms to a ciphertext in set Ms+1. In the
case of [DJ01], Ms = ZsN for a large prime N , and thus the plaintext length is sk while the ciphertext length is
(s + 1)k bits. (In some other length-flexible cryptosystems, the resulting ciphertext is longer, for example, (s + 2)k
bits in [DJ03].) Recall that in such a cryptosystem, Espk(m1) · Espk(m2) = Espk(m1 + m2), and moreover, Espk(M) is a
valid plaintext of Es+1

pk (·), so that one can legally multiple-encrypt messages as say in Es+2
pk (Es+1

pk (Espk(M))). We will
explicitly need the existence of a compression function C that, given Es

′
pk(M), pk, s′ and s for s′ ≥ s, returns Es

′
pk(M).

A compress function exists for the cryptosystem from [DJ01] as shown in [Lip05]: it just reduces Es
′

pk(M) modulo
|Ms+1|.

In the CPA game, the challenger first generates a random (sk, pk) ← G, and sends pk to the attacker. Attacker
chooses two messages m0,m1 and a length parameter s, and sends them to the challenger. Challenger picks a random
bit b, and sends a ciphertext Espk(mb) to attacker. Attacker outputs a bit b′, and wins if b = b′. A cryptosystem is CPA-
secure if the probability that any polynomial-time attacker wins in the CPA-game is negligibly different from 1/2. Now,
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because of the existence of C, a CPA-secure length-flexible cryptosystem remains CPA-secure also when the challenger
can send many message pairs (mj0,mj1) and length parameters sj , and has to guess b after seeing encryptions of all mjb

under the length parameters sj . This so-called LFCPA-security [Lip05] of the cryptosystem is crucial for the efficient
PBP protocol as defined in the next section. The length-flexible additively-homomorphic public-key cryptosystem by
Damg̊ard and Jurik from [DJ01] is CPA-secure under the Decisional Composite Residuosity Assumption [Pai99]. It
also has the compress function C.

Computationally-Private Information Retrieval. In a 1-out-of-N computationally-private information-retrieval
protocol, (N, 1)-CPIR, for `-bit strings, the client has an index ι ∈ {0, . . . , N − 1} and the server has a database
D = (D0, . . . , DN−1). The client obtains Di. We say a CPIR protocol Γ is “friendly” if it satisfies the next three
assumptions:

– the protocol Γ has two messages, a query Q(`, ι) from the client and a reply R(`,D,Q) from the server, such that
the stateful client can recover Dι by computing a local function A(`, ι,R(D,Q))

– the same protocol is uniform in `, that is, it can be easily modified to work on other values of `.
– there exists a compress function C that maps Q(`′, ι) to Q(`, ι) for any `′ ≥ ` and ι.

More formally, Γ = (Q,R,A,C) is a quadruple of probabilistic polynomial-time algorithms, with
A(`, ι,R(`,D,Q(`, ι))) = Dι, and C(`′, `,Q(`′, ι)) = Q(`, ι) for any `′ ≥ ` and ι. If the existence of C is not required we
also write Γ = (Q,R,A) even if C exists.

Lipmaa’s “Friendly” (2, 1)-CPIR Protocol [Lip05]. Let P = (G,E,D) be a length-flexible additively homomor-
phic public-key cryptosystem. Let s be an integer such that sk ≥ ` ≥ (s − 1)k, that is, s ← d`/ke. Client’s private
input is ι{0, 1}, server’s private input is D = (D0, D1). The client first generates a new key pair (sk, pk) ← G. The
client sends pk and

Q(`, ι)← Espk(ι)

to server, who replies with
R(`,D,Q)← (Espk(1)/Q)D0 · QD1 .

If ι ∈ {0, 1} then clearly R(`,D,Q) = Espk(D0 ·(1−ι)+D1 ·ι) = Espk(Dι). If P has a compress function then also Lipmaa’s
CPIR protocol has a compress function C. By using a hybrid argument it is easy to show that is safe for the client to
send polynomially many queries Q(ι)← Esi

pk(mi) encrypted by using the same public key pk. The important properties
of this “friendly” (2, 1)-CPIR protocol that make it efficient in our applications are that |Q(`, ·)| = sk+k ≈ `+k and
|R(`, ·, ·)| = sk + k ≈ `+ k.

(N, 1)-CPIR by Cryptocomputing The Complete OBDT. Kushilevitz and Ostrovsky [KO97] proposed a
generic protocol for recursively computing (N, 1)-CPIR for `-bit database elements. In the first step of recursion,
server’s original database of size N is divided into N/N ′ pieces of N ′ elements, for some N ′ � N . Next, a basic
two-message (N ′, 1)-CPIR protocol Γ ′ = (Q′,R′,A′) is applied to every piece. The second messages R′(`, ·, ·) of Γ ′ are,
instead of being sent back to the client, stored at server as an intermediate database of smaller size N/N ′ but longer
string-length |R′(`, ·, ·)|. Next, the same step is applied recursively, with smaller and smaller intermediate databases of
size N/(N ′)j of longer and longer bitlength being stored. The server only returns the answer of the final (N ′, 1)-CPIR
when her database has been reduced to contain N ′ (long) elements.

Kushilevitz and Ostrovsky used a relatively inefficient underlying (N ′, 1)-CPIR protocol Γ ′ that is based on the
difficulty of the quadratic residuosity problem. A more efficient (N ′, 1)-CPIR protocol, based on an arbitrary CPA-
secure additively homomorphic cryptosystem was proposed by Stern [Ste98]. Finally, Lipmaa [Lip05] proposed his
underlying (2, 1)-CPIR protocol that was described earlier. The crucial feature of Lipmaa’s (2, 1)-CPIR protocol is that
there |R(`,D,Q)| grows only additively in `, which makes it possible to achieve log-squared communication in the final
(N, 1)-CPIR protocol, by applying logN recursive layers of the Kushilevitz-Ostrovsky basic recursion. In comparison,
the protocols from [KO97,Ste98] constructed a basic (N ′, 1)-CPIR protocol with multiplicative length expansion,
which resulted in sublinear but still superpolylogarithmic communication for the final (N, 1)-CPIR protocol.



Private Branching Programs: On Communication-Efficient Cryptocomputing 5

σ1?

σ3?σ3?σ3?σ3?σ3?σ3?σ3?σ3?

σ2?σ2?

σ0?

σ1?

σ2? σ2?

D15D14D13D12D11D10D9D8D7D6D5D4D3D2D1D0

Figure1. Lipmaa’s CPIR is based on a complete ordered binary decision tree, for N = 2n = 16. In all figures of this paper, dotted lines
correspond to the branch 0 and solid lines to the branch 1

Lipmaa’s (N, 1)-CPIR Protocol. Lipmaa’s (N, 1)-CPIR protocol [Lip05] is an instantiation of the Kushilevitz-
Ostrovsky recursion with Lipmaa’s (2, 1)-CPIR protocol underlying it. For the sake of completeness, we will next give
its full description. Let t := dlogNe. Let (Q′,R′,A′) be Lipmaa’s (2, 1)-CPIR protocol as described earlier. Lipmaa’s
(N, 1)-CPIR protocol (Q,R,A) for `-bit strings is depicted by Fig. 1. Let client’s index be ι =

∑t−1
j=0 ιj2

j for ιj ∈ {0, 1}.
Server’s input is a database D = (D0, . . . , DN−1). We also denote Dι by Dιt−1,...,ι0 . First,

Q(`, ι) := {Q′(`+ (t− j)k, ιj)} = {Es+t−jpk (ιj)}

for j ∈ {0, . . . , t − 1}. Now, given Q(`, ι), server cryptocomputes a complete ordered binary decision tree, where
at the ith level, the server branches on the value of ιi. The leafs are labeled by Di, where Dit−1,...,i0 is at the leaf
that corresponds to the branchings made according to the tests [ιj =? ij ] being true. At every node on the jth
level, the server computes R′(` + (t − j)k, (b0, b1),Q′j) where Q′j := Q′(` + (t − j)k, ιj). That is, given Q′j and an
input pair (b0, b1) to this node, the server computes the value R′(`+ (t− j)k, (b0, b1),Qj) = (Es+t−jpk (1)/Qj)b0 · Qb1

j =

Es+t−jpk ((1− ιj) · b0 + ιj · b1) = Es+t−jpk (bιj ). This value is then used as an input at the level j − 1. Thus, at the end of
Lipmaa’s (N, 1)-CPIR protocol, the server obtains the value

R(`,D,Q(`, ι))←R′(`+ tk, (R′(`+ (t− 1)k, . . . ,Q′t−1),R′(`+ (t− 1)k, . . . ,Q′t−1)),Q′t)

=Es+tpk (Es+t−1
pk (. . .Espk(Dιt−1,...,ι0) . . . )) ,

and sends it to the client. The client multiple-decrypts server’s message and thus obtains Dι.

Cryptocomputing protocols. Similarly to a CPIR protocol, a (two-message) cryptocomputing protocol is a triple
(Q,R,A) of efficient protocols, where client has an input ι = (ι0, . . . , ιn−1) with ιj ∈ {0, 1}, server has an input
f : {0, 1}n → {0, 1}`. The client starts the protocol by sending Q := Q(`, ι) to the server, who replies by sending
R := R(`, f,Q) to the client. Finally, the client (who like always is assumed to be stateful) outputs A(`, ι,R) as his
private output.

Semisimulatable Security. Let Γ = (Q,R,A) be any (two-message) cryptocomputing protocol between a client and
a server. Within this work we use the convention of many previous papers on oblivious transfer [AIR01,Lip05] that
only require privacy in the malicious model. Various papers, e.g., [FIPR05,IP07], also recommend to use this model
for other cryptographic protocols. More precisely, client’s privacy is guaranteed in the sense of indistinguishability
(CPA-security), while server’s privacy is guaranteed in the sense of simulatability. This assumption makes it possible
to design two-message CPIR protocols that are both communication and computation-efficient.

We now give an informal definition of this notion for any cryptocomputing protocol, see
say [AIR01,FIPR05,Lip05,IP07] for more details. For CPA-security (that is, privacy) of the client, a malicious
nonuniform probabilistic polynomial-time server is required not to be able to distinguish between client’s messages
Q(`, ι0) and Q(`, ι1) corresponding to any two of client’s inputs ι0 and ι1. For server-privacy, we require the existence
of a simulator that, given client’s message Q∗ and client’s legitimate output corresponding to this message, generates
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server’s message that is (statistically) indistinguishable from server’s message R in the real protocol; here Q∗ does
not have to be correctly computed. A protocol is semisimulatably secure if it is both client-private and server-private.

Any CPIR protocol Γ is required to be client-private, that is, CPA-secure. Because of the existence of the C
function, if Γ is CPA-secure then it is also difficult to distinguish between any two polynomially large sets {Q(`j , ij0)}
and {Q(`j , ij1))}. Lipmaa’s (2, 1)-CPIR protocol [Lip05], when based on the Damg̊ard-Jurik cryptosystem [DJ01], is
CPA-secure under the Decisional Composite Residuosity Assumption [Pai99]. Clearly, any (N, 1)-CPIR protocol, that
is based on the Kushilevitz-Ostrovsky methodology, is CPA-secure if the underlying CPIR is CPA-secure. In particular,
Lipmaa’s (N, 1)-CPIR protocol [Lip05] is CPA-secure under the Decisional Composite Residuosity Assumption. A
semisimulatable

(
N
1

)
-CPIR protocol is also known as an (N, 1)-oblivious transfer protocol.

3 PBP: Cryptocomputing for L/poly

In this section, we describe the PBP (private branching programs) cryptocomputing protocol from [IP07] that general-
ized the cryptocomputing process, done in several previous CPIR protocols, to a branching program that computes an
arbitrary functionality. Our exposition is simpler than the more general exposition of [IP07] with almost straightfor-
ward security proofs. Moreover, the concrete protocol has some small differences compared to the protocol of [IP07]. In
this protocol, client has private input ι ∈ {0, 1}n, server has private input f : {0, 1}n → {0, 1}m` from some known set
F of functions, and client will receiver private output f(ι). The corresponding security definition, semisimulatability,
was given in Sect. 2.

Let Γ = (Q′,R′,A′,C′) be a “friendly” (2, 1)-CPIR protocol (see Sect. 2). Denote |Q(1)(`)| := |Q′(`, ι)| and
|Q(j+1)(`)| := |Q′(|Qj(`)|, ι)|. Moreover, define |R(j)(`)| := |R′(|Q(j)(`)|, ι,Q′)|. We assume that those values are well-
defined, that is, they do not depend on the concrete values of ι and D; because Γ has to be secure, this assumption
is reasonable. Let F = {f : {0, 1}n → {0, 1}m`} be a set of functions, where every f ∈ F can be computed by a
branching program Pf . Let len(F) := maxf∈F len(Pf ) and size(F) := maxf∈F len(Pf ). (As previously, ` is the length
of the sink labels in bits and m is the number of sources.)

The server executes the branching program Pf bottom-up, that is, from the sinks to the source. The input values
of the nodes just above the sinks are equal to the labels of the corresponding sinks. At every node of the branching
program, for which the two input values are already known but the output value is not yet known, the server uses Γ
to obliviously propagate one of the two input values upwards as the input value of the node at the other end of the
incoming edge. The server does this for all nodes in some (say breadth-first or depth-first) order, and then sends the
output values of the sources to the client. For every source, the client applies the decoding procedure A′ repeatedly
to obtain the label of the unique sink that is uniquely determined by this node and by client’s input ι. A complete
description of the PBP protocol follows:

1. Inputs: server knows a function f : {0, 1}n → {0, 1}m` from F and client knows ι ∈ {0, 1}n.
2. Offline phase: server computes an efficient branching program Pf for f that has m sources and has `-bit

sink labels; the client knows len(F). Let `′ := |Q(len(F)−1)(`)|.
3. Online phase:

(a) Client does: For j ∈ {0, . . . , n− 1}, set Qj ← Q′(`′, ιj). Send Q(`, ι)← (Q0, . . . ,Qn−1) to the server.
(b) Server does:

i. For sinks v of Pf set Rv to be their label, for other nodes v set Rv = ⊥.
ii. Do by following some ordering of the nodes:

A. Let v be some node with Rv = ⊥ with kids v0 and v1 that have Rv0 ,Rv1 6= ⊥; if no such node
exists then exit the loop.

B. Assume that v is labeled by ιi and edges from v to v0/v1 are labeled by 0/1.
C. Compute and store Rv ← R(`∗, (Rv0 ,Rv1),C(`′, `∗,Qi)), where `∗ ← max(|Rv0 |, |Rv1 |).
D. If v is a source then send Rv to the client.

(c) For any source v: Client computes her private output from Rv by applying A′ recursively len(F) times.

Theorem 1 (Security And Efficiency Of PBP). Assume that Γ = (Q′,R′,A′,C′) is a CPA-secure “friendly”
(2, 1)-CPIR protocol. Then F has a CPA-secure cryptocomputing protocol with communication n · |Q(len(F))(`)|+m ·
|R(len(F))(`)| and online computation size(F) (in the RAM model).

Proof. Security proof is trivial because the (2, 1)-CPIR is CPA-secure. Client’s communication is n · |Q(len(F))(`)| bits,
server’s communication is m · |R(len(F))(`)| bits. Server has to do some work per every node of Pf . ut



Private Branching Programs: On Communication-Efficient Cryptocomputing 7

Note that because of the compress function C, one does not have to submit the values Q(`, ιj) for several different
values of `. If C does not exist, the client may have to submit up to len(P ) different encryptions of every ιj , which
can increase the communication by a factor of len(P ).

Finally, the client is completely oblivious of the shape of the branching program, except the length of it. He just
encrypts his input bits by using a length parameter that depends on the length of the branching program (and on the
output length `), and then receives multiple-encryptions of the outputs. This in particular means that client’s inputs
can be re-used in many different branching programs, and that the shape of the branching program can depend on
server’s inputs. In general, this means that the function f itself can be seen as Bob’s secret input.

Corollary 1 (Efficient Instantiations of PBP). Assume that Γ = (Q′,R′,A′,C′) is a CPA-secure “friendly”
(2, 1)-CPIR protocol such that |Q′(`, ι)| = (1 + o(1))` and |R′(`,D,Q′)| = Θ(`). Let F be a set of functions f :
{0, 1}n → {0, 1}m` such that every f can be computed by a polynomial-size branching program Pf , i.e., belongs to
L/poly. Then F has a CPA-secure cryptocomputing protocol with linear-in-size(F) communication and polynomial-
in-n computation.

Proof. Because |Q′(`, ι)| = (1 + o(1))` we also have |Q(j)(`)| = (1 + o(1) · j)` for any polynomially large j, and thus
|R(j)(`)| = |R′((1 + o(1) · j)`,D,Q′)| = Θ((1 + o(1) · j)`). By Thm. 1, PBP has then communication Θ(n · `), where n
is client’s input size. Polynomial computation follows from the fact that every language in L/poly can be computed
by a family of polynomial-sized branching programs. ut

For the sake of concreteness we will assume throughout this paper that we are working with Lipmaa’s underlying
(2, 1)-CPIR, see Sect. 2; this protocol is currently the most efficient (2, 1)-CPIR for our purposes. It is in fact the only
known protocol that satisfies all the requirements of the previous corollary. A precise result follows:

Corollary 2 (PBP with Lipmaa’s (2, 1)-CPIR). Assume that the Decisional Composite Residuosity Assumption
is true [Pai99]. Let F be a set of functions f : {0, 1}n → {0, 1}m`, and let Pf be some m-source branching program
with `-bit sink labels that computes f . Then F has a CPA-secure cryptocomputing protocol with communication
upperbounded by (n+m)(`+ (len(F) + 2)k), and computation size(F) (in the RAM model). In particular, if len(F) is
polylogarithmic in n and size(F) is polynomial in n then also communication is polylogarithmic in n and computation
is polynomial in n.

Proof. Security proof is trivial because Lipmaa’s (2, 1)-CPIR is CPA-secure. Computation is also trivial. To calculate
the communication efficiency, note that Qj = Q′(`′, ιj) = E

d`/ke+len(F)
pk (ιj). Thus, |Qj | = |Ed`/ke+len(F)

pk (ιj)| = (d`/ke+
len(F) + 1)k ≤ `+ (len(F) + 2)k. Thus, client sends at most n · (`+ (len(F) + 2)k) bits. The output of the branching
program is equal to m len(F)-times encryptions of sink values, where the sinks are selected by the encrypted client
inputs ιj . Server’s communication consists of m len(F) times encrypted messages of length `+ (len(F) + 2)k. ut

Note that if m = ` = 1 then the communication can be upperbound by (n+ 1)(len(P ) + 2)k.
If the branching programs are read-once (that is, at every path there is at most one branch by every variable) then

len(F) ≤ n and the communication is upper-bounded by (n+m)(`+ (n+ 2)k) = Θ((n+m)(`+nk)). More generally,
if the branching programs are read-ρ-times then the communication is upper-bounded by (n + m)(` + (ρn + 2)k) =
Θ((n+m)(`+ ρnk)). Unfortunately, it is well-known that read-ρ-times branching programs are strictly weaker than
read-(ρ+1)-times branching programs [Tha98], and in particular it seems that there is no better than polynomial-size
upperbound on len(F) in general.

Simple Example: Secure Vector Dominance Problem. Assume that the client has a vector ι = (ι0, . . . , ιn−1)
and the server has a vector D = (D0, . . . , Dn−1). The client has to compute a Boolean function fD(ι) = 1 if ιj ≥ Dj for
all j, and fD(ι) = 0 otherwise. This can be done as follows. Let F = {fD : D ∈ {0, 1}n}. For arbitrary ι,D, fD(ι) can
be computed by a branching program PfD

that has size(PfD
), len(PfD

) = n. Thus assuming the use of Lipmaa’s (2, 1)-
CPIR protocol, there exists a protocol for secure vector dominance that has communication (n+1)(n+2)k = Θ(n2)k
and server-computation Θ(n) (in the RAM model). The just presented protocol that just follows general methodology
can be compared with more complex specialized protocols from say [YYWP08]. Clearly, one can also construct a PBP
protocol for Yao’s millionaire’s problem [Yao82] with exactly the same complexity.
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Optimizations. Homomorphic Add-Ons. Because we use a homomorphic cryptosystem, the server can apply homo-
morphic operations to the sinks of the branching program. For example, she can let the sink label to be an encryption
of 0 if and only if a certain client’s input decrypts to some value held by her — this can be done by using a private
equality test protocol [LL07]. Or, it can be equal to the ciphertext of an affine function of client’s inputs with constants
being chosen by the server. Note that this is interesting only if the branching program is allowed to have nonbinary
sink values. Randomization. Clearly, any f ∈ F can be a probabilistic function f : {0, 1}n × Random → {0, 1}m`
because the server can randomize the choice of Pf . This makes it possible to cryptocompute sets of functions in
RL/poly. Non-Binary Branching Programs And Generalization. One can implement N ′-ary branching programs by
plugging in suitably defined (N ′, 1)-CPIR protocols at the inner nodes. This does usually not improve the communi-
cation significantly, and on the other hand, makes security proofs more complicated. As a plus-side, however, using
suitable (N ′, 1)-CPIR protocols in every inner node of the branching program makes it possible to generalize the
approach from using length-flexible cryptosystems to the existence of suitable (2, 1)-CPIR protocols. See [IP07] for
more details.

Stronger Security Guarantees. One can use any of the known methods [NP99,AIR01,Kal05,Lip05,IP07,LL07]
to transfer the PBP protocol from a client-private protocol (that corresponds to using a computationally-private
information retrieval) to a private protocol (that corresponds to using an oblivious transfer protocol). “Semisimulated”
privacy in malicious model is a standard security notion for oblivious transfer protocols [AIR01,Lip05,LL07], and
similarly to [FIPR05,IP07] we advocate its use in general cryptocomputing. If needed, one can transform the protocols
into simulatably secure protocols of sublinear communication by using the general methodology proposed in [NN01].

Comparison to Other Cryptocomputing Protocols. The PBP protocol can be compared with some other
known protocols. By using Yao’s “garbled circuit” approach [Yao82], one can securely compute every function f in
BPP/poly by using communication that is linear in the circuit complexity C(f) of f . In the PBP protocol, one can
cryptocompute every function f in a (probably) smaller class L/poly but by using communication that is linear in
the branching program length len(f), which is often significantly smaller than C(f). Moreover, in the PBP protocol
only the length F is revealed, while in Yao’s protocol, the shape of the circuit is revealed. This may have an important
practical significance: in the extreme, F can consist of all functions that can be computed by a branching program of
fixed length.

The difference between classes BPP/poly and L/poly could be a largely theoretical concern: although
(BPP/poly) \ (L/poly) seems to contain interesting functionalities like extended Euclidean algorithm, decision
version of gcd and P-complete problems like CVP and linear programming, the circuit size for such problems is
usually large enough for the garbled circuit approach to become impractical.

A more valid concern is the computation cost, since in Yao’s protocol, one has to execute Θ(C(f)) private-key
operations and only Θ(n) public-key operations, where n is again client’s input size. On the other hand, in the PBP
protocol, one has to execute Θ(BP(f)) public-key operations. Because public-key operations are in general much more
costly than private-key operations, this may limit the use of the PBP protocol unless communication complexity is
of paramount importance. On the other hand, there are situations were communication really matters. For example,
one can construct a trivial (N, 1)-CPIR protocol for `-bit strings with communication N · ` by letting the server just
transfer the whole database to the client. Yao’s protocol has much larger communication and computation than this
trivial protocol, while the PBP protocol, as known from [Lip05], achieves log-squared communication. Moreover, the
garbled circuit protocol requires more than two rounds.

Sander, Young and Yung [SYY99] proposed a protocol for cryptocomputing everything in a (probably) smaller
complexity class NC1 ⊆ L/poly by using an additively homomorphic cryptosystem. However, the communication in
their protocol is exponential in len(f) while in the PBP it is linear. Naor and Nissim [NN01] proposed another protocol
that utilizes communication-complexity trees. In their protocol, assuming that the communication complexity of the
nonprivate protocol is c (note that even for very simple problems c ≥ log n, where n is the summatory input length
of both parties), the private version has communication complexity O(c2), computation complexity O(c2c) and round
complexity that is usually larger than 2. They proposed also another protocol that utilized branching programs to
achieve better computation but it also had somewhat higher communication and still (usually a much) larger number
of the rounds.
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4 Computation-Efficient (N, 1)-CPIR Protocol

Computation-efficiency is currently the main bottleneck in deploying (N, 1)-CPIR in practice and this has motivated
quite some attention on this aspect of the (N, 1)-CPIR protocols, see e.g. [Lip05,CS07]. This is mainly because in
the all known sublinear–communication (N, 1)-CPIR protocols, one has to apply at least one public-key operation
per database element. We now address this question in the special case ` = 1 by proposing a protocol that re-
quires Θ(N/ logN) public-key operations in the worst case, and potentially much less work in the case of redundant
databases. Note that if one uses the NN1-CPIR protocols of [Lip05,GR05] for `-bit strings with ` > n = logN , a
more efficient way in practice would be to divide the Boolean database of size N into N/` blocks of `-bits and then
transfer a block that contains the required bit. This would require N/` public-key operations. Nevertheless, the next
protocol is still interesting for its theoretical implications and may achieve better performance if the database can be
described by using a small branching program.

Assume that ` = m = 1 and the database size is N = 2n, that is, that the server’s database consists of 2n bits. (If
N is not a power of 2 then one can round the database size up.) In this case, we can restate the (N, 1)-CPIR protocol
as follows. Assume client has an input ι ∈ {0, 1}n and the server has a Boolean function fD : {0, 1}n → {0, 1}, such
that fD(ι) = Dι. The client needs to retrieve fD(ι). It is known that any Boolean function f can be computed by an
OBDD Pf of size (3 + o(1))2n/n that has length n [Sha49]. Offline computation of such a branching program may
take 2n time, but online evaluation of the branching program on concrete input ι takes thus Θ(2n/n) operations in
the worst case, and often much less.

In particular, when applying the PBP protocol, one needs to do size(Pf ) online public-key operations. Because in
this case size(Pf ) ≤ (3+o(1))2n/n, the number of online public-key operations is always less than 2n, for any possible
database D. To the best of our knowledge, this is the first (N, 1)-CPIR with this property.

Note that the upperbound Θ(2n/n) is also tight because for all but an expontentially small fraction of 2−2n/2
of

Boolean functions the size of the best branching program is (1− n−1/2)2n/n = (1− o(1))2n/n [Weg00, Thm. 2.2.2].
Thus, we also have a worst-case lowerbound for the online computation of CPIR for all but an exponentially small
fraction of databases. However, many real-life databases may follow to this exponentially small fraction due to the
redundancy present in almost all such data.

For the sake of concreteness, we state the result only in the case we use Lipmaa’s underlying (2, 1)-CPIR protocol.

Theorem 2. Assume that the Decisional Composite Residuosity Assumption holds. Fix N , let n = dlogNe. Then
there exists a CPA-secure (N, 1)-CPIR protocol for 1-bit strings with communication (n + 1)(n + 2)k = Θ(n2)k =
Θ(log2N)k and computation O(N/ logN).

Proof. Follows from Cor. 2 and Shannon’s upperbound, by letting F to be the set of all Boolean functions f :
{0, 1}n → {0, 1}. ut

Example: Efficiency of Shannon’s upperbound. This example is based on an OBDD that satisfies Shannon’s
upperbound (3 + o(1))2n/n on the size of branching programs from [Sha49], since the more precise upperbound
of [BHR95] seems only to apply for n ≥ 10. See Fig. 2 for concrete case n = 6. Let f : {0, 1}n → {0, 1} be a
Boolean function. The idea behind Shannon’s construction is to construct an ordered branching program, such that:
the branching program starts out as a depth d, where d = n−blog(n+ 1− log n)c, ordered binary decision tree where
one branches on variables ι0, . . . , ιd−1. This results in 2d−1 nodes. The branching program has 22n−d

more nodes that
correspond to all subfunctions of f on last n− d variables. These extra nodes are layered in n− d more levels. A node
for a subfunction that first essentially depends on the jth variable out of these n − d variables (but not on earlier
ones) is on level d+ j; nodes that correspond to constant subfunctions are on level n. The extra nodes are labelled by
a 2n−d-bit string corresponding to 2n−d values in the truth table of f . There is an 0-edge from an extra node labeled
by x1 . . . x2n−d to an extra node x′1 . . . x

′
2n−d exactly if x′j = x′

2n−d−1 + j = xj for j ∈ {1, 2n−d−1}. There is an 1-edge
from an extra node labeled by x1 . . . x2n−d to an extra node x′1 . . . x

′
2n−d exactly if x′j = x′

2n−d−1+j
= x2n−d−1+j for

j ∈ {1, 2n−d−1}.
The above part of the construction only depends on the value of N = 2n and not on the concrete database. The

next part depends on the database: The 2d−1 nodes on level d are labelled by subsequent 2n−d+1 values in the truth
table of f . The 0-edge from node level d edge x1, . . . , x2n−d+1 goes to an extra node labeled by x1, . . . , x2n−d . The
1-edge from node level d edge x1, . . . , x2n−d+1 goes to an extra node labeled by x2n−d+1, . . . , x2n−d+1 . This means that
only the location of 2d ≈ 2n/(n + 1 − log n) = (1 + o(1))2n/n edges depends on the database. Thus even in the
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Figure2. Communication-efficient CPIR based Shannon’s upper bound for N = 2n = 64. Only blue values and edges depend on the
concrete database, which is equal to a sequence of binary presentations of all 4-bit integers. Everything else depends just on the value of n

offline phase, even when the database is completely changed, one has to change O(2d) = O(2n/n) edges, this can be
compared to the 2n work that is necessary to update the database itself. In the case the database is updated in only
one element, only the location of one edge is changed.

In the concrete case n = 6, d = n − blog(n + 1 − log n)c = 4. Complete OdT (that is, CPIR from [Lip05]) has
2n+1 − 1 = 127 nodes. The branching program based on Shannon’s construction has 2d − 1 + 22n−d

= 15 + 16 = 31
nodes.

Computation-Efficient CPIR for `-Bit Strings. Let f : {0, 1}n → {0, 1}` for an arbitrary ` ≥ 1. By the upper
bound of [Sha49], clearly BP(f) ≤ ` · (3 + o(1))2n/n by just computing ` branching programs in parallel. By following
the proof of [Weg00], one can easily show that BP(f) ≤ (3 + o(1))2n · `/(n + log `). Thus, one can implement a
(N, 1)-CPIR for ` bit strings with upperbound of O(N · `/(logN + log `) online computation. In many practical cases,
the online computation is again much smaller though this approach seems to be not as good for large values of `.

Achieving Server-Privacy. Recall that an (n, 1)-CPIR protocol that also achieves server-privacy is called an
(N, 1)-OT protocol. There are many existing CPIR-to-OT transformations [NP99,AIR01,Kal05,Lip05,IP07,LL07]. In
this case, we recommend the use of the transformation from [NP99] (if we are interested in computation-efficiency)
or the transformation from [NN01] (if we are interested in communication-efficiency). The latter actually achieves
simulatable security, that is, a much stronger property than semisimulatable security. It is straightforward to prove
that applying either of the transformations to any CPA-secure CPIR protocol results in a (semi)simulatable oblivious
transfer protocol, see the original papers.

5 Extended CPIR

Preliminaries. In [BCPT07] the authors considered the problem of extended CPIR, where the client obtains, instead
of the database element Dι itself, some function f(j,Dι) of client’s second input and the database element. The
authors proposed efficient solutions for equality (based on homomorphic encryption) and Hamming weight (based
on 2-homomorphic encryption [BGN05]). Assume J := |j|. Moreover, for an arbitrary f there exists the next trivial
protocol where the database server constructs a new database D′j,ι such that D′j,ι = f(j,Dι), and the client obtains
D′j,ι by doing a CPIR to this new database. Because logN + J may be quite large, the trivial protocol takes N · 2J
computation and Θ(logN+J+|f(·, ·)|+k) communication by using the Gentry-Ramzan (N, 1)-CPIR protocol [GR05].
The new protocol, described below, is significantly more efficient.
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New Protocol. Assume that client has two inputs ι and j, and server has a database D = (D0, . . . , DN−1). The
client must obtain f(j,Dι). Intuitively, we construct a protocol for extended CPIR by plugging in branching programs
Pf,j for computing f(j,Dι), instead of just a leaf with Dι, at the bottom of the complete OBDT for computing the
(N, 1)-CPIR itself. The resulting protocol has length t+ maxj len(Pf,j) and size N − 1 +

∑
j size(Pf,j).

Optimizations. One can optimize this solution by using non-generic techniques. First, the top OBDT can be
directly replaced by any secure CPIR protocol, like the protocol of Gentry and Ramzan [GR05]. Second, based on
the fact that all computation uses homomorphic encryption, one can use homomorphic operations at the bottom
of the branching program. For example, to compute equality f(j,Dι) = [j =? Dι], one can input as leaf the values
?(j −Dι), where ? denotes a suitable random value (a random group element if Elgamal is used, or a slight variation
of it when Paillier/Damg̊ard-Jurik is used [LL07]). Third, one is not restricted to this shape of a branching program;
for many functions f we can definitely construct a more efficient branching program for the extended CPIR by further
optimizing.

Example: Comparison. As an example, suppose that the client wants to establish whether j > Dι, j = Dι or
j < Dι, where all values are `-bit long. One can construct a branching program for this with length ` and size 2`+ 1.
Thus without optimisation, this method results in a PBP protocol with communication≈ (logN+1)((logN+`)k+`) =
Θ(log2N · k + N`) and computation Θ(N · `). If one uses the Gentry-Ramzan

(
N
1

)
-CPIR protocol on the top, the

total communication becomes N(`k + `) +O(logN + `k + `+ k).

Fuzzy private matching. As another example, suppose that the client wants to establish whether wh(j,Dι) < t,
where all values are `-bit long and wh denotes the Hamming distance. (See [CH08] for previous work.) This can be
straightforwardly reduced to computing a threshold function T`,t, where T`,t(x1, . . . , x`) = 1 iff at least t bits xi are
equal to 1.

It is well-known that one can construct an ordered branching program for the threshold function with length `
and size `(` − t − 1) + 2 ≤ `2/2 − `/2 + 2 [Weg00], see Fig. 3 (left). The total size of the branching program for
fuzzy matching is thus Θ(N × `2), and its length is logN + `. Thus according to Thm. 1, we have a cryptocomputing
protocol for fuzzy matching with communication

≤ (n+ 1)(lenP + 2)k = (logN + `+ 1)(logN + `)k = Θ(log2N + ` · logN + `2)k

and computation Θ(N · `2). One can use the Gentry-Ramzan CPIR protocol in the upper level to decrease the
communication. Moreover, better branching program with size O(` log3 `/ log log ` log log log `), though of length
O(` log2 `/ log log ` log log log `), was presented in [ST97]. (See also [ST97] for the known lower bounds on the
size/length of branching program for threshold functions.) Combining their solution with the Gentry-Ramzan CPIR
protocol results in a fuzzy matching protocol with communication Θ(`2 log2 `/ log log ` log log log ` + logN)k =
Θ̃(`2 + logN)k and computation Θ(N · ` log3 `/ log log ` log log log `)k = Θ(N`) which compares very favorable with
the “trivial protocol” but also with the best previous work [CH08]. Note that this is almost optimal communication-
wise because in the non-private version the the fuzzy matching has communication logN + ` + 1 and server-side
computation Θ(`+ logN).

6 Private Database Updating

Assume that client has outsourced his database to the server. Due to the privacy requirements, the database is
encrypted. In a private database updating (PDU) protocol, the client updates a single element of the database so
that the server does not know which element was changed. That is, client has (ι, ν), server has an encrypted database
D = (D0, . . . , DN−1)). The client has no output, while server obtains a new encrypted database D′ such that D′i and
Di decrypt to the same value if i 6= ι, while D′ι decrypts to ν.

It is trivial to construct a PDU protocol with Θ(N) communication by just letting the server to send the old
database to client, the client to update the ιth element, re-encrypt the database and send the new database back.
The next (known) approach uses an additively homomorphic cryptosystem is used. The client and the server first
execute a CPIR protocol, so that the client obtains the current value of Dι. Then client forwards to the server N
ciphertexts cj , where cι decrypts to ν −Dι and other cj-s decrypt to 0. The server multiplies encryptions of Dj with
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Figure3. Some more examples

the new ciphertexts cj . The first non-trivial protocol for this task was recently proposed in [BKOS07]. Essentially, a
variant of it uses bilinear pairings to send 2

√
N ciphertexts c′j and c′′j—such that the decryption of cj is equal to the

product of decryptions of cj and c′′j—instead of N ciphertexts. However, this protocol uses bilinear pairings and more
than two messages.

New Protocol. By using the PBP protocol, we can achieve amortized communication u2 · log2N if the number
of updates is upper-bounded by u. Moreover, every update only consists of a single message from the client to the
server, and the computation is also reasonable. The idea follows. Client’s inputs are (ι0, . . . , ιt−1; j). Server’s input is
an encrypted database D. The server runs N branching programs Pi in parallel, where Pi returns Di if i 6= ι, and j
otherwise. (See Fig. 3, right.) Let the new database be D′. Instead of returning D′ to the client, the server stores D′

instead of D.
Assume that database elements have length `. Then before any updates the server stores a database with elements

of size (s + 1)k where s is defined as usually. The first update protocol has communication complexity ≤ (t + 1) ·
(len(P )k+`) = (t2 + t) ·k+(t+1)`. The new database has elements of size (s+ t+1)k ≤ (t+1)k+` and thus the next
update protocol has communication complexity (t2 + t) · k+ (t+ 1)(tk+ k+ `). Analogously, the ith update protocol
has communication complexity (t2 +t) ·k+(t+1)(itk+ik+`), and thus the first u protocols have total communication
complexity u(t2 + t) · k + (t+ 1)

∑u−1
i=0 (itk + ik + `) = O(t2u2k). Thus this protocol is more communication-efficient

than the protocol of [BKOS07] if u ≤ 4
√
N/ log4N . Moreover, it does not use pairings. In fact, server’s computation

is O(N logN).

Security. Client-privacy follows from the previous general proof. Notice that in this case we are not interested in
server-privacy at all.

7 Open Questions

Currently, Lipmaa’s (2, 1)-CPIR protocol is the most efficient underlying protocol. The PBP protocol can be made
more communication-efficient if we had a “friendly” (2, 1)-CPIR protocol where client’s first message’s length did not
depend on `, the length of database elements. One could hope to achieve this by designing a length-flexible public-key
cryptosystem where one can compute Es+1

pk (M) given only Espk(M). This would enable to get rid of the dependency
from len(P ) in communication and thus decrease total communication of the protocols from O(n · len(P )) to O(n)
where n is the length of client inputs.

Construct even more non-trivial examples of usefulness.
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