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Abstract We polish a recent cryptocomputing method of Ishai and Paskin from TCC 2007. More precisely, we
show that every function can be cryptocomputed in communication, linear in the product of client’s input length and
the length of the branching program, and computation, linear in the size of the branching program that computes it.
The method is based on the existence of a communication-efficient (2, 1)-CPIR protocol. We give several nontrivial
applications, including: (a) improvement on the communication of Lipmaa’s CPIR protocol, (b) a CPIR protocol
with log-squared communication and sublinear server-computation by giving a secure function evaluation protocol
for Boolean functions with similar performance, (c) a protocol for PIR-writing with low amortized complexity, (d)
a selective private function evaluation (SPFE) protocol. We detail one application of SPFE that makes it possible
to compute how similar is client’s input to an element in server’s database, without revealing any information to
the server. For SPFE, we design a 4-message extension of the basic protocol that is efficient for a large class of
functionalities.
Keywords. Branching program, computationally-private information retrieval, cryptocomputing.

1 Introduction

A branching program [Weg00], see Sect. 2, is a fanout-2 directed acyclic graph where the internal nodes
are labeled by variables from some variable set {x0, . . . , xm−1}, the sinks are labeled by `-bit strings and
the two outgoing edges of every internal node are respectively labeled by 0 and 1. A source value of the
branching program on some assignment ai of the variables is recursively computed as follows. Computation
starts from this source and follows the outgoing edge that is labeled by the assignment of source’s label. The
same process is repeated until the computation reaches some sink. That sink value is then also the value of
the corresponding source. The value f(a) of the function at a = (a0, . . . , am−1) is equal to the concatenation
of the values of the σ sources; thus a branching program computes a function f : {0, 1}m → {0, 1}σ`.

An alternative and less efficient way of evaluating the branching program starts from the sinks and ends
with the sources. Let be v be some node (labeled by xi), such that the values Rvi of the end nodes of
the outgoing ai-labeled edges are known but the value Rv is not yet known. Then one sets Rv ← Rvi =
(Rv0 ,Rv1)[i]. Thus, every node can be seen as implementing a (2, 1)-selector/branch operation. Recently,
Ishai and Paskin [IP07] proposed a protocol for cryptocomputing (that is, computing on ciphertexts) any
function f by first fixing the input length m and then designing an efficient branching program Pf for
this length.1 Their protocol uses a private version of the alternative way of computing a branching program.
There, all computations are done on “ciphertexts”, and the local selector/branch operation Rv = (Rv0 ,Rv1)[i]
is implemented by using a communication-efficient two-message (2, 1)-CPIR protocol. More precisely, for

1 The (n, 1)-CPIR protocols by [KO97,Ste98,Lip05] use exactly the same idea to implement a private version of a complete n′-ary
(multi-terminal) ordered decision tree for some n′ � n, though also this was probably first explicitly stated in [IP07]. Recall that
in an (n, 1)-computationally-private information retrieval (CPIR) protocol [CGKS95], the client has a query x ∈ {0, . . . , n−1}
and the server has a database f = (f0, . . . , fn−1) of `-bit strings for some `. At the end of the protocol, client obtains fx while
the server remains completely clueless about the value of x.
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client’s every input variable xi to f , the client sends to the server the first message Qi of the underlying
(2, 1)-CPIR protocol. After that, the server recursively computes a value Rv of every non-sink node of Pf
as explained earlier. However, Rv is going to be equal to the second message of the (2, 1)-CPIR protocol
that uses Qi and the database (Rv0 ,Rv1). (For a sink v, Rv is just equal to its label.) At the end, the server
sends to the client Rv for every source v, and the client applies recursively the local decoding procedure to
each such Rv to obtain the value of the branching program. We call this protocol PrivateBP. See Sect. 3 for
a precise description of the PrivateBP protocol.

Clearly, the PrivateBP protocol is client-private because the server only sees first messages of m differ-
ent (2, 1)-CPIR protocols. Importantly, the PrivateBP protocol reveals to the client only the length—but not
the shape or even the size—of the branching program. This makes it possible to use the PrivateBP to solve
problems where client’s input is some m-bit string and server’s input is a function f : {0, 1}m → {0, 1}σ`
from some set F , such that all functions from F can be computed by branching programs of polynomial
size. This restricts the size of branching program only after fixing server’s input.
Our Contributions. While the PrivateBP protocol was proposed in [IP07], the authors did only propose
one, though very interesting, application of it in keyword search. We aim to popularize the PrivateBP proto-
col by solving a few well-known open problems in cryptographic protocol design that are interesting in their
own right. This shows that PrivateBP is also useful in practice. In particular, almost direct applications of the
PrivateBP protocol—combined with results from the theory of branching programs—result in protocols that
are more communication-efficient than previously known protocols for the same tasks. This phenomenon
is not common say with Yao’s protocol [Yao82] that is mostly much less (communication-)efficient than
specialized protocols. See Sect. 3 for comparison.
Optimized PrivateBP Protocol. Assume that for every function f ∈ F there exists a branching program
Pf with size size(Pf ) and length len(Pf ) for computing f(x). Define len(F) := maxf∈F len(Pf ). (For
server’s privacy, it is additionally required for Pf to be layered.) Let k be the security parameter. Cur-
rently, Lipmaa’s (2, 1)-CPIR protocol [Lip05] is the most efficient known (2, 1)-CPIR protocol for the pur-
pose of the PrivateBP protocol. As we show, by using this underlying protocol one can cryptocompute
f(x) with communication and client’s computation Θ((m+ σ)(`+ len(F) · k)), and server’s computation
Θ̃(size(Pf )). Then, by proposing two different balancing techniques, we get slightly better communication
Θ((m/ log(m/σ))(` + len(F)k)) and alternatively, (1 + o(1))σ` + Θ(m · len(F)) · k. See Sect. 3. Thus,
the PrivateBP protocol is even more efficient than claimed in [IP07] and in particular, for large values of
` it achieves optimal communication (1 + o(1))σ` while a non-private protocol requires at least σ` bits of
communication.
Computation-Efficient CPIR. It is well-known that computation-efficiency is the main bottleneck in deploy-
ing (n, 1)-CPIR in practice: because the online computation complexity of existing CPIR protocols is Ω(n)
public-key operations, one is usually restricted to databases of size say n = 216 or even n = 212. This has
motivated quite some attention on this aspect of the CPIR protocols, see for example [CS07]. In all previous
protocols, the server needs to do Ω(n) online operations and it has been a long-standing open problem to
prove or disprove that this is also a lower bound for sublinear-communication CPIR protocols.

We solve this problem in the case ` = 1. Namely, we construct a (n, 1)-CPIR protocol where the online
computational complexity of the server depends heavily on the concrete database itself and is upperbounded
by O(n/ log n) online public-key operations in the worst case. (The bit-cost of a public-key operation de-
pends on the position of a node in the branching program, see Sect. 4.1.) In this protocol we write down a
branching program for the function f , f(x) := fx and then use the PrivateBP protocol to make it private.
Thus, the upperbound Θ(n/ log n) follows from the upperbound on the size of ordered binary decision di-
agrams to compute an arbitrary Boolean function [Sha49,BHR95]. This upperbound is also tight for all but
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an exponentially small fraction of databases, that is, Boolean functions [Weg00]. The offline computational
complexity is also O(n/ log n) while the communication is Θ(log2 n). Altenratively, the same result shows
that one can implement secure function evaluation of any f : {0, 1}m → {0, 1}with communicationO(m2)
and computation O(2m/m). See Sect. 4.1 for how to protect server’s privacy.

PIR-Writing. We also study PIR-writing where on client’s private index x and a private secret y, the server
updates the xth element of his database to y. It is assumed that the database is encrypted, so that the server
does not know any elements of the database, nor which database element was updated. Let n be the database
size. The first non-trivial solution to this problem, withΘ(

√
n) communication, was proposed in [BKOS07].

Their solution was based on bilinear maps. We propose second non-trivial solution that, for some upper
bound u on the number of updates, achieves amortized communication complexity Θ(u2 log2 n). This im-
proves upon the protocol of [BKOS07] for u = o( 4

√
n/ log n). However, as this is only the second non-trivial

PIR-writing protocol, we hope it will point to a new and interesting research direction.

Selective Private Function Evaluation (SPFE). In (n, n′)-SPFE [CIK+01], the client submits a tuple
of private indexes x = (x1, . . . , xn′) and a private secret y to the server, who replies with the value
f(fx1 , . . . , fxn′ , y) of a predetermined function f on y and server’s database xj th elements. We show that
by using the PrivateBP protocol one can implement a large class of functionalities f in polynomial-time
and log-squared communication. Our application to the case n′ = 1 is almost straightforward. In the case
n′ > 1, however, we significantly extend the PrivateBP protocol; our extensions make use of the concrete
properties of Lipmaa’s (2, 1)-CPIR protocol and result in 4-message protocols. (Thus, strictly speaking, they
are not anymore cryptocomputing protocols.)

Our results can for example be applied in the next setting in biometric authentication that is known
as fuzzy private matching [CH08]. The client of the SPFE protocol collects a fingerprint j of some
person, together with her claim that she is the xth employee. Then the client contacts a server who
stores encrypted fingerprint templates of all employees. At the end of the protocol, the client gets to
know that person’s fingerprint is sufficiently close to the xth fingerprint template in database to war-
rant access, without getting to know anything else. On the other hand, the server does not get to
know her fingerprint, or the value of x. Assume that two fingerprints, represented as Boolean vec-
tors of dimension ` “match” if at least t of their coordinates match. By using the branching program
for threshold function proposed in [ST97] and the CPIR of [GR05], we get a fuzzy private matching
program with communication Θ(`2 log2 `/ log log ` log log log ` + log n)k and server-side computation
Θ(n · ` log3 `/ log log ` log log log `).

Other applications. We mention a few other applications. For example, by using the PrivateBP one can
solve both Yao’s millionaire’s problem [Yao82] and the secure vector dominance problem for m-bit vectors
with computationΘ(m) and communication (m+1)(m+2)k = Θ(m2)k. The proposed generic balancing
techniques make it possible to improve the communication of Lipmaa’s (n, 1)-CPIR protocol from Θ(` ·
log n+ k · log2 n) to `+Θ(k · log2 n) or to Θ((` · log n+ k · log2 n)/ log log n).

Many cryptographic protocols are based on the use of (additively) homomorphic encryption and because
of that, are limited to cryptocomputing affine functions. Using bilinear-map based cryptosystems [BGN05]
makes it possible to cryptocompute quadratic functions. The power of both types of cryptosystems is rather
well-understood. For example, it was recently proved in [OS08] that when purely based on a homomorphic
cryptosystem (resp., cryptosystem from [BGN05], a PIR-writing protocol has communication lower bound
Θ(n) (resp., Θ(

√
n)). Because Lipmaa’s (2, 1)-CPIR protocol is based on a length-flexible homomorphic

cryptosystem [DJ01], the PrivateBP protocol also shows that when using such a cryptosystem, one can
cryptocompute a much larger class of functions. In fact, the PrivateBP protocol uses only one application
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of such cryptosystems (Lipmaa’s (2, 1)-CPIR protocol) while the precise computational power of length-
flexible cryptosystems may actually be even larger.

2 Preliminaries, Related Work, Cryptographic Tools

Notation. m denotes the length of client’s input x. Server’s input is a function f : {0, 1}m → {0, 1}σ` for
suitably chosen σ and `. We also denote f(x) by fx, that is, we let f to be the characteristic function of
a vector f = (f0, . . . , f2m−1). In CPIR-like applications, n denotes the database size. All logarithms have
base 2. Finally, k is always the security parameter.
Branching Programs. A branching program [Weg00] is a fanout-2 directed acyclic graph where the internal
nodes are labeled by variables from some variable set {x0, . . . , xm−1}, the sinks are labeled by `-bit strings
and the two outgoing edges of every internal node are respectively labeled by 0 and 1. Every source and
every assignment of the variables corresponds to one path from this source to some sink as follows. The
path starts from the source. If the current version of path does not end at a sink, test the variable at the
endpoint of the path. Select one of the outgoing edges depending on the value of this variable, and append
this edge and its endpoint to the path. If the path ends at a sink, return the label of this sink as the value of
the branching program. A branching program that has σ sources computes some function f : {0, 1}m →
{0, 1}σ`; σ = ` = 1 by default.

In an ordered binary decision diagram (OBDD), an order π of the labels is chosen, and for any edge
(u, v) ∈ E it must hold that π(u) < π(v). A branching program is a decision tree if the underlying graph is
a tree. A branching program is layered if its set of nodes can be divided into disjoint sets Vj such that every
edge from a node in set Vj ends in a node in set Vj+1. For a branching program P let len(P ) be its length
(that is, the length of its longest path), size(P ) be its size, and sizeint(P ) be its size without counting in the
sinks. Denote by BP(f)/OBDD(f) the minimal size of any branching program/OBDD computing f . Clearly
BP(f) ≤ OBDD(f). It is known that any Boolean function f : {0, 1}m → {0, 1} has OBDD(f) ≤ (3 +
o(1))2m/m [Sha49]; form ≥ 16 this can be improved to OBDD(f) ≤ (2+o(1))2m/m [BHR95] though in
practice even then Shannon’s construction is as efficient. Form ≥ 25, [BHR95] proved a precise upperbound
BP(f) ≤ (1 + o(1))2m/m. The latter upperbound is also tight because for all but an exponentially small
fraction of 2−2m/2 of Boolean functions the size of the best branching program is (1 − m−1/2)2m/m =
(1− o(1))2m/m [Weg00, Thm. 2.2.2]. A language has a polynomial-size branching program if and only if
it belongs to the complexity class L/poly [Cob66], that is, if it can be decided by a nonuniform log-space
Turing machine. See [Weg00] for more.
Public-Key Cryptosystems. Let P = (G,E,D) be a length-flexible additively-homomorphic public-key
cryptosystem [DJ01], where as always G is a randomized key generation algorithm, E is a randomized en-
cryption algorithm and D is a decryption algorithm. In the case of the DJ01 cryptosystem from [DJ01], in
particular, for every integer s > 0, Espk(·) is a valid plaintext of Es+1

pk (·). More precisely, |Espk(·)| = sk.
(In some other length-flexible cryptosystems [DJ03], the resulting ciphertext is longer.) Recall that in a
length-flexible additively-homomorphic cryptosystem, Espk(M1) · Espk(M2) = Espk(M1 + M2), and more-
over, Espk(M) is a valid plaintext of Es+1

pk (·), so that one can legally multiple-encrypt messages as say in
Es+2

pk (Es+1
pk (Espk(M))). We will explicitly need the existence of a compression function C that, given pk, s′

and s for s′ ≥ s, and Es
′

pk(M) for M a valid plaintext of Espk(·), returns Espk(M). As shown in [Lip05], DJ01
has a very simple compress function.

In the CPA (chosen-plaintext attack) game, the challenger first generates a random (sk, pk) ← G, and
sends pk to the attacker. Attacker chooses two messages M0,M1 and a length parameter s, and sends them
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to the challenger. Challenger picks a random bit b, and sends a ciphertext Espk(Mb) to attacker. Attacker out-
puts a bit b′, and wins if b = b′. A cryptosystem is CPA-secure if the probability that any polynomial-time
attacker wins in the CPA-game is negligibly different from 1/2. Now, because of the existence of the com-
press function, a CPA-secure length-flexible cryptosystem remains CPA-secure also when the challenger
can send many message pairs (Mj0,Mj1) and length parameters sj , and has to guess b after seeing encryp-
tions of all Mjb under the corresponding length parameters sj . This so-called LFCPA-security [Lip05] of
the cryptosystem is crucial for the efficient PrivateBP protocol as defined in the next section.2 The DJ01
cryptosystem [DJ01] is CPA-secure under the Decisional Composite Residuosity Assumption [Pai99].
Computationally-Private Information Retrieval. In a 1-out-of-n computationally-private information re-
trieval protocol, (n, 1)-CPIR, for `-bit strings, the client has an index x ∈ {0, . . . , n− 1} and the server has
a database f = (f0, . . . , fn−1). The client obtains fx. In the following we need a CPIR protocol that has the
next property. We say a CPIR protocol Γ is PrivateBP-friendly if it satisfies the next three assumptions:

1. Γ has two messages, a query Q(`, x) from the client and a reply R(`, f,Q) from the server, such that the
stateful client can recover fx by computing A(`, x,R(`, f,Q)).

2. Γ is uniform in `, that is, it can be easily modified to work on other values of `.
3. There exists a compress function C that maps Q(`′, x) to Q(`, x) for any `′ ≥ ` and x.

More formally, Γ = (Q,R,A,C) is a quadruple of probabilistic polynomial-time algorithms, with
A(`, x,R(`, f,Q(`, x))) = fx, and C(`′, `,Q(`′, x)) = Q(`, x) for any `′ ≥ ` and x. If the existence of
C is not required we also write Γ = (Q,R,A) even if C exists.
Lipmaa’s PrivateBP-friendly (2, 1)-CPIR Protocol [Lip05]. Let P = (G,E,D) be a length-flexible ad-
ditively homomorphic public-key cryptosystem. Let s be an integer such that sk ≥ ` ≥ (s − 1)k, that is,
s ← d`/ke. Client’s private input is x ∈ {0, 1}, server’s private input is f = (f0, f1) for f0, f1 ∈ {0, 1}`.
The protocol consists of the next two steps:

1. Client generates a new key pair (sk, pk) ← G. He sets Q1 ← pk, Q2 ← Espk(x). He sends Q(`, x) ←
(Q1,Q2) to server.

2. Server replies with R(`, f, (Q1,Q2))← EsQ1
(f0) · Qf1−f0

2 .

If x ∈ {0, 1}, then clearly R(`, f,Q) = Espk(f0 +(f1−f0) ·x) = Espk(fx). Thus, it is sufficient for the client
just to decrypt R. If P has a compress function, then also Lipmaa’s (2, 1)-CPIR protocol has a compress
function C. By using a hybrid argument it is easy to show that is safe for the client to send polynomially many
queries Esipk(Mi) encrypted by using the same public key pk. The important properties of this PrivateBP-
friendly (2, 1)-CPIR protocol that make it efficient in our applications are that |Q(`, ·)| = sk + k ≤ `+ 2k
and |R(`, ·, ·)| = sk + k ≤ `+ 2k.
Cryptocomputing protocols. Similarly to a CPIR protocol, a (two-message) cryptocomputing protocol is
a triple (Q,R,A) of efficient protocols, where client has an input x = (x0, . . . , xm−1) with xj ∈ {0, 1},
server has an input f : {0, 1}m → {0, 1}`. The client starts the protocol by sending Q := Q(`, x) to the
server, who replies by sending R := R(`, f,Q) to the client. Finally, the client (who like always is assumed
to be stateful) outputs A(`, x,R) as his private output.
Semisimulatable Security. Let Γ = (Q,R,A) be any (two-message) cryptocomputing protocol be-
tween a client and a server. Within this work we use the convention of many previous papers on obliv-
ious transfer [AIR01,Lip05] that only require privacy in the malicious model. Various papers, for exam-
ple [FIPR05,IP07], also recommend to use this model for other cryptographic protocols. More precisely,

2 It seems that the relevance of the compress function to the equivalence of CPA and LFCPA-security has not been pointed out
before.
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client’s privacy is guaranteed in the sense of indistinguishability (CPA-security), while server’s privacy
is guaranteed in the sense of simulatability. This assumption makes it possible to design two-message
cryptocomputing protocols that are both communication and computation-efficient. We now give an in-
formal definition of semisimulatability for any cryptocomputing protocol, following many earlier papers
like [NP99,AIR01,FIPR05,Lip05,IP07].

For the CPA-security (that is, the privacy) of the client, a malicious nonuniform probabilistic polynomial-
time server is required not to be able to distinguish between client’s messages Q(`, x0) and Q(`, x1) corre-
sponding to any two of client’s inputs x0 and x1. For server-privacy, we require the existence of a simula-
tor that, given client’s message Q∗ and client’s legitimate output corresponding to this message, generates
server’s message that is (statistically) indistinguishable from server’s message R in the real protocol; here
Q∗ does not have to be correctly computed. A protocol is semisimulatably secure if it is both client-private
and server-private.

Any CPIR protocol Γ is required to be client-private, that is, CPA-secure. Lipmaa’s (2, 1)-CPIR proto-
col [Lip05], when based on the DJ01 cryptosystem [DJ01], is CPA-secure under the Decisional Composite
Residuosity Assumption [Pai99]. Because of the existence of the C function, if Γ is CPA-secure then it
is also difficult to distinguish between any two polynomially large sets {Q(`i, xi0)} and {Q(`i, xi1))}. A
semisimulatable (n, 1)-CPIR protocol is also known as an (n, 1)-oblivious transfer protocol.

3 The PrivateBP Protocol

Next, we describe the PrivateBP (private branching programs) cryptocomputing protocol from [IP07]. It
generalizes the cryptocomputing process, done in several previous CPIR protocols [KO97,Ste98,Lip05].
Our exposition is simpler than the more general exposition of [IP07] with almost straightforward security
proofs. The concrete protocol has also some small differences compared to the protocol of [IP07].

In the PrivateBP protocol, the client has private input x ∈ {0, 1}m, the server has private input f :
{0, 1}m → {0, 1}σ` and the client will receive private output f(x). Here, F = {f : {0, 1}m → {0, 1}σ`} is
a set of functions, where every f ∈ F can be computed by a branching program Pf that all have σ sources
and `-bit sink labels. Let len(F) := maxf∈F len(Pf ). Let Γ ′ = (Q′,R′,A′,C′) be a PrivateBP-friendly
(2, 1)-CPIR protocol. Define |Q(1)(`)| := |Q′(`, x)|, |R(j)(`)| := |R′(|Q(j)(`)|, x,Q′)| and |Q(j+1)(`)| :=
|Q′(|Rj(`)|, x)|. We assume that those values are well-defined, that is, they do not depend on the concrete
values of x and f ; because Γ ′ has to be secure, this assumption is reasonable.
Description of PrivateBP. For a fixed f , the server executes the branching program Pf bottom-up, that is,
from the sinks to the source. The output values Rv of the sinks are equal to their labels. At every node v of
the branching program with label xv and children v0/v1 such that the output values Rv0/Rv1 of v0/v1 are
known but the output value Rv of v is not yet defined, the server uses Γ to obliviously propagate the value
Rvxv upwards as Rv. The server does this for all nodes in some order, and then sends the output values of the
σ sources to the client. For every source, the client applies the decoding procedure A′ repeatedly to obtain
the label of the unique sink that is uniquely determined by this node and by client’s input x. A complete
description of the PrivateBP protocol for F is depicted by Fig. 1.

Theorem 1. Let Γ ′ = (Q′,R′,A′,C′) be a CPA-secure PrivateBP-friendly (2, 1)-CPIR protocol. Let F be
a set of functions from {0, 1}m to {0, 1}σ` where every f ∈ F can be computed by a branching program Pf .
ThenF has a CPA-secure cryptocomputing protocol with communicationm·|Q(len(F))(`)|+σ ·|R(len(F))(`)|
and online computation of sizeint(Pf ) R′(`∗, ·, ·) functions. In particular if Pf is layered then the protocol
is server-private in the semihonest model.
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1. Inputs: server knows a function f : {0, 1}m → {0, 1}σ` from F and client knows x ∈ {0, 1}m.
2. Offline phase: server computes an efficient branching program Pf for f that has σ sources and has `-bit sink labels; the client

knows len(F). Let `max := |Q(len(F)−1)(`)|.
3. Online phase:

(a) Client does: For j ∈ {0, . . . ,m− 1}, set Qj ← Q′(`max, xj). Send Q(`, x)← (Q0, . . . ,Qm−1) to the server.
(b) Server does:

i. For sinks v of Pf set Rv to be their label, for other nodes v set Rv ← ⊥.
ii. Do by following some ordering of the nodes:

A. Let v be some node with Rv = ⊥ with children v0 and v1 that have Rv0 ,Rv1 6= ⊥; if no such node exists then
exit the loop.

B. Assume that v is labeled by xi and edges from v to v0/v1 are labeled by 0/1.
C. Compute and store Rv ← R(`∗, (Rv0 ,Rv1),C(`max, `

∗,Qi)), where `∗ ← max(|Rv0 |, |Rv1 |). // If branching
program is layered then |Rv0 | = |Rv1 |.

iii. For any source v: send Rv to the client.
(c) For any source v: Client computes her private output from Rv by applying A′ recursively len(F) times.

Figure1. The PrivateBP protocol

Proof. The CPA-security follows straightforwardly from the CPA-security of Γ ′. If Pf is layered, then the
client is completely oblivious of the shape of the branching program, except the length of it: he just forms
queries corresponding to his input bits by using his knowledge of the length of the branching program (and
on the output length `), and then receives multiple-“encryptions” of the outputs. Client’s communication is
m · |Q(len(F))(`)| bits, server’s communication is σ · |R(len(F))(`)| bits. Server has to do some work per every
node of Pf . ut

If the compress function C does not exist, then the client has to submit up to len(P ) different queries
Q(`′, xj) for every xj and every `′ = |Q(i)(`)| for i ≤ len(P )− 1. This can increase the communication by
a factor of len(P ). C makes it possible to compute Q(|Q(i)(`)|, xj) from Q(`max, xj). (Note that the CPIR
protocols like [Lip05] do not explicitly need the C function because they cryptocompute the ordered binary
decision tree where every xi is only tested on the ith level of the tree.)

We will assume throughout this paper that we are working with Lipmaa’s underlying (2, 1)-CPIR, see
Sect. 2; this protocol is currently the most efficient (2, 1)-CPIR for our purposes. It is the only known pro-
tocol that currently allows the PrivateBP protocol to achieve communication that is polynomial in len(F).
A precise result follows:

Corollary 1. Assume that the Decisional Composite Residuosity Assumption is true [Pai99]. Let F be a set
of functions f : {0, 1}m → {0, 1}σ`, and let Pf be some σ-source branching program with `-bit sink labels
that computes f . Then F has a CPA-secure cryptocomputing protocol with communication upperbounded
by k + (m+ σ)(`+ (len(F) + 2)k), and computation of size(F) R′(`∗, ·, ·) functions.

Proof. Let P = (G,E,D) be the underlying length-flexible cryptosystem. This version of the PrivateBP
protocol generates one single (sk, pk) ← G and uses the same pk to construct all m queries Qj . Because
Lipmaa’s (2, 1)-CPIR is both PrivateBP-friendly and CPA-secure, the CPA-security of PrivateBP follows
from a standard hybrid argument. Computation is also trivial. To calculate the communication efficiency,
note that Qj = Q′(`max, xj) = E

d`/ke+len(F)
pk (xj). Thus, |Qj | = |Ed`/ke+len(F)

pk (xj)| = (d`/ke + len(F) +
1)k ≤ `+(len(F)+2)k. Thus, client sends a public key (of length say k) and at mostm·(`+(len(F)+2)k)
additional bits. The output of the branching program is equal to σ len(F)-times encryptions of sink values,
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where the sinks are selected by the encrypted client inputs xj . Server’s communication consists of σ len(F)
times encrypted messages of length ≤ `+ (len(F) + 2)k. ut

In particular, if len(F) is polylogarithmic in m and sizeint(Pf ) is polynomial in m for every f ∈ F , then
also the communication is polylogarithmic in m and the computation is polynomial in m. For Boolean
functions, the communication can in fact be upperbound by k + (m+ 1)(len(P ) + 2)k.
Stronger Security Guarantees. To guarantee server’s privacy in the semihonest model, the used branch-
ing program must be layered; otherwise some information about the shape of the branching program
could be leaked. (All examples in this paper in fact use layered branching programs.) In this case, a
honest client will get no information except the function value. Therefore, any of the transformations
of [NP99,AIR01,Kal05,Lip05,IP07,LL07] can be used to transfer the PrivateBP protocol from a client-
private protocol to a semisimulatable protocol. Semisimulatability is a standard security notion for two-
message oblivious transfer protocols, and similarly to [FIPR05,IP07] we advocate its use in general cryp-
tocomputing. If needed, one can transform the protocols into simulatably secure protocols of sublinear
communication by using the general methodology proposed in [NN01].
Balancing. In PrivateBP, the client sends m messages and the server sends σ messages. If m � σ and
` � m/σ, then one can improve the communication by balancing. Without loss of generality, let σ | m.
Denote b := m/σ. Then for f : {0, 1}m → {0, 1}σ`, write f(x) = (f0(x), . . . , fb−1(x)) for fj : {0, 1}m →
{0, 1}σ`/b. Here, f0 computes the first `/b bits of every source, etc. Apply the PrivateBP protocol in parallel
for every fj , and concatenate the private outputs. The client sendsmmessages of length≤ (`/b+(len(F)+
2)k). The server sends back bσ messages of the same length. Thus, the total communication of the balanced
protocol is ≤ (m+ bσ)(`/b+ (len(F) + 2)k) = 2m(σ`/m+ (len(F) + 2)k) = 2σ`+ 2m(len(F) + 2)k.
For example, Lipmaa’s (n, 1)-CPIR protocol from [Lip05] has communication Θ(` · log n+k · log2 n). The
new balanced protocol has communication ≤ 2`+ 2 log n(log n+ 2)k. By redefining b = am/σ for some
large value of a, one can actually achieve communication (1 + o(1))`+Θ(log2 n)k for large `.

In another variant of balancing, we define `max ≈ (` + len(P )k)/b, then the total communication
becomes Θ(m + 2bσ)(` + len(F)k)/b. Defining b = Θ(log(m/σ)), this will become Θ(m/ log(m/σ) ·
(` + len(F)k). We will not explicitly mention these balancing techniques in what follows, but many other
protocols can also be made more efficient by using similar methods.
Example: (n, 1)-CPIR. All CPIR-protocols that follow the Kushilevitz-Ostrovsky recursion tech-
nique [KO97,Ste98,Lip05] can be seen as a cryptocomputing of an ordered decision tree. (See App. A.)
In particular, Lipmaa’s (n, 1)-CPIR protocol from [Lip05] uses his (2, 1)-CPIR protocol to achieve commu-
nication Θ(m · (` + len(P )k)) = Θ(` · log n + k · log2 n), agreeing with Cor. 1. By using the balancing
technique, this can be improved to either (1+o(1))`+Θ(log2 n·k) or toΘ((`·log n+k ·log2 n)/ log logn).
Example: Secure Vector Dominance Problem. Let the client have a vector x = (x0, . . . , xm−1) and the
server have a vector y = (y0, . . . , ym−1). The client needs to know the value of a Boolean function f
defined as f(x) = 1 if xj ≥ yj for all j, and f(x) = 0 otherwise. This can be done as follows. Let
F be the set of such functions. For arbitrary f ∈ F , f(x) can be computed by a branching program Pf
that has sizeint(Pf ) = len(Pf ) = m. With the use of Lipmaa’s (2, 1)-CPIR protocol, one can thus design
a protocol for secure vector dominance with communication (m + 1)(m + 2)k = Θ(m2)k and server-
computation Θ(m). The just presented protocol that just follows general methodology can be compared
with more complex specialized protocols from say [YYWP08]. Clearly, one can also construct a PrivateBP
protocol for Yao’s millionaire’s problem [Yao82] with exactly the same complexity.
Example: Cardinality Set-Intersection [KS05]. Assume that the client has a set x ⊆ Zn and the server has
a set y ⊆ Zn. The client has to compute a function f(x) := |x∩ y|. This can be done as follows. Let xj = 1
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iff j ∈ x and yj = 1 iff j ∈ y. The client’s input to the protocol is (x0, . . . , xm−1). The (ordered) branching
program performs counting of ones in some set, see [Weg00], the set in this case is x′ = {xj : yj = 1}.
Such an OBDD has |y|(|y|+1)/2 internal nodes and depth |y|. Moreover, ` = dlogme. Thus the PrivateBP
protocol in this case has communication k+(m+σ)(`+(len(F)+2)k) = k+(m+1)(dlogme+(m+2)k) =
Θ(m2)k and computation Θ(|y|2) = O(m2).

Optimizations. Randomization. Clearly, any f ∈ F can be a probabilistic function f : {0, 1}m ×
Random → {0, 1}σ` because the server can randomize the choice of Pf . Non-Binary Branching Pro-
grams And Generalization. One can implement n′-ary branching programs by plugging in suitably defined
(n′, 1)-CPIR protocols at the inner nodes. This does usually not improve the communication significantly.
See [IP07] for more details.

Comparison to Other Cryptocomputing Protocols. By using Yao’s garbled circuit approach [Yao82],
one can securely compute every function g in BPP/poly by using communication that is linear in the
circuit complexity C(g) of g. In the PrivateBP protocol, one can cryptocompute a set of functions F such
that for any fixed server’s input f ∈ F , g(·, f) belongs to a (probably) smaller class L/poly, by using
communication that is linear in the branching program length len(F), which is often significantly smaller
than C(f). Moreover, PrivateBP reveals only the length of F , while Yao’s protocol reveals the shape of the
circuit. This may have an important practical significance: in the extreme, F can consist of all functions that
can be computed by a branching program of fixed length.

In Yao’s protocol, one has to execute Θ(C(g)) private-key operations and only Θ(m) public-key op-
erations, where m is again client’s input size. On the other hand, in the PrivateBP protocol, one has to
execute Θ(BP(g(·, f))) public-key operations. Because public-key operations are much more costly than
private-key operations, this may limit the use of the PrivateBP protocol unless communication complexity
is important. However, this is often not a issue because in all practical protocols BP(g(·, f)) � C(g). As
an example, a branching program for computing a maximum of x and fixed f , with x, f ∈ {0, 1}m, has size
Θ(m) while a circuit to compute maximum of unfixed x and f is significantly larger.

Moreover, there are situations where communication really matters. For example, one can construct a
trivial (n, 1)-CPIR protocol for `-bit strings with communication N · ` by letting the server just transfer the
whole database to the client. Yao’s protocol has much larger communication and computation than this triv-
ial protocol, while the PrivateBP protocol, as known from [Lip05], achieves log-squared communication.
Moreover, the garbled circuit protocol requires more than two rounds.

Sander, Young and Yung [SYY99] proposed a protocol for cryptocomputing everything in a (probably)
smaller complexity class NC1 ⊆ L/poly by using an arbitrary additively homomorphic cryptosystem.
However, the communication in their protocol is exponential in len(f) while in the PrivateBP it is linear.
Naor and Nissim [NN01] proposed another protocol that utilizes communication-complexity trees. In their
protocol, assuming that the communication complexity of the nonprivate protocol is c (note that even for
very simple problems c ≥ logm′, where m′ is the summatory input length of both parties), the private
version has communication complexity O(c2), computation complexity O(c2c) and round complexity that
is usually larger than 2. They proposed also another protocol that utilized branching programs to achieve
better computation but it also had somewhat higher communication and still (usually a much) larger number
of the rounds.
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4 Applications

4.1 Computation-Efficient (n, 1)-CPIR Protocol

Computation-efficiency is currently the main bottleneck in deploying (n, 1)-CPIR in practice; this has moti-
vated quite some attention on this aspect of the CPIR protocols, see for example [CS07,GY07,AMG07]. (In
the case of multiple databases, [BIM00] has also worked on sublinear-computation PIR protocols. How-
ever, the setting and the methods are completely different.) The main reason here is that in all known
sublinear-communication (n, 1)-CPIR protocols, one has to apply at least one public-key operation per
database element. This limits the size of the databases to say n = 220 or even to n = 214, depending on the
computational power. We now address this question in the special case ` = 1 by proposing a protocol that
requires Θ(n/ log n) public-key operations in the worst case, and potentially much less work in the case of
redundant databases.

Assume that ` = σ = 1 and the database size is n = 2m, that is, that the server’s database consists
of 2m bits. (If n is not a power of 2 then one can round the database size up.) In this case, we can restate
the (n, 1)-CPIR protocol as follows. Assume client has an input x ∈ {0, 1}m and the server has a Boolean
function f : {0, 1}m → {0, 1}, such that f(x) = fx. The client needs to retrieve f(x). Thus, F = {f :
{0, 1}m → {0, 1}}. Moreover, server’s work can depend heavily on f but the communication depends on
len(F) so we would like to minimize the latter. Fortunately, it is well known that any Boolean function f
can be computed by an OBDD Pf of size (3 + o(1))2m/m that has length m [Sha49]. Offline computation
of such a branching program may take 2m non-cryptographic operations. This value may not be so relevant
because the offline computation has to be only done once per database and not per query. In fact, even if
one database element changes, updating the data structure takes Θ(2m/m) non-cryptographic operations.
Online evaluation of the branching program on concrete input x takes thusΘ(2m/m) operations in the worst
case, and often much less. In particular, when applying the PrivateBP protocol, one needs to do sizeint(Pf )
online public-key operations. Because in this case sizeint(Pf ) ≤ (3 + o(1))2m/m, the number of online
public-key operations is always less than 2m, for any possible database f . To the best of our knowledge, this
is the first (n, 1)-CPIR with this property. (See also App. B where we describe the construction based on
Shannon’s upperbound.)

Note that the upperbound Θ(2m/m) is also tight because for all but an exponentially small frac-
tion of 2−2m/2 of Boolean functions the size of the best branching program is (1 − m−1/2)2m/m =
(1− o(1))2m/m [Weg00, Thm. 2.2.2]. Thus, we also have a worst-case lowerbound for the online compu-
tation of CPIR for all but an exponentially small fraction of databases. Many real-life databases fall to this
exponentially small fraction due to the redundancy present in almost all such data: in fact, otherwise most
of the existing data-mining and machine learning algorithms would not be useful in practice. Note that in
the case of Lipmaa’s (2, 1)-CPIR protocol, the bitcomplexity of every public-key operation (a computation
of R) depends heavily on the bitlength of elements and thus on the depth of the node in the tree.

Theorem 2. Assume that the Decisional Composite Residuosity Assumption holds. Fix n, let m = dlog ne.
Then there exists a CPA-secure (n, 1)-CPIR protocol for 1-bit strings with communication (m + 1)(m +
2)k = Θ(m2)k = Θ(log2 n)k and online computation O(n/ log n).

Proof. Follows from Cor. 1 and Shannon’s upperbound, by letting F to be the set of all Boolean functions
f : {0, 1}m → {0, 1}. ut

Longer Strings. Let f : {0, 1}m → {0, 1}` for some ` ≥ 1. By the upper bound of [Sha49], clearly
BP(f) ≤ ` · (3 + o(1))2m/m by just computing ` branching programs in parallel. By following the proof
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of [Weg00], one can easily show that BP(f) ≤ (3 + o(1))2m · `/(m + log `). Thus, one can implement
a (n, 1)-CPIR for ` bit strings with upperbound of O(n · `/(log n + log `)) online computation. In many
practical cases, the online computation is again much smaller.
Practical Relevance. If one uses the (n, 1)-CPIR protocols of [Lip05,GR05] for `-bit strings with ` >
m = log n, a more efficient way in practice would be to divide the Boolean database of size n into n/`
blocks of `-bits and then transfer a block that contains the required bit. This would require n/` public-key
operations. Nevertheless, the presented protocol is still interesting for its theoretical implications and may
achieve better performance if the database can be described by using a small branching program. Moreover,
in several existing constructions [KO97,GY07], the authors cryptocompute an n′-ary ordered decision tree
by using an underlying (n′, 1)-CPIR protocol for 1-bit strings because no efficient CPIR for longer strings
is known under assumptions like quadratic residuosity and hardness of lattice problems. In such cases, one
can use our ideas to directly reduce the computation cost.
Achieving Server-Privacy. Recall that an (n, 1)-CPIR protocol that also achieves server-privacy is called an
(n, 1)-OT protocol. There are many existing CPIR-to-OT transformations, already cited before. In this case,
we recommend the use of the transformation from [NP99] (if one is interested in computation-efficiency)
or the transformation from [NN01] (if one is interested in communication-efficiency). The latter actually
achieves simulatable security, that is, a much stronger property than semisimulatable security. It is straight-
forward to prove that applying either of the transformations to any CPA-secure CPIR protocol results in a
(semi)simulatable oblivious transfer protocol.

4.2 PIR-Writing

Assume that client has outsourced—say due to storage limitations or need to backup—his database to the
server. Due to the privacy requirements, the database is encrypted. In a PIR-writing protocol, the client
updates a single element of the database so that the server does not know which element was changed. That
is, client has (x, y), server has an encrypted database f = (f0, . . . , fn−1). Ideally, the protocol has only a
single message, from the client to the server. The client has no output, while server obtains a new encrypted
database f ′ such that f ′i and fi decrypt to the same value if i 6= x, while f ′x decrypts to y.
Related Work. In a straightforward PIR-writing protocol with Θ(n) communication, the server sends the
old database to the client; the client decrypts everything, updates the xth element, re-encrypts the database
and sends the new database back. The next (known) approach uses an additively-homomorphic cryptosys-
tem. The client and the server first execute a (n, 1)-CPIR protocol, so that the client obtains the current value
of fx. Then client forwards to the server n ciphertexts cj , where cx decrypts to y− fx and other cj-s decrypt
to 0. The server multiplies encryptions of fj with ciphertexts cj , this clearly correctly updates the database.
The first non-trivial protocol for this task was recently proposed in [BKOS07]. Essentially, a variant of it uses
bilinear pairings to send 2

√
n ciphertexts c′j and c′′j—such that the decryption of cj is equal to the product of

decryptions of cj and c′′j—instead of n ciphertexts. However, this protocol uses bilinear pairings and more
than two messages. In [OS97], the authors studied the same problem in a different, information-theoretic
setting with multiple databases.
New Protocol. Client’s inputs are (x0, . . . , xt−1; y), where x is again client’s index and y is the new value
of the xth database element. Server’s input is an encrypted database f with elements having (current) length
`. In the new PIR-writing protocol, the server runs n branching programs Pi in parallel, where Pi returns
fi if i 6= x, and y otherwise. Let the database of the outputs of n branching programs be f ′. Instead of
returning f ′ to the client, the server replaces f with f ′. A more formal protocol description follows:

1. Client sends his query Q(`, i).
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2. For i ∈ {0, . . . , n− 1}, the server does in parallel:
(a) Let Pi be a branching program that returns fi if i 6= x, and y otherwise.
(b) Server executes PrivateBP by using Pi, and sets f ′i to be equal to the resulting second message

R(`, f,Q).
3. Server stores f ′ = (f ′0, . . . , f

′
n−1) as the new database with elements having length `′ = |R(`, ·, ·)|.

Assume that database elements have length `. Then before any updates the server stores a database
with elements of size (s + 1)k where s is defined as usually. The first update protocol has communication
complexity ≤ (t + 1) · (len(P )k + `) = (t2 + t) · k + (t + 1)`. The new database has elements of size
(s+t+1)k ≤ (t+1)k+` and thus the next update protocol has communication (t2+t)·k+(t+1)(tk+k+`).
Analogously, the ith update protocol has communication (t2 + t) · k + (t + 1)(itk + ik + `), and thus the
first u protocols have total communication u(t2 + t) ·k+(t+1)

∑u−1
i=0 (itk+ ik+ `) = O(t2u2k). Thus this

protocol is more communication-efficient than the protocol of [BKOS07] if u ≤ 4
√
n/ log n. Thus, the new

protocol has amortized communication u2 ·log2 n if the number of updates is upperbounded by u. Moreover,
every update only consists of a single message from the client to the server, and the protocol does not use
pairings. Server’s computation is O(n log n).
Security. Client-privacy follows from the previous general proof. Notice that in this case we are not inter-
ested in server-privacy at all.

4.3 Selective Private Function Evaluation

Preliminaries. In [CIK+01] the authors considered the problem of (n, n′)-SPFE, where the client obtains
some function g(y, fx1 , . . . , fxn′ ) of the database elements fx1 , . . . , fxn′ and client’s input y. (y was not
explicitly mentioned in [CIK+01].) The authors proposed several ways to tackle this problem, but all such
ways needed an implementation of either a secure multi-party computation protocol or Yao’s garbled circuits
protocol. The new protocol, described below, is significantly more efficient.
New Protocol (Case n′ = 1). Assume that client has two inputs x and y, and server has a database
f = (f0, . . . , fn−1). The client must obtain g(y, fx). We construct the next protocol. The client sends a
Q message, corresponding to y, to the server. Server constructs n different branching programs Pg,fi for
computing g(·, fi) for each value of i ∈ [n]. She stores the results of all those branching programs in a new
database. In parallel, the client and the server execute an (n, 1)-CPIR protocol to this database, from which
the client retrieves the xthe element.

The case n′ = 1 was previously considered in [BCPT07], who proposed tailored protocols for a very
small number of specific problems. Their approach does not seem to generalize to other problems.
Example: Comparison. As an example, suppose that the client wants to establish whether y > fx, y = fx
or y < fx, where all values are `-bit long. One can construct a branching program for this with len(P ) =
sizeint(P ) = `. If one uses the Gentry-Ramzan (n, 1)-CPIR protocol [GR05], then the communication of
this protocol is n(`k + `) +O(log n+ `k + `+ k), and the computation is Θ(n · `).
Example: Fuzzy Private Matching. Suppose that the client wants to establish whether wh(y, fx) < t,
where all values are `-bit long and wh denotes the Hamming distance. (See [CH08] for previous work.)
This can be straightforwardly reduced to computing the threshold function T`,t, where T`,t(v1, . . . , v`) = 1
iff at least t bits vi are equal to 1. The best known branching program for threshold function, with
size O(` log3 `/ log log ` log log log `), though of length O(` log2 `/ log log ` log log log `), was presented
in [ST97]. (It is also known from [BPRS90] that BP(f) = Ω(`/ log ` log log `).) Combining their so-
lution with the Gentry-Ramzan CPIR protocol results in a fuzzy matching protocol with communication
Θ(`2 log2 `/ log log ` log log log `+ log n)k and computation Θ(n · ` log3 `/ log log ` log log log `)k which
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compares favorably with the “trivial protocol” but also with the best previous work [CH08]. Note that this
is almost optimal communication-wise because in the non-private version the the fuzzy matching has com-
munication log n+ `+ 1 and server-side computation Θ(`+ log n).
General Case for Any n′. In the general case we cannot use the same technique anymore because it could
result in superpolynomial computation time. Instead, we propose the next extension of the PrivateBP pro-
tocol that uses the fact that Lipmaa’s (2, 1)-CPIR protocol is homomorphic, that is, Q(`, i1) · Q(`, i2) =
Q(`, i1 + i2). Description of the new (n, n′)-SPFE protocol follows:

1. For i ∈ [n′] and j ∈ [dlog ne], client and server execute a CPIR protocol such that the client recovers
a randomized version of the jth bit fxij + rij of fxi . Here, rij is a fresh random bit generated by the
server.

2. For i ∈ [n′] and j ∈ [dlog ne], client sends Q(`max, fxij + rij) to the server who uses the homomorphic
properties and rij to compute Q(`max, fxij ), where again `max = |Q(len(F)−1)(`)| and smax = d`max/ke
as always.

3. Server now constructs a branching program for g(a1, . . . , an′ , y), and applies server’s computation part
in the PrivateBP protocol to it, branching on the corresponding bit of fxi instead (for which he now
knows Q(`max(fxij )) of the corresponding bit of ai.

4. Client recovers his private output from the outputs of the PrivateBP protocol.

Note that this protocol requires 4 messages, and computes n′ · log n (n, 1)-CPIR protocols and a PrivateBP
protocol for g. Thus, when the Gentry-Ramzan CPIR [GR05] is used, it has communication Θ(n′ · log n ·
(log n + ` + k) + (m + σ)(` + len(Pg))) and computation Θ(n′ · log n · n + size(Pg)). For most of the
interesting classes F , the proposed SPFE protocol is much more efficient than any of the solutions proposed
in [CIK+01].

5 Open Questions

(1). Currently, Lipmaa’s (2, 1)-CPIR protocol is the most efficient underlying protocol. The PrivateBP
protocol would be more communication-efficient if we had a PrivateBP-friendly (2, 1)-CPIR protocol where
client’s first message’s length did not depend on `, the length of database elements. There seems to be no
reason why such a (2, 1)-CPIR protocol would not exist. One way to achieve this is to design a length-
flexible public-key cryptosystem where one can compute Es+1

pk (M) given only Espk(M). This would enable
to get rid of the dependency from len(P ) in communication and thus decrease total communication of the
protocols from O(m · len(P )) to O(m) where m is the length of client inputs. In particular, in some rare
cases — like (n, 1)-CPIR — there exist specific protocols like [GR05] that have better communication
than PrivateBP with Lipmaa’s (2, 1)-CPIR protocol. (n, 1)-CPIR protocol based on PrivateBP with a more
efficient underlying (2, 1)-CPIR protocol would have asymptotically the same communication as the Gentry-
Ramzan protocol.

(2). The class of functions that can be cryptocomputed by using PrivateBP in polynomial time (by client
in his input length and by server in her input length) seems to be never studied before. What exactly is this
class? Intuitively, only sets F where the maximal branching program length is superpolynomial in m, or the
maximal branching program size is superpolynomial in log |F| fall outside of this class. Both cases seem to
be highly artificial. Moreover, it would be interesting to know when exactly is PrivateBP computationally
more efficient than Yao’s protocol.

(3). One can probably construct even more non-trivial examples of usefulness.
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A Kushilevitz-Ostrovsky Reduction And Lipmaa’s (n, 1)-CPIR Protocol

In the first step of the Kushilevitz-Ostrovsky recursion, server’s original database of size n is divided into
n/n′ pieces of n′ elements, for some n′ � n. Next, a basic two-message (n′, 1)-CPIR protocol Γ ′ =
(Q′,R′,A′) is applied to every piece. The second messages R′(`, ·, ·) of Γ ′ are, instead of being sent back
to the client, stored at server as an intermediate database of smaller size n/n′ but longer string-length
|R′(`, ·, ·)|. Next, the same step is applied recursively, with smaller and smaller intermediate databases of
size n/(n′)j of longer and longer bitlength being stored. The server only returns the answer of the final
(n′, 1)-CPIR when her database has been reduced to contain n′ (long) elements.

Kushilevitz and Ostrovsky used a relatively inefficient underlying (n′, 1)-CPIR protocol Γ ′ that is based
on the difficulty of the quadratic residuosity problem. A more efficient (n′, 1)-CPIR protocol, based on
an arbitrary CPA-secure additively homomorphic cryptosystem was proposed by Stern [Ste98]. Finally,
Lipmaa [Lip05] proposed his (2, 1)-CPIR protocol that was described earlier. The crucial feature of Lip-
maa’s (2, 1)-CPIR protocol is that there |R(`, f,Q)| grows only additively in `, which makes it possible to
achieve log-squared communication in the final (n, 1)-CPIR protocol, by applying log n recursive layers of
the Kushilevitz-Ostrovsky basic recursion. In comparison, the authors of [KO97,Ste98] constructed a basic
(n′, 1)-CPIR protocol with multiplicative length expansion, which resulted in sublinear but still superpoly-
logarithmic communication for the final (n, 1)-CPIR protocol.

Lipmaa’s (n, 1)-CPIR protocol [Lip05] is an instantiation of the Kushilevitz-Ostrovsky recursion with
Lipmaa’s (2, 1)-CPIR protocol underlying it. For the sake of completeness, we will next give its full de-
scription. Let t := dlog ne. Let (Q′,R′,A′) be Lipmaa’s (2, 1)-CPIR protocol as described earlier. Lipmaa’s
(n, 1)-CPIR protocol (Q,R,A) for `-bit strings is depicted by Fig. 2. Let client’s index be x =

∑t−1
j=0 xj2

j

for xj ∈ {0, 1}. Server’s input is a database f = (f0, . . . , fn−1). We also denote fx by fxt−1,...,x0 . First,

Q(`, x) := {Q′(`+ (t− 1− j)k, xj)} = {Es+t−1−j
pk (xj)}

for j ∈ {0, . . . , t− 1}. Now, given Q(`, x), server cryptocomputes a complete ordered binary decision tree,
where at the ith level, the server “branches” on the (encrypted) value of xi. The leafs are labeled by fi,
where fit−1,...,i0 is at the leaf that corresponds to the branchings made according to the tests [xj =? ij ]
being true. At every node on the jth level, the server computes R′(` + (t − 1 − j)k, (b0, b1),Q′j) where
Q′j := Q′(`+(t− 1− j)k, xj). That is, given Q′j and an input pair (b0, b1) to this node, the server computes
the value R′(`+(t−1−j)k, (b0, b1),Qj) = (Es+t−1−j

pk (1)/Qj)b0 ·Qb1
j = Es+t−1−j

pk ((1−xj) ·b0+xj ·b1) =

Es+t−1−j
pk (bxj ). This value is then used as an input at the level j−1. Thus, at the end of Lipmaa’s (n, 1)-CPIR

protocol, the server obtains the value

R(`, f,Q(`, x))←R′(`+ (t− 1)k, (R′(`+ (t− 2)k, . . . ,Q′t−1),R
′(`+ (t− 2)k, . . . ,Q′t−1)),Q

′
t)

=Es+t−1
pk (Es+t−2

pk (. . .Espk(fxt−1,...,x0) . . . )) ,

and sends it to the client. The client multiple-decrypts server’s message and thus obtains fx.

B Efficiency of Shannon’s Upperbound

This example is based on an OBDD that satisfies Shannon’s upperbound (3 + o(1))2m/m on the size of
branching programs from [Sha49], since the more precise upperbound of [BHR95] seems only to apply
for m ≥ 10. See Fig. 3 for concrete case m = 6. Let f : {0, 1}m → {0, 1} be a Boolean function. The
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Figure2. Lipmaa’s CPIR is based on a complete ordered binary decision tree, for n = 2m = 16. In all
figures of this paper, dotted lines correspond to the branch 0 and solid lines to the branch 1

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0000

0001 0010 0011 0100 0110 0111 1000 1001 1011 1100 1101 1110

1111

10100101

0 1

x5?

x4?x4?x4?x4?x4?x4?x4?x4?x4?x4?x4?

x3?x3?x3?x3?x3?x3?x3?

x2?x2?x2?

x1?

x5?

x4?

x3?

x2?

x1?

x0?

Figure3. Communication-efficient CPIR based Shannon’s upper bound for n = 2m = 64. Only blue values
and edges depend on the concrete database, which is equal to a sequence of binary presentations of all 4-bit
integers. Everything else depends just on the value of m
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idea behind Shannon’s construction is to construct an ordered branching program, such that: the branching
program starts out as a depth d, where d = m− blog(m+ 1− logm)c, ordered binary decision tree where
one branches on variables x0, . . . , xd−1. This results in 2d − 1 nodes. The branching program has 22m−d

more nodes that correspond to all subfunctions of f on last m − d variables. These extra nodes are layered
in m− d more levels. A node for a subfunction that first essentially depends on the jth variable out of these
m−d variables (but not on earlier ones) is on level d+j; nodes that correspond to constant subfunctions are
on level m. The extra nodes are labeled by a 2m−d-bit string corresponding to 2m−d values in the truth table
of f . There is an 0-edge from an extra node labeled by v1 . . . v2m−d to an extra node v′1 . . . v

′
2m−d

exactly if
v′j = v′

2m−d−1 + j = vj for j ∈ {1, 2m−d−1}. There is an 1-edge from an extra node labeled by v1 . . . v2m−d
to an extra node v′1 . . . v

′
2m−d

exactly if v′j = v′
2m−d−1+j

= v2m−d−1+j for j ∈ {1, 2m−d−1}.
The above part of the construction only depends on the value of n = 2m and not on the concrete

database. The next part depends on the database: The 2d−1 nodes on level d are labeled by subsequent
2m−d+1 values in the truth table of f . The 0-edge from node level d edge v1, . . . , v2m−d+1 goes to an extra
node labeled by v1, . . . , v2m−d . The 1-edge from node level d edge v1, . . . , v2m−d+1 goes to an extra node
labeled by v2m−d+1, . . . , v2m−d+1 . This means that only the location of 2d ≈ 2m/(m + 1 − logm) =
(1 + o(1))2m/m edges depends on the database. Thus even in the offline phase, even when the database is
completely changed, one has to change O(2d) = O(2m/m) edges, this can be compared to the 2m work
that is necessary to update the database itself. In the case the database is updated in only one element, only
the location of one edge is changed.

In the concrete casem = 6, d = m−blog(m+1− logm)c = 4. Complete ordered decision tree (that is,
CPIR from [Lip05]) has 2m+1 − 1 = 127 nodes. The branching program based on Shannon’s construction
has 2d − 1 + 22m−d = 15 + 16 = 31 nodes.
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