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Abstract

A recently proposed class of multivariate quadratic schemes, the Rainbow-Like signature
Schemes, in which successive sets of central variables are obtained from previous ones by solving
linear equations, seem to lead to efficient schemes (TTS, TRMS, and Rainbow) that perform well
on systems of low computational resources. Recently SFLASH (C*~) was broken by Dubois,
Fouque, Shamir, and Stern via a differential attack. In this paper, we exhibit similar attacks
based on differentials, that will reduce published Rainbow-like schemes below their security
levels. We will present a new type of construction of Rainbow-Like schemes and design signature
schemes with new parameters for practical applications.

1 Outline

Multivariate Public-Key Cryptosystems (MPKCs, or M Q schemes) are cryptosystems for which the
public key is a set of polynomials P = (p1,..., pm) in variables x = (x1,...,x,) where all variables
and coefficients are in K = GF(q). In practice this is always accomplished via

P:W:(wl,...,wn)GK”gx:MSW—I—CS&ygz:MTy—i—CT:(zl,...,zm)EKm

In any given scheme, the central map Q belongs to a certain class of quadratic maps whose
inverse can be computed relatively easily. The maps S,T are affine. The polynomials giving y; in
x are called the central polynomials, and the x; are called the central variables.

In 1999, the Unbalanced Oil-and-Vinegar multivariate structure is proposed by Patarin et al [?].
Lately the Rainbow class of signatures [?,7, 7], based on repeated applications of the Unbalanced
Oil-and-Vinegar principle, shows some promise on systems of low computational resources.

Given that the well-known C*~ class of signature schemes including SFLASH was broken by
differential attacks [?], we examine similar attacks on Rainbow, with the following conclusions:

e Differentials improve on the High-Rank (Dual Rank) attacks on Rainbow-like systems.
e Differentials also helps with randomized brute-force searches for S and T
e We can assess how Rainbow-like schemes needs to be amended in view of recent developments.

e The results are in line with experiments run on small scale systems.

In Sec. 2 we recap Rainbow-like multivariates and what is known about the security of MPKC before
the appearance of Rainbow in Sec. 3. In Sec. 4, we describe the new differential attack, which is
related to the high-rank attack, and in Sec. 5 we present a new type of Rainbow construction,
we tabulate what we know about the security of Rainbow-like schemes, in particular, the security
against the two new recent attacks specially targeted against the Rainbow schemes, and we design
schemes with new parameters for practical applications. Finally, in Sec. 6, we present the conclusion.



2 Rainbow-like Multivariate Signatures

We characterize a Rainbow type PKC with u stages:

e The segment structure is given by a sequence 0 < v; < vy < -+ < Uyy1 = n. For l =
L...,u+1,set S;:={1,2,...,u} so that |S;| =v; and Sy C S1 C -+ C Sy41 = S.

e Denote by 0y := vj41 —v; and Oy := S;11\S; for I = 1---u. The central map Q has component

polynomials ¥y, 41 = P, 1 1(X), Yoyi+2 = Py, 42(X), - -+, yn = Py, (x) of the following form
P = Z Oégj)ﬂﬂiffj + Z Ozl(.j)mixj + Z ﬁl( )xi, if uyy <k <wvq (e, if k€ O).
1<j<v; 1<v<j<vi41 1<vi4q

In every p, k € Oy, there is no cross-term x;x; where both i and j are in Oy at all. So given
all the y; with vy <@ < vy41, and all the x; with j < vy, we can compute Ty, 41,. .., Ty -

e To expedite computations, some coefficients a;j;’s may be fixed (e.g., set to zero), chosen at
random (and included in the private key), or be interrelated in a predetermined manner.

e To invert Q, determine (usu. at random) x1,...xy,, i.e., all zx, k € S1. From the components
of y that corresponds to the polynomials p;}1+1, ..., we obtain a set of 0 equations in the
variables zk, (k € O1). We may repeat the process to find all remaining variables.

In this form, we can see that Rainbow can only be a signature scheme. We can see a good
example of what can go wrong in [?] if we try to construct an encryption scheme, where the initial
vinegar variables is determined through an initial block of equations.

Example 1. Consider enTTS(20,28) of [?] with structure (8,9,1,1,9) and this central map:

7 . .
Yi = Ti+ D i1 PijTiTsy(i+j mod 9)s ¢ =8~ 16;
Y17 = x17 + P17,1T1%6 + P17,2T2T5 + P17,3X324
+P17,429%16 + P17,5210215 + P17,6211214 + P17,7212213; (1)
Y18 = x18 + P18,1T2x7 + P18,2X3T6 + P18,3%4T5
+P18,4C10T17 + P18,5C11%16 + P18,6T12T15 + P18,7T13%14;
i—1
Yi = T+ Pi0Ti-11Ti-9 + ;19 Pi,j—18 T2(i—j)— (i mod 2) Tj T Pii—18T0T;

27 ,
+ 5 i1 Pij—18 Timjy19 Ty, 1 =19+ 27

If zg, ..., 7 is decided, one can solve first for zg, ..., 16, then x17, z18, then x19, ..., x27. Note
that g does not appear until the last block, which will be significant later.

Example 2. The proposed Rainbow scheme in [?] is an essentially generic stagewise UOV con-
struction with layers (6,6,5,5,11). The first siz central equations is a generic UOV construction
with siz vinegar (r1,...x¢) and siz 0il (v7,...,x x12) variables; the next five has 12 vinegars and 5
oils (x13,..., x17); the next five has 17 vinegars and 5 oils (r1s,..., T22), and the last 11 has 22
vinegars and 11 oils (xa3,. .., x33).

(k)

Rainbow schemes where most of the crossterm coefficients o’ are zero are said to be TTS
instances. TTS schemes have a relatively small private key and even better efficiency, but may
be exposed to additional risks. Regardless, the same techniques that we shall describe below are
security concerns for all schemes of the rainbow type including TTS, TRMS, and Rainbow [?,7,7].



3 The Security of Multivariates and Prior Attacks

The name of the class came from the well-known “Multivariate Quadratics” problem:

Problem MQ: Solve the system p; = po = - -+ = p, = 0, where each p; is a quadratic polynomial
in x = (x1,...,2y,) and coefficients and variables are in K = GF(q).

Generic MQ is NP-hard [?], and consensus pegs it as a difficult problem to solve even proba-
bilistically. However, to use M@ as the underlying hard problem in a PKC, one need a trapdoor
built into the public map P. So the security of the cryptosystem also depends on the following:

Problem EIP: (Extended Isomorphism of Polynomials) Given a class of central maps € and a map
P expressible as P =T o0 Qo S, where @ € €, and .5, T are affine, make such a decomposition.

There are two interesting twists here:

o If Q is constant, this is known as the I[P problem. J.-C. Faugére showed that in some cases
simple IP is not NP-hard at Eurocrypt 2006 [?].

e The EIP problem where € is the set of homogeneous quadratic maps is easy |?]. Equivalently,
if Q is homogeneous (e.g., as in SFLASH=C"") we can set cg = ¢y = 0.

If Q fundamentally involves a map in a field L. = K* that is of a size significantly bigger than
K, we call the scheme “big field” or “dual field”. This order includes derivatives of Matsumoto-Imai
(C*) and Hidden Field Equations. Otherwise we call the scheme a “true multivariate” (sometimes
“single field”). This includes the Unbalanced Oil-and-Vinegar and stagewise triangular structures.

One of the biggest concerns of multivariate cryptography is the lack of provable security results.
Today security in MPKC is still very much ad-hoc. Proposed schemes are evaluated against known
attacks security estimates obtained for various parameters. The designers then tries to juggle the
system parameters so as to have some requisite security level under every known attack.

With that, we list the standard attacks known for MPKCs today:

1. Rank (or Low Rank, MinRank) attack, which finds a central equation with least rank.

Clow rank ~ qr[m/nwm(nz/Q — m2/6)/,u, m.

Here as below, the unit m is a multiplications in K, and r is that lowest rank (“MinRank”, [?]).
p is the number of linear combinations of central equations [?] at that minimal rank.

2. Dual Rank (or High Rank) attack [?,?], which finds a variable appearing the fewest number
of times in a central equation cross-term. If this least number is s, [?] gives

Chigh rank ~2 [qsn3/6] m.

3. Oil-and-Vinegar Separation [?,7,?|, which finds an Oil subspace that is sufficiently large.
Cuov ~ [q”*207104 + (some residual term bounded by qum*O/S)] m.
o is the max. oil set size, i.e., there is a set of o central variables which are never multiplied
together in the central equations, and no more.

4. Trying for a direct solution (brute force). Best known methods are the Lazard-Faugeére family
of solvers (the Grobner Bases methods F4-F5 or XL) whose complexities [?,7,7, 7] are very
hard to evaluate; some recent asymptotic formulas can be found in [?,?,7].



4 New Differential attacks

One key point of our attack is to use the differentials that is used to break the Sflash schemes
recently [7].

Given the public key of a MPKC, which we denote as P(x), a set of quadratic polynomials, its
differential DP(x) is defined as

DP(x) =P(x+c)—P(x)—P(c),

a set of linear functions in x.

The key is to use the hidden structures in the differential to attack the cryptosystem. The
observation is that the differential can be used to improve the old high-rank attack when there are
too many variables that don’t appear in the final block of equations (for y;, where i € O,). First,
we will reformulate an existing attack in terms of the differentials.

Let H; be the symmetric matrix corresponding to the quadratic part of z;(w). Without loss of
generality, we may let the fewest number of appearances of all variables in the cross-terms of the
central equations be the last variable z,, appearing s times.

Algorithm 0. The High (Dual) Rank Attack as given by Goubin-Courtois and Yang-Chen [?, ?]:

1. Compute the differential P(x+c)—"P(x)—P(c) and take its j-th component (which is bilinear
in x and c) as cTHjX, Hy. 1s representing the quadratic crossterms in the k-th polynomial of
the public key. Note that the H; are always symmetric and if charK = 2, and xT Hix = 0.

2. Form an arbitrary linear combination H = El o;H;. Find V = ker H.

5. When dimV = 1, set (3_; A\jH;)V = {0} and check if the solution set V of the (X\;) form
a subspace dimension m — s. Note: Since a matriz in K™" can have at most n different
eigenvalues, less than n/q of the time we would need to do this.

4. With probability q—° we have V =U ={x: x1 = -+ =z, = 0}.
As each trial run consists of running an elimination and some testing, we can realistically do this
with ~ <sn2 + %3) q® field multiplications, by taking linear combinations from only (s + 1) of the
matrices H; and hope not to get too unlucky. An upper bound is {an =+ %3 + %(m3/3 +mn?)| ¢°.

The above formulation of the high rank attack is designed to defeat “plus”-modified Triangular
systems. We first present some notations before describing how we can improve this attack further:
Let P, be the linear space of quadratic polynomials spanned by polynomials of the form

Z Q5 TT5 + Z Qi T;T5 + Z Bixi +n

1€0y,jES; 1,JES; iESl+1

We can see that these are Oil and Vinegar type of polynomials such that x;, ¢ € O; are the Qil
variables and z;, ¢ € S; are the Vinegar variables. We call z;, i € O; an [-th layer Oil variable and
xi, 1 € S; an [-th layer Vinegar variable. We call any polynomial in P; an [-th layer Oil and Vinegar
polynomial. Clearly we have P; C P; for i < j. Let W; be the space of linear functions of variables
Z1, ..., Ty;- Then we have

WicPhCWeCP---CW,CP,CWyq.



Now we present the new attack:
Algorithm 1. The Improved High-Rank Attack using differentials:

1. Pick random c,c’ € K™, compute P(w+c)—P(w)—P(c), and we will denote its components
as (t1,te, ..., tm). Similarly we compute (t),t,,...,t,) =P(w+c')—P(w) —P(c), then

U = span(ty, ta,. .., ty) Nspan(t], th, ..., t,).

2. Guess at a linear form f € U; find coefficients a; and a; such that f = a;t; =" alt].
3. Use a; and a) as the guessed o in the High Rank Attack (Algorithm 0) above.

Proposition 1. The expected complezity of Algorithm 1 is ~ q% - (cubic-time elimination) where
d < s — [# vars appearing in crossterms only in the last block (solutions of which gives O,)]. (2)

Proof. Let
F=(F,....,F,)=QoS

be the mapping from x +— z. Let
F(x+b)—F(x)— F(b):=G=(Gy, Gg,...,Gp),
where b = (b1, ba,...b;, ..., by) is randomly chosen. Pick another b’ and form
H = (Hy,..., H,)) = F(x+b') - F(x) - F(b),

then

1. if i € Oy, then G;, H; € Wi,

2. WjH := span{ G }ico; C Wji1, and similarly Wj+1 := span{H,; }ico; C Wjy1;

3. Wo C ... C Wypq and Wa C ... C Wy

Clearly (WuﬂWu) C (WuH N Wy+1), and we observe that: if the dimensions of the two
subspaces differ by d, then we can break the system with oc ¢ - (one guess) computations.

How so? Because the relationship between P and F', is the same as that between the w-space
and x-space, i.e., the linear transformation S. So there is a 1-in-¢? chance that both Y a;z; and
> alz; correspond to a linear form in W,. The odds are now decided by ¢ % instead of ¢7°. In a
Rainbow-like system, s = o, = n — vy. For Alg. 1 to be worthwhile, we must show that d < s.

In fact, it is not so hard to describe how to determine d. W1 and W, are two m-dimensional
subspaces in the n-dimensional vector space Wy11. Most of the time they intersect in a 2m —n
dimensional subspace, hence .

dim W, =dim W, = m — o,

which equals the number of variables appearing in cross-terms in equations not of the
final block, which is equivalent to Eq. 2. O



Example 3. Consider enTTS(20,28) as in Eq. 1. Here dim(W 41 UWu—H) =20+20—-28 =12,
while dim(W, Wu) = 11+11—17 = 5. Therefore we need only ~ 2°6 instead of 27 guesses, which
is a speed increase of 216x over Algorithm 0. Since each guess takes about 28 time units (standard
is to use time of a 3DES block encryption, between 2° to 28 multiplications), this gives complewity
264 instead of 280, too weak to be “strong” crypto.

What went wrong? Generically dim W,, = n — o, and the intersection is of dimension 2(m —
0y) — (n—0y) =2m —n — oy, making d = (2m —n) — (2m —n — oy) = 0y, = s. The lesson: watch
out for vartable not in the final oil set that does not occur prior to the last block of equations. In
enTTS(20,28), xg and z1g did not appear in any earlier equations than the final block.

4.1 Experimentation with mini-versions

We experimented in smaller fields with three different schemes: Rainbow (6,6,5,5,11), the en TT'S(20,28)
scheme above, and its miniaturized sister version enTTS(16,22) [structure (6,7,1,1,7)].

Scheme Structure | ¢ | Alg. 0 | Alg. 1 | ratio
EnTTS(20,28) | (8,9,1,1,9) | 8 93 4.4 |0.047
EnTTS(20,28) | (8,9,1,1,9) | 16 | 42435 | 496 | 0.012
EnTTS(16,22) | (6,7,1,1,7) | 16 102 3.5 | 0.034

Rainbow [?] | (6,6,5,5,11) | 8 8454 | 17123 | 2.028

Table 1: Timing (sec) on 16 of 3GHz P4 machines guessing in parallel

The results are fairly constant over many tests [except the en TTS(20,28) test which we only ran
a few times|. Clearly, not having all vinegar variables of the last segment appearing previously in
cross-terms is a big minus. Rainbow (6,6,5,5,11) does not have the same problem and Algorithm 1
is no improvement of the High Rank Attack against it.

5 New Rainbow-Type Designs for Practical Applications

For practical applications, we will propose the following Rainbow Structures.
1. (20,10,4,10), where the public key has 44 variables and 24 polynomials.
2. (18,12,12), where the public key has 32 variables and 24 polynomials.
3. (20,14, 14), where the public key has 48 variables and 28 polynomials.

We will first formalize a twist on the regular Rainbow construction, which is somewhat more
general. In the previous constructions, in each new layer, previously appeared variables will only be
Vinegar variables, the new variables appearing only as Oil variables. We can also consider adding
new Vinegar variables as we add Oil variables. This also implies that in the signing process, we
guess at the new vinegar variables as they appear, while in the previous Rainbow construction, we
only guess the Vinegar variables in the first layer once. In this case, we can also write for each
layer two parameters, (v}, 0;), where the v counts the new vinegar variables we introduce. In this
layer, we will have v; + v} Vinegar variables (where v; counts the number of all previous appearing
variables) and o; the number of Qil variables.



If all the v} are zero, this is precisely the original Rainbow construction. We might call this new
construction the extended Oil-Vinegar construction. From the viewpoint of the attacker we can see
this as a specialization of the Rainbow construction, since the new vinegar variables might as well
have been part of the initial block of vinegar variables, but simply never have been used before.
However, it is different in an operative sense, in that if we use the new vinegar variables properly,
we could always find a signature, as implicitly used in T'TS constructions earlier.

So, in this language, we would propose scheme: ((15,10), (4,4),(1,10)), ((17,12),(1,12)), and
((19,14),(1,14)).

For these new schemes, we could also choose to use the generic sparse polynomials or special
sparse polynomials as in the case of T'TS [?]. For generic sparse polynomials, we think it is a good
idea to choose 3L; terms for each layer, where L; is the sum of number of Oil and vinegar variables
in each layer.

For these new schemes, we need to take into two new recent special attacks against Rainbow.

5.1 The Reconciliation Attack

In this method of attack we attempt to find a sequence of change of basis that let us invert the
public map. In this sense it can be considered an improved brute force attack.

Suppose we have an oil-and-vinegar structure, then the quadratic part of each component p} in
the central map from x to y, when expressed as a symmetric matrix, looks like
(@) (4) (4) (4)

Q1 T ] Q) p+1, 0 Qg
i i i i
M = a1(11) 0‘1()12 0‘1(;,3)—1-1 041(17)1
N N O NGO 0
v+1,1, v+1,0,
IS R O I Y

Suppose we have a basis change matrix Mg that looks like [: S] with the same shape, then the

public map will retain the same form and be easily inverted. Hence, no security at all.
We aim to recreate the same effect using a sequence of transformation matrices

[0 -+ 0]ar] [0 - 0|dj]0]
0 -+ 0as 0 -~ 0|d,|0
Po=1n+|0 -~ 0lay |; Poii=1,+|0 -~ 0|a, |0 |;
0 00 0 0100
0 -~ 0[]0 (0 -~ 0]0]0 |

Suppose, then, that we start with the differential matrices H; and simultaneously transform them
to make their lower-right corner a square of 0’s. i.e., we seek to recreate the above kind of Mg using
a product of matrices that is equal to the identity plus a matrix that has only non-zero entries in
one column (here column n, the last column). Te., we find P,, P,,_1, P,_o,... such that the linear



transformation w — x = Pw where P := P,;1P,49--- P, will make all the matrices of z in x the
shape as given above, with a square of zeroes in the lower right.

Algorithm 2. The following gives Reconciliation Attack against a Rainbow-like scheme:

1. Perform basis change w; := w, — \jw,, for i € Sy, w; = w, for i € O,. Evaluate z in w'.

2. Set all coefficients of (w!,)? be zero and solve for the \;. We may use any method such as
F4/F5 or FXL. There will be m equations in v, unknowns.

3. Repeat the process to find P,_1. Now we set w, := w, — Nw, _, for i € S,, and set ev-
ery (w_1)? and w!w!_, term to zero (i.e., more equations in the system) after making the
substitution. Continue in the same vein to find P,_o, ..., Py11 with more and more equations.

Given what we know about system-solving today, we can expect the complexity to be determined
in solving the initial system. Hence, if v,, < m, solving m equations in v, variables will be easier
than m equations in n equations, and we achieve a simplification.

Oy,
Proposition 2. The Reconciliation Attack works with probability =~ (1 — %) .

Sketch of Proof. We can see that the counstruction of P, will eliminate the quadratic term in the
last variable. P,,_1 will eliminate all quadratic terms in the last two variables, and so on, and each
sequential construction will not disturb the structure built by the prior transformations.

As we proceed, the matrices corresponding to the quadratic forms will have a growing square of
zeroes. Since a UOV structure with o oils and v vinegars can always be considered as a degeneration
of a UOV with (0 — 1) oils and (v + 1) vinegars, the construction is expected to succeed except
in a situation analogous to running into a zero in a pivoting position during a partial run of a
Gauss-Jordan elimination. Indeed, we can switch indices and try again and usually succeed. O

This attack was presented in [?], which evaluates the complexity in several places, but the
authors seem to be using very optimistic numbers for a kind of XL that seems to be better than
Faugére’s F4. We believe this is too optimistic and will use formulas from [?] for all our evaluations,
which gives different estimates as shown below.

Example 4. We attack enTTS(20,28) as in Eq. 1. Originally we must solve a 20-equation, 20-
variable (we can guess 8 out of the original 28) MQ system. With v, = 19, the rate-determining
step of the Reconciliation Attack is a 20-equation, 19-variable system. This is easier by a factor of
exactly 28 if we are using FXL or FFy [?, 2], since we will guess exactly one fewer variable.

Since we expect a direct attack on enTTS(20,28) to have ~ 27 complexity, Alg. 2 should take ~ 264,
The construction process and odds as given above have been tested and verified on miniature versions
(cf. [?]) of TTS schemes such as enTTS(16,22) as well as other Rainbow-like instances.

Example 5. TRMS [?] can be reduced to 25 via the same attack (a faster attack given below)
because it has rainbow layer parameters of (8,6,2,3,9), with a last block of the same size as TTS.

Example 6. We implemented enTTS(16,22) over GF(128), the initial system has 16 equations and
22 — 7 = 15 wariables. We ran FXL with Wiedemann solver (as in [?]) with one fized variable on
an assembly of machines with 128 total P4 cores at 3.0GHz, each guessing 1 value out of 128. Here
D =8 [?], and the number of monomials is T = 319770, with a total of 73799040 terms which took



only 288MB of storage at every core. Solving a system known to have a solution should take around
3(T?n(n + 3)/2) ~ 2% multiplications, which at about 16 cycles a multiplication about 2.0 x 10*
seconds, but we discovered that there is guesswork in generating a system, so we dare not run more
than one value on a given CPU.

In practice we were not so unlucky and were able to solve 15 variables in 16 equations in GF(128)
in what was in fact closer about 3 days, probably due to non-optimal programming. After that, solving
the remaining systems is a piece of cake [real CPU time estimated at less than two hours], and we
can then decompose an enTTS(16,22) instance.

Example 7. We now attack the proposed Rainbow instance in [?]. Since v, = 22 < m = 26, solving
this one is significantly easier: using FFs [?], the expected time use is 2°° (SDES blocks) instead
of 281, Fy is not generally available but we should be able to achieve ~ 254 cycles using FXL on a
large SMP system.

We can easily see that we must be very careful choosing our parameters for security against one
attack may expose it to another. Our selected parameters are oll tuned against this particular attack
and this attack is no better or worse than direct attack, which have complexity of solving 24, and 28
equations in as many variables over GF(256), or roughly 2% and 2% respectively.

5.2 Interlinked/Accumulating Kernels and MinRank

As noted in [?] and recapped in Sec. 3, if ;1 combinations of central equations stays at the minrank,
a Rank attack often speed up p-fold, and which is termed interlinking or accumulation of kernels.

Recently Billet and Gilbert [?] cryptanalyzed the Rainbow instance of [?] in ~ 264 3DES unit
times (they stated 27!, but GF(256)-multiplications is a very small unit; NESSIE for example
counted 3DES units) using the same principle. While we exhibit a faster attack on that rainbow
instance above, the same extended accumulating-kernel minrank attack is more widely applicable:

Proposition 3 (Billet-Gilbert, SCN 2006). Kernels of the initial block of equations in a rainbow-like
multivariate always accumulate such that any vector in x-space with the initial vinegar components
all vanishing has at least a 1/q probability of being found by the MinRank attack.

Example 8. We can cryptanalyze enTTS(20,28) [?] in 25* via the accumulating kernels attack.
In fact, this pitfall is sometimes easy to overlook:
Proposition 4. We can cryptanalyze TRMS from [?] in ~ 2°2 via the accumulating kernels attack.

Proof. The central map contains this piece with *3 meaning multiplication in GF(224):

Y17 T17 g 294716 C32T9
yis | = | 18 | *3 r9 + T11 + T12 + C305%10 + | e33710
Y19 19 T3 + X15 + T16 C31215216 C34%11

Each of these equations are only of rank 8 (the minrank) in GF(256), and the y;7 and y19 form a
pair of equations that has ¢ = 256 interlinked kernels. Evaluating as in Sec. 3 gives ~ 262, O

In our schemes, the complexity from this attack are roughly ¢ to the number of equations in the
first block times change, which comes out to about 28,2100 2118



5.3 The challenge

From all the above, we can see that we need to be very careful in our design of the parameter for
Rainbow like schemes.

Proposition 5. To build a scheme with design security C over the base field GF(q), we let £ be the
smallest integer such that ¢+ > C, then:

o The initial segment must contain £ — 1 or more vinegar variables. The final segment must
contain £ — 1 or more equations and exactly as many as there are total vinegar variables.

o There should be enough equations to avoid direct solution via a Lazard-Faugére solver.

Current estimate [?] is that 20 underdetermined equations in GF(2%) achieves 27%; 24 equations
achieves 252; each estra equation roughly gives a factor > 22 to the complexity [?].

We conclude that all three Rainbow like schemes we propose below have security levels above 280

elementary operations.
1. Rainbow (20,10,4,10), in the extended form ((15,10), (4,4), (1, 10))
2. Rainbow (18,12,12), in the extended form ((17,12), (1,12))
3. Rainbow (20,14,14), in the extended form ((19,14), (1, 14)).

Of course, without using the extended form, the security level would not be any lower, the extended
form merely guarantees the existence of a signature always.

We hasten to add that the form given above is not much slower in signing than the previous
TTS. In preliminary runs, a single signature for (20,10,4,10) version averages to about 157us, still
way faster than any competitor.

6 Conclusion

In this paper, we present a new differential attack and a new Rainbow constructions. We design
new schemes for practical applications.

With these constructions, we note that the design security of the system would still go up expo-
nentially as the length of the hash in both generic (rainbow) and sparse (T'T'S) variants. Perhaps, we
might even say that the kinks of this approach is being ironed out, and multivariate cryptographers
are finally beginning to understand Rainbow-like Multivariate Signatures

Another development that affects Rainbow-like schemes is the fact that SHA-1 is being phased
out in the wake of recent results [?]. This means that hashes and hence signatures might become
longer in a hurry. ECC is affected in much the same way, because 163- or 191-bit ECC may be
obsoleted when everyone switches to SHA-2 (no one really wants to use a truncated hash if it can
be helped). Even such state-of-the-art work as |?] would force the slightly uncomfortable SHA-224.
With multivariate signature schemes, an additional problem is the large (and sometimes redundant,
cf. [?]) keys. One might look toward larger base fields such as GF(2'®) or GF(2!4) to help with the
key size problem, but this would also pose new challenges in optimization. Another way is to look
for a safe T'TS (built on the similar layer structures as specified above), now that hash sizes has
gotten longer. All in all, we think that multivariates including Rainbow-like schemes still deserve a
good look as the age of quantum computers approaches.
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To repeat ourselves: It is clear that in the Rainbow like construction, one must be very careful

in choosing its layer parameters.
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