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Abstract

In this paper, the security of double block length hash functions
with rate 1 which based on a block cipher with a block length of n-
bit and a key length of 2n-bit is reconsidered. First, two concrete
attacks are designed to break Hirose’s two examples which were left
as an open problem. Next, attacks are presented on a general class of
double block length hash functions with rate 1, which disclose there
exist uncovered flaws in the former analysis by Satoh et al. and Hirose.
Some refined conditions are proposed for ensuring this class of the rate-
1 hash functions to be optimally secure. Finally, the security results
are extended to a new class of double block length hash functions with
rate 1.

Key words. Cryptanalysis, Block cipher, Double block length Hash func-
tion.

1 Introduction

Cryptographic hash function H : {0, 1}∗ → {0, 1}` is defined as an easily
computable algorithm which uniformly maps an arbitrary-length message
to a fixed-length output hash value. In practice, most of hash functions are
either explicitly or implicitly composed from block ciphers. The advantages
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of the block-cipher-based designs are that one can conveniently choose a
widely accepted block cipher(i.e., DES, IDEA, AES, etc) to construct the
round function, and also the latest cryptanalysis results on such block cipher
can be used to avoid the potential weakness in the algorithm. Discussion
of hash functions constructed from n-bit block ciphers is divided into single
block length(SBL) and double block length(DBL) hash functions, where single
and double are related to the output range of the block cipher used in the
hash function. Assume that equal or greater than 264 operations(encryption
or decryption) are infeasible, the objective of SBL hash functions is to just
provide one-wayness for cipher of block length near n = 64, while fail to
collision resistance since a doubled 128-bit length range is required to resist
the birthday paradox attack. The motivation for double block length is
to combine two n-bit block ciphers to obtain a sufficient output range for
collision resistance. One such algorithm is MDC-2, which was developed
by Brachtl et al.[3] for use in combination with DES. It is believed that
the complexities for (second) preimage and collision attacks on MDC-2 are
about 23n/2 and 2n, respectively. A DBL hash function H is said to be
optimally secure, if any adversary with non-negligible successful probability
must spend the computation costs greater or equal to brute-force attacks,
which requires the complexities of collision and (second) preimage attacks
are no less than 22n and 2n, respectively.

Although double block length can realize collision resistance, the ob-
jective of DBL hash functions is a decrease in speed. The rate of a block-
cipher-based hash function is defined as the number of n-bit message blocks
processed per encryption or decryption for the measurement of the efficiency.
The rate of MDC-2 is only 1/2, which implies that MDC-2 is at least twice
as slow as the underlying block cipher. To improve the efficiency, many
DBL hash functions with rate 1 were proposed[4, 8, 16, 23]. Unfortunately,
some reviews show the critical results that the proposed schemes with rate
1 unlikely achieve optimally secure. In [10], Knudsen et al. presented the
attacks on a large class of DBL hash functions with rate 1 such that the
key length is equal to the block length n-bit. In particular, the attacks
break the proposed schemes in [4, 8, 16]. Still, many advanced block ciphers
(i.e., AES, RC5, Blowfish, etc) support variants of key length motivates re-
newed interest in finding good ways to construct an DBL hash function as
secure as MDC-2. Many instructive examples were proposed recently, i.e.,
[6, 12, 14, 15]. But all these schemes are less than rate-1, which means they
are still not efficient. In [19], Satoh et al. presented the attacks on a general
class of DBL hash functions with rate 1 where the key length is double to the
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block length, which break the proposed scheme in [23]. In particular, Satoh
et al. described a necessary condition for this general class of the rate-1
hash functions to be optimally secure. Recently, Hirose[7] gave a comment
on Satoh et al.’s result [19] and it is shown that there exists a missed case
in their analysis. Moreover, Hirose left two examples in this case as an open
problem to make it clear whether they are optimally secure.

Our Contributions. Consider the security of double block length hash
functions with rate 1 where the key length is double to the block length,
our contributions are three-folds. First, we present two concrete attacks on
Hirose’s two examples which are left as an open problem in [7]. The attacks
show the fact that the two schemes are not optimally collision resistant.
Based on this negative result, then we investigate the security of a general
class of DBL hash functions with rate 1 which is defined by Satoh et al.[19]
to find whether there exists an optimally secure DBL hash function with
rate 1. Some refined conditions for this class of DBL hash functions to be
optimally secure are proposed after the analysis. Unfortunately, the results
also show that Hirose’s two example are failed to be optimally (second)
preimage resistant. Finally, the security results are extended to a new class
of DBL hash functions with rate 1 where one block cipher used in the round
function has the key length is equal to the block length and the other is
doubled. Prior to this paper, there is no rigorous analysis on the half-baked
cases proposed by Satoh et al.[19] and Hirose[7] to decide whether they are
as secure as MDC-2.

Organization. The remainder of this paper is organized as follows. In Sec-
tion 2, some definitions and the former results on DBL hash functions with
rate 1 are reviewed. In Section 3, first two concrete attacks are presented
on Hirose’s two examples. Then attacks are described on a general class of
DBL hash functions with rate 1. Section 4 describes an extended result on
a new class of DBL hash functions with rate 1. The conclusion is given in
the last section.

2 Preliminaries

In this section, the notions and definitions are reviewed for the following
analysis. Let the symbol ⊕ be the bitwise exclusive OR. For binary se-
quences a and b, a||b denotes their concatenation. Let IV be the initial
value. For double block length hash function, the i-th input message Mi
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can be looked as a concatenation of the 2n-bit length blocks such that
M i = mi

1||mi
2|| · · · ||mi

t, where t = |M i|/2n and mi
j = mi

j,1||mi
j,1, j ∈ {0, t}.

The function Rank(·) returns the rank of an input matrix. The same ter-
minology and abbreviations in different definitions are the same meaning,
except there are special claims in the context.

2.1 Block-Cipher-Based Hash Functions

Let κ, n, ` be numbers. A block cipher is a keyed function E : {0, 1}κ ×
{0, 1}n → {0, 1}n. For each k ∈ {0, 1}κ, the function Ek(·) = E(k, ·) denotes
a permutation on {0, 1}n. If E is a block cipher then E−1 is its inverse, where
E−1

k (y) = x such that Ek(x) = y. Let Bloc(κ, n) be the family of all block
ciphers E : {0, 1}κ × {0, 1}n → {0, 1}n. To avoid trivial extension attacks,
we assume that any block cipher E ∈ Bloc has no fixed-point such that
Ek(x) = k or x or E−1

k (y) = y or k and length strengthening technique[5, 13]
is explicitly implemented in the constructions. A block-cipher-based hash
function is a hash function H : {0, 1}∗ → {0, 1}` by implementing E ∈
Bloc(κ, n) in the round function of H. If ` = n, then H is called a single
block length(SBL) hash function, i.e., the PGV hash functions[17]. If ` = 2n,
then H is called a double block length(DBL) hash function, i.e., MDC-2[3],
Parallel-DM[4], QG-I, and LOKI-DBH[10]. The rate is used to measure the
efficiency of a block-cipher-based hash function, which is defined as follows.

Definition 1 Let H : {0, 1}∗ → {0, 1}` be a hash function and E ∈ Bloc(κ, n)
is a block cipher used in the round function of H. If the round function per-
forms T times encryption or decryption of E to process totally ` bits long
message block, the rate of the hash function H equals `

T ·n .

2.2 Security Definitions

Since data integrity is a fundamental component for the real-life crypto-
graphic applications(i.e., data or entity authentication, public-key encryp-
tion and digital signature), a secure hash function must resist the following
attacks to protect the integrity.

Attacks on hash functions. For block-cipher-based hash functions, there
are three standard attacks which are called collision attack, preimage attack
and second preimage attack. A limitation is that the standard attacks only
consider the situation that initial value IV is fixed.
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Definition 2 Let H : K ×M → Y be a family of hash functions where
K ∈ {0, 1}κ,Y ∈ {0, 1}`. Let M be a message belongs to message space
M ∈ {0, 1}∗. By considering whether IV is fixed or not, three standard
attacks and three extended attacks are defined as follows.

1. The preimage attack (Pre) is that given IV and h, find a message M
such that h = H(IV, M).

2. The free-start preimage attack (fPre) is that given IV and h, find
IV ′ and M such that h = H(IV ′,M).

3. The second preimage attack (Sec) is that given IV and a message M ,
find another message M ′ 6= M such that H(IV,M) = H(IV, M ′).

4. The free-start second preimage attack (fSec) is that given IV and
a message M , find IV ′ and another message M ′ 6= M such that
H(IV,M) = H(IV ′,M ′).

5. The collision attack (Coll) is that given an initial value IV , find M 6=
M ′ such that H(IV, M) = H(IV,M ′).

6. The free-start collision attack (fColl) is that find IV 6= IV ′ and mes-
sages M, M ′ such that H(IV,M) = H(IV ′,M ′).

The above attacks are from [9]. Similar definitions can be found in [11].
Compare with the standard attacks, the extended attacks are also mean-
ingful since they would be a complete examination on minimizing potential
flaws in a class of hash function. To rigorously analyze the security of a hash
function at the presents of adversary, a widely accepted security model will
be reviewed before the analysis.

Ideal Cipher Model. Ideal cipher model is a well-known model for the
security analysis of block-cipher-based hash functions, which is dating back
to Shannon [20] and has been frequently used for the security analysis of
various hash functions[1, 11, 17]. Let H : {0, 1}∗ → {0, 1}` be a hash
function and E ∈ Bloc(κ, n) be a block cipher used in the round function
of H. An adversary is given access to the encryption oracle E and the
decryption oracle E−1. The i-th query-response is defined as a four-tuple
(σi, ki, xi, yi) where ki ∈ {0, 1}κ, xi, yi ∈ {0, 1}n. If σi = 1 then the adversary
queries (ki, xi) and gets response yi = Eki

(xi), otherwise he queries (ki, yi)
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and gets response xi = E−1
ki

(yi). Since Ek(·) is a permutation on {0, 1}n, it
holds that

Pr[Eki
(xi) = yi] = Pr[E−1

ki
(yi) = xi] =

1
n

.

In the ideal cipher model, one measures the complexity of an attack, on
which finding a collision, preimage or second preimage, is based on the total
number of encryptions and decryptions the adversary queries. Generally,
all repetition queries will be ignored, i.e., if adversary asks a query Ek(x)
and this returns y, then he does not repeat the query or ask the inverse
E−1

k (y). Such trivial queries does not help anything at the view of adversary.
The block cipher in this model is variously named “Shannon oracle model”,
“Black-box model”, or “Ideal cipher model”. Since the last name is more
often called, it will be used throughout the paper.

Recently, Black[2] exhibited a negative result on the ideal cipher model
that there exists a block cipher based hash function that is provably secure
in the ideal cipher model but trivially insecure when instantiated by any
block cipher. The scheme is quite artificial and unnatural. Thus far, as in
the ideal cipher model analog, no block cipher based hash function proven
secure has been broken after instantiation. Like schemes in the random
oracle model, a hash function is proven secure in the ideal cipher model
is still reliable, unless one uses the unnatural design for the goal from the
beginning.

2.3 Results on Fast DBL Hash Functions

By assuming the key length κ of block cipher E ∈ Bloc(κ, n) used in round
function is equal to the block length n-bit, Knudsen et al. [10] presented
attacks on a class of DBL hash functions with rate 1. The general form of
this class is described as follows.

{
hi = EA(B)⊕ C,
gi = EX(Y )⊕ Z.

(1)

For all hash functions of rate 1 defined by (1)(denoted by FDBL-I), (A,B, C)
are linear combinations of the n-bit vectors (hi−1, gi−1,mi,1,mi,2), (X, Y, Z)
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are linear combinations of the n-bit vectors (hi, hi−1, gi−1,mi,1,mi,2).




A
B
C


 =

(
Ll Lr

)
︸ ︷︷ ︸

L

·




hi−1

gi−1

m1
i

m2
i


 ,




X
Y
Z


 =

(
Rl Rr

)
︸ ︷︷ ︸

R

·




hi

hi−1

gi−1

m1
i

m2
i




. (2)

If hi and gi can be computed independently, the hash function is called
parallel, otherwise is called serial. Knudsen et al.[10] proved that all hash
functions in FDBL-I are not optimally secure.

Theorem 1 For the rate-1 iterated hash function with the form (1)(FDBL-
I), where (at least) one of hi ∈ {0, 1}n and gi ∈ {0, 1}n in the hash function
has the form of a (secure) single block length hash function, there exist second
preimage attacks with complexities of about 3 × 2n, primage attacks with
complexities of about 4× 2n, and collision attacks with complexities of about
3× 2n/2.

In AES algorithm, key length can be 128,196,256-bit while block length
is 128-bit. This property motivates interest in finding good ways to turn a
block cipher into an optimally secure fast DBL hash function whose block
length and key length are not limited to the same n-bit. By considering the
block cipher E ∈ Bloc(κ, n) where κ = 2n, Satoh et al.[19] proposed a new
family of DBL hash functions with rate 1 defined by the general form as
follows.

{
hi = EA||B(C)⊕D,

gi = EW ||X(Y )⊕ Z.
(3)

For all hash functions of rate 1 defined by (3) (denoted by FDBL-II), both
(A,B, C, D) and (W,X, Y, Z) are linear combinations of the n-bit vectors
(hi−1, gi−1,mi,1,mi,2). Those linear combinations can be represented as




A
B
C
D


 =

(
Ll Lr

)
︸ ︷︷ ︸

L

·




hi−1

gi−1

m1
i

m2
i


 ,




W
X
Y
Z


 =

(
Rl Rr

)
︸ ︷︷ ︸

R

·




hi−1

gi−1

m1
i

m2
i


 , (4)
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where Ll and Lr denote 4 × 2 binary submatrices of L. Let Li
r denote the

3×2 submatrices of Lr such that the i-th row of Lr are deleted, respectively.
Similarly, Li

l denote the 3× 2 submatrices of Ll such that the i-th row of Ll

are deleted, respectively. Matrix L is said to be exceptional if Rank(L) = 4
and Rank(L3

r) = Rank(L4
r) = 2[19].

In [19], Satoh et al. stated attacks on this kind of DBL hash functions
whose round functions do not satisfy the property “exceptional”.

Theorem 2 For the rate-1 iterated hash function with the form (3)(FDBL-
II), if L is not exceptional, there exist the preimage, the second preimage and
the collision attacks with complexities of about 4× 2n, 3× 2n and 3× 2n/2,
respectively.

In particular, Satoh et al.[19] showed attacks on a subclass of DBL hash
functions with rate 1 in FDBL-II.

Theorem 3 For the rate-1 double block length hash functions in FDBL-II
with the round function h:

{
hi = EA||B(C)⊕D,

gi = EA||B(C)⊕ F.
(5)

where (A,B, C, D, F ) is linear combinations of (hi−1, gi−1,mi,1,mi,2) and
E ∈ Bloc(2n, n). Then, there exist (second) preimage attacks with com-
plexities of about 2 × 2n, and collision attacks with complexities of about
2× 2n/2.

The rate 1 hash functions defined by (5) can be looked as one subclass
of FDBL-II, where W = A,X = B and Y = C.

In [7], Hirose gave a comment on the analysis by Satoh et al.[19]. The
comment shows there exist the rate-1 DBL hash functions whose round
functions do not satisfy the property “exceptional” but still no meaningful
attacks are found. For convincing of this result, an example (denoted by
HDBL-1) was proposed in [7] as follows.

HDBL-1: Let HDBL-1:{0, 1}∗ → {0, 1}2n be a double block length hash
function and E ∈ Bloc(2n, n) is the block cipher used in the round function
of H. The round function has the following:

{
hi = Emi,1||mi,2

(hi−1 ⊕ gi−1)⊕ hi−1 ⊕ gi−1,

gi = Emi,1||mi,2
(hi−1)⊕ hi−1.

(6)
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


A
B
C
D


 =




0 0 1 0
0 0 0 1
1 1 0 0
1 1 0 0




︸ ︷︷ ︸
L

·




hi−1

gi−1

mi,1

mi,2


 ,




W
X
Y
Z


 =




0 0 1 0
0 0 0 1
1 0 0 0
1 0 0 0




︸ ︷︷ ︸
R

·




hi−1

gi−1

mi,1

mi,2


 (7)

Furthermore, an exceptional example (denoted by HDBL-2) was also
proposed in [7].

HDBL-2: Let HDBL-2:{0, 1}∗ → {0, 1}2n be a double block length hash
function and E ∈ Bloc(2n, n) is the block cipher used in the round function
of H. The round function has the following:

{
hi = Emi,1||mi,2

(hi−1)⊕ gi−1,

gi = Emi,1||mi,2
(gi−1)⊕ hi−1.

(8)




A
B
C
D


 =




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




︸ ︷︷ ︸
L

·




hi−1

gi−1

mi,1

mi,2


 ,




W
X
Y
Z


 =




0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0




︸ ︷︷ ︸
R

·




hi−1

gi−1

mi,1

mi,2


 (9)

Both HDBL-1 and HDBL-2 are the instances of FDBL-II. Based on the
results given by Knudsen et al.[10] and Satoh et al.[19], Hirose[7] revised the
conditions for the rate-1 hash functions in FDBL-II which are possibly to
be optimally collision resistant.

Definition 3 For any rate-1 iterated hash function in FDBL-II, if it is
optimally collision resistant, then it must be in one of the two types:

1. Both L and R are exceptional,

2. Rank(L) = Rank(R) = 3, c⊕ d = λ1a⊕ λ2b and y ⊕ z = λ3w ⊕ λ4x,
for some λ1, λ2, λ3, λ4 ∈ {0, 1}, and the upper right 2× 2 submatrices
of L and R are both non-singular.

In [7], Hirose claimed that the above conditions are not sufficient but
just necessary for the property of optimal collision resistance. It was left as
an open problem if the two plausible examples HDBL-1 and HDBL-2 are
really optimally secure.
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3 Security Analysis of FDBL-II

Here the security of the rate-1 hash functions in FDBL-II is reconsidered.
A synthetic analysis is presented which exploits the fact that the former
results[7, 19] on the security of FDBL-II are not exact. In particular, two
concrete attacks are presented to disclose that both HDBL-1 and HDBL-2
are failed to be optimally collision resistant.

3.1 Attacks on Hirose’s Two Examples

In [19], Satoh et al. suggested that any rate-1 hash function in FDBL-II
will not to be optimally secure if its round function does not satisfy the
exceptional property. Towards this approach, Hirose[7] gave a comment on
Satoh et al.’s result, and said there exist optimally secure hash functions
in FDBL-II whose round functions do not satisfy the exceptional prop-
erty. Moreover, Hirose proposed two two rate-1 hash functions in FDBL-II
(HDBL-1 and HDBL-2, described in Section 2.4) which are plausible secure.
HDBL-1 satisfies the exceptional property while HDBL-2 does not(Both
of them satisfy Hirose’s necessary conditions in Definition 3). In this sec-
tion, two concrete attacks are presented on these two examples which were
left as an open problem. First, some definitions are given for the analy-
sis. Let E(·) ∈ Bloc(2n, n) be an encryption function and E−1(·) is its
inverse. Let M i = mi

1||mi
2|| · · · ||mi

t be the i-th input message where the
2n-bit length block mi

j = mi
j,1||mi

j,2, j ∈ {1, t}. Let IV be the initial value
and h0||g0 = IV . A denotes the adversary in the ideal cipher model.

Theorem 4 Let HDBL-1 be a hash function defined by the form (6),
{

hi = Emi,1||mi,2
(hi−1 ⊕ gi−1)⊕ hi−1 ⊕ gi−1,

gi = Emi,1||mi,2
(hi−1)⊕ hi−1,

then there exists a collision attack on the hash function with complexity about
4× 2n/2.

Proof. By using the idea of the fixed-point attack, a collision attack on the
HDBL-1 hash function can be constructed in the following steps.

1. A chooses a message M = m1||m2|| · · · ||mi−2 and a block mi.
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2. For j = 1, 2, · · · , 2n/2, A processes:

(a) uniformly and randomly chooses a block mj
i−1,

(b) computes (hj
i−1, g

j
i−1) ←HDBL-1(IV,M ||mj

i−1),

(c) updates the set Sj = Sj−1 ∪ {mj
i−1, h

j
i−1, g

j
i−1, h

j
i}. The set S2n/2

is the complete view of A.

(d) checks if there exist hj
i−1 = hl

i−1 and gj
i−1 = gl

i−1 where l < j.
If true A returns (M ||mj

i−1,M ||ml
i−1) as the collision pairs and

aborts.

3. For j = 1, 2, · · · , 2n/2, A checks if {mj
i−1, h

j
i−1, g

j
i−1, h

j
i} ∈ S2n/2 satis-

fies the following equations
{

hj
i−1 = Emi(h

j
i−1 ⊕ gj

i−1)⊕ hj
i−1 ⊕ gj

i−1,

gj
i−1 = Emi(h

j
i−1)⊕ hj

i−1.
(10)

If true A obtains {mj
i−1, h

j
i−1, g

j
i−1, h

j
i} ∈ S2n/2 and breaks the loop. If

all {mj
i−1, h

j
i−1, g

j
i−1, h

j
i} ∈ S2n/2 are failed, then A returns false and

aborts.

4. If A does not abort after the above steps, A returns a fourth-tuple
(mj

i−1,mi, h
j
i−1, g

j
i−1).

The attack will be succeeded in polynomial time with a non-negligible
probability. If A aborts in Step 2, then there should be a collision pairs
(M ||mi−1,M ||m′

i−1) ∈ S2n/2 such that

HDBL-1(IV,M ||mj
i−1) = HDBL-1(IV,M ||ml

i−1).

If A does not abort in Step 2, then all (hj
i−1, g

j
i−1) ∈ S2n/2 are uniformly

distributed. Since the equations (10) can be combined as

hj
i−1 = Emi(h

j
i−1 ⊕ gj

i−1)⊕ Emi(h
j
i−1),

due to the birthday paradox, there exists {mj
i−1,mi, h

j
i−1, g

j
i−1, h

j
i} ∈ S2n/2

which satisfies the above equation with a non-negligible probability. Since
HDBL-1(hj

i−1||gj
i−1,mi) = (hj

i−1, g
j
i−1), a collision pairs can be derived from

the fixed-point such that

HDBL-1(IV,M ||mj
i−1) = HDBL-1(IV,M ||mj

i−1||mi).
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It is easy to see that both Step 2 and 3 require 2×O(2n/2) operations. Thus
the total complexity of the attack is 4×O(2n/2). So the theorem holds. ¤

Similar to HDBL-1, a collision attack can also be found in the HDBL-2
hash function. The attack is described in the following theorem.

Theorem 5 Let HDBL-2 be a hash function defined by the form (8),
{

hi = Emi,1||mi,2
(hi−1)⊕ gi−1,

gi = Emi,1||mi,2
(gi−1)⊕ hi−1.

then there exists a collision attack on the hash function with complexity about
4× 2n/2.

Proof. By using the method of the meet-in-the-middle attack, an adversary
A can find a collision in HDBL-2 from the following steps.

1. A chooses a message M = m1||m2|| · · · ||mi−2, then computes (hi−2, gi−2) ←
HDBL-2(IV,M).

2. For j = 1, 2, · · · , 2n/2, A processes:

(a) uniformly and randomly chooses a block mj
i−1,

(b) if E
mj

i−1
(hi−2)⊕ gi−2 = E

mj
i−1

(gi−2)⊕ hi−2 which implies hi−1 =

gi−1 = E
mj

i−1
(gi−2) ⊕ hi−2, then obtains (mj

i−1, hi−1, gi−1) and
breaks the loop. Else A repeats the procedure.

(c) If all mj
i−1 are failed, A returns false and aborts.

3. With the received values (mj
i−1, hi−1, gi−1) in Step 2, A randomly

chooses two blocks mi,m
′
i, and checks if Emi(hi−1)⊕gi−1 = Em′

i
(gi−1)⊕

hi−1 holds. If the result is false, A makes different choices of (mi,m
′
i)

and repeats the check.

4. A returns a triple-tuple (mj
i−1,mi,m

′
i) after the above steps. A colli-

sion can be easily derived from the return value such that

HDBL-2(IV,M ||mj
i−1||mi) = HDBL-2(M ||mj

i−1||m′
i).
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Due to the birthday paradox, Step 2 requires 2 × O(2n/2) for finding
mj

i−1 satisfies the condition with a non-negligible probability. The same goes
to Step 3 for finding the blocks (mi,m

′
i). Thus the total complexity of the

attack is about 4×O(2n/2). So the theorem holds. ¤

Since HDBL-1 satisfies the second condition in Definition 3, and HDBL-
2 satisfies the exceptional property, which are the two conditions given by
Hirose[7], the two concrete attacks disclose there exist uncovered flaws in
the former security results on the rate-1 hash functions in FDBL-II which
are defined by Satoh et al.[19] and Hirose[7].

3.2 The Exact Security of FDBL-II

In this section, the exact conditions for the rate-1 hash functions in FDBL-II
to be optimally secure are analyzed. For ease of the reader, the general form
of FDBL-II is recalled here.

{
hi = EA||B(C)⊕D,

gi = EW ||X(Y )⊕ Z.




A
B
C
D


 =

(
Ll Lr

)
︸ ︷︷ ︸

L

·




hi−1

gi−1

m1
i

m2
i


 ,




W
X
Y
Z


 =

(
Rl Rr

)
︸ ︷︷ ︸

R

·




hi−1

gi−1

m1
i

m2
i


 .

By using the similar methods for the general attacks on the rate-1 hash
functions in FDBL-I[10], the general attacks on FDBL-II are described in
the following theorem.

Theorem 6 For any hash function H in FDBL-II with the form (3), if T
operations are required to find a block mi = mi,1||mi,2 for any given value
of (hi−1, gi−1), such that the resulting four-tuple (hi−1, gi−1,mi,1,mi,2) yields
the fixed value for hi(or gi or hi⊕gi), then there exist collision, preimage, and
second preimage attacks on the hash function with complexities (T +3)×2n/2,
(T + 3)× 2n, and (T + 3)× 2n, respectively.

Proof. An attackerA starts the attacks by choosing arbitrary message M =
m1||m2|| · · · ||mi−2, and by computing the values of (hi−2, gi−2) iteratively
from the initial value IV = h0||g0. The initial operations for the values of
(hi−2, gi−2) can be ignored if i ¿ 2n/2.
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For (second) preimage attacks, A searches for two blocks mi−1 and
mi such that the fixed hash value (hi, gi) is hit. First, A computes the pair
(hi−1, gi−1) from the given values (hi−2, gi−2) and (mi−1,1,mi−1,2). Secondly,
A finds a block (mi,1,mi,2) such that the resulting four-tuple (hi−1, gi−1,mi,1,mi,2)
yields the fixed value for hi(or gi or hi ⊕ gi). This step costs T times of en-
cryption or decryption. Finally A computes the value of gi(or hi) from the
tuple (hi−1, gi−1,mi,1,mi,2). If the value does not hit, A will repeat the
above steps at most 2n times. Due to the pigeonhole principle, the proba-
bility of finding the preimage in the above procedure is non-negligible. The
total complexity of these (second) preimage attacks is about (T + 3)× 2n.

For collision attacks, A searches for a pair of the blocks (mi−1,mi) and
(m′

i−1,m
′
i) which yield the same hash value (hi, gi). First, A chooses a value

of hi. Then A proceeds 2n/2 times in the same way as the preimage attack.
Due to the birthday paradox, the probability of finding the collision in the
above procedure is non-negligible. The total complexity of these collision
attacks is about (T + 3)× 2n/2. So the theorem holds. ¤

In [7], a comment is proved that the attacks given by Satoh et al.[19]
do not work on some hash functions as is expected even the underlying
round function does not satisfy the exceptional property, i.e., the counter-
example HDBL-1. Let (a, b, c, d) be the values of (A,B, C, D) used in the
computations of hi. In [19], the attacker chooses random triple (a, b, c)
such that c = α · a ⊕ β · b and computes d = Ea||b(c) ⊕ hi. Hirose said if
c = α ·a⊕βb⊕d, the attacker cannot compute d by Ea||b(c)⊕hi. Therefore,
besides both L and R are exceptional, a new condition for the rate-1 hash
functions in FDBL-II to be optimally secure is defined by Hirose [7] as the
second condition described in Definition 3. Due to the two concrete attacks
defined in Section 3.2, HDBL-1 and HDBL-2 are two counter-example of the
two conditions given by Hirose[7]. Moreover, Since HDBL-2 is an instance
of FDBL-II with the exceptional property, it means that the exceptional
property does not directly imply the optimal security. Thus the result given
by Satoh et al.[19] is not precise too. To ensure what conditions should
be imposed on a hash function to achieve the optimal security, the security
of the rate-1 hash functions in FDBL-II is reconsidered by the following
attacks.

First, the attacks break the optimal collision and the (second) preimage
resistances are described as follows.

Lemma 1 For any hash function H in FDBL-II with the form (3), if the
rank of L(or R) is less than three, then there exist collision, preimage, and
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second preimage attacks on the hash function with complexities of about
4× 2n/2, 3× 2n, and 3× 2n, respectively.

Proof. Consider the general form of FDBL-II. Since the rank of L(or R)
is at most two and hi depends on a subspace of (mi,1,mi,2, hi−1, gi−1), it
follows that an attacker can has at least one dimensional of freedom to find
the values of mi,1(or mi,2 or mi,1⊕mi,2) yielding the given hash value (hi, gi).
Based on the attacks defined by Theorem 6, it is easily to prove that T ' 0
in the (second) preimage attack, and T ' 1 in the collision attack. ¤

Lemma 2 For any hash function H in FDBL-II with the form (3), if the
rank of L3

r(or L4
r or R3

r or R4
r) is less than two, then there exist collision,

preimage, and second preimage attacks on the hash function with complexi-
ties of about 4× 2n/2, 3× 2n, and 3× 2n, respectively.

Proof. Consider the general form of FDBL-II. If either L3
r or L4

r is less
than two, then the key A||B of EA||B(C) depends on one dimensional of
(mi,1,mi,2)(or mi,1⊕mi,2). Let (a, b, c, d) be the values of (A,B, C, D) used
in the computations of hi. By computing d = Ea||b(c)⊕hi(in case of L4

r is less
than two) or c = E−1

a||b(d⊕hi)(in case of L3
r is less than two), an attacker can

decide the value of mi,1(or mi,2) from the hash values of (hi−1, gi−1, hi, gi).
Based on the attacks defined by Theorem 6, it is easily to prove that T ' 0
in the (second) preimage attack, and T ' 1 in the collision attack. Same
result holds if either R3

r or R4
r is less than two. ¤

Then the attacks that break the optimal collision resistance were de-
scribed as follows.

Theorem 7 For any hash function H in FDBL-II with the form (3), if
D⊕ hi−1 6= 0 and D⊕ hi−1 6= C, and Z ⊕ gi−1 6= 0 and Z ⊕ gi−1 6= Y , then
there exists a collision attack on the hash function with complexity of about
4× 2n/2.

Proof. Consider the general form of FDBL-II. An attacker A start the
attacks by choosing arbitrary messages M = m1||m2|| · · · ||mt−2 and a block
mt, and by computing the values of (ht−2, gt−2) iteratively from the given
initial value IV = h0||g0. For j = 1, 2, · · · , 2n/2, A uniformly and randomly
selects the value of mj

t−1, computes (hj
t−1, g

j
t−1) from (mj

t−1, ht−2, gt−2) and
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updates the set Sj = Sj−1 ∪ mj
t−1, h

j
t−1, g

j
t−1. Thus S2n/2 is the complete

view of A after 2n/2 times. Since D ⊕ hi−1 6= 0 and D ⊕ hi−1 6= C, and
Z ⊕ gi−1 6= 0 and Z ⊕ gi−1 6= Y , one can construct the following equations
from the general form of FDBL-II.

{
hi−1 = EA||B(C)⊕D,

gi−1 = EW ||X(Y )⊕ Z.

A searches the set S2n/2
to find (hi−1, gi−1) satisfy the above equations on

the block mt. Since |hi| = |gi| = n, due to the birthday paradox, the
probability that such values can be found in the set S2n/2

is non-negligible
probability. ¤

The attack on HDBL-1 is an instance of Theorem 7.

Theorem 8 For any hash function H in FDBL-II with the form (3), if
hi−1 = gi−1 implies hi = gi, then there exists a collision attack on the hash
function with complexity of about 4× 2n/2.

Proof. Consider the general form of FDBL-II. An attacker A start the
attacks by choosing arbitrary messages M = m1||m2|| · · · ||mt−2, and by
computing the values of (ht−2, gt−2) iteratively from the given initial value
IV = h0||g0. With the values of (ht−2, gt−2), A proceeds 2n/2 times to find
a block mt−1 which satisfies Ea||b(c) ⊕ d = Ew||x(y) ⊕ z. Then A proceeds
2n/2 times to find two blocks (mt,m

′
t) where Ea||b(c) ⊕ d = Ea′||b′(c′) ⊕ d′.

It is easily to prove that H(IV,M ||mt−1||mt) = H(IV,M ||mt−1||m′
t). The

total complexity of the above procedure is 4× 2n/2. ¤

The attack on HDBL-2 is an instance of Theorem 8.

Then the attacks that break optimal (second) preimage resistance were
described as follows.

Theorem 9 For any hash function H in FDBL-II with the form (3), if the
rank of L3

l (or L4
l or R3

l or R4
l ) is less than two, then there exists a (second)

preimage attack on the hash function with complexity of about 2× 23n/2.

Proof. Consider the general form of FDBL-II. If either L3
l or L4

l is less
than two, then the key A||B of EA||B(C) depends on one dimensional of
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(hi−1, gi−1)( or hi−1 ⊕ gi−1). Let (a, b, c, d) be the values of (A,B, C, D)
used in the computations of hi. By computing d = Ea||b(c) ⊕ hi(in case of
L4

l is less than two) or c = E−1
a||b(d⊕ hi)(in case of L3

l is less than two).

An attacker A start the attacks by choosing arbitrary messages M =
m1||m2|| · · · ||mi−2, and by computing the values of (hi−2, gi−2) iteratively
from the given initial value IV = h0||g0.

1. For j = 1, 2, · · · , 2n/2, A processes:

(a) randomly chooses a block mi−1 and computes (hi−1, gi−1).

(b) randomly chooses a block mi and check if (mi, hi−1, gi−1) fixes
the value hi(or gi).

2. Then A repeats Step 1 for 2n times, check if there exists the value of
(mi, hi−1, gi−1) fixes the value gi(or hi).

It is easy to see the attack will succeed with a non-negligible probability due
to the birthday paradox holds in Step 1 and the pigeonhole principle holds
in Step 2. The total complexity is about (2 × 2n/2 + 2) × 2n ' 2 × 23n/2.
Same result holds if either R3

l or R4
l is less than two. ¤

We note that both HDBL-1 and HDBL-2 are failed to be optimally
(second) preimage resistance due to Theorem 9.

Subsequently, the complexities of free-start attacks on the rate-1 hash
functions in FDBL-II can be easily deduced from the above results.

Lemma 3 For any hash function H in FDBL-II with the form (3), if one of
the ranks of L and R is less than four, then there exist free-start collision and
free-start (second) preimage attacks on the hash function with complexities
of about 2× 2n/2 and 2× 2n, respectively.

Based on the above results, more exact security conditions for the rate-1
hash functions in FDBL-II to be optimally secure are listed as follows.

Corollary 1 For the rate-1 hash functions in FDBL-II, if the round func-
tion matches one of the following conditions

1. The ranks of L and R are less than three,
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2. The rank of L3
r(or L4

r or R3
r or R4

r) is less than two,

3. The rank of L3
l (or L4

l or R3
l or R4

l ) is less than two,

4. hi−1 = gi−1 implies hi = gi,

5. D⊕ hi−1 6= 0 and D⊕ hi−1 6= C, and Z ⊕ gi−1 6= 0 and Z ⊕ gi−1 6= Y ,

then there exist collision, preimage and second preimage attacks with non-
negligible successful probability must spend the computation costs less or
equal to break MDC-2.

4 A New Class of Fast DBL Hash Functions

Based on FDBL-I and FDBL-II, a new class of fast DBL hash functions
named FDBL-III can be defined as follows. Hash functions in FDBL-III can
be constructed on a block cipher E ∈ Bloc(κ, n) with variants of key length
where κ = n or κ = 2n.

Definition 4 Let E ∈ Bloc(κ, n) be a block cipher with variants of key
length where κ = n or κ = 2n. A new class of DBL hash functions with rate
1 (denoted by FDBL-III) can be constructed as follows.

{
hi = EA(B)⊕ C,
gi = EW ||X(Y )⊕ Z.

(11)

Both (A,B, C) and (W,X, Y, Z) are linear combinations of the n-bit
vectors (hi−1, gi−1,mi,1,mi,2). Those linear combinations can be represented
as




A
B
C


 =

(
Ll Lr

)
︸ ︷︷ ︸

L

·




hi−1

gi−1

m1
i

m2
i


 ,




W
X
Y
Z


 =

(
Rl Rr

)
︸ ︷︷ ︸

R

·




hi−1

gi−1

m1
i

m2
i


 , (12)

By implementing the similar attacks on FDBL-II, one can easily derive
the following results on FDBL-III.
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Lemma 4 For any hash function H in FDBL-III with the form (11), if
the rank of L(or R) is less than three, then there exist collision, preimage,
and second preimage attacks on the hash function with complexities of about
4× 2n/2, 3× 2n, and 3× 2n, respectively.

Lemma 5 For any hash function in FDBL-III with the form (11), if the
rank of L2

r(or L3
r or R2

r or R3
r) is less than two, then there exist collision,

preimage, and second preimage attacks on the hash function with complexi-
ties of about 4× 2n/2, 3× 2n, and 3× 2n, respectively.

Lemma 6 For any hash function in FDBL-III with the form (11), if the
rank of L2

l (or L3
l or R2

l or R3
l ) is less than two, then there exists a (second)

preimage attack on the hash function with complexity of about 2× 23n/2.

Lemma 7 For any hash function H in FDBL-III with the form (11), if
C ⊕ hi−1 6= 0 and C ⊕ hi−1 6= B, and Z ⊕ gi−1 6= 0 and Z ⊕ gi−1 6= Y , then
there exists a collision attack on the hash function with complexity of about
4× 2n/2.

Lemma 8 For any hash function H in FDBL-III with the form (11), if
hi−1 = gi−1 implies hi = gi, then there exists a collision attack on the hash
function with complexity of about 4× 2n/2.

The rate-1 hash functions in FDBL-III can also be constructed from
two different block ciphers where E1 ∈ Bloc(n, n) and E2 ∈ Bloc(2n, n),
which enlarges the candidates for the design.

5 Conclusion

In this paper, new attacks have been described on FDBL-II [7, 19]. In
particular, the attacks proved Hirose’s two examples are not optimally se-
cure against collision, preimage and second preimage attacks. Based on the
former results, the security of FDBL-II has been reconsidered and the con-
ditions for optimally secure are given. Moreover, the security results are
extended to a new class of the rate-1 hash functions (FDBL-III) based on
FDBL-I and FDBL-II. These cryptanalysis results are practical and helpful
to find the rate-1 DBL hash functions to be optimally secure in FDBL-II
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and FDBL-III. By considering the security conditions on FDBL-II, Hirose’s
two examples can be improved as follows.

1. Improved HDBL-1
{

hi = Em1
i⊕gi−1||m2

i
(hi−1)⊕ hi−1

gi = Em1
i ||m2

i⊕hi−1
(hi−1 ⊕ gi−1)⊕ hi−1 ⊕ gi−1

2. Improved HDBL-2
{

hi = Em1
i ||m2

i⊕gi−1
(hi−1)⊕ hi−1 ⊕ gi−1

gi = Em1
i⊕gi−1||m2

i
(hi−1 ⊕ gi−1)⊕ hi−1

Future work is to make it clear whether there exists a subclass of the
rate-1 hash functions in FDBL-II or FDBL-III which can be formally proved
optimally secure against collision, preimage and second preimage attacks in
the ideal cipher model. Another interesting work is to compare the perfor-
mances between FDBL-II and FDBL-III.

References

[1] J. Black, P. Rogaway and T. Shrimpton. Black-Box Analysis of
the Black-Cipher-Based Hash-Function Constructions from PGV. Ad-
vances in Cryptology - CRYPTO’02. LNCS 2442, pp. 320-335. 2002.

[2] J. Black. The Ideal-Cipher Model, Revisited: An Uninstantiable
Blockcipher-Based Hash Function. FSE 2006, LNCS 4047, pp. 328-340,
2006.

[3] B.O. Brachtl, D. Coppersmith, M.M. Hyden, S.M. Matyas, C.H. Meyer,
J. Oseas, S. Pilpel and M. Schilling. Data Authentication Using Mod-
ification Detection Codes Based on a Publick One Way Encryption
Function. U.S. Patent Number 4,908,861, March 13, 1990.

[4] L. Brown, J. Pieprzyk, and J. Seberry. LOKI-a cryptographic primi-
tive for authentication and secrecy applications. In J. Seberry and J.
Pieprzyk, editors, Advances in Cryptology-Proc. AusCrypt’90, LNCS
453, pp. 229-236, Springer-Verlag, Berlin, 1990.

[5] I. Damgard. A Design Principle for Hash Functions, Advances in Cryp-
tology, Cyrpto’89, LNCS 435, pp. 416-427. 1989.

20



[6] S. Hirose. Some Plausible Constructions of Double-Block-Length Hash
Functions. In FSE 2006, LNCS 4047, pp. 210-225, 2006.

[7] S. Hirose. A Security Analysis of Double-Block-Length Hash Functions
with the Rate 1. IEICE Trans. Fundamentals, Vol. E89-A, NO.10, pp.
2575-2582, Oct 2006.

[8] W. Hohl, X. Lai, T. Meier, and C. Waldvogel. Security of iterated hash
function based on block ciphers. In CRYPTO’93, LNCS 773, pp. 379-
390, 1994.

[9] L.R. Knudsen. Block Ciphers-Analysis, Design and Applications. Ph.
D. thesis, Aarthus University, 1994.

[10] L. R. Knudsen, X. Lai, and B. Preneel. Attacks on fast double block
length hash functions. Journal of Cryptology, 11(1):59-72, 1998.

[11] X. Lai and J. L. Massey. Hash Functions Based on Block Ciphers. In
Advances in Cryptology-Eurocrypt’92, LNCS 658, pp. 55-70. 1993.

[12] S. Lucks. A Failure-Friendly Design Principle for Hash Functions. In
ASIACRYPT 2005, LNCS 3788, pp. 474-494. 2005.

[13] R.C. Merkle. One way hash functions and DES, Advances in Cryptol-
ogy, Crypto’89, LNCS 435, pp. 428-446. 1989.

[14] M. Nandi. Design of Iteration on Hash Functions and Its Cryptanalysis.
PhD thesis, Indian Statistical Institute, 2005.

[15] M. Nandi. Towards optimal double-length hash functions. IN-
DOCRYPT 2005, LNCS 3797, pages 77C89, 2005.

[16] B. Preneel, A, Bosselaers, R. Govaerts and J. Vandewalle. Collision-
free Hash-functions Based on Blockcipher Algorithms. In Proceeding of
1989 International Carnahan Conference on Security Technology, pp.
203-210, 1989.

[17] B. Preneel, R. Govaerts and J. Vandewalle. Hash functions based on
block ciphers: A synthetic approach. In Advances in Cryptology -
CRYPTO’93, LNCS 773, pp. 368-378. 1994.

[18] P. Rogaway and T. Shrimpton. Cryptographic Hash-Function Basics:
Definitions, Implications, and Separations for Preimage Resistance,
Second-Preimage Resistance and Collision Resistance. In FSE 2004,
LNCS 3017, pp. 371-388, 2004.

21



[19] T. Satoh, M. Haga, and K. Kurosawa. Towards Secure adn Fast Hash
Functions. IEICE Trans. Fundamentals, Vol. E82-A, NO.1, pp. 55-62,
Jan, 1999.

[20] C. Shannon. Communication theory of secrecy systems. Bell Systems
Techincal Journal, 28(4): pages 656-715, 1949.

[21] X. Wang, Y. Yin and H. Yu. Finding Collision in the Full SHA-1. In
CRYPTO’05, LNCS 3621, pp. 17-36, 2005.

[22] X. Wang and H. Yu. How to Break MD5 and Other Hash Functions.
In EUROCRYPT’05, LNCS 3494, pp.19-35, 2005.

[23] X. Yi and K.Y. Lam. A New Hash Function Based on Block Cipher. In
ACISP’97 Information Security and Privacy, LNCS 1270, pp. 139-146,
Springer-Verlag, 1997.

22


