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Abstract

In this paper, the security of double block length hash functions with rate 1 which based
on a block cipher with a block length of n-bit and a key length of 2n-bit is reconsidered.
First, two concrete attacks are designed to break Hirose’s two examples which were left
as an open problem. Next, attacks are presented on a general class of double block
length hash functions with rate 1, which disclose there exist uncovered flaws in the former
analysis by Satoh et al. and Hirose. Some refined conditions are proposed for ensuring
this class of the rate-1 hash functions to be optimally secure against the preimage, the
second preimage and the collision attacks. Finally, the security results are extended to a
new class of double block length hash functions with rate 1.

Key words. Cryptanalysis, Block cipher, Double block length Hash function.

1 Introduction

Cryptographic hash function H : {0, 1}∗ → {0, 1}` is defined as an easily computable algo-
rithm which uniformly maps an arbitrary length message to a fixed length output hash value.
The design of today’s cryptographic hash functions still follows the Merkle-Damgard(MD)
structure[17, 7], by iterating a compression function on the input message. The hash function
will be collision resistant if the underlying compression function is. In practice, most of hash
functions are either explicitly or implicitly composed from block ciphers. The advantage of
the schemes from block ciphers are that one can conveniently choose a well-designed block
cipher(e.g., DES, IDEA, AES, etc) to construct the underlying compression function, and
also the latest cryptanalysis results on such a block cipher can be used to avoid the potential
weakness in the scheme. Discussions of hash functions constructed from n-bit block ciphers
are divided into single block length(SBL) and double block length(DBL) hash functions, where
single and double are related to the output range of the block cipher that used in the hash
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function. Assume that greater than or equal to 264 operations(encryption or decryption) are
infeasible, the objective of SBL hash functions is to just provide one-wayness for cipher of
block length near n = 64, while fail to collision resistance since a doubled 128-bit length range
is required to resist the birthday paradox attack. The motivation of double block length is
to combine two n-bit block ciphers to obtain a sufficient output range for collision resistance.
One such algorithm is MDC-2, which was developed by Brachtl et al.[3] for use in combination
with DES. It is believed that the complexities of (second) preimage and collision attacks on
MDC-2 are about 23n/2 and 2n, respectively. A DBL hash function H is said to be optimally
secure, if any adversary with non-negligible successful probability must spend the computation
costs no less than brute-force attacks, which requires the complexities of (second) preimage
and collision attacks are no less than 22n and 2n, respectively.

Although double block length can realize collision resistance, an obvious disadvantage of
DBL hash functions is a decrease in speed. The rate of a block-cipher-based hash function is
defined as the number of n-bit message blocks processed per encryption or decryption for the
measurement of the efficiency. The rate of MDC-2 is only 1/2, which implies that MDC-2 is at
least twice as slow as the underlying block cipher. To improve the efficiency, many DBL hash
functions with rate 1 were proposed, such as [4, 11, 20, 27]. Unfortunately, some critical results
showed that those proposed schemes unlikely achieve optimally secure. In [13], Knudsen et
al. presented the attacks on a large class of DBL hash functions with rate 1 such that the
key length is equal to the block length n-bit. In particular, the attacks break the proposed
schemes in [4, 11, 20]. Still, many advanced block ciphers (e.g., AES, RC5, Blowfish, etc)
support variants of key length motivates renewed interest in finding good ways to construct
a fast DBL hash function with optimal security. Many instructive examples were proposed
recently, e.g., [9, 15, 18, 19]. But all these schemes are less than rate-1, which means they
are not efficient enough. In [23], Satoh et al. presented the attacks on a general class of DBL
hash functions with rate 1 where the key length is double to the block length, which break the
proposed scheme in [27]. In particular, Satoh et al. described a necessary condition for this
general class of the rate-1 hash functions to be optimally secure. Recently, Hirose[10] gave
a comment on Satoh et al.’s result [23] and showed that there exists a missed case in their
analysis. Based on this comment, two necessary conditions for optimally collision resistant
are given by Hirose in [10]. In particular, two examples are left in this paper as an open
problem to make it clear whether they are optimally secure.

Our Contributions. Consider the security of double block length hash functions with rate 1
where the key length is double to the block length, our contributions are three-folds. First, we
present two concrete attacks on Hirose’s two examples which are left as an open problem in
[10]. The attacks show the fact that the two schemes are not optimally against the preimage
and second preimage attacks. Moreover, three examples are presented, which disclose that
Hirose’s necessary conditions for optimal security are not precise. Based on these attacks and
negative examples, we formally analyze the security of a general class of DBL hash functions
with rate 1 which is defined by Satoh et al.[23] to find whether there exists an optimally secure
DBL hash function with rate 1. The conditions for this class of DBL hash functions to be
optimally secure are revised by the analysis. Finally, the security results are extended to a
new class of DBL hash functions with rate 1 where one block cipher used in the compression
function has the key length is equal to the block length and the other is doubled. Prior to
this paper, there is no rigorous analysis on the half-baked cases proposed by Satoh et al.[23]
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and Hirose[10] to decide whether they are really optimally against collision, preimage and the
second preimage attacks.

Organization. The remainder of this paper is organized as follows. In Section 2, some
definitions and the former results on DBL hash functions with rate 1 are reviewed. In Section
3, first, two concrete attacks are presented on Hirose’s two examples, then new examples are
given to show the fact that Hirose’s conditions[10] for a general class of the rate-1 DBL hash
functions to be optimally secure are not precise. Furthermore, attacks are described on this
general class of the rate-1 DBL hash functions. Section 4 describes an extended result on a
new class of the rate-1 DBL hash functions. The conclusion is given in the last section.

2 Preliminaries

In this section, the notions and definitions are reviewed for the following analysis. Let the
symbol ⊕ be the bitwise exclusive OR. For binary sequences a and b, a||b denotes their
concatenation. Let IV be the initial value. For double block length hash function, the i-th
input message Mi can be looked as a concatenation of the 2n-bit length blocks such that
M = m1||m2|| · · · ||mt, where t = |M |/2n and mj = mj,1||mj,2, j ∈ {0, t}. The function
Rank(·) returns the rank of an input matrix. In this paper, length-padding on the last block
of input message is implicitly used to avoid some trivial attacks. The same terminology and
abbreviations in different definitions are the same meaning, except there are special claims in
the context.

2.1 Block-Cipher-Based Hash Functions

Let κ, n, ` be numbers. A block cipher is a keyed function E : {0, 1}κ × {0, 1}n → {0, 1}n.
For each k ∈ {0, 1}κ, the function Ek(·) = E(k, ·) denotes a permutation on {0, 1}n. If E is a
block cipher then E−1 is its inverse, where E−1

k (y) = x such that Ek(x) = y. Let Bloc(κ, n)
be the family of all block ciphers E : {0, 1}κ × {0, 1}n → {0, 1}n. To avoid trivial extension
attacks, we assume that any block cipher E ∈ Bloc has no fixed-point such that Ek(x) = k or
x or E−1

k (y) = y or k and length strengthening technique[7, 17] is explicitly implemented in
the constructions. A block-cipher-based hash function is a hash function H : {0, 1}∗ → {0, 1}`

by implementing E ∈ Bloc(κ, n) in the round function of H. If ` = n, then H is called a
single block length(SBL) hash function, e.g., the PGV hash functions[21]. If ` = 2n, then H
is called a double block length(DBL) hash function, e.g., MDC-2[3], Parallel-DM[4], QG-I,
and LOKI-DBH[13]. The rate is used to measure the efficiency of a block-cipher-based hash
function, which is defined as follows.

Definition 1 Let H : {0, 1}∗ → {0, 1}` be a hash function and E ∈ Bloc(κ, n) is a block
cipher used in the round function of H. If the round function performs T times encryption
or decryption of E to process totally ` bits long message block, the rate of the hash function
H equals `

T ·n .
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2.2 Security Definitions

Since data integrity is a fundamental component for the real-life cryptographic applica-
tions(i.e., data or entity authentication, public-key encryption and digital signature), a secure
hash function must resist the following attacks to protect the integrity.

Attacks on hash functions. For block-cipher-based hash functions, there are three standard
attacks which are called collision attack, preimage attack and second preimage attack. A
limitation is that the standard attacks only consider the situation that initial value IV is
fixed.

Definition 2 Let H : K ×M → Y be a family of hash functions where K ∈ {0, 1}κ,Y ∈
{0, 1}`. Let M be a message belongs to message space M ∈ {0, 1}∗. By considering whether
IV is fixed or not, three standard attacks and three extended attacks are defined as follows.

1. The preimage attack (Pre) is that given IV and h, find a message M such that h =
H(IV,M).

2. The free-start preimage attack (fPre) is that given IV and h, find IV ′ and M such
that h = H(IV ′,M).

3. The second preimage attack (Sec) is that given IV and a message M , find another
message M ′ 6= M such that H(IV,M) = H(IV, M ′).

4. The free-start second preimage attack (fSec) is that given IV and a message M , find
IV ′ and another message M ′ 6= M such that H(IV,M) = H(IV ′,M ′).

5. The collision attack (Coll) is that given an initial value IV , find M 6= M ′ such that
H(IV,M) = H(IV,M ′).

6. The free-start collision attack (fColl) is that find IV 6= IV ′ and messages M, M ′ such
that H(IV,M) = H(IV ′,M ′).

The above attacks are from [12]. Similar definitions can be found in [14]. Compare with
the standard attacks, the extended attacks are also meaningful since they would be a complete
examination on minimizing potential flaws in a class of hash function. To rigorously analyze
the security of a hash function at the presents of adversary, a widely accepted security model
will be reviewed before the analysis.

Indifferentiability Model. In [16], Maurer et al. first introduced the notion of indifferentia-
bility, which is formalized to ”distinguish” whether a given construction exists any different
from a heuristic random oracle. The indifferentiability has been focussed on the question:
what conditions should be imposed on the round function F to ensure that the hash function
CF satisfies the certain conditions of the random oracle. This approach is based on the fact
that one of the problems in assessing the security of a hash function is caused by the arbitrary
length of input. It is clear that the weakness of F will generally result in weakness of CF , but
the converse does not hold in general. The indifferentiability between a hash function and
a random oracle is a more rigorous white-box analysis which requires the examination of the
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internal structure of the hash function, while the indistinguishability just requires a black-box
analysis.

Definition 3 A Turing machine C with oracle access to an ideal primitive F is said to be
(tD, tS , q, ε)-indifferentiable from an ideal primitive Rand if there exists a simulator S, such
that for any distinguisher D it holds the advantage of indifferentiability that:

Adv(D) = |Pr[DC,F = 1]− Pr[DRand,S = 1]| < ε,

where S has oracle access to Rand and runs in polynomial time at most tS, and D runs in
polynomial time at most tD and makes at most q queries. CF is said to be (computation-
ally) indifferentiable from Rand if ε is a negligible function of the security parameter k (in
polynomial time tD and tS).

It is shown in [16] if CF is indifferentiable from Rand, then CF can instantiate Rand in
any cryptosystems and the resulting cryptosystems is at least as secure in the F model as in
the Rand model. In the rest of the paper, the Turing Machine C will denote the construction
of an iterated hash function and the ideal primitive F will represent the round function of C.

For block-cipher-based hash functions, the above definition needs to be slightly modified.
Let E be the block cipher used in the round function and E−1 is its inverse. Simulator S has to
simulate both E and E−1 because every distinguisher D can access encryption and decryption
oracles in the ideal cipher model. Therefore, distinguisher D obtain the following rules: either
the block-cipher E, E−1 is chosen at random and the hash function H is constructed from it,
or the hash function H is chosen at random and the block-cipher E, E−1 is implemented by
a simulator S with oracle access to H. Those two ways to build up a hash function should be
indifferentiable.

Similarly, Hirose proposed the notion of indistinguishability on iterated hash functions
in [9], which is weaker than the notion of indifferentiability. It is easily to prove if a hash
function CE,E−1

is indifferentiable from a random oracle in a polynomial time bound tS , tD
with a probability bound ε, it is also indistinguishable in the same bounds. For simplicity,
one needs only to prove the indifferentiability of the construction.

Ideal Cipher Model. Ideal cipher model is a well-known model for the security analysis
of block-cipher-based hash functions, which is dating back to Shannon [24] and has been
frequently used for the security analysis of various hash functions[1, 14, 21]. Let H : {0, 1}∗ →
{0, 1}` be a hash function and E ∈ Bloc(κ, n) be a block cipher used in the round function of
H. An adversary is given access to the encryption oracle E and the decryption oracle E−1. The
i-th query-response is defined as a four-tuple (σi, ki, xi, yi) where ki ∈ {0, 1}κ, xi, yi ∈ {0, 1}n.
If σi = 1 then the adversary queries (ki, xi) and gets response yi = Eki

(xi), otherwise he
queries (ki, yi) and gets response xi = E−1

ki
(yi). Since Ek(·) is a permutation on {0, 1}n, it

holds that
Pr[Eki

(xi) = yi] = Pr[E−1
ki

(yi) = xi] =
1
n

.

In the ideal cipher model, one measures the complexity of an attack, on which finding
a collision, preimage or second preimage, is based on the total number of encryptions and
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decryptions the adversary queries. Generally, all repetition queries will be ignored, i.e., if
adversary asks a query Ek(x) and this returns y, then he does not repeat the query or ask
the inverse E−1

k (y). Such trivial queries does not help anything at the view of adversary. The
block cipher in this model is variously named “Shannon oracle model”, “Black-box model”,
or “Ideal cipher model”. Since the last name is more often called, it will be used throughout
the paper.

2.3 Results on Fast DBL Hash Functions

By assuming the key length κ of block cipher E ∈ Bloc(κ, n) used in round function is equal to
the block length n-bit, Knudsen et al. [13] presented attacks on a class of DBL hash functions
with rate 1. The general form of this class is described as follows.

{
hi = EA(B)⊕ C,
gi = EX(Y )⊕ Z.

(1)

For all hash functions of rate 1 defined by (1)(denoted by FDBL-I), (A,B, C) are linear
combinations of the n-bit vectors (hi−1, gi−1,mi,1,mi,2), (X, Y, Z) are linear combinations of
the n-bit vectors (hi, hi−1, gi−1,mi,1,mi,2).




A
B
C


 =

(
Ll Lr

)
︸ ︷︷ ︸

L

·




hi−1

gi−1

m1
i

m2
i


 ,




X
Y
Z


 =

(
Rl Rr

)
︸ ︷︷ ︸

R

·




hi

hi−1

gi−1

m1
i

m2
i




. (2)

If hi and gi can be computed independently, the hash function is called parallel, otherwise
is called serial. Knudsen et al.[13] proved that all hash functions in FDBL-I are not optimally
secure.

Theorem 1 For the rate-1 iterated hash function with the form (1)(FDBL-I), where (at least)
one of hi ∈ {0, 1}n and gi ∈ {0, 1}n in the hash function has the form of a (secure) single block
length hash function, there exist second preimage attacks with complexities of about 3 × 2n,
primage attacks with complexities of about 4 × 2n, and collision attacks with complexities of
about 3× 2n/2.

In AES algorithm, key length can be 128,196,256-bit while block length is 128-bit. This
property motivates interest in finding good ways to turn a block cipher into an optimally
secure fast DBL hash function whose block length and key length are not limited to the same
n-bit. By considering the block cipher E ∈ Bloc(κ, n) where κ = 2n, Satoh et al.[23] proposed
a new family of DBL hash functions with rate 1 defined by the general form as follows.

{
hi = EA||B(C)⊕D,

gi = EW ||X(Y )⊕ Z.
(3)
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For all hash functions of rate 1 defined by (3) (denoted by FDBL-II), both (A,B, C, D) and
(W,X, Y, Z) are linear combinations of the n-bit vectors (hi−1, gi−1,mi,1,mi,2). Those linear
combinations can be represented as




A
B
C
D


 =

(
Ll Lr

)
︸ ︷︷ ︸

L

·




hi−1

gi−1

m1
i

m2
i


 ,




W
X
Y
Z


 =

(
Rl Rr

)
︸ ︷︷ ︸

R

·




hi−1

gi−1

m1
i

m2
i


 , (4)

where Ll and Lr denote 4× 2 binary submatrices of L. Let Li
r denote the 3× 2 submatrices

of Lr such that the i-th row of Lr are deleted, respectively. Similarly, Li
l denote the 3 × 2

submatrices of Ll such that the i-th row of Ll are deleted, respectively. Matrix L is said to
be exceptional if Rank(L) = 4 and Rank(L3

r) = Rank(L4
r) = 2[23].

In [23], Satoh et al. stated attacks on this kind of DBL hash functions whose round
functions do not satisfy the property “exceptional”.

Theorem 2 For the rate-1 iterated hash function with the form (3)(FDBL-II), if L is not
exceptional, there exist the preimage, the second preimage and the collision attacks with com-
plexities of about 4× 2n, 3× 2n and 3× 2n/2, respectively.

In particular, Satoh et al.[23] showed attacks on a subclass of DBL hash functions with
rate 1 in FDBL-II.

Theorem 3 For the rate-1 double block length hash functions in FDBL-II with the round
function h: {

hi = EA||B(C)⊕D,

gi = EA||B(C)⊕ F.
(5)

where (A,B, C, D, F ) is linear combinations of (hi−1, gi−1,mi,1,mi,2) and E ∈ Bloc(2n, n).
Then, there exist (second) preimage attacks with complexities of about 2 × 2n, and collision
attacks with complexities of about 2× 2n/2.

The rate 1 hash functions defined by (5) can be looked as one subclass of FDBL-II, where
W = A,X = B and Y = C.

In [10], Hirose gave a comment on the analysis by Satoh et al.[23]. The comment shows
there exist the rate-1 DBL hash functions whose round functions do not satisfy the property
“exceptional” but still no meaningful attacks are found. For convincing of this result, an
example (denoted by HDBL-1) was proposed in [10] as follows.

HDBL-1: Let HDBL-1:{0, 1}∗ → {0, 1}2n be a double block length hash function and E ∈
Bloc(2n, n) is the block cipher used in the round function of H. The round function has the
following: {

hi = Emi,1||mi,2
(hi−1 ⊕ gi−1)⊕ hi−1 ⊕ gi−1,

gi = Emi,1||mi,2
(hi−1)⊕ hi−1.

(6)
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


A
B
C
D


 =




0 0 1 0
0 0 0 1
1 1 0 0
1 1 0 0




︸ ︷︷ ︸
L

·




hi−1

gi−1

mi,1

mi,2


 ,




W
X
Y
Z


 =




0 0 1 0
0 0 0 1
1 0 0 0
1 0 0 0




︸ ︷︷ ︸
R

·




hi−1

gi−1

mi,1

mi,2


 (7)

Furthermore, an exceptional example (denoted by HDBL-2) was also proposed in [10].

HDBL-2: Let HDBL-2:{0, 1}∗ → {0, 1}2n be a double block length hash function and E ∈
Bloc(2n, n) is the block cipher used in the round function of H. The round function has the
following: {

hi = Emi,1||mi,2
(hi−1)⊕ gi−1,

gi = Emi,1||mi,2
(gi−1)⊕ hi−1.

(8)




A
B
C
D


 =




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




︸ ︷︷ ︸
L

·




hi−1

gi−1

mi,1

mi,2


 ,




W
X
Y
Z


 =




0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0




︸ ︷︷ ︸
R

·




hi−1

gi−1

mi,1

mi,2


 (9)

Both HDBL-1 and HDBL-2 are the instances of FDBL-II. Based on the results given by
Knudsen et al.[13] and Satoh et al.[23], Hirose[10] revised the conditions for the rate-1 hash
functions in FDBL-II which are possibly to be optimally collision resistant.

Definition 4 For any rate-1 iterated hash function in FDBL-II, if it is optimally collision
resistant, then it must be in one of the two types:

1. Both L and R are exceptional,

2. Rank(L) = Rank(R) = 3, c ⊕ d = λ1a ⊕ λ2b and y ⊕ z = λ3w ⊕ λ4x, for some
λ1, λ2, λ3, λ4 ∈ {0, 1}, and the upper right 2 × 2 submatrices of L and R are both non-
singular.

In [10], Hirose claimed that the above conditions are not sufficient but just necessary for
the property of optimal collision resistance. It was left as an open problem if the two plausible
examples(HDBL-1 and HDBL-2) are really optimally secure.

3 Security Analysis of FDBL-II

In this section, the security of the rate-1 hash functions in FDBL-II is reconsidered. A
synthetic analysis is presented which exploits the fact that the former results[10, 23] on the
security of FDBL-II are not precise. First, two concrete attacks are presented to disclose that
both HDBL-1 and HDBL-2 are failed to be optimally preimage and second preimage resistant.
Next, three examples are presented, which disclose Hirose’s conditions for optimally collision
resistant are failed in some uncovered cases. Finally, some formal proofs are given for the
security analysis of FDBL-II.
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3.1 Attacks on Hirose’s Two Examples

In [23], Satoh et al. suggested that any rate-1 hash function in FDBL-II will not to be op-
timally secure if its round function does not satisfy the exceptional property. Towards this
approach, Hirose[10] gave a comment on Satoh et al.’s result, and said there exist optimally
secure hash functions in FDBL-II whose round functions do not satisfy the exceptional prop-
erty. Moreover, Hirose proposed two two rate-1 hash functions in FDBL-II (HDBL-1 and
HDBL-2, described in Section 2.4) which are plausible secure. HDBL-1 satisfies the excep-
tional property while HDBL-2 does not(Both of them satisfy Hirose’s necessary conditions
in Definition 3). In this section, two (second) preimage attacks are presented on these two
examples which shows they are both failed to optimally (second) preimage resistant. First,
some definitions are given for the analysis. Let E(·) ∈ Bloc(2n, n) be an encryption function
and E−1(·) is its inverse. Let M i = mi

1||mi
2|| · · · ||mi

t be the i-th input message where the
2n-bit length block mi

j = mi
j,1||mi

j,2, j ∈ {1, t}. Let IV be the initial value and h0||g0 = IV .
A denotes the adversary in the ideal cipher model.

Theorem 4 Let HDBL-1 be a hash function defined by the form (6),
{

hi = Emi,1||mi,2
(hi−1 ⊕ gi−1)⊕ hi−1 ⊕ gi−1,

gi = Emi,1||mi,2
(hi−1)⊕ hi−1,

then there exists a (second) preimage attack on the hash function with complexity about 4 ×
23n/2.

Proof. By using the idea of the meet-in-the-middle attack, a preimage attack on the HDBL-1
hash function proceeds as follows.

1. For the preimage attack on (hi, gi), A chooses arbitrary message M = m1||m2|| · · · ||mi−2,
and by computing the values of (hi−2, gi−2) iteratively from the initial value IV = h0||g0.

2. Forward step:

(a) A tries 2n operations to find a pair (mi, c) where hi = Emi,1||mi,2
(c)⊕c = Em′

i
(c)⊕c.

(b) A chooses 2n values of hi−1 where c = hi−1⊕gi−1. Due to the pigeonhole principle,
A can find a value of hi−1 satisfies gi = Emi,1||mi,2

(hi−1)⊕ hi−1.
(c) A repeats q1 times of the forward step to obtain q1 values of (mi,1,mi,2, hi−1, gi−1).

3. Backward step: A chooses q2 values of mi−1, then computes q2 values of (h′i−1, g
′
i−1)

from (mi−1, hi−2, gi−2).

The attack succeeds if some (hi−1, gi−1) and some (h′i−1, g
′
i−1) are matched. Since the

quantities in the meet-in-the-middle attack are 2n-bit long, the successful probability Pr(Pre)
equals

Pr(Pre) = (1− q1

22n
) · (1− q1

22n − 1
) · · · (1− q1

22n − q2
)

≥ (1− q1

22n − q2
)q2 .

(10)
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Since the complexity of the above attack is the larger value of 2n × q1 and q2. For
non-negligible probability in the lowest complexity, it follows that

{
2n × q1 = q2,
q1 × q2 = 22n − q2.

(11)

Consequently, it holds that q1 ≈ 2n/2 and q2 ≈ 23n/2, then the probability

Pr(Pre) ≥ (1− 2n/2

22n − 23n/2
)2

3n/2

≈ 1− e−1 ≈ 0.39.

(12)

It is easy to see that the forward and the backward steps require 2 × 23n/2 operations,
respectively. Thus the total complexity of the attack is 4 × 23n/2. We stress that a second
preimage attack can be constructed by using the same method. So the theorem holds. ¤

Similar to HDBL-1, a (second) preimage attack can also be found in the HDBL-2 hash
function. The attack is described in the following theorem.

Theorem 5 Let HDBL-2 be a hash function defined by the form (8),
{

hi = Emi,1||mi,2
(hi−1)⊕ gi−1,

gi = Emi,1||mi,2
(gi−1)⊕ hi−1.

then there exists a (second) preimage attack on the hash function with complexity about 4 ×
23n/2.

Proof. By using the method of the meet-in-the-middle-attack, a (second) preimage attack
on the HDBL-2 hash function proceeds as follows.

1. For the preimage attack on (hi, gi), A chooses arbitrary message M = m1||m2|| · · · ||mi−2,
and by computing the values of (hi−2, gi−2) iteratively from the initial value IV = h0||g0.

2. Forward step:

(a) A randomly chooses 2n values of (mi,1,mi,2, hi−1), then computes 2n values of gi−1

where gi−1 = Emi,1||mi,2
(hi−1)⊕ hi−1.

(b) A repeats the above step 2n/2 times. Due to the pigeonhole principle, A obtains
2n/2 values of (mi, hi−1, gi−1) yield the fixed value (hi, gi).

3. Backward step: A chooses 23n/2 values of mi−1, then computes 23n/2 values of (h′i−1, g
′
i−1)

from (mi−1, hi−2, gi−2).

The attack succeeds if some (hi−1, gi−1) and some (h′i−1, g
′
i−1) are matched. Since the

quantities in the meet-in-the-middle attack are 2n-bit long, same to the equations (10),(11)
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and (12) in the attack of HDBL-1, the successful probability Pr(Pre) equals 0.39. Conse-
quently, the complexity of the (second) preimage attack is also 4 × 23n/2. So the theorem
holds. ¤

Since HDBL-1 and HDBL-2 satisfy Type-II and Type-I in Definition 3, respectively, which
are the two necessary conditions that defined by Hirose in [10]. The above attacks disclose
the point that there exist uncovered flaws in the former security results on the rate-1 hash
functions in FDBL-II which are given by Satoh et al.[23] and Hirose[10]. Heuristically, we
show three plausible examples, which do not satisfy Hirose’s necessary conditions but still no
efficient collision attack can be found, to support this point. The reader can refer to Appendix
A.1 for their formal analysis in the indifferentiability model.

First we give two examples of the rate-1 hash functions in FDBL-II, which do not satisfy
the condition c⊕d = λ1a⊕λ2b and y⊕z = λ3w⊕λ4x, for some λ1, λ2, λ3, λ4 ∈ {0, 1}. Moreover,
the first example satisfies Rank(R) = 4, while the second example satisfies Rank(R) = 3.

Example 1:
{

hi = Emi,1⊕mi,2⊕hi−1||mi,2⊕gi−1
(mi,1 ⊕ hi−1)⊕mi,2 ⊕ gi−1

gi = Emi,1||mi,2
(hi−1)⊕ gi−1

(13)

Example 2:
{

hi = Emi,1⊕mi,2⊕hi−1||mi,2⊕gi−1
(mi,1 ⊕mi,2 ⊕ hi−1)⊕mi,1 ⊕ hi−1

gi = Emi,1||mi,2
(hi−1)⊕ hi−1

(14)

The third example does not satisfy the upper right 2 × 2 submatrices of L and R are
both non-singular, and Rank(R) = 3.

Example 3: {
hi = Emi,1||hi−1

(mi,2 ⊕ gi−1)⊕mi,2 ⊕ gi−1

gi = Emi,1||mi,2
(hi−1)⊕ hi−1

(15)

From the above attacks and the examples, it is easy to see that Hirose’s two conditions
(at least) are not precise enough for the rate-1 hash functions in FDBL-II to be optimally
secure against the preimage, the second preimage and the collision attacks. A more rigorous
analysis is required to discover more precise conditions which should be imposed on FDBL-II
for the property of the optimal security.

3.2 The Exact Security of FDBL-II

In this section, an exact conditions for the rate-1 hash functions in FDBL-II to be optimally
secure against the preimage, the second preimage and the collision attacks are analyzed. By
using the similar methods for the general attacks on the rate-1 hash functions in FDBL-I[13],
the general attacks on FDBL-II are described in the following theorem. For ease of the reader,
the general form of FDBL-II is recalled here.

{
hi = EA||B(C)⊕D,

gi = EW ||X(Y )⊕ Z.

11






A
B
C
D


 =

(
Ll Lr

)
︸ ︷︷ ︸

L

·




hi−1

gi−1

m1
i

m2
i


 ,




W
X
Y
Z


 =

(
Rl Rr

)
︸ ︷︷ ︸

R

·




hi−1

gi−1

m1
i

m2
i


 .

Theorem 6 For any hash function H in FDBL-II with the form (3), if T operations are
required to find a block mi = mi,1||mi,2 for any given value of (hi−1, gi−1), such that the re-
sulting four-tuple (hi−1, gi−1,mi,1,mi,2) yields the fixed value for hi(or gi or hi⊕gi), then there
exist collision, preimage, and second preimage attacks on the hash function with complexities
(T + 3)× 2n/2, (T + 3)× 2n, and (T + 3)× 2n, respectively.

Proof. An attackerA starts the attacks by choosing arbitrary message M = m1||m2|| · · · ||mi−2,
and by computing the values of (hi−2, gi−2) iteratively from the initial value IV = h0||g0. The
initial operations for the values of (hi−2, gi−2) can be ignored if i ¿ 2n/2.

For (second) preimage attacks, A searches for two blocks mi−1 and mi such that the
fixed hash value (hi, gi) is hit. First, A computes the pair (hi−1, gi−1) from the given values
(hi−2, gi−2) and (mi−1,1,mi−1,2). Secondly, A finds a block (mi,1,mi,2) such that the resulting
four-tuple (hi−1, gi−1,mi,1,mi,2) yields the fixed value for hi(or gi or hi ⊕ gi). This step costs
T times of encryption or decryption. Finally A computes the value of gi(or hi) from the tuple
(hi−1, gi−1,mi,1,mi,2). If the value does not hit, A will repeat the above steps at most 2n

times. Due to the pigeonhole principle, the probability of finding the preimage in the above
procedure is non-negligible. The total complexity of these (second) preimage attacks is about
(T + 3)× 2n.

For collision attacks, A searches for a pair of the blocks (mi−1,mi) and (m′
i−1,m

′
i) which

yield the same hash value (hi, gi). First, A chooses a value of hi. Then A proceeds 2n/2 times
in the same way as the preimage attack. Due to the birthday paradox, the probability of
finding the collision in the above procedure is non-negligible. The total complexity of these
collision attacks is about (T + 3)× 2n/2. So the theorem holds. ¤

In [10], a comment is proved that the attacks given by Satoh et al.[23] do not work
on some hash functions as is expected even the underlying round function does not satisfy
the exceptional property, i.e., the counter-example HDBL-1. Let (a, b, c, d) be the values of
(A,B, C, D) used in the computations of hi. In [23], the attacker chooses random triple (a, b, c)
such that c = α · a⊕ β · b and computes d = Ea||b(c)⊕ hi. Hirose said if c = α · a⊕ βb⊕ d, the
attacker cannot compute d by Ea||b(c)⊕hi. Therefore, besides both L and R are exceptional,
a new condition for the rate-1 hash functions in FDBL-II to be optimally secure is defined by
Hirose [10] as the second condition described in Definition 3. Due to the two concrete attacks
defined in Section 3.2, HDBL-1 and HDBL-2 are two counter-example of the two conditions
given by Hirose[10]. Moreover, Since HDBL-2 is an instance of FDBL-II with the exceptional
property, it means that the exceptional property does not directly imply the optimal security.
Thus the result given by Satoh et al.[23] is not precise too. To ensure what conditions should
be imposed on a hash function to achieve the optimal security, the security of the rate-1 hash
functions in FDBL-II is reconsidered by the following attacks.

First, the attacks break the optimal collision and the (second) preimage resistances are
described as follows.
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Lemma 1 For any hash function H in FDBL-II with the form (3), if the rank of L(or R) is
less than three, then there exist collision, preimage, and second preimage attacks on the hash
function with complexities of about 4× 2n/2, 3× 2n, and 3× 2n, respectively.

Proof. Consider the general form of FDBL-II. Since the rank of L(or R) is at most two and
hi depends on a subspace of (mi,1,mi,2, hi−1, gi−1), it follows that an attacker can has at least
one dimensional of freedom to find the values of mi,1(or mi,2 or mi,1⊕mi,2) yielding the given
hash value (hi, gi). Based on the attacks defined by Theorem 6, it is easily to prove that
T ' 0 in the (second) preimage attack, and T ' 1 in the collision attack. ¤

Lemma 2 For any hash function H in FDBL-II with the form (3), if the rank of L3
r(or L4

r or
R3

r or R4
r) is less than two, then there exist collision, preimage, and second preimage attacks

on the hash function with complexities of about 4× 2n/2, 3× 2n, and 3× 2n, respectively.

Proof. Consider the general form of FDBL-II. If either L3
r or L4

r is less than two, then the key
A||B of EA||B(C) depends on one dimensional of (mi,1,mi,2)(or mi,1⊕mi,2). Let (a, b, c, d) be
the values of (A,B, C, D) used in the computations of hi. By computing d = Ea||b(c)⊕ hi(in
case of L4

r is less than two) or c = E−1
a||b(d ⊕ hi)(in case of L3

r is less than two), an attacker
can decide the value of mi,1(or mi,2) from the hash values of (hi−1, gi−1, hi, gi). Based on the
attacks defined by Theorem 6, it is easily to prove that T ' 0 in the (second) preimage attack,
and T ' 1 in the collision attack. Same result holds if either R3

r or R4
r is less than two. ¤

Now the attacks that break optimal (second) preimage resistance were described as fol-
lows.

Theorem 7 For any hash function H in FDBL-II with the form (3), if the rank of L3
l (or

L4
l or R3

l or R4
l ) is less than two, then there exists a (second) preimage attack on the hash

function with complexity of about 4× 23n/2.

Proof. Consider the general form of FDBL-II. If either L3
l or L4

l is less than two, then the key
A||B of EA||B(C) depends on one dimensional of (hi−1, gi−1)( or hi−1⊕gi−1). Let (a, b, c, d) be
the values of (A,B, C, D) used in the computations of hi. By computing d = Ea||b(c)⊕ hi(in
case of L4

l is less than two) or c = E−1
a||b(d⊕ hi)(in case of L3

l is less than two).

An attacker A start the attacks by choosing arbitrary messages M = m1||m2|| · · · ||mi−2,
and by computing the values of (hi−2, gi−2) iteratively from the given initial value IV = h0||g0.

1. Forward step: A randomly chooses 2n values of (mi,1,mi,2, hi−1), then computes 2n

values of gi−1 where gi−1 = Emi,1||mi,2
(hi−1)⊕ hi−1.

2. A repeats the above step 2n/2 times. Due to the pigeonhole principle, A obtains 2n/2

values of (mi, hi−1, gi−1) yield the fixed value (hi, gi).

3. Backward step: A chooses 23n/2 values of mi−1, then computes 23n/2 values of (h′i−1, g
′
i−1)

from (mi−1, hi−2, gi−2).
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It is easy to see the attack will succeed with a non-negligible probability due to the
pigeonhole principle holds in Step 1. The total complexity is about 4 × 23n/2. Same result
holds if either R3

l or R4
l is less than two. ¤

We note that both HDBL-1 and HDBL-2 are failed to be optimally (second) preimage
resistance due to Theorem 9.

Subsequently, the complexities of free-start attacks on the rate-1 hash functions in FDBL-
II can be easily deduced from the above results.

Lemma 3 For any hash function H in FDBL-II with the form (3), if one of the ranks of L
and R is less than four, then there exist free-start collision and free-start (second) preimage
attacks on the hash function with complexities of about 2× 2n/2 and 2× 2n, respectively.

Based on the above results, three security conditions for the rate-1 hash functions in
FDBL-II to be optimally secure are listed as follows.

Corollary 1 For the rate-1 hash functions in FDBL-II, if the round function matches the
following conditions

1. The ranks of L and R are less than three,

2. The rank of L3
r(or L4

r or R3
r or R4

r) is less than two,

3. The rank of L3
l (or L4

l or R3
l or R4

l ) is less than two,

then there exist collision, preimage and second preimage attacks with a non-negligible success-
ful probability must spend the computation costs no less than the brute-force attacks.

4 A New Class of Fast DBL Hash Functions

Based on FDBL-I and FDBL-II, a new class of fast DBL hash functions named FDBL-III
can be defined as follows. Hash functions in FDBL-III can be constructed on a block cipher
E ∈ Bloc(κ, n) with variants of key length where κ = n or κ = 2n.

Definition 5 Let E ∈ Bloc(κ, n) be a block cipher with variants of key length where κ = n
or κ = 2n. A new class of DBL hash functions with rate 1 (denoted by FDBL-III) can be
constructed as follows.

{
hi = EA(B)⊕ C,
gi = EW ||X(Y )⊕ Z.

(16)
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Both (A,B, C) and (W,X, Y, Z) are linear combinations of the n-bit vectors (hi−1, gi−1,mi,1,mi,2).
Those linear combinations can be represented as




A
B
C


 =

(
Ll Lr

)
︸ ︷︷ ︸

L

·




hi−1

gi−1

m1
i

m2
i


 ,




W
X
Y
Z


 =

(
Rl Rr

)
︸ ︷︷ ︸

R

·




hi−1

gi−1

m1
i

m2
i


 , (17)

By implementing the similar attacks on FDBL-II, one can easily derive the following
results on FDBL-III.

Lemma 4 For any hash function H in FDBL-III with the form (16), if the rank of L(or R)
is less than three, then there exist collision, preimage, and second preimage attacks on the
hash function with complexities of about 4× 2n/2, 3× 2n, and 3× 2n, respectively.

Lemma 5 For any hash function in FDBL-III with the form (16), if the rank of L2
r(or L3

r or
R3

r or R4
r) is less than two, then there exist collision, preimage, and second preimage attacks

on the hash function with complexities of about 4× 2n/2, 3× 2n, and 3× 2n, respectively.

Lemma 6 For any hash function in FDBL-III with the form (16), if the rank of L2
l (or L3

l or
R3

l or R4
l ) is less than two, then there exists a (second) preimage attack on the hash function

with complexity of about 4× 23n/2.

An example of the rate-1 DBL hash function in FDBL-III, which is optimally secure
against the preimage, the second preimage and the collision attacks, is described as follows.
See Appendix A.2 for its proof.

Example 4:
{

hi = Em1
i⊕hi−1

(m2
i ⊕ hi−1 ⊕ gi−1)⊕m1

i ⊕m2
i ⊕ hi−1 ⊕ gi−1,

gi = Em1
i⊕gi−1||m2

i⊕hi−1
(hi−1)⊕ gi−1.

(18)

The rate-1 hash functions in FDBL-III can also be constructed from two different block
ciphers where E1 ∈ Bloc(n, n) and E2 ∈ Bloc(2n, n), which enlarges the candidates for the
design.

5 Conclusion

In this paper, new attacks have been described on FDBL-II [10, 23]. In particular, the
attacks proved Hirose’s two examples are not optimally secure against the preimage and second
preimage attacks. Based on the former results, the security of FDBL-II has been reconsidered
and the conditions for optimally secure are given. Moreover, the security results are extended
to a new class of the rate-1 hash functions (FDBL-III) based on FDBL-I and FDBL-II. These
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cryptanalysis results are practical and helpful to find the rate-1 DBL hash functions to be
optimally secure in FDBL-II and FDBL-III. By considering the security conditions on FDBL-
II, Hirose’s two examples can be improved as follows.

1. Improved HDBL-1
{

hi = Emi,1⊕gi−1||mi,2
(hi−1)⊕ hi−1

gi = Emi,1||mi,2⊕hi−1
(hi−1 ⊕ gi−1)⊕ hi−1 ⊕ gi−1

2. Improved HDBL-2
{

hi = Emi,1||mi,2⊕gi−1
(hi−1)⊕ hi−1 ⊕ gi−1

gi = Emi,1⊕gi−1||mi,2
(hi−1 ⊕ gi−1)⊕ hi−1

Future work is to make it clear whether there exists a subclass of the rate-1 hash functions
in FDBL-II or FDBL-III which can be formally proved optimally secure against collision,
preimage and second preimage attacks in the ideal cipher model. Another interesting work is
to compare the performances with the certain applications in between FDBL-II and FDBL-III.
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A. Indifferentiability Analysis on FDBL-II and FDBL-III Examples

Based on the indifferentiability analysis of block-cipher-based hash functions[5, 8], here we
present an indifferentiability analysis on FDBL-II and FDBL-III examples. Let distinguisher
D can access to oracles (O1,O2) where O1 = (H, E,E−1) and O2 = (Rand, S, S−1). Let
ri ← ((hi−1, gi−1)

mi−→ (hi, gi)) be the i-th query-response to the oracles {E, E−1, S, S−1}
where mi ∈ {0, 1}2n. Ri = (r1, · · · , ri) denotes the query-response set on the oracles
{E, E−1, S, S−1} after the i-th query. Let r′i ← (IV

M−→ (hi, gi)) be the i-th query-response
to the oracles {H, Rand} where M ∈M. R′i = (r′1, · · · , r′i) denotes the query-response set on
the oracles {H, Rand} after the i-th query. Pad(·) denotes the indifferentiable padding rules,
e.g., the prefix-free padding, HMAC/NMAC and the chop construction, which were analyzed
in [6]. For simplicity, we stress that all of the examples are explicitly implemented one of
those padding rules in the indifferentiability analysis.

A.1 Proof of Example 1

First we give a simulation to prove that Example 1 is indifferentiable from a random oracle.

• Rand-Query. For the i-th query Mi ∈ M on Rand, if Mi is a repetition query, the
simulator S retrieves r′j ← (IV

Mi−→ (hj , gj)) where rj ∈ R′i−1, j ≤ i − 1, then returns
Rand(Mi) = (hj , gj). Else S randomly selects a hash value (hi, gi) ∈ Y and updates

R′i = R′i−1 ∪ {IV
Mi−→ (hi, gi)}, then returns Rand(Mi) = (hi, gi).

• {S, S−1}-Query. To answer the distinguisher D’s encryption and decryption queries,
the simulator S proceeds as follows.

1. For the i-th query (1, ki, xi) on S:

(a) If ∃IV
M−→ (hi−1, gi−1) ∈ R′i−1, S computes Pad(M) = mi = mi,1||mi,2. And

then,
i. if ki = mi,1⊕mi,2⊕hi−1||mi,2⊕gi−1 and xi = mi,1⊕hi−1, S runs Rand(M)

and obtains the response (hi, gi), updates Ri = Ri−1 ∪ {(hi−1, gi−1)
mi−→

(hi, gi)}, then returns yi = hi ⊕mi,2 ⊕ gi−1;
ii. if ki = mi,1||mi,2 and xi = hi−1, S runs Rand(M) and obtains the response

(hi, gi), and updates Ri = Ri−1 ∪ {(hi−1, gi−1)
mi−→ (hi, gi)}, then returns

yi = gi ⊕ gi−1.
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(b) Else S randomly selects (hi, gi, hi−1, gi−1), computes mi,2 = ki,2 ⊕ gi−1 and
mi,1 = ki,1 ⊕mi,2 ⊕ hi−1, and updates Ri = Ri−1 ∪ {(hi−1, gi−1)

mi−→ (hi, gi)},
then returns yi = hi ⊕mi,2 ⊕ gi−1.

2. For the i-th query (−1, ki, yi) on S−1:

(a) If ∃IV
M−→ (hi−1, gi−1) ∈ R′i−1, the simulator S computes Pad(M) = mi =

mi,1||mi,2. And then,
i. if ki = mi,1 ⊕mi,2 ⊕ hi−1||mi,2 ⊕ gi−1, S runs Rand(M) and obtains the

response (hi, gi). And then, if yi = hi ⊕ mi,2 ⊕ gi−1, S updates Ri =
Ri−1 ∪ {(hi−1, gi−1)

mi−→ (hi, gi)} and returns xi = mi,1 ⊕ hi−1;
ii. if ki = mi,1||mi,2, S runs Rand(M) and obtains the response (hi, gi). And

then, if yi = gi ⊕ gi−1, S updates Ri = Ri−1 ∪ {(hi−1, gi−1)
mi−→ (hi, gi)}

and returns xi = hi−1.
(b) Else S randomly selects (gi, hi−1, gi−1), computes hi = yi ⊕ ki,2, mi,1 = ki,1 ⊕

mi,2 ⊕ hi−1 and mi,2 = ki,2 ⊕ gi−1, updates Ri = Ri−1 ∪ {(hi−1, gi−1)
mi−→

(hi, gi)}, then returns xi = hi ⊕mi,2 ⊕ gi−1.

Before stating the indifferentiability result of Example 1, a simple lemma is proved from
the above simulation.

Lemma 7 In double block length hash functions defined by (13), it holds that Pr(Pre) =
Pr(Sec) = 2−2n−1 ·O(q) and Pr(Coll) = 2−2n−1 · l2 ·O(q2), where l is the maximum number
of length in a hash query.

Proof.In case of O2, the total number of choices is l · q, where l is the maximum number of
length in a hash query.

Similarly, the probability of the indifferentiable events Bad is

Pr[Bad] = 2×Max(Pr(Coll), P r(Pre)) = 2× Pr(Coll) = 2−2n−1 · l2 ·O(q2).

By implementing the advantage of indifferentiability in keyed hash function, similar re-
sults can be easily deduced in keyed mode. ¤

Similar to [8], one can easily obtain the following result from the above analysis.

Theorem 8 The rate-1 hash function defined by (13)is (tD, tS , q, ε)-indifferentiable from a
random oracle in the ideal cipher model with the prefix-free padding, the NMAC/HMAC, and
the chop construction, for any distinguisher D in polynomial time bound tD, with tS = 2l·O(q)
and the advantage ε = 2−2n−1 · l2 ·O(q2), where l is the maximum length of a query made by
D.

A.1 Proof of Example 4

Here we give an indifferentiability analysis on Example 4, which is a typical rate-1 hash
functions in FDBL-III.
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• Rand-Query. For the i-th Rand-query Mi ∈ M, if Mi is a repetition query, the
simulator S retrieves r′j ← (IV

Mi−→ (hj , gj)) where rj ∈ R′i−1, j ≤ i − 1, then returns
Rand(Mi) = (hj , gj). Else S randomly selects a hash value (hi, gi) ∈ Y and updates

R′i = R′i−1 ∪ {IV
Mi−→ (hi, gi)}, then returns Rand(Mi) = (hi, gi).

• {S, S−1}-Query. To answer the distinguisher D’s encryption and decryption queries,
the simulator S proceeds as follows.

1. For the i-th query (1, ki, xi) on S:

(a) If ∃IV
M−→ (hi−1, gi−1) ∈ R′i−1, S computes Pad(M) = mi = mi,1||mi,2, then,

i. if ki = mi,1⊕hi−1 and xi = mi,2⊕hi−1⊕gi−1, S runs Rand(M) and obtains
the response (hi, gi), updates Ri = Ri−1 ∪ {(hi−1, gi−1)

mi−→ (hi, gi)}, then
returns yi = hi ⊕mi,1 ⊕ xi;

ii. if xi = mi,1⊕gi−1||mi,2⊕hi−1 and xi = hi−1, S runs Rand(M) and obtains
the response (hi, gi), and updates Ri = Ri−1 ∪ {(hi−1, gi−1)

mi−→ (hi, gi)},
then returns yi = gi ⊕ gi−1.

(b) Else,
i. if |ki| = n, then S randomly selects (hi, gi, hi−1, gi−1), computes mi,1 = ki⊕

hi−1 and mi,2 = xi⊕hi−1⊕gi−1, and updatesRi = Ri−1∪{(hi−1, gi−1)
mi−→

(hi, gi)}, then returns yi = hi ⊕mi,1 ⊕ xi;
ii. if |ki| = 2n, then S randomly selects (hi, gi, gi−1), computes mi,1 = ki,1 ⊕

gi−1 and mi,2 = ki,2⊕xi, and updates Ri = Ri−1∪{(xi, gi−1)
mi−→ (hi, gi)},

then returns yi = gi ⊕ gi−1.

2. For the i-th query (−1, ki, yi) on S−1:

(a) If ∃IV
M−→ (hi−1, gi−1) ∈ R′i−1, the simulator S computes Pad(M) = mi =

mi,1||mi,2, then,
i. if ki = mi,1⊕gi−1, S runs Rand(M) and obtains the response (hi, gi). And

then, if yi = hi⊕ki⊕mi,2⊕ gi−1, S updates Ri = Ri−1∪{(hi−1, gi−1)
mi−→

(hi, gi)} and returns xi = mi,2 ⊕ hi−1 ⊕ gi−1;
ii. if ki = mi,1⊕ gi−1||mi,2⊕hi−1, S runs Rand(M) and obtains the response

(hi, gi). And then, if yi = gi⊕gi−1, S updatesRi = Ri−1∪{(hi−1, gi−1)
mi−→

(hi, gi)} and returns xi = hi−1.
(b) Else,

i. if |ki| = n, then S randomly selects (hi, gi, hi−1, gi−1), computes mi,1 =
ki ⊕ hi−1 and mi,2 = yi ⊕ hi ⊕ ki ⊕ gi−1, and updates Ri = Ri−1 ∪
{(hi−1, gi−1)

mi−→ (hi, gi)}, then returns xi = yi ⊕ hi ⊕mi,1;
ii. if |ki| = 2n, then S randomly selects (hi, gi, hi−1), computes mi,1 = ki,1 ⊕

yi ⊕ gi and mi,2 = ki,2 ⊕ hi−1, and updates Ri = Ri−1 ∪ {(xi, gi−1)
mi−→

(hi, gi)}, then returns xi = hi−1.

Before stating the indifferentiability result of Example 4, a simple lemma is proved from
the above simulation.
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Lemma 8 In double block length hash functions defined by (18), it holds that Pr(Pre) =
Pr(Sec) = 2−2n−1 ·O(q) and Pr(Coll) = 2−2n−1 · l2 ·O(q2), where l is the maximum number
of length in a hash query.

Proof.In case of O2, the total number of choices is l · q, where l is the maximum number of
length in a hash query.

Similarly, the probability of the indifferentiable events Bad is

Pr[Bad] = 2×Max(Pr(Coll), P r(Pre)) = 2× Pr(Coll) = 2−2n−1 · l2 ·O(q2).

By implementing the advantage of indifferentiability in keyed hash function, similar re-
sults can be easily deduced in keyed mode. ¤

Similar to [8], one can easily obtain the following result from the above analysis.

Theorem 9 The rate-1 hash function defined by (18)is (tD, tS , q, ε)-indifferentiable from a
random oracle in the ideal cipher model with the prefix-free padding, the NMAC/HMAC, and
the chop construction, for any distinguisher D in polynomial time bound tD, with tS = 2l·O(q)
and the advantage ε = 2−2n−1 · l2 ·O(q2), where l is the maximum length of a query made by
D.
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