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Abstract

This paper reconsiders the security of the rate-1 double block length
hash functions, which based on a block cipher with a block length of n-
bit and a key length of 2n-bit. Counter-examples and new attacks are
presented on this general class of double block length hash functions
with rate 1, which disclose there exist uncovered flaws in the former
analysis given by Satoh et al. and Hirose. Preimage and second preim-
age attacks are designed to break Hirose’s two examples which were
left as an open problem. Some refined conditions are proposed for en-
suring this general class of the rate-1 hash functions to be optimally
secure against the collision attack. In particular, two typical exam-
ples, which designed under the proposed conditions, are proven to be
indifferentiable from the random oracle in the ideal cipher model. The
security results are extended to a new class of double block length hash
functions with rate 1, where one block cipher used in the compression
function has the key length is equal to the block length, while the other
is doubled.
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1 Introduction

Cryptographic hash function H : {0, 1}∗ → {0, 1}` is defined as a feasible
algorithm which uniformly maps an arbitrary length input to a fixed length
output. The design of today’s cryptographic hash functions still follows the
Merkle-Damgard (MD) structure[6, 18], by iterating a compression function
on the input message to realize a domain extension transform. The hash
function will be collision resistant if the underlying compression function is.
In practice, most of hash functions are either explicitly or implicitly com-
posed from block ciphers. The advantage of the block-cipher-based scheme
is that one can conveniently choose an extensively studied block cipher (e.g.,
DES, IDEA, AES, etc) to construct the compression function, and also the
latest cryptanalysis results on such a block cipher can be used to avoid the
potential weakness in the scheme. Discussions of hash functions constructed
from n-bit block ciphers are mainly divided into single block length (SBL)
and double block length (DBL) hash functions, where single and double are
related to the output range of the block cipher that used in the hash func-
tion. The motivation of double block length is to combine two n-bit block
ciphers to obtain a sufficient output range for collision resistance. One such
algorithm is MDC-2, which was developed by Brachtl et al.[2] based on
DES; and its general construction to an arbitrary block cipher is included
as a standard in ISO/IEC 10118-2. It is believed that the complexities of
(second) preimage and collision attacks on MDC-2 are about 23n/2 and 2n,
respectively. A DBL hash function H is said to be optimally secure, if any
adversary with non-negligible successful probability must spend the com-
putation costs no less than publicly-accepted upper bounds of brute force
attacks, namely, the complexities of (second) preimage and collision attacks
on MD structure hash functions are about 22n and 2n, with respect to the
pigeonhole principle and the birthday paradox, respectively.

Although DBL hash function can extend the range for collision resis-
tance, a consequent disadvantage is a decrease in performance. The rate of a
block-cipher-based hash function is defined as the number of n-bit message
blocks processed per encryption or decryption for the measurement of the
efficiency. E.g., the rate of MDC-2 is only 1/2, which implies that MDC-2
is at least twice as slow as the underlying block cipher. To improve the
efficiency, many DBL hash functions with rate 1 had been proposed, such
as [3, 10, 21, 26]. Unfortunately, some critical results showed the fact that
those proposed schemes unlikely achieve optimally secure. In [14], Knudsen
et al. presented the attacks on a large class of DBL hash functions with rate
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1 such that the key length is equal to the block length n-bit (FDBL-I for
short). In particular, the attacks break the proposed schemes in [3, 10, 21].
Still, many advanced block ciphers (e.g., AES, RC5, Blowfish, etc) support
variants of key length motivates renewed interest in finding good ways to
construct a secure and fast DBL hash function. Many instructive examples
were proposed recently, e.g., [9, 16, 19, 20]. But all these schemes are less
than rate 1, which means they are not fast enough.

In [24], Satoh et al. presented some attacks on a general class of DBL
hash functions with rate 1 where the key length as twice as the block length
(FDBL-II for short), and broke the rate-1 scheme in [26]. In particular,
Satoh et al. described a necessary condition for the rate-1 hash functions
in FDBL-II to be optimally secure against preimage, second preimage and
collision attacks. Recently in [8], Hirose gave a comment on Satoh et al.’s
result[24] and showed that there exists a missed case in their analysis. Based
on this comment, two necessary conditions for the rate-1 hash functions in
FDBL-II to be optimally collision resistant are given by Hirose in [8]. Fur-
thermore, two examples are left in [8] as an open problem to make it clear
whether they are optimally secure.

Our Contributions. Consider the security of the rate-1 double block
length hash functions where the key length is double to the block length,
our contributions are three-folds. First, we present (second) preimage at-
tacks on Hirose’s two examples which are left as an open problem in [8].
Three counter-examples in FDBL-II are designed to disclose that Hirose’s
necessary conditions[8] for optimal collision resistance are still not precise.
Secondly, based on new attacks and counter-examples, we formally analyze
the security of the rate-1 hash functions in FDBL-II, and find there exists a
subclass in FDBL-II can be optimally collision resistant. But all the rate-1
hash functions in FDBL-II are failed to be optimally (second) preimage re-
sistant. The necessary conditions for the rate-1 hash functions in FDBL-II
to be optimally collision resistant are refined by the analysis. In particu-
lar, the indifferentiability analysis are given on two typical examples under
our refined conditions, which imply they are optimally collision resistant in
the ideal cipher model. Finally, the security results are extended to a new
class of DBL hash functions with rate 1 (FDBL-III for short), where one
block cipher has the key length equal to the block length, while the other
is doubled in the compression function. The extended results show that all
the rate-1 DBL hash functions in this general class (FDBL-III) are failed
to be optimally secure. Prior to this paper, there is no rigorous analysis
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on the half-baked cases proposed by Satoh et al.[24] and Hirose[8] to ensure
whether they are really optimally secure.

Organization. The remainder of this paper is organized as follows. In
Section 2, definitions and the former results on DBL hash functions with
rate 1 are reviewed. In Section 3, two concrete attacks are presented on
Hirose’s two examples, then counter-examples are given to show the fact
that Hirose’s two necessary conditions[8] for optimal collision resistance are
not precise. Attacks are presented on FDBL-II to obtain precise conditions
towards optimal security. Section 4 concludes the paper. Additionally, the
indifferentiability analysis of two typical examples are given in Appendix A.
Appendix B describes an extended result on a new class of the rate-1 DBL
hash functions.

2 Preliminaries

In this section, some necessary notions and definitions are reviewed for the
analysis throughout the paper. Let the symbol ⊕ be the bitwise exclusive
OR. For binary sequences a and b, a||b denotes their concatenation. Let IV
be the initial value. For DBL hash functions, an arbitrary input message
M can be looked as a concatenation of the 2n-bit length blocks such that
M = m1||m2|| · · · ||mt, where t = d|M |/2ne and mi = mi,1||mi,2, i ∈ {0, t}.
The function Rank(·) returns the rank of an input matrix. In this paper,
length-padding on the last block of input message is implicitly used to avoid
some trivial attacks. The same terminology and abbreviations in different
definitions are the same meaning, except there are special claims in the
context.

2.1 Block-Cipher-Based Hash Functions

Let κ, n, ` be numbers. A block cipher is a keyed function E : {0, 1}κ ×
{0, 1}n → {0, 1}n. For each k ∈ {0, 1}κ, the function Ek(·) = E(k, ·) denotes
a permutation on {0, 1}n. If E is a block cipher then E−1 is its inverse, where
E−1

k (y) = x such that Ek(x) = y. Let Bloc(κ, n) be the family of all block
ciphers E : {0, 1}κ × {0, 1}n → {0, 1}n. To avoid trivial iteration attacks,
we assume that any block cipher E ∈ Bloc has no fixed-point such that
Ek(x) = k or x or E−1

k (y) = y or k. A block-cipher-based hash function is a
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hash function H : {0, 1}∗ → {0, 1}` by implementing E ∈ Bloc(κ, n) in the
compression function of H. If ` = n, then H is called a single block length
(SBL) hash function, e.g., the PGV hash functions[22]. If ` = 2n, then H is
called a double block length (DBL) hash function, e.g., MDC-2[2], Parallel-
DM[10], and LOKI-DBH[3]. The rate is widely accepted to measure the
efficiency of a block-cipher-based hash function, which is defined as follows.

Definition 1 Let H : {0, 1}∗ → {0, 1}` be a hash function and E ∈ Bloc(κ, n)
is a block cipher used in the compression function of H. If the compression
function performs T times encryption or decryption of E to process totally
` bits long message block, the rate of the hash function H equals `

T ·n .

Ideal Cipher Model. Ideal cipher model is a well-known model for the
security analysis of block-cipher-based hash functions, which is dating back
to Shannon [25] and has been frequently used for the security analysis of
various hash functions[1, 9, 15, 22]. Let H : {0, 1}∗ → {0, 1}` be a hash
function and E ∈ Bloc(κ, n) be a block cipher used in the compression
function of H. Adversary A is given access to the encryption oracle E and
the decryption oracle E−1. The i-th query-response is defined as a four-tuple
(σi, ki, xi, yi) where σi ∈ {1,−1}, ki ∈ {0, 1}κ and xi, yi ∈ {0, 1}n. If σi = 1
then A asks (ki, xi) and gets response yi = Eki

(xi), otherwise he asks (ki, yi)
and gets response xi = E−1

ki
(yi). Since Ek(·) is a permutation on {0, 1}n, it

holds that
Pr[Eki

(xi) = yi] = Pr[E−1
ki

(yi) = xi] =
1
n

.

In the ideal cipher model, one measures the complexity of an attack, on
which finding a collision, preimage or second preimage, is based on the total
number of encryptions and decryptions that the adversary asked. Generally,
all repetition queries will be ignored, namely, if A makes a query on Ek(x)
and this returns y, then he will not repeat the query or ask the inverse
E−1

k (y). Such trivial queries does not help anything at the view of the
adversary. The block cipher in this model is variously named “Shannon
oracle model”, “Black-box model”, or “Ideal cipher model”. Since the last
name is more often called, it will be used throughout the paper.

2.2 Security Definitions

Now we recall the definitions for the security analysis of block-cipher-based
hash functions.
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Attacks on hash functions. For block-cipher-based hash functions, there
are three standard attacks which are called the collision attack, the preimage
attack and the second preimage attack. A limitation is that the standard
attacks only consider the situation that initial value IV is fixed. The four
extended attacks include the situation that IV can be changed by the ad-
versary.

Definition 2 Let H : K ×M → Y be a family of hash functions where
K ∈ {0, 1}κ,Y ∈ {0, 1}`. Let M be a message belongs to message space
M ∈ {0, 1}∗. By considering whether IV is fixed or not, three standard
attacks and four extended attacks are defined as follows.

1. The preimage attack (Pre) is that given IV and h, find a message M
such that h = H(IV, M).

2. The free-start preimage attack (fPre) is that given IV and h, find
IV ′ and M such that h = H(IV ′,M).

3. The second preimage attack (Sec) is that given IV and a message M ,
find another message M ′ 6= M such that H(IV,M) = H(IV, M ′).

4. The free-start second preimage attack (fSec) is that given IV and
a message M , find IV ′ and another message M ′ 6= M such that
H(IV,M) = H(IV ′,M ′).

5. The collision attack (Coll) is that given an initial value IV , find M 6=
M ′ such that H(IV, M) = H(IV,M ′).

6. The semi-free-start collision attack (sfColl) is that find an initial
value IV and two different messages M, M ′ such that H(IV,M) =
H(IV,M ′).

7. The free-start collision attack (fColl) is that find IV, IV ′ and mes-
sages M, M ′ such that (IV,M) 6= (IV ′,M ′) but H(IV,M) = H(IV ′,M ′).

The above attacks are from [13]. Similar definitions can be found in
[15]. Compare with the standard attacks, the extended attacks are also
meaningful since they support a complete examination on minimizing po-
tential flaws in a family of hash function. It is easy to see that the free-start
and the semi-free-start attacks are never harder than the attacks where IV
is specified in advance. To rigorously analyze the security of a hash function
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at the presents of adversary, a widely-accepted approach will be recalled in
below.

Indifferentiability Model. Objects are considered to be computational
equivalent if no polynomial-time procedure can tell them apart. In [17],
Maurer et al. first introduced the notion of indifferentiability, which is for-
malized to “distinguish” whether a given object exists any computational
inequivalent from a heuristic random oracle. The indifferentiability has been
focussed on the question: what conditions should be imposed on the com-
pression function F to ensure that the hash function CF satisfies the certain
conditions of the random oracle. This approach is based on the fact that
one of the problems in assessing the security of a hash function is caused by
domain extension transform. It is clear that the weakness of F will generally
result in weakness of CF , but the converse is not true in general. The indif-
ferentiability between a hash function and a random oracle is a more rigorous
white-box analysis which requires the examination of the internal structure
of the hash function, while the traditional instantiation just implements a
black-box analysis.

Definition 3 A Turing machine C with oracle access to an ideal primitive
F is said to be (tD, tS , q, ε)-indifferentiable from an ideal primitive Rand if
there exists a simulator S, such that for any distinguisher D it holds the
advantage of indifferentiability that:

Adv(D) = |Pr[DC,F = 1]− Pr[DRand,S = 1]| < ε,

where S has oracle access to Rand and runs in polynomial time at most tS,
and D runs in polynomial time at most tD and makes at most q queries. CF
is said to be indifferentiable from Rand if ε is a negligible function of the
security parameter k (in polynomial time tD and tS).

It is proven in [17] that if CF is indifferentiable from Rand, then CF
can instantiate Rand in any cryptosystem and the resulting cryptosystem is
at least as secure in the F model as in the Rand model. In the rest of the
paper, the Turing Machine C will denote the construction of an iterated hash
function and the ideal primitive F will represent the compression function
of C.

For block-cipher-based hash functions, the above definition needs to
be slightly modified due to the underlying compression function should be
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analyzed in the ideal cipher model[4, 7]. In other words, if a block-cipher-
based hash function CF is indifferentiable from a random oracle Rand in the
ideal cipher model, then CF can replace Rand in any cryptosystem, while
keeping the resulting system (with CF ) to remain secure in the ideal cipher
model if the original system (with Rand) is secure in the random oracle
model. Let E be the block cipher used in the compression function and E−1

is its inverse. Simulator S has to simulate both E and E−1 because every
distinguisher D can access encryption and decryption oracles in the ideal
cipher model. Therefore, distinguisher D obtains the following rules: either
the block cipher E, E−1 is chosen at random and the hash function H is
constructed from it, or the hash function H is chosen at random and the
block cipher E, E−1 is implemented by a simulator S with oracle access to
H. Those two ways to build up a hash function should be indifferentiable.

Similarly, Hirose proposed the notion of indistinguishability on iterated
hash functions in [9], which is weaker than the notion of indifferentiability.
It is easy to see that if a block-cipher-based hash function CE,E−1

is indif-
ferentiable from a random oracle in polynomial time bounds tS , tD with a
negligible probability ε, then it is also indistinguishable in the same bound.
For simplicity, one needs only to prove the indifferentiability instead of the
both.

Since hash function plays a pivotal role in the real-life cryptographic
applications (e.g., data or entity authentication, public-key encryption and
digital signature), we stress that an ideal block-cipher-based hash function
must be optimally secure against the seven attacks for the security of the
applications, and also be indifferentiable from a random oracle in the ideal
cipher model.

2.3 Results on Fast DBL Hash Functions

Here we briefly review the former results on the rate-1 DBL hash functions.
By assuming the key length κ of block cipher E ∈ Bloc(κ, n) used in the
compression function is identical to the block length, Knudsen et al. [14]
presented attacks on this class of DBL hash functions with rate 1 (FDBL-I).
The general form of this class is described as follows.

{
hi = EA(B)⊕ C,
gi = EX(Y )⊕ Z.

(1)

For all rate-1 hash functions defined by (1), (A,B, C) are linear combinations
of the n-bit vectors (hi−1, gi−1,mi,1,mi,2), (X, Y, Z) are linear combinations
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of the n-bit vectors (hi, hi−1, gi−1,mi,1,mi,2).




A
B
C


 =

(
Ll Lr

)
︸ ︷︷ ︸

L

·




hi−1

gi−1

mi,1

mi,2


 ,




X
Y
Z


 =

(
Rl Rr

)
︸ ︷︷ ︸

R

·




hi

hi−1

gi−1

mi,1

mi,2




. (2)

If hi and gi can be computed independently, then the construction is
called parallel, otherwise is called serial. In [14], Knudsen et al. proved that
all the rate-1 hash functions in FDBL-I are failed to be optimally secure
against collision, preimage and second preimage attacks. The result is given
by the following theorem in [14].

Theorem 1 For the rate-1 iterated hash function with the form (1) (FDBL-
I), there exist preimage and second preimage attacks with complexities of
about 4× 2n. Furthermore, there exists a collision attack with complexity of
about 3× 23n/4. For all but two classes of the hash functions, there exists a
collision attack with complexity of about 4× 2n/2.

In AES algorithm, the key length can be 128,196,256-bit while the block
length is 128-bit. This property motivates interests in finding schemes to
turn such a block cipher into a secure and fast DBL hash function, where
the key length are longer than the block length. By considering the block
cipher E ∈ Bloc(κ, n) where κ = 2n, Satoh et al.[24] proposed a new family
of the rate-1 DBL hash functions (FDBL-II), which is defined by the general
form as follows. {

hi = EA||B(C)⊕D,

gi = EW ||X(Y )⊕ Z.
(3)

For all rate-1 hash functions defined by (3), both (A,B, C, D) and (W,X, Y, Z)
are linear combinations of the n-bit vectors (hi−1, gi−1,mi,1,mi,2). Those
linear combinations can be represented as




A
B
C
D


 =

(
Ll Lr

)
︸ ︷︷ ︸

L

·




hi−1

gi−1

mi,1

mi,2


 ,




W
X
Y
Z


 =

(
Rl Rr

)
︸ ︷︷ ︸

R

·




hi−1

gi−1

mi,1

mi,2


 , (4)

where Ll and Lr denote 4 × 2 binary submatrices of L. Let Li
l and Li

r

denote the 3× 2 submatrices of Ll and Lr such that the i-th row of Lr are
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deleted, respectively. Matrix L is said to be “exceptional” if Rank(L) = 4
and Rank(L3

r) = Rank(L4
r) = 2.

In [24], Satoh et al. stated attacks on FDBL-II when the compression
function does not satisfy the exceptional property.

Theorem 2 For the rate-1 iterated hash function with the form (3)(FDBL-
II), if L or R is not exceptional, there exist preimage, second preimage and
collision attacks with complexities of about 4 × 2n, 3 × 2n and 3 × 2n/2,
respectively.

In particular, Satoh et al.[24] presented attacks on a subclass of the
rate-1 DBL hash functions in FDBL-II. We stress that the proposed scheme
in [26] is a paradigm with respect to this subclass.

Theorem 3 For a subclass of the rate-1 double block length hash functions
in FDBL-II with the compression function:

{
hi = EA||B(C)⊕D,

gi = EA||B(C)⊕ F.
(5)

where (A,B, C, D, F ) is linear combinations of (hi−1, gi−1,mi,1,mi,2) and
E ∈ Bloc(2n, n), there exist (second) preimage and collision attacks with
complexities of about 2× 2n and 2× 2n/2, respectively.

In [8], Hirose gave a comment on the analysis by Satoh et al.[24]. The
comment shows there exist the rate-1 DBL hash functions in FDBL-II whose
compression functions are not exceptional but still no meaningful collision
attacks can be found. For convincing of this comment, an example without
the exceptional property was proposed in [8] as follows.

HDBL-1: Let HDBL-1:{0, 1}∗ → {0, 1}2n be a double block length hash
function and E ∈ Bloc(2n, n) is the block cipher used in the compression
function. The compression function has the following:

{
hi = Emi,1||mi,2

(hi−1 ⊕ gi−1)⊕ hi−1 ⊕ gi−1,

gi = Emi,1||mi,2
(hi−1)⊕ hi−1.

(6)
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


A
B
C
D


 =




0 0 1 0
0 0 0 1
1 1 0 0
1 1 0 0




︸ ︷︷ ︸
L

·




hi−1

gi−1

mi,1

mi,2


 ,




W
X
Y
Z


 =




0 0 1 0
0 0 0 1
1 0 0 0
1 0 0 0




︸ ︷︷ ︸
R

·




hi−1

gi−1

mi,1

mi,2


 (7)

Furthermore, the other example with the exceptional property was also
proposed in [8].

HDBL-2: Let HDBL-2:{0, 1}∗ → {0, 1}2n be a double block length hash
function and E ∈ Bloc(2n, n) is the block cipher used in the compression
function. The compression function has the following:

{
hi = Emi,1||mi,2

(hi−1)⊕ gi−1,

gi = Emi,1||mi,2
(gi−1)⊕ hi−1.

(8)




A
B
C
D


 =




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




︸ ︷︷ ︸
L

·




hi−1

gi−1

mi,1

mi,2


 ,




W
X
Y
Z


 =




0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0




︸ ︷︷ ︸
R

·




hi−1

gi−1

mi,1

mi,2


 (9)

Both HDBL-1 and HDBL-2 are the instances of FDBL-II. Let (a, b, c, d)
be the values of (A,B, C, D) used in the computations of hi. In [24], the
adversary chooses random triple (a, b, c) such that c = α·a⊕β ·b where α, β ∈
{0, 1}, then computes d = Ea||b(c)⊕ hi. Hirose found if c = α · a⊕ β · b⊕ d,
the adversary cannot compute d by Ea||b(c) ⊕ hi. Therefore, besides both
L and R are exceptional, a new condition for the rate-1 hash functions in
FDBL-II to be optimally collision resistant is defined by Hirose in [8].

Definition 4 For any rate-1 iterated hash function in FDBL-II, if it is
optimally collision resistant, then it must be in one of the two types:

1. Both L and R are exceptional,

2. Rank(L) = Rank(R) = 3, c⊕ d = λ1a⊕ λ2b and y ⊕ z = λ3w ⊕ λ4x,
for some λ1, λ2, λ3, λ4 ∈ {0, 1}, and the upper right 2× 2 submatrices
of L and R are both non-singular.
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In [8], Hirose claimed that the above conditions are not sufficient but
just necessary for the property of optimal collision resistance. It was left as
an open problem if the two probably secure examples (HDBL-1 and HDBL-2)
are really optimally secure.

3 Security Analysis of FDBL-II

In this section, the security of the rate-1 hash functions in FDBL-II is re-
considered. A synthetic analysis is presented which exploits the fact that
the former results[8, 24] on the security of FDBL-II are still not accurate.
First, two concrete attacks are presented to prove that both HDBL-1 and
HDBL-2 are failed to be optimally preimage and second preimage resistant.
Next, three counter-examples are described, which disclose Hirose’s condi-
tions for optimally collision resistant are failed in some uncovered cases.
Finally, based on the examples and new attacks, the necessary conditions
for the rate-1 hash functions in FDBL-II to be optimally secure are refined.

3.1 Attacks on Hirose’s Two Examples

In [24], Satoh et al. suggested that any rate-1 hash function in FDBL-II
will not to be optimally secure, if its compression function does not satisfy
the exceptional property. Towards this approach, Hirose[8] gave a comment
on Satoh et al.’s result, and said there exist optimally collision resistant
hash functions in FDBL-II whose compression functions do not satisfy the
exceptional property. Moreover, Hirose proposed two examples in FDBL-II
(HDBL-1 and HDBL-2, described in Section 2.3) which are probably secure
against the collision attack. HDBL-2 satisfies the exceptional property while
HDBL-1 does not, and both of them satisfy Hirose’s two necessary conditions
defined in Definition 4. Here we present two concrete attacks on Hirose’s
two examples which prove they are both failed to be optimally (second)
preimage resistant.

Theorem 4 Let HDBL-1 be a hash function defined by the form (6),
{

hi = Emi,1||mi,2
(hi−1 ⊕ gi−1)⊕ hi−1 ⊕ gi−1,

gi = Emi,1||mi,2
(hi−1)⊕ hi−1,

then there exists a (second) preimage attack on the hash function with com-
plexity of about 4× 23n/2.
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Proof. By using the idea of the meet-in-the-middle attack, a preimage
attack on the HDBL-1 hash function proceeds as follows.

1. For the preimage attack on (hi, gi), an adversary A chooses arbitrary
message M = m1||m2|| · · · ||mi−2, and by computing the values of
(hi−2, gi−2) iteratively from the initial value IV = h0||g0.

2. Forward step:

(a) A tries 2n operations to find a pair (mi, c) where hi = Emi(c)⊕c =
Emi,1||mi,2

(c)⊕ c.

(b) A chooses 2n values of hi−1 where c = hi−1 ⊕ gi−1. Due to the
pigeonhole principle, A can find a value of hi−1 satisfies gi =
Emi,1||mi,2

(hi−1)⊕ hi−1.

(c) A repeats q1 times of the forward step to obtain q1 values of
(mi,1,mi,2, hi−1, gi−1).

3. Backward step: A chooses q2 values of mi−1, computes q2 values of
(h′i−1, g

′
i−1) from (mi−1, hi−2, gi−2).

The attack succeeds if some (hi−1, gi−1) and some (h′i−1, g
′
i−1) are matched.

Since the quantities in the meet-in-the-middle attack are 2n-bit long, the
successful probability Pr[Pre] equals

Pr[Pre] = (1− q1

22n
) · (1− q1

22n − 1
) · · · (1− q1

22n − q2
)

≥ (1− q1

22n − q2
)q2 .

(10)

The complexity of the above attack is the larger value between 2n × q1

and q2. For a non-negligible probability in the lowest complexity, it follows
that {

2n × q1 = q2,
q1 × q2 = 22n − q2.

(11)

Consequently, it holds that q1 ≈ 2n/2 and q2 ≈ 23n/2, then the proba-
bility

Pr[Pre] ≥ (1− 2n/2

22n − 23n/2
)2

3n/2

≈ 1− e−1 ≈ 0.39.

(12)
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It is easy to see that both the forward step and the backward step
require 2 × 23n/2 operations. Thus the total complexity of the attack is
4 × 23n/2. We note that a second preimage attack can be constructed by
using the same method. So the theorem holds. ¤

Similar to HDBL-1, a (second) preimage attack can be found in the
HDBL-2 hash function as well. The attack is described in the following
theorem.

Theorem 5 Let HDBL-2 be a hash function defined by the form (8),
{

hi = Emi,1||mi,2
(hi−1)⊕ gi−1,

gi = Emi,1||mi,2
(gi−1)⊕ hi−1.

then there exists a (second) preimage attack on the hash function with com-
plexity of about 4× 23n/2.

Proof. A (second) preimage attack on the HDBL-2 hash function proceeds
as follows.

1. For the preimage attack on (hi, gi), A chooses arbitrary message M =
m1||m2|| · · · ||mi−2, and by computing the values of (hi−2, gi−2) itera-
tively from the initial value IV = h0||g0.

2. Forward step:

(a) A randomly chooses 2n values of (mi,1,mi,2, hi−1), then computes
2n values of gi−1 where gi−1 = Emi,1||mi,2

(hi−1)⊕ hi.

(b) A repeats the above step 2n/2 times. Due to the pigeonhole prin-
ciple, A obtains 2n/2 values of (mi, hi−1, gi−1) yield the fixed value
(hi, gi).

3. Backward step: A chooses 23n/2 values of mi−1, then computes 23n/2

values of (h′i−1, g
′
i−1) from (mi−1, hi−2, gi−2).

The attack succeeds if some (hi−1, gi−1) and some (h′i−1, g
′
i−1) are matched.

Since the quantities in the meet-in-the-middle attack are 2n-bit long, same
to the equations (10),(11) and (12) in the attack of HDBL-1, the success-
ful probability Pr[Pre] equals 0.39 as well. Consequently, the complexity of
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the (second) preimage attack is also about 4×23n/2. So the theorem holds. ¤

Since HDBL-1 and HDBL-2 satisfy Type 2 and Type 1 in Definition 4,
respectively, which are the two necessary conditions defined by Hirose in [8].
The above attacks disclose the point that maybe there exist uncovered flaws
in the former security results on the rate-1 hash functions in FDBL-II which
are given by Satoh et al.[24] and Hirose[8]. Heuristically, we present three
counter-examples, which do not satisfy Hirose’s necessary conditions but
still no efficient collision attack can be found, to support this considerable
point.

First we give two examples of the rate-1 hash functions in FDBL-II,
which do not satisfy Type 2 condition that c ⊕ d = λ1a ⊕ λ2b and y ⊕ z =
λ3w ⊕ λ4x, for some λ1, λ2, λ3, λ4 ∈ {0, 1}.
Example 1 :

{
hi = Emi,1⊕mi,2⊕hi−1||mi,2⊕gi−1

(mi,1 ⊕ hi−1)⊕mi,2 ⊕ gi−1

gi = Emi,1||mi,2
(hi−1)⊕ hi−1

(13)

Example 2 :
{

hi = Emi,1⊕mi,2⊕hi−1||mi,2⊕gi−1
(mi,1 ⊕mi,2 ⊕ hi−1)⊕mi,1 ⊕ hi−1

gi = Emi,1||mi,2
(hi−1)⊕ hi−1

(14)

The third example does not satisfy Type 2 condition that the upper
right 2× 2 submatrices of L and R are both non-singular.

Example 3 :
{

hi = Emi,1||hi−1
(mi,2 ⊕ gi−1)⊕mi,2 ⊕ gi−1

gi = Emi,1||mi,2
(hi−1)⊕ hi−1

(15)

We give the following theorem which establishes the indifferentiability
of Example 1. The omitted proof can be found in Appendix A.1.

Theorem 6 The rate-1 hash function defined by (13) is (tD, tS , q, ε)-indifferentiable
from a random oracle in the ideal cipher model with the prefix-free padding,
the NMAC/HMAC, and the chop construction, for any distinguisher D
in polynomial time bound tD, with tS = 2l · O(q) and the advantage ε =
2−n−2 · l · O(q), where l is the maximum length of a query made by D and
l · q ≤ 2n−1.
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The following theorem establishes the indifferentiability of HDBL-1.
The omitted proof can be found in Appendix A.2. Based on the indiffer-
entiability analysis, one can find that both Example 1 and HDBL-1 are
optimally collision resistant in the ideal cipher model. By using the similar
analysis, the proofs can be extended to other examples.

Theorem 7 The rate-1 hash function defined by (6) is (tD, tS , q, ε)-indifferentiable
from a random oracle in the ideal cipher model with the prefix-free padding,
the NMAC/HMAC, and the chop construction, for any distinguisher D
in polynomial time bound tD, with tS = 2l · O(q) and the advantage ε =
2−n−2 · l · O(q), where l is the maximum length of a query made by D and
l · q ≤ 2n−1.

From the concrete attacks and the counter-examples, it is easy to see
that Hirose’s two necessary conditions (at least) are not precise for the rate-1
hash functions in FDBL-II to be optimally secure against preimage, second
preimage and collision attacks. A more rigorous analysis is required to
discover the certain conditions which should be imposed on FDBL-II for the
property of the optimal security.

3.2 The Exact Security of FDBL-II

In [8], a comment is shown that the attacks given by Satoh et al.[24] do not
work on some hash functions in FDBL-II, as is expected even the under-
lying compression function unlikely satisfies the exceptional property. E.g.,
HDBL-1 is a counter-example that supports this comment. Due to the three
counter-examples which are described in Section 3.1, Hirose’s conditions[8]
become inaccurate as well. Moreover, Since HDBL-2 is an instance of FDBL-
II with the exceptional property, the two concrete attacks on HDBL-1 and
HDBL-2 show the fact that the result given by Satoh et al.[24] do not di-
rectly imply the optimal security. The exact security of the rate-1 hash
functions in FDBL-II is reconsidered through the following attacks. First
generic attacks are presented.

Theorem 8 For any rate-1 hash functions in FDBL-II with the form (3), if
T operations are required to find a block mi = mi,1||mi,2 for any given value
of (hi−1, gi−1), such that the resulting four-tuple (hi−1, gi−1,mi,1,mi,2) yields
the fixed value for hi(or gi or hi ⊕ gi), then there exist collision, preimage,

16



and second preimage attacks on the hash function with complexities of about
(T + 3)× 2n/2, (T + 3)× 2n, and (T + 3)× 2n, respectively.

Proof. An adversary A starts the attacks by choosing an arbitrary mes-
sage M = m1||m2|| · · · ||mi−2, and by computing the values of (hi−2, gi−2)
iteratively from the initial value IV = h0||g0. The initial operations for the
values of (hi−2, gi−2) can be ignored if i ¿ 2n/2.

For (second) preimage attacks, A searches for two blocks mi−1 and mi

such that the fixed hash value (hi, gi) is hit. First, A computes the pair
(hi−1, gi−1) from the given values (hi−2, gi−2) and (mi−1,1,mi−1,2). Next, A
finds a block (mi,1,mi,2) such that the resulting four-tuple (hi−1, gi−1,mi,1,mi,2)
yields the fixed value for hi(or gi or hi ⊕ gi). This step costs T times of en-
cryption or decryption. Finally, A computes the value of gi(or hi) from the
tuple (hi−1, gi−1,mi,1,mi,2). If the value is not hit, A will repeat the above
steps at most 2n times. Due to the pigeonhole principle, the probability of
finding the (second) preimage in the above procedure is non-negligible. The
total complexity of these (second) preimage attacks is about (T + 3)× 2n.

For collision attacks, A searches for a pair of the blocks (mi−1,mi) and
(m′

i−1,m
′
i) yields the same hash value (hi, gi). First, A chooses a value of

hi. Then A proceeds 2n/2 times in the same way as the preimage attack.
Due to the birthday paradox, the probability of finding the collision in the
above procedure is non-negligible. The total complexity of these collision
attacks is about (T + 3)× 2n/2. So the theorem holds. ¤

Subsequently, the attacks that simultaneously break the optimal colli-
sion and the (second) preimage resistances are described as follows.

Lemma 1 For any rate-1 hash function in FDBL-II with the form (3), if
the rank of L(or R) is less than three, then there exist collision, preimage,
and second preimage attacks on the hash function with complexities of about
4× 2n/2, 3× 2n, and 3× 2n, respectively.

Proof. Consider the general form of FDBL-II. Since the rank of L (or R) is
at most two and hi (or gi) depends on a subspace of (mi,1,mi,2, hi−1, gi−1),
it follows that an adversary has at least one dimensional of freedom to find
the values of mi,1(or mi,2 or mi,1⊕mi,2) yields the given hash value (hi, gi).
Based on the attacks defined by Theorem 8, it is easy to prove that T ' 0
in the (second) preimage attack, and T ' 1 in the collision attack. So the
lemma holds. ¤
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Lemma 2 For any rate-1 hash function in FDBL-II with the form (3),
if the rank of L3

r(or L4
r or R3

r or R4
r) is less than two, then there exist

collision, preimage, and second preimage attacks on the hash function with
complexities of about 4× 2n/2, 3× 2n, and 3× 2n, respectively.

Proof. Consider the general form of FDBL-II. If either the rank of L3
r

or L4
r is less than two, then the key A||B of EA||B(C) (or E−1

A||B(hi ⊕ D))
depends on one dimensional of (mi,1,mi,2)(or mi,1 ⊕ mi,2). Let (a, b, c, d)
be the values of (A,B, C, D) used in the computations of hi. By computing
d = Ea||b(c) ⊕ hi (in case of Rank(L4

r) < 2) or c = E−1
a||b(d ⊕ hi) (in case of

Rank(L3
r) < 2), an adversary can decide the value of mi,1(or mi,2) from the

hash values of (hi−1, gi−1, hi, gi). Based on the attacks in Theorem 8, it is
easy to prove that T ' 0 in the (second) preimage attack, and T ' 1 in the
collision attack. Same result holds if either the rank of R3

r or R4
r is less than

two. ¤

Furthermore, the attacks that just break the property of the optimal
collision or (second) preimage resistance are described as follows.

Theorem 9 For any rate-1 hash function in FDBL-II with the form (3), if
both the second column of L and the first column of R are zero column vec-
tors, then there exists a collision attack on the hash function with complexity
of about O(n · 2n/2).

Proof. Consider the general form of FDBL-II. Because the second column
of L and the first column of R are zero column vectors, so hi does not depend
on gi−1 and gi does not depend on hi−1 in mutual. It is easy to see the hash
value (hi, gi) is simply computed from a concatenation of two separate hash
functions. Due to Joux’s multicollision attack[11], we can find 2n/2 different
messages yield the same hash value hi with complexity of about O(n · 2n/2),
which implies at least one pair of messages yield the same hash value gi with
a non-negligible probability. So the theorem follows. ¤

Theorem 10 For any rate-1 hash function in FDBL-II with the form (3),
there exists a (second) preimage attack on the hash function with complexity
of about 4× 23n/2.

Proof. Consider the general form of FDBL-II. Let (a, b, c, d) be the values
of (A,B, C, D) used in the computations of hi. If the rank of L or R is
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less than three, then the result follows from Lemma 1; If the rank of L or
R is greater or equal three, adversary A start the attacks by choosing an
arbitrary messages M = m1||m2|| · · · ||mi−2, and by computing the values
of (hi−2, gi−2) iteratively from the given initial value IV = h0||g0.

1. Forward step: A randomly chooses 2n values of (a, b, c). If the rank of
L is three (assume d is a linear combination of a, b, c), then A obtains
a tuple (a, b, c) yields the given value hi = Ea||b(c)⊕ c; If the rank of L
is four, then A computes 2n values of d where d = Ea||b(c)⊕hi. Due to
the pigeonhole principle, A can find at least one tuple (hi−1, gi−1,mi)
from (a, b, c, d) that satisfies the equation.

2. A repeats the above step 2n/2 times. Due to the pigeonhole principle,
A obtains 2n/2 values of (mi, hi−1, gi−1) yield the fixed value (hi, gi).

3. Backward step: A chooses 23n/2 values of mi−1, then computes 23n/2

values of (h′i−1, g
′
i−1) from (mi−1, hi−2, gi−2).

It is easy to see the attack will succeed with a non-negligible probability
due to the equation (12). The total complexity is about 4 × 23n/2. So the
theorem follows. ¤

We stress that both HDBL-1 and HDBL-2 are failed to be optimally
(second) preimage resistance due to Theorem 10. The complexity of the
generic second preimage attack, which was proposed by Kelsey and Schneier
in [12], can be smaller than ours asymptotically. But their attack needs an
unpractical long message, which makes it become less attractive. E.g., for
2n-bit hash functions, a 2x-bit long message with about x× 2n+1 + 22n−x+1

work. It is easy to see that a second preimage attack with the complexity
of about O(23n/2) requires a 2n/2-bit message.

Based on the above results, necessary conditions for the rate-1 hash
functions in FDBL-II to be optimally secure are refined as follows. It is
easy to see that the same result similarly follows in the serial situation of
FDBL-II.

Corollary 1 For any rate-1 hash functions in FDBL-II, if the compression
function matches one of the following two conditions:

1. The ranks of L or R is less than three;
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2. The rank of L3
r(or L4

r or R3
r or R4

r) is less than two,

then there exist collision , preimage and second preimage preimage attacks
with a non-negligible successful probability must spend the complexities of
about O(2n/2), O(2n) and O(2n), respectively. Furthermore, if both the sec-
ond column of L and the first column of R are zero column vertexes, then
there exists a collision attack on the hash function with complexity of about
O(n · 2n/2). For all of the rate-1 hash functions in FDBL-II, there exist
preimage and second preimage attacks with a non-negligible successful prob-
ability must spend the same complexity of about O(23n/2).

4 A New Class of Fast DBL Hash Functions

Based on FDBL-I and FDBL-II, a new class of fast DBL hash functions
named FDBL-III can be defined as follows. Hash functions in FDBL-III can
be constructed on a block cipher E ∈ Bloc(κ, n) with variants of key length
where κ = n or κ = 2n.

Definition 5 Let E ∈ Bloc(κ, n) be a block cipher with variants of key
length where κ = n or κ = 2n. A new class of DBL hash functions with rate
1 (denoted by FDBL-III) can be constructed as follows.

{
hi = EA(B)⊕ C,
gi = EW ||X(Y )⊕ Z.

(16)

Both (A,B, C) and (W,X, Y, Z) are linear combinations of the n-bit
vectors (hi−1, gi−1,mi,1,mi,2). Those linear combinations can be represented
as




A
B
C


 =

(
Ll Lr

)
︸ ︷︷ ︸

L

·




hi−1

gi−1

m1
i

m2
i


 ,




W
X
Y
Z


 =

(
Rl Rr

)
︸ ︷︷ ︸

R

·




hi−1

gi−1

m1
i

m2
i


 , (17)

By implementing the similar attacks on FDBL-I and FDBL-II, one can
easily derive the following attacks on FDBL-III.
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Lemma 3 For any rate-1 hash function in FDBL-III with the form (16), if
the rank of L(or R) is less than three, then there exist collision, preimage,
and second preimage attacks on the hash function with complexities of about
4× 2n/2, 3× 2n, and 3× 2n, respectively.

Lemma 4 For any rate-1 hash function in FDBL-III with the form (16),
if the rank of L2

r(or L3
r or R3

r or R4
r) is less than two, then there exist

collision, preimage, and second preimage attacks on the hash function with
complexities of about 4× 2n/2, 3× 2n, and 3× 2n, respectively.

Lemma 5 For any rate-1 hash function in FDBL-III with the form (16),
there exist free-start collision and free-start (second) preimage attacks on the
hash function with complexities of about 2× 2n/2 and 2× 2n, respectively.

The above lemmas are extended from the similar attacks on FDBL-II,
so we omitted the proofs here. In particular, based on Knudsen et al. result
on FDBL-I [14], it is easy to obtain the following lemma.

Lemma 6 For any rate-1 hash function in FDBL-III with the form (16),
then there exist (second) preimage attacks on the hash function with the
complexity of about 4× 2n. Furthermore, if the rank of L2

l and L3
l are two,

then there exists a collision attack on the hash function with complexity of
about 3× 23n/4, else there exists a collision attack with complexity of about
4× 2n/2.

Consequently, the following corollary gives upper security bounds of
the rate-1 hash functions in FDBL-III. From the bounds, one can see all
of the rate-1 hash functions in FDBL-III are failed to be optimally secure
against collision, second preimage and preimage attacks. Same result can
be obtained in the serial mode of FDBL-III.

Corollary 2 For any rate-1 hash function H in FDBL-III with the form
(16), there exist collision, preimage and second preimage attacks on the hash
function with complexities of about O(23n/4), O(2n) and O(2n).

Theorem 11 The rate-1 hash function in FDBL-III with the form (16) is
(tD, tS , q, ε)-indifferentiable from a random oracle in the ideal cipher model
with the prefix-free padding, the NMAC/HMAC, and the chop construction,
for any distinguisher D in polynomial time bound tD, with tS = 2l · O(q)
and the advantage ε = 2−3n+4/4 · l ·O(q), where l is the maximum length of
a query made by D and l · q ≤ 2n−1.
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5 Conclusion

In this paper, the security of FDBL-II has been reconsidered and the nec-
essary conditions for optimally collision resistant are refined. It is proven
that all of the rate-1 hash functions in FDBL-II are failed to be optimally
(second) preimage resistant. Moreover, the indifferentiability analysis sup-
ported that there exist paradigms in FDBL-II which can be indifferentiable
from a random oracle in the ideal cipher model, and implies they are opti-
mally collision resistant. These cryptanalysis results give a complete view
to the rate-1 DBL hash functions based on existed block ciphers, which are
helpful to design secure and fast DBL hash functions. Due to the key length
will definitely impact the efficiency, the definition of the hash rate is not ap-
propriate any more,V for the new designs of double block (or multi-block)
length hash functions. E.g, a rate-1 DBL hash function in FDBL-I cannot
directly compare to such one in FDBL-II. To solve this problem, we suggest
a new preferable definition hash capacity for the measurement.

Definition 6 Let H : {0, 1}∗ → {0, 1}` be a hash function and E ∈ Bloc(κ, n)
is a block cipher used in the compression function of H. If the compression
function performs T times encryption or decryption of E to process totally
` bits long message block, the capacity of the hash function H equals

cap =
`/n

T · κ/n
=

`

T · κ.

The above definition is admissible since AES encrypts 20% slower for 192-bit
keys and 40% slower for 256-bit keys. In practice, AES algorithm can be
simply implemented in hardware circuits, i.e., a fully AES-based cryptosys-
tem on chip (uses AES as block cipher, while uses the proposed schemes as
hash function) is meaningful. Future work is to summarize a generic proof
on block-cipher-based hash functions with variants of block and key length
through the definition of hash capacity .
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A. Indifferentiability Analysis of The Examples in FDBL-II

Based on the synthetic analysis of block-cipher-based hash functions[4, 7],
here we present the indifferentiability analysis on two typical examples in
FDBL-II. Let distinguisher D can access to two cryptosystems (O1,O2)
whereO1 = (H, E, E−1) andO2 = (Rand, S, S−1). Let ri ← ((hi−1, gi−1)

mi−→
(hi, gi)) be the i-th query-response to the oracles {E, E−1, S, S−1} where
mi ∈ {0, 1}2n. Ri = (r1, · · · , ri) denotes the query-response set on the

oracles {E, E−1, S, S−1} after the i-th query. Let r′i ← (IV
Mi−→ (hi, gi))

be the i-th query-response to the oracles {H, Rand}, where Mi ∈ M.
R′i = (r′1, · · · , r′i) denotes the query-response set on the oracles {H, Rand}
after the i-th query. The algorithm Pad(·) denotes the indifferentiable
padding rules, e.g., the prefix-free padding, HMAC/NMAC and the chop
construction, which were analyzed in [5]. For brevity, we note that all of the
examples are implicitly implemented with one of those padding rules.

A.1 Proof of Theorem 6

First we give a simulation to prove that Example 1 (defined in Section 3.1)
is indifferentiable from a random oracle.

• Rand-Query. For the i-th query Mi ∈ M on Rand, if Mi is a
repetition query, the simulator S retrieves r′j ← (IV

Mi−→ (hj , gj))
where rj ∈ R′i−1, j ≤ i − 1, then returns Rand(Mi) = (hj , gj). Else
S randomly selects a hash value (hi, gi) ∈ Y and updates R′i =

R′i−1 ∪ {IV
Mi−→ (hi, gi)}, then returns Rand(Mi) = (hi, gi).

• {S, S−1}-Query. To answer the distinguisher D’s encryption and de-
cryption queries, the simulator S proceeds as follows.

1. For the i-th query (1, ki, xi) on S:
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(a) If ∃IV
M−→ (hi−1, gi−1) ∈ R′i−1, S computes Pad(M) = mi =

mi,1||mi,2. And then,
i. if ki = mi,1 ⊕ mi,2 ⊕ hi−1||mi,2 ⊕ gi−1 and xi = mi,1 ⊕

hi−1, S runs Rand(M) and obtains the response (hi, gi),
updates Ri = Ri−1 ∪ {(hi−1, gi−1)

mi−→ (hi, gi)}, then
returns yi = hi ⊕ ki,2;

ii. if ki = mi,1||mi,2 and xi = hi−1, S runs Rand(M) and
obtains the response (hi, gi), and updates Ri = Ri−1 ∪
{(hi−1, gi−1)

mi−→ (hi, gi)}, then returns yi = gi ⊕ xi.
(b) Else S randomly selects (hi, gi, hi−1, gi−1), computes mi,2 =

ki,2 ⊕ gi−1 and mi,1 = ki,1 ⊕mi,2 ⊕ hi−1, then adds the tuple
(1, k′i, x

′
i, y

′
i) as x′i = hi−1, y′i = gi ⊕ xi and k′i = mi,1||mi,2,

and updates Ri = Ri−1 ∪ {(hi−1, gi−1)
mi−→ (hi, gi)}, then

returns yi = hi ⊕mi,2 ⊕ gi−1.
2. For the i-th query (−1, ki, yi) on S−1:

(a) If ∃IV
M−→ (hi−1, gi−1) ∈ R′i−1, S computes Pad(M) = mi =

mi,1||mi,2. And then,
i. if ki = mi,1⊕mi,2⊕hi−1||mi,2⊕gi−1, S runs Rand(M) and

obtains the response (hi, gi). And then, if yi = hi⊕mi,2⊕
gi−1, S updates Ri = Ri−1 ∪ {(hi−1, gi−1)

mi−→ (hi, gi)}
and returns xi = mi,1 ⊕ hi−1;

ii. if ki = mi,1||mi,2, S runs Rand(M) and obtains the
response (hi, gi). And then, if yi = gi ⊕ hi−1, S up-
dates Ri = Ri−1 ∪ {(hi−1, gi−1)

mi−→ (hi, gi)} and returns
xi = hi−1.

(b) Else S randomly selects (gi, hi−1, gi−1), computes hi = yi ⊕
ki,2, mi,2 = ki,2 ⊕ gi−1 and mi,1 = ki,1 ⊕ mi,2 ⊕ hi−1, then
adds the tuple (1, k′i, x

′
i, y

′
i) as x′i = hi−1, y′i = gi ⊕ xi and

k′i = mi,1||mi,2, and updates Ri = Ri−1 ∪ {(hi−1, gi−1)
mi−→

(hi, gi)}, then returns xi = hi ⊕mi,2 ⊕ gi−1.

Before stating the indifferentiability result of Example 1, the probability
of the indifferentiable events on Example 1 can be obtained from the above
simulation.

Lemma 7 In double block length hash functions defined by (13), it holds
that Pr[Pre] = 2−(3n+4)/2 · l ·O(q) and Pr[Coll] = 2−n · (l2 + l) ·O(q), where
l is the maximum number of length in a hash query.
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Proof. In case of O2 = (Rand, S, S−1), the total number of choices is
l · q, where l is the maximum number of length in a hash query. For every
2 ≤ j ≤ l · q, let Collj be the collision event that a pair of inputs yield a
same output after the j-th queries. Namely, for some j′ < j, it follows that

(hj , gj) = (hj′ , gj′) or hj = gj ,

which is equivalent to

(yj ⊕ kj,2, y
′
j ⊕ x′j) = (yj′ ⊕ kj′,2, y

′
j′ ⊕ x′j′) or (yj ⊕ kj,2 = y′j ⊕ x′j).

Since (hi, gi), where i ∈ {1, 2, · · · , l · q}, is randomly and uniformly
selected by the simulator S in the range {0, 1}n, the probability that the
above event happens after the j-th queries is as follows.

Pr[Collj ] ≤ (j − 1)
(2n − (j − 1)) · (2n − (j − 1))

+
1
2n

.

Let Coll be the collision event that a pair of inputs yield a same output
after the maximum q times queries. Thus, if l · q ≤ 2n−1,

Pr[Coll] = Pr[Coll1 ∨ Coll2 ∨ · · · ∨ Colll·q] ≤
l·q∑

j=2

Pr[Collj ]

≤
l·q∑

j=2

(
j − 1

(2n − (j − 1)) · (2n − (j − 1))
+

1
2n

)

≤
∑l·q

j=2(j − 1)
(2n − 2n−1) · (2n − 2n−1)

+
l · q
2n

≤ (1 + l · q) · (l · q)
22n−1

+
l · q
2n

≤ 2n−1(l · q) + (l · q) + 2n−1(l · q)
22n−1

≈ l · q
2n−1

(18)

From the preimage attack on FDBL-II in Theorem 10, it is easy to see
the probability of the preimage events Pre is

Pr[Pre] = Pr[Pre1 ∨ Pre2 ∨ · · · ∨ Prel·q] ≤
l·q∑

j=1

Pr[Prej ]

≤
l·q∑

j=1

(
1

4× 23n/2
) ≤ l · q

4× 23n/2

(19)

27



Consequently, the probability of the indifferentiable events Bad is

Pr[Bad] = 2×Max(Pr[Coll],Pr[Pre]) = 2× Pr[Coll] = 2−n−2 · l ·O(q).

By implementing the advantage of indifferentiability in keyed hash function[7],
similar results can be easily deduced in keyed mode. ¤

Based on the above analysis, Theorem 6 follows on Example 1. We
stress that the analysis implies a formal proof in the ideal cipher model as
well. By using the above method, one can extend the similar results on
Example 2 and Example 3, which are also defined in Section 3.1.

A.2 Proof of Theorem 7

Now we give an indifferentiability analysis on HDBL-1 (described in Section
2.3), which is a typical rate-1 hash functions in FDBL-II as well.

• Rand-Query. For the i-th Rand-query Mi ∈M, if Mi is a repetition
query, the simulator S retrieves r′j ← (IV

Mi−→ (hj , gj)) where rj ∈
R′i−1, j ≤ i − 1, then returns Rand(Mi) = (hj , gj). Else S randomly

selects a hash value (hi, gi) ∈ Y and updates R′i = R′i−1 ∪ {IV
Mi−→

(hi, gi)}, then returns Rand(Mi) = (hi, gi).

• {S, S−1}-Query. To answer the distinguisher D’s encryption and de-
cryption queries, the simulator S proceeds as follows.

1. For the i-th query (1, ki, xi) on S:

(a) If ∃IV
M−→ (hi−1, gi−1) ∈ R′i−1, S computes Pad(M) = mi =

mi,1||mi,2. And then,
i. if ki = mi,1||mi,2 and xi = hi−1 ⊕ gi−1, S runs Rand(M)

and obtains the response (hi, gi), updates Ri = Ri−1 ∪
{(hi−1, gi−1)

mi−→ (hi, gi)}, then returns yi = hi ⊕ xi;
ii. if ki = mi,1||mi,2 and xi = hi−1, S runs Rand(M) and

obtains the response (hi, gi), and updates Ri = Ri−1 ∪
{(hi−1, gi−1)

mi−→ (hi, gi)}, then returns yi = hi ⊕ xi.
(b) Else S randomly selects (hi, gi, gi−1), computes mi,1 = ki,1,

mi,2 = ki,2 and hi−1 = xi⊕gi−1, then adds the tuple (1, k′i, x
′
i, y

′
i)
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as x′i = gi−1, y′i = gi ⊕ x′i ⊕ hi−1 and k′i = ki, and up-
dates Ri = Ri−1 ∪ {(hi−1, gi−1)

mi−→ (hi, gi)}, then returns
yi = hi ⊕ xi.

2. For the i-th query (−1, ki, yi) on S−1:

(a) If ∃IV
M−→ (hi−1, gi−1) ∈ R′i−1, S computes Pad(M) = mi =

mi,1||mi,2. And then,
i. if ki = mi,1||mi,2, S runs Rand(M) and obtains the re-

sponse (hi, gi). And then, if yi = hi ⊕ hi−1 ⊕ gi−1, S
updates Ri = Ri−1 ∪ {(hi−1, gi−1)

mi−→ (hi, gi)} and re-
turns xi = hi−1 ⊕ gi−1;

ii. if ki = mi,1||mi,2, S runs Rand(M) and obtains the
response (hi, gi). And then, if yi = gi ⊕ hi−1, S up-
dates Ri = Ri−1 ∪ {(hi−1, gi−1)

mi−→ (hi, gi)} and returns
xi = hi−1.

(b) Else S randomly selects (gi, hi−1, gi−1), computes hi = yi ⊕
gi−1, mi,1 = ki,1 and mi,2 = ki,2, then adds the tuple (1, k′i, x

′
i, y

′
i)

as x′i = gi−1, y′i = gi ⊕ x′i ⊕ hi−1 and k′i = ki, and up-
dates Ri = Ri−1 ∪ {(hi−1, gi−1)

mi−→ (hi, gi)}, then returns
xi = hi−1 ⊕ gi−1.

Before stating the indifferentiability result of HDBL-1, a simple lemma
is proven from the above simulation.

Lemma 8 In double block length hash functions defined by (6), it holds that
Pr[Pre] = 2−(3n+4)/2 · l ·O(q) and Pr[Coll] = 2−n−2 · l ·O(q), where l is the
maximum number of length in a hash query.

Proof. In case of O2 = (Rand, S, S−1), the total number of choices is
l · q, where l is the maximum number of length in a hash query. For every
2 ≤ j ≤ l · q, let Collj be the collision event that a pair of inputs yield a
same output after the j-th queries. Namely, for some j′ < j, it follows that

(hj , gj) = (hj′ , gj′) or hj = gj ,

which is equivalent to

(yj ⊕ xj , y
′
j ⊕ x′j) = (yj′ ⊕ xj′ , y

′
j′ ⊕ x′j′) or (yj ⊕ xj = y′j ⊕ x′j).
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Since (hi, gi), where i ∈ {1, 2, · · · , l · q} is randomly and uniformly
selected by the simulator S in the range {0, 1}n, the probability that the
above event happens after the j-th queries is as follows.

Pr(Collj) ≤ (j − 1)
(2n − (j − 1)) · (2n − (j − 1))

+
1
2n

.

Let Coll be the collision event that a pair of inputs yield a same output
after the maximum q times queries. By implementing the same idea on the
proof of Example 1, if l · q ≤ 2n−1, it is easy to find that Pr[Coll] ≤ l·q

2n−1 .
Similarly, the probability of the preimage event Pre is Pr[Pre] ≤ l·q

2(3n+4)/2 .

Consequently, the probability of the indifferentiable events Bad is

Pr[Bad] = 2×Max(Pr[Coll],Pr[Pre]) = 2× Pr[Coll] = 2−n−2 · l ·O(q).

By implementing the advantage of indifferentiability in keyed hash function[7],
similar results can be easily deduced in keyed mode. ¤

From the above analysis, Theorem 7 follows on HDBL-1. We believe
many of the rate-1 hash functions in FDBL-II, which obey Corollary 1, can
be indifferentiable from a random oracle in the ideal cipher model. Further-
more, if both the rank of L and R are three, the indifferentiability analy-
sis implies a formal proof in the ideal cipher model, since the simulator S
can simulate the response of the encryption and decryption from the query
(ki, xi) and (ki, yi), respectively.
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