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Abstract

In this work the security of double block length hash functions with rate 1, which are based on a block cipher
with a block length of n bits and a key length of 2n bits, is reconsidered. Counter-examples and new attacks
are presented on this general class of fast double block length hash functions, which reveal unnoticed flaws in
the necessary conditions given by Satoh et al. and Hirose. Preimage and second preimage attacks are presented
on Hirose’s two examples which were left as an open problem. Our synthetic analysis show that all rate-1
hash functions in FDBL-II are failed to be optimally (second) preimage resistant. The necessary conditions are
refined for ensuring a subclass of hash functions in FDBL-II to be optimally secure against collision attacks. In
particular, one of Hirose’s two examples, which satisfies our refined conditions, is proven to be indifferentiable
from a random oracle in the ideal cipher model. The security results are extended to a new class of double block
length hash functions with rate 1, where the key length of one block cipher used in the compression function is
equal to the block length, whereas the other is doubled.

Key words. Cryptanalysis, Block-cipher-based hash function, Double block length, Indifferentiability.

1 Introduction

Cryptographic hash function H : {0, 1}∗ → {0, 1}` is defined as a feasible algorithm which uniformly maps an
arbitrary length input to a fixed length output. The design of cryptographic hash functions follows the Merkle-
Damgard (MD) structure [7, 21], by iterating a compression function on arbitrary inputs to obtain a domain exten-
sion transform. Under the MD structure, a hash function will be collision resistant if the underlying compression
function is collision resistant. Recently, many SHA-3 candidates have moved away from MD structure and other
MD variants which have been proposed in the last few years. In practice, most hash functions are either explicitly
or implicitly composed from block ciphers. The advantage of the block-cipher-based approach is that one can con-
veniently choose an extensively studied block cipher (e.g., DES, IDEA, AES) to construct a compression function,
and also the latest cryptanalysis results of such a block cipher can be used to avoid potential weaknesses in the
construction. Discussions of hash functions constructed from n-bit block ciphers are mainly divided into single
block length (SBL) and double block length (DBL) hash functions, where single and double are related to the out-
put range of the underlying block cipher. The motivation of double block length is to combine two n-bit block
ciphers for a sufficient output range for collision resistance. One such practically used construction is MDC-2,
which was developed by Brachtl et al. [2] based on DES; and its generic construction is included as a standard in
ISO/IEC 10118-2. A recent cryptanalysis of MDC-2 [17] showed that the time complexity of finding a preimage
can reach 2n with the memory complexity about the same, and a collision attack close to the birthday bound around
(log2(n)/n)2n. Generally, a DBL hash function H : {0, 1}∗ → {0, 1}2n is said to be optimally secure, if any

1



adversary with non-negligible advantages for (second) preimage and collision attacks on the hash function spend
no less than the complexities of 22n and 2n, respectively.

Although DBL hash function can extend the output range for collision resistance, an obvious consequence
is a decrease in performance. The rate of a block-cipher-based hash function is defined as the number of n-bit
message blocks processed per encryption or decryption for the measurement of efficiency. For example, the rate of
MDC-2 is only 1/2, which implies that MDC-2 is at least twice as slow as the underlying block cipher. To improve
efficiency, many DBL hash functions with rate 1 had been proposed, such as [3, 11, 24, 29]. Unfortunately, some
critical results disclosed the fact that those proposed schemes unlikely achieve optimal security. Knudsen et al.
[16] presented the attacks on a general class of DBL hash functions with rate 1, such that the key length is equal to
the block length of n bits (denoted by FDBL-I). In particular, the proposed schemes [3, 11, 24] are the instances of
Knudsen et al.’s attacks [16].

Many advanced block ciphers (AES, RC5, Blowfish, etc.) support variants of key length motivates renewed
interests in finding good ways to construct a secure and fast DBL hash function. Satoh et al. [27] presented some
attacks on a general class of DBL hash functions with rate 1 where the key length is twice as the block length
(denoted by FDBL-II), which includes Yi and Lam’s rate-1 construction [29]. In particular, Satoh et al. described a
necessary condition for rate-1 hash functions in FDBL-II to be optimally secure against preimage, second preimage
and collision attacks. Lately, Hirose [9] made a new comment on Satoh et al.’s result [27] and showed that one
case is missed in their analysis. Based on this comment, Hirose proposed two necessary conditions [9] for rate-1
hash functions in FDBL-II to be optimally collision resistant. Furthermore, Hirose left two examples [9] as an open
problem to make sure whether they are optimally secure. In the existing literature, there are some other DBL hash
functions were proposed recently, such as [10, 19, 22, 23]. But all those constructions are lacking in performance
since all of them are less than rate 1.

Our Contributions. Consider the security of rate-1 DBL hash functions where the key length is doubled to the
block length, our contributions are three-fold. First, we present (second) preimage attacks on Hirose’s two examples
which were left as an open problem [9]. Two counter-examples in FDBL-II are designed to reveal that Hirose’s
necessary conditions [9] are still imprecise for optimal collision resistance. Next, based on the new attacks and
counter-examples, we synthetically analyze the security of rate-1 hash functions in FDBL-II. Our attacks show that
all rate-1 hash functions in FDBL-II fail to be optimally (second) preimage resistant, but a subclass of rate-1 hash
functions in FDBL-II can be optimally collision resistant. Through the synthetic analysis, the necessary conditions
for rate-1 hash functions in FDBL-II to be optimally collision resistant are refined. Particularly, one of Hirose’s two
examples, which satisfies our refined conditions, is proven to be indifferentiable from a random oracle in the ideal
cipher model. Finally, the security results are extended to a new class of DBL hash functions with rate 1 (denoted
by FDBL-III), where the key length of one block cipher used in the compression function is equal to the block
length, whereas the other is doubled. The extended results show that all rate-1 DBL hash functions in FDBL-III
fail to be optimally secure. Prior to this paper, there is no rigorous analysis on the examples proposed by Satoh et
al. [27] and Hirose [9] to exploit whether they are really optimally secure.

Organization. The remainder of this paper is organized as follows. In Section 2, definitions and the former results
on DBL hash functions with rate 1 are reviewed. In Section 3, two concrete attacks are presented on Hirose’s two
examples, then counter-examples are given to exploit that Hirose’s two necessary conditions [9] are not accurate
for optimal collision resistance. Attacks are presented on FDBL-II to obtain precise conditions towards optimal
security. Section 4 concludes the paper. Additionally, Appendix A describes an extended security result on FDBL-
III.

2 Preliminaries

In this section, some necessary notions and definitions are reviewed for the analysis throughout the paper. Let the
symbol ⊕ be the bitwise exclusive or. For binary sequences a and b, a||b denotes their concatenation. Let IV be
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the initial value. For DBL hash functions, an arbitrary input message M can be represented as a concatenation
of 2n-bit length blocks such that M = m1||m2|| · · · ||mt, where t = d|M |/2ne. The i-th message block can be
represented by mi = mi,1||mi,2 where |mi,1| = |mi,2| = n and i ∈ {1, 2, · · · , t}. The function Rank(·) returns
the rank of an input matrix. In this paper, length-padding on the last block of input message is implicitly used
to avoid some trivial attacks. The same abbreviation or acronym will obey the same definition, except there are
special claims in the context.

2.1 Block-Cipher-Based Hash Functions

Let κ, n, ` be integers. A block cipher is a keyed function E : {0, 1}κ × {0, 1}n → {0, 1}n. For each k ∈ {0, 1}κ,
the function Ek(·) = E(k, ·) denotes a permutation on {0, 1}n. If E is a block cipher then E−1 is its inverse, where
E−1

k (y) = x such that Ek(x) = y. Let Bloc(κ, n) be the family of all block ciphers E : {0, 1}κ × {0, 1}n →
{0, 1}n. A block-cipher-based hash function is a hash function H : {0, 1}∗ → {0, 1}` which implements E ∈
Bloc(κ, n) as the underlying block cipher in the iteration of H . If ` = n, then H is called a single block length
(SBL) hash function, e.g., the PGV hash functions [25]. If ` = 2n, then H is called a double block length (DBL)
hash function, e.g., MDC-2 [2], Parallel-DM [11], and LOKI-DBH [3]. The rate is widely accepted to theoretically
measure the efficiency of a block-cipher-based hash function, which can be described as follows.

Definition 1 Let H : {0, 1}∗ → {0, 1}` be a hash function and E ∈ Bloc(κ, n) is a block cipher used in the
compression function of H . If the compression function performs T times encryption or decryption of E to process
a message block of ∂ bits, the rate of the hash function H equals ∂

T ·n .

Ideal Cipher Model. Ideal cipher model is a well-known security model for the analysis of block-cipher-based
hash functions, which is dating back to Shannon [28] and has been frequently used for the analysis of various block-
cipher-based hash functions [1, 10, 18, 25]. Let H : {0, 1}∗ → {0, 1}` be a hash function and E ∈ Bloc(κ, n) be
a block cipher used in the iteration of H . In the ideal cipher model, E is assumed to be randomly selected from
Bloc(κ, n) [10]. Adversary A has accesses to the encryption oracle E and the decryption oracle E−1. The i-th
query-response is defined as a four-tuple (σi, ki, xi, yi) where σi ∈ {1,−1}, ki ∈ {0, 1}κ and xi, yi ∈ {0, 1}n.
If σi = 1 then A asks (ki, xi) and gets response yi = Eki

(xi), otherwise he asks (ki, yi) and gets response
xi = E−1

ki
(yi). Since Ek(·) is a permutation on {0, 1}n, it holds that

Pr[Eki
(xi) = yi] = Pr[E−1

ki
(yi) = xi] =

1
2n − i + 1

.

In the ideal cipher model, one measures the complexity of an attack, on which finding a collision, preimage or
second preimage, is based on the total number of encryptions and decryptions that the adversary queried. Generally,
all repetitive queries will be ignored, namely, if A makes a query on Ek(x) and this returns y, then he will not
repeat the query or ask the inverse E−1

k (y). Such trivial queries do not help at all from the adversaries point of
view. The block cipher in this model is variously named “Shannon oracle model”, “Black-box model”, or “Ideal
cipher model”. Since the last name is more often called, it will be used throughout the paper.

2.2 Security Definitions

Now we recall the definitions for the security analysis of block-cipher-based hash functions.

Attacks on hash functions. For block-cipher-based hash functions, there are three standard attacks which are
called the collision attack, the preimage attack and the second preimage attack. A limitation is that the standard
attacks only consider the situation that initial value IV is fixed. The four extended attacks include the situation that
IV can be changed by adversary.

3



Definition 2 Let H : K ×M → Y be a family of hash functions where K ∈ {0, 1}κ,Y ∈ {0, 1}`. Let M be a
message belongs to message spaceM∈ {0, 1}∗. By considering whether IV is fixed or not, three standard attacks
and four extended attacks are defined as follows.

1. The preimage attack (Pre) is that given IV and h, find a message M such that h = H(IV,M).

2. The free-start preimage attack (fPre) is that given IV and H(IV,M), find IV ′,M ′ such that H(IV ′,M ′) =
H(IV,M).

3. The second preimage attack (Sec) is that given IV and a message M , find another message M ′ 6= M such
that H(IV,M) = H(IV,M ′).

4. The free-start second preimage attack (fSec) is that given IV and a message M , find IV ′ and another
message M ′ 6= M such that H(IV,M) = H(IV ′,M ′).

5. The collision attack (Coll) is that given an initial value IV , find M 6= M ′ such that H(IV,M) = H(IV,M ′).

6. The semi-free-start collision attack (sfColl) is that find an initial value IV and two different messages
M,M ′ such that H(IV,M) = H(IV,M ′).

7. The free-start collision attack (fColl) is that find IV, IV ′ and messages M,M ′ such that (IV,M) 6=
(IV ′,M ′) but H(IV,M) = H(IV ′,M ′).

The above attacks are from [14]. Similar definitions can be found in [16, 26]. Compared to the standard at-
tacks, the extended attacks are also meaningful since they support a complete examination on minimizing potential
flaws in a family of hash functions. It is easy to see that the free-start and the semi-free-start attacks are never harder
than the attacks where IV is specified in advance [16]. To rigorously analyze the security of a hash construction at
the presence of an adaptive adversary, a widely-accepted approach will be recalled in below.

Indifferentiability Model. Cryptosystems are considered to be computationally equivalent if no polynomial-time
procedure can tell them apart. For formal analysis, Maurer et al. [20] first introduced the notion of indifferen-
tiability to exploit whether a given object is computationally inequivalent with a heuristic random oracle. The
indifferentiability has been focused on the question: what conditions should be imposed on the compression func-
tion F to ensure that the hash function CF satisfies the certain conditions of a random oracle. This approach is
based on the fact that one of the problems in assessing the security of a hash function is caused by domain extension
transform. It is clear that the weakness of F will generally result in weakness of CF , but the converse might not
be true. The indifferentiability between a hash function and a random oracle is a more rigorous white-box analysis
which requires the examination of the internal structure of the hash function, while the traditional instantiation just
implements a black-box analysis. Now we proceed to the definition of indifferentiability [20].

Definition 3 A Turing machine C with oracle access to an ideal primitiveF is said to be (tD, tS , q, ε)-indifferentiable
from an ideal primitive Rand if there exists a simulator S, such that for any distinguisher D it holds the advantage
of indifferentiability that:

Adv(D) = |Pr[DC,F = 1]− Pr[DRand,S = 1]| < ε,

where S has oracle access to Rand and runs in time at most tS , and D runs in time at most tD and makes at most
q queries. CF is said to be indifferentiable from Rand if ε is a negligible function of the security parameter k (in
polynomial time tD and tS).

It was proven that if CF is indifferentiable from Rand, then CF can instantiate Rand in any cryptosystem
and the resulting cryptosystem is at least as secure in the F model as in the Rand model [20]. In the rest of the
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paper, the Turing Machine C will denote the construction of an iterated hash function and the ideal primitive F will
represent the compression function of C.

For block-cipher-based hash functions, the above definition needs to be slightly modified since the underlying
compression function should be analyzed in the ideal cipher model [4, 8]. In other words, if a block-cipher-based
hash function CF is indifferentiable from a random oracle Rand in the ideal cipher model, then CF can replace
Rand in any cryptosystem, while keeping the resulting system (with CF ) to remain secure in the ideal cipher model
if the original system (with Rand) is secure in the random oracle model. Let E be the block cipher used in a hash
function H and E−1 is its inverse. Simulator S has to simulate both E and E−1 because every distinguisher D
can access encryption and decryption oracles in the ideal cipher model. Therefore, distinguisher D obtains the
following rules: either the block cipher E,E−1 is chosen at random and the hash function H is constructed from
it, or the hash function H is chosen at random and the block cipher E,E−1 is implemented by a simulator S with
oracle accesses to H . Those two ways to build up a hash function should be indifferentiable.

Similarly, Hirose [10] also proposed the notion of indistinguishability on iterated hash functions, which is
weaker than the notion of indifferentiability. It is easy to see that if a block-cipher-based hash function CE,E−1

is
indifferentiable from a random oracle in polynomial time bounds tS , tD with a negligible probability ε, then it is
also indistinguishable in the same bound [10]. For simplicity, one needs only to prove the indifferentiability instead
of the both.

Since hash function plays a pivotal role in the real-life cryptographic applications (e.g., data or entity authen-
tication, public-key encryption and digital signature), it is prudent to make a block-cipher-based hash function to
be optimally secure against all seven attacks for the security of the applications, and also be indifferentiable from a
random oracle in the ideal cipher model.

2.3 Results on Fast DBL Hash Functions

Here we briefly review the former results on the rate-1 DBL hash functions. By assuming the key length κ of
block cipher E ∈ Bloc(κ, n) used in the compression function is identical to the block length n, Knudsen et al.
[16] presented attacks on this class of DBL hash functions with rate 1 (FDBL-I). The general form of this class is
described as follows. {

hi = EA(B)⊕ C,
gi = EX(Y )⊕ Z.

(1)

For all rate-1 DBL hash functions with the form (1), (A,B, C) are linear combinations of the n-bit vectors
(hi−1, gi−1,mi,1,mi,2), and (X, Y, Z) are linear combinations of the n-bit vectors (hi, hi−1, gi−1,mi,1,mi,2).

A
B
C

 =
(
Ll Lr

)︸ ︷︷ ︸
L

·


hi−1

gi−1

mi,1

mi,2

 ,

X
Y
Z

 =
(
Rl Rr

)︸ ︷︷ ︸
R

·


hi

hi−1

gi−1

mi,1

mi,2

 . (2)

If hi and gi can be computed independently, then the construction is called parallel, otherwise is called serial.
Knudsen et al. [16] proved that all rate-1 hash functions in FDBL-I are failed to be optimally secure against
collision, preimage and second preimage attacks. The result can be concluded by the following proposition.

Proposition 1 [16] For any rate-1 iterated hash function with the form (1) (FDBL-I), there exist preimage and
second preimage attacks with complexities of about 4 × 2n. Furthermore, there exists a collision attack with
complexity of about 3 × 23n/4. For all but two classes of the hash functions, there exists a collision attack with
complexity of about 4× 2n/2.

In AES algorithm, the key length can be 128,192,256 bits while the block length is 128 bits. This property
motivates renewed interests in finding constructions to turn such a block cipher into a secure and fast DBL hash
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function, where the key length is doubled to the block length. By considering the block cipher E ∈ Bloc(κ, n)
where κ = 2n, Satoh et al. [27] proposed a new family of rate-1 DBL hash functions (FDBL-II), which can be
defined by the general form in below. {

hi = EA||B(C)⊕D,

gi = EW ||X(Y )⊕ Z.
(3)

For all rate-1 hash functions defined by (3), both (A,B, C, D) and (W,X, Y, Z) are linear combinations of the
n-bit vectors (hi−1, gi−1,mi,1,mi,2). Those linear combinations can be represented as

A
B
C
D

 =
(
Ll Lr

)︸ ︷︷ ︸
L

·


hi−1

gi−1

mi,1

mi,2

 ,


W
X
Y
Z

 =
(
Rl Rr

)︸ ︷︷ ︸
R

·


hi−1

gi−1

mi,1

mi,2

 , (4)

where Ll and Lr denote 4× 2 binary submatrices of L. Let Li
l and Li

r denote the 3× 2 submatrices of Ll and Lr

such that the i-th row of Ll and Lr are deleted, respectively. Matrix L is said to be exceptional [27] if Rank(L) = 4
and Rank(L3

r) = Rank(L4
r) = 2.

Furthermore, Satoh et al. [27] presented attacks on FDBL-II when the compression function does not satisfy
the exceptional property.

Proposition 2 [27] Consider a rate-1 iterated hash function with the form (3) (FDBL-II), if L or R is not excep-
tional, there exist preimage, second preimage and collision attacks with complexities of about 4 × 2n, 3 × 2n and
3× 2n/2, respectively.

In particular, Satoh et al. [27] presented attacks on a subclass of rate-1 DBL hash functions in FDBL-II. We
note that the rate-1 scheme proposed by Yi and Lam [29] is an instance of this subclass.

Proposition 3 [27] For a subclass of rate-1 double block length hash functions in FDBL-II with the compression
function: {

hi = EA||B(C)⊕D,

gi = EA||B(C)⊕ F,
(5)

where (A,B, C, D, F ) are linear combinations of (hi−1, gi−1,mi,1,mi,2) and E ∈ Bloc(2n, n), there exist (sec-
ond) preimage and collision attacks with complexities of about 2× 2n and 2× 2n/2, respectively.

By following the above works, Hirose [9] made a new comment on Satoh et al.’s result [27]. The comment
shows there exist rate-1 DBL hash functions in FDBL-II whose compression functions are not exceptional but still
no meaningful collision attacks can be found. For convincing of this comment, first an example without the excep-
tional property was proposed by Hirose [9] as follows.

HDBL-1: Let HDBL-1:{0, 1}∗ → {0, 1}2n be a double block length hash function and E ∈ Bloc(2n, n) is the
block cipher used in the compression function. The compression function has the following definition:{

hi = Emi,1||mi,2
(hi−1 ⊕ gi−1)⊕ hi−1 ⊕ gi−1,

gi = Emi,1||mi,2
(hi−1)⊕ hi−1,

(6)


A
B
C
D

 =


0 0 1 0
0 0 0 1
1 1 0 0
1 1 0 0


︸ ︷︷ ︸

L

·


hi−1

gi−1

mi,1

mi,2

 ,


W
X
Y
Z

 =


0 0 1 0
0 0 0 1
1 0 0 0
1 0 0 0


︸ ︷︷ ︸

R

·


hi−1

gi−1

mi,1

mi,2

 . (7)
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Moreover, Hirose [9] provided another example which satisfies the exceptional property but extremely simple.

HDBL-2: Let HDBL-2:{0, 1}∗ → {0, 1}2n be a double block length hash function and E ∈ Bloc(2n, n) is the
block cipher used in the compression function. The compression function has the following definition:{

hi = Emi,1||mi,2
(hi−1)⊕ gi−1,

gi = Emi,1||mi,2
(gi−1)⊕ hi−1,

(8)


A
B
C
D

 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


︸ ︷︷ ︸

L

·


hi−1

gi−1

mi,1

mi,2

 ,


W
X
Y
Z

 =


0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0


︸ ︷︷ ︸

R

·


hi−1

gi−1

mi,1

mi,2

 . (9)

Both HDBL-1 and HDBL-2 are typical instances of FDBL-II. Let (a, b, c, d) and (w, x, y, z) be the values of
(A,B, C, D) and (W,X, Y, Z) which are used in the computations of hi and gi, respectively. Satoh et al. [27]
assumed that if an adversary can randomly choose triple (a, b, c) such that c = α · a ⊕ β · b where α, β ∈ {0, 1},
then he can compute d = Ea||b(c)⊕hi. Nonetheless, Hirose [9] found if c = α · a⊕β · b⊕ d, the adversary cannot
compute d by Ea||b(c) ⊕ hi. Therefore, besides the condition that both L and R are exceptional, a new condition
for rate-1 hash functions in FDBL-II to be optimally collision resistant was defined by Hirose as follows.

Proposition 4 [9] For any rate-1 iterated hash function in FDBL-II, if it is optimally collision resistant, then it
must be in one of the two types:

1. Both L and R are exceptional,

2. Rank(L) = Rank(R) = 3, c⊕ d = λ1a⊕ λ2b and y ⊕ z = λ3w ⊕ λ4x, for some λ1, λ2, λ3, λ4 ∈ {0, 1},
and the upper right 2× 2 submatrices of L and R are both non-singular.

It was claimed that the above conditions are not sufficient but just necessary for the property of optimal
collision resistance [9]. The two probably secure examples (HDBL-1 and HDBL-2) were left as an open problem
to check if they are really optimally secure.

3 Security Analysis of FDBL-II

In this section, the security of rate-1 hash functions in FDBL-II is reconsidered. A synthetic analysis is presented
which exploits the fact that the former results [9, 27] on the security of FDBL-II are still imprecise. First, two
concrete attacks are presented to prove that both HDBL-1 and HDBL-2 are not optimally preimage and second
preimage resistant. Next, two counter-examples are provided to disclose that Hirose’s two necessary conditions for
optimally collision resistant are failed in some cases. Finally, based on the counter-examples and new attacks, the
necessary conditions for rate-1 hash functions in FDBL-II to be optimally secure are refined.

3.1 Analysis of Hirose’s Two Examples

Originally, Satoh et al. [27] suggested that any rate-1 hash function in FDBL-II will not to be optimally secure,
if its compression function does not satisfy the exceptional property. Towards this approach, Hirose [9] made
a comment on Satoh et al.’s result, and said there exist optimally collision resistant hash functions in FDBL-II
whose compression functions do not satisfy the exceptional property. Moreover, Hirose proposed two examples in
FDBL-II (HDBL-1 and HDBL-2, described in the previous section) which are probably secure against the collision
attack. HDBL-2 satisfies the exceptional property while HDBL-1 does not, and both of them satisfy Hirose’s two
necessary conditions in Proposition 4. Here we present two concrete attacks on Hirose’s two examples which
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prove they both fail to be optimally (second) preimage resistant. Some notions are recalled before the analysis.
Let E(·) ∈ Bloc(2n, n) be an encryption function and E−1(·) is its inverse. Let M = m1||m2|| · · · ||mt be an
arbitrary message where t = d|M |/2ne. The i-th message block can be represented by mi = mi,1||mi,2 where
|mi,1| = |mi,2| = n and i ∈ {1, 2, · · · , t}. Let IV = h0||g0 be the initial value.

Theorem 1 Let HDBL-1 be a hash function defined by the form (6),{
hi = Emi,1||mi,2

(hi−1 ⊕ gi−1)⊕ hi−1 ⊕ gi−1,

gi = Emi,1||mi,2
(hi−1)⊕ hi−1,

then there exists a (second) preimage attack on the hash function with complexity of about 4× 23n/2.

Proof. By using the idea of the meet-in-the-middle attack [18], a preimage attack on the HDBL-1 hash function
proceeds as follows.

1. For the preimage attack on (hi, gi), an adversary A chooses an arbitrary message M = m1||m2|| · · · ||mi−2,
and by computing the values of (hi−2, gi−2) iteratively from the initial value IV = h0||g0.

2. Backward step:

(a) A tries 2n operations to find a pair (mi, c) where hi = Emi(c)⊕ c = Emi,1||mi,2
(c)⊕ c.

(b) A chooses 2n values of hi−1 where c = hi−1 ⊕ gi−1. Due to randomness of the outputs of E, A can
find a value of hi−1 satisfies gi = Emi,1||mi,2

(hi−1)⊕ hi−1.

(c) A repeats q1 times of the above step to obtain q1 values of (mi,1,mi,2, hi−1, gi−1).

3. Forward step: A chooses q2 values of mi−1, computes q2 values of (h′
i−1, g

′
i−1) from (mi−1, hi−2, gi−2).

The attack succeeds if some (hi−1, gi−1) and some (h′
i−1, g

′
i−1) are matched. Since the quantities in the

meet-in-the-middle attack are 2n-bit long, the successful probability of the preimage atttack equals

Pr[Pre] = (1− q1

22n
) · (1− q1

22n − 1
) · · · (1− q1

22n − q2
)

≥ (1− q1

22n − q2
)q2 .

(10)

The time complexity of the above attack is the balanced value of 2n × q1 for the forward step and q2 for the
backward step. Also q1 and q2 should satisfy (10) to achieve a non-negligible probability with the lowest time
complexity. So we have the following equations on q1 and q2.{

2n × q1 = q2,
q1 × q2 = 22n − q2,

(11)

which implies that q1 ≈ 2n/2 and q2 ≈ 23n/2. Thus the probability of (10) equals

Pr[Pre] ≥ (1− 2n/2

22n − 23n/2
)2

3n/2
= (1− 2n/2

23n/2 · (2n/2 − 1)
)2

3n/2

≈ (1− 1
23n/2

)2
3n/2 ≈ 1− e−1 ≈ 0.63.

(12)

It is easy to see that both the forward step and the backward step require 2 × 23n/2 operations. Thus the
total time complexity of the attack is 4 × 23n/2, while the memory requirements is O(2n/2) for 2n/2 values of
(mi,1,mi,2, hi−1, gi−1) in the backward step. We note that a second preimage attack can be deduced by using the
same method. So the theorem holds. �

Similar to HDBL-1, a (second) preimage attack can be found in the HDBL-2 hash function as well. The attack
is described in the following theorem.
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Theorem 2 Let HDBL-2 be a hash function defined by the form (8),{
hi = Emi,1||mi,2

(hi−1)⊕ gi−1,

gi = Emi,1||mi,2
(gi−1)⊕ hi−1,

then there exists a (second) preimage attack on the hash function with complexity of about 4× 23n/2.

Proof. A (second) preimage attack on the HDBL-2 hash function proceeds as follows.

1. For the preimage attack on (hi, gi), A chooses an arbitrary message M = m1||m2|| · · · ||mi−2, and by
computing the values of (hi−2, gi−2) iteratively from the initial value IV = h0||g0.

2. Backward step:

(a) A randomly chooses 2n values of (mi,1,mi,2, hi−1), then computes 2n values of gi−1 where gi−1 =
Emi,1||mi,2

(hi−1)⊕ hi.

(b) A repeats the above step 2n/2 times. Due to randomness of the outputs of E, A obtains 2n/2 values of
(mi, hi−1, gi−1) yield the fixed value (hi, gi).

3. Forward step: A randomly chooses 23n/2 values of mi−1, then computes 23n/2 values of (h′
i−1, g

′
i−1) from

(mi−1, hi−2, gi−2).

The attack succeeds if some (hi−1, gi−1) and some (h′
i−1, g

′
i−1) are matched. Since the quantities in the meet-

in-the-middle attack are 2n bits, similar to the equations (10), (11) and (12) in the preimage attack on HDBL-1,
the successful probability Pr[Pre] ≈ 0.63 as well. Consequently, the complexity of the (second) preimage attack
is also about 4× 23n/2. So the theorem follows. �

By implementing the similar methods which were used in the indifferentiability analysis of some popu-
lar block-cipher-based hash functions [4, 8], here we present an indifferentiability analysis of HDBL-1. Al-
though HDBL-1 is not optimally preimage resistant, our analysis supports that HDBL-1 is indifferentiable from
a random oracle in the ideal cipher model. Let distinguisher D can access two cryptosystems (O1,O2) where
O1 = (H,E, E−1) and O2 = (Rand, S, S−1). Let ri ← ((hi−1, gi−1)

mi−→ (hi, gi)) be the i-th query-response
to the oracles {E,E−1, S, S−1} where mi ∈ {0, 1}2n. Ri = (r1, · · · , ri) denotes the query-response set on the

oracles {E,E−1, S, S−1} after the i-th query. Let r′i ← (IV
Mi−→ (hi, gi)) be the i-th query-response to the oracles

{H,Rand}, where Mi ∈ M. R′
i = (r′1, · · · , r′i) denotes the query-response set on the oracles {H,Rand} after

the i-th query. A functional closureR∗ onR is the set with the following properties.

1. If (hi−1, gi−1)
mi−→ (hi, gi), (hi, gi)

mi+1−→ (hi+1, gi+1) ∈ Ri+1, then (hi−1, gi−1)
mi||mi+1−→ (hi+1, gi+1) ∈ R∗

i+1.

2. If (hi−1, gi−1)
mi−→ (hi, gi), (hi−1, gi−1)

mi||mi+1−→ (hi+1, gi+1) ∈ Ri+1, then (hi, gi)
mi+1−→ (hi+1, gi+1) ∈ R∗

i+1.

The algorithm Pad(·) denotes the previous known padding rules with the indifferentiability, such as the prefix-
free padding, the HMAC/NMAC and the chop construction [5, 6, 8]. For brevity, we note that all of the examples
are implicitly implemented with one of those padding rules. To avoid some trivial attacks, the last block contains
the length of input. First we establish the indifferentiability of HDBL-1 with the prefix-free padding and the
HMAC/NMAC construction.

Theorem 3 The rate-1 hash function defined by the form (6) is (tD, tS , q, ε)-indifferentiable from a random oracle
in the ideal cipher model with the prefix-free padding and the HMAC/NMAC construction, for any distinguisher D
in any time bound tD, with tS = l ·O(q2) and the advantage ε = 2−n+2 · l ·O(q), where l is the maximum length
of a query made by D and l · q ≤ 2n−1.
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Proof. First we give a simulation to prove that HDBL-1 (denoted by H in the following simulation), which is a
typical rate-1 hash functions in FDBL-II, is indifferentiable from a random oracle Rand in the ideal cipher model
with complexity of l · q ≤ 2n−1. We note that the proof is also related to the collision resistance of HDBL-1.

• Rand-Query. For the i-th Rand-query Mi ∈ M, if Mi is a repetitive query, the oracle Rand retrieves
r′j ← (IV

Mi−→ (hj , gj)) where r′j ∈ R′
i−1, j ≤ i − 1, then returns Rand(Mi) = (hj , gj). Else Rand

randomly selects a hash value (hi, gi) ∈ Y and updates R′
i = R′

i−1 ∪ {IV
Mi−→ (hi, gi)}, then returns

Rand(Mi) = (hi, gi).

• {S, S−1}-Query. To answer the distinguisher D’s encryption and decryption queries, the simulator S pro-
ceeds as follows.

1. For the i-th query (1, ki, xi) on S:

(a) If ∃IV
M−→ (hi−1, gi−1) ∈ R∗

i−1, S computes Pad(M) = mi = mi,1||mi,2, and then
i. if ki = mi,1||mi,2 and xi = hi−1 ⊕ gi−1, S runs Rand(M) and obtains the response (hi, gi),

updatesRi = Ri−1 ∪ {(hi−1, gi−1)
mi−→ (hi, gi)}, then returns yi = hi ⊕ xi;

ii. if ki = mi,1||mi,2 and xi = hi−1, S runs Rand(M) and obtains the response (hi, gi), and
updatesRi = Ri−1 ∪ {(hi−1, gi−1)

mi−→ (hi, gi)}, then returns yi = hi ⊕ xi.
(b) Else S randomly selects (hi, gi, gi−1), computes mi,1 = ki,1, mi,2 = ki,2 and hi−1 = xi ⊕ gi−1,

then adds the tuple (1, k′i, x
′
i, y

′
i) as x′

i = gi−1, y′i = gi ⊕ x′
i ⊕ hi−1 and k′i = ki, and updates

Ri = Ri−1 ∪ {(hi−1, gi−1)
mi−→ (hi, gi)}, then returns yi = hi ⊕ xi.

2. For the i-th query (−1, ki, yi) on S−1:

(a) If ∃IV
M−→ (hi−1, gi−1) ∈ R∗

i−1, S computes Pad(M) = mi = mi,1||mi,2, and then
i. if ki = mi,1||mi,2, S runs Rand(M) and obtains the response (hi, gi). And then, if yi = hi⊕

hi−1⊕gi−1, S updatesRi = Ri−1∪{(hi−1, gi−1)
mi−→ (hi, gi)} and returns xi = hi−1⊕gi−1;

ii. if ki = mi,1||mi,2, S runs Rand(M) and obtains the response (hi, gi). And then, if yi =
gi ⊕ hi−1, S updatesRi = Ri−1 ∪ {(hi−1, gi−1)

mi−→ (hi, gi)} and returns xi = hi−1.
(b) Else S randomly selects (gi, hi−1, gi−1), computes hi = yi ⊕ gi−1, mi,1 = ki,1 and mi,2 = ki,2,

then adds the tuple (1, k′i, x
′
i, y

′
i) as x′

i = gi−1, y′i = gi ⊕ x′
i ⊕ hi−1 and k′i = ki, and updates

Ri = Ri−1 ∪ {(hi−1, gi−1)
mi−→ (hi, gi)}, then returns xi = hi−1 ⊕ gi−1.

Before stating the indifferentiability result of HDBL-1, a simple lemma is derived from the above simulation.

Lemma 1 In double block length hash functions defined by the form (6), it holds that Pr[Pre] = 2−(3n+4)/2·l·O(q)
and Pr[Coll] = 2−n+2 · l ·O(q), where l is the maximum number of length in a hash query.

Proof. In case of O2 = (Rand, S, S−1), the total number of choices is l · q, where l is the maximum number of
length in a hash query. For every 2 ≤ j ≤ l · q, let Collj be the collision event that a pair of inputs yield a same
output after the j-th queries. Namely, for some j′ < j, it follows that

(hj , gj) = (hj′ , gj′) or hj = gj ,

which is equivalent to

(yj ⊕ xj , y
′
j ⊕ x′

j) = (yj′ ⊕ xj′ , y
′
j′ ⊕ x′

j′) or (yj ⊕ xj = y′j ⊕ x′
j).

Since (hi, gi) are randomly selected by the simulator S from the range {0, 1}n where i ∈ {1, 2, · · · , l · q}, the
probability that the above event happens after the j-th queries is as follows.

Pr(Collj) ≤
(j − 1)

(2n − (j − 1)) · (2n − (j − 1))
+

1
2n

.
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Let Coll be the collision event that a pair of inputs yield a same output after the maximum q times queries.
Thus, if l · q ≤ 2n−1,

Pr[Coll] = Pr[Coll1 ∨ Coll2 ∨ · · · ∨ Colll·q] ≤
l·q∑

j=2

Pr[Collj ]

≤
l·q∑

j=2

(
j − 1

(2n − (j − 1)) · (2n − (j − 1))
+

1
2n

)

≤
∑l·q

j=2(j − 1)
(2n − 2n−1) · (2n − 2n−1)

+
l · q
2n

≤ (1 + l · q) · (l · q)
22n−1

+
l · q
2n
≤ 2n−1(l · q) + (l · q) + 2n−1(l · q)

22n−1
≈ l · q

2n−1
.

(13)

From the preimage attack on HDBL-1 in Theorem 1, it is easy to see the probability of the preimage events
Pre equals

Pr[Pre] = Pr[Pre1 ∨ Pre2 ∨ · · · ∨ Prel·q] ≤
l·q∑

j=1

Pr[Prej ]

≤
l·q∑

j=1

(
1

4× 23n/2
) ≤ l · q

4× 23n/2
.

(14)

Consequently, the probability of the indifferentiable events Bad is

Pr[Bad] = 2×Max(Pr[Coll],Pr[Pre]) = 2× Pr[Coll] = 2−n+2 · l ·O(q).

By implementing the advantage of indifferentiability in keyed hash function [4, 8], similar results can be easily
deduced in the HMAC/NMAC construction. So the theorem follows. �

We note that Lemma 1 implies that HDBL-1 also achieves optimal collision resistance in the ideal cipher
model. Based on the above results and the improved bound of the chopDBL construction [5], a similar indifferen-
tiability of HDBL-1 with the chop construction can be deduced as follows.

Theorem 4 The rate-1 hash function defined by the form (6) is (tD, tS , q, ε)-indifferentiable from a random oracle
in the ideal cipher model with the chop construction, for any distinguisher D in any time bound tD, with tS =
l · O(q2) and the advantage ε = O( (2n−s)q

2s + (lq)2

22n+1 + lq
22n−s−1 ), where the chopped bit size is s and l is the

maximum length of a query made by D and l · q ≤ 2n−1.

Proof. Since HDBL-1 is such DBL hash function that the length of any internal hash value is 2n bits, this wide-pipe
property [19] are good at resisting Joux’s r-multicollision attack [12] and Kelsey-Schneier second preimage attack
[13]. From Lemma 1, it is easy to see that HDBL-1 has the probability of the collision event is Pr[Coll] ≤ (lq)2

22n−1

in the ideal cipher model. Thus we have Pr[Colls] ≤ (lq)2

22n−s−1 where the chopped bit size is s. By using the
similar simulation in Theorem 3 and an improved indifferentiability bound of the chopDBL hash function [5], the
indifferentiability of HDBL-1 with the chop construction in the ideal cipher model can be derived as follows.

Let Badi, i = {1, 2} be the set of the indifferentiable events on the two cryptosystems O1 = (H,E, E−1)
and O2 = (Rand, S, S−1), respectively. The oracles {H,E, E−1} and {Rand, S, S−1} are identically distributed
in the past view of the distinguisher and Badi does not occur. If D is a distinguisher then we write Adv(D) as
a measure of the maximal advantage of indifferentiability over all distinguishers D. For brevity, D1 denotes the
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event DH,E,E−1
= 1 and D2 denotes the event DRand,S,S−1

= 1. By using the Strong Interpolation Theorem in
[5], the advantage of indifferentiability on HDBL-1 with the chop construction is at most

Adv(D) = |Pr[DH,E,E−1
= 1]− Pr[DRand,S,S−1

= 1]|
= |(Pr[D1 ∩Bad1] + Pr[D1 ∩ ¬Bad1])− (Pr[D2 ∩Bad2] + Pr[D2 ∩ ¬Bad2])|
= |(Pr[D1 ∩Bad1]− (Pr[D2 ∩Bad2]) + Pr[D1 ∩ ¬Bad1]− Pr[D2 ∩ ¬Bad2])|
≤ |Pr[D1 ∩ ¬Bad1]− Pr[D2 ∩ ¬Bad2]|+ |Pr[D1 ∩Bad1]− Pr[D2 ∩Bad2]|.

Intuitively, to obtain a maximum probability of ε1 = |Pr[D1 ∩ ¬Bad1] − Pr[D2 ∩ ¬Bad2]|, we can choose a
lower bound of Pr[D2 ∩¬Bad2] and an uppper bound of Pr[D1 ∩¬Bad1]. If s < n, the adversary can guess the
chopped s bits of the outputs of O1 to implement an extension attack on O2 [6]. Due to randomness of the outputs
of E,E−1 and the improved bound of chopDBL [5], we have

ε1 ≤
(2n− s)q

2s
+

(lq)2

22n+1
.

To obtain a maximum probability of ε2 = |Pr[D1 ∩Bad1]− Pr[D2 ∩Bad2]|, Chang and Nandi [5] proved
that the upper bound of ε2 is a r-multicollision among lq uniformly and independently chosen (2n− s) bits. Based
on the probability Pr[Colls] ≤ (lq)2

22n−s−1 and Joux’s multicollision attack [12], if we choose r = 2n− s, it is easy to
see that

ε2 ≤

(
lq
r

)
2(2n−s)(r−1)

≤ (lq/22n−s−1)r ≤ lq/22n−s−1.

By combining the above results, we obtain the following indifferentiability of HDBL-1 with the chop con-
struction in the ideal cipher model.

Adv(D) ≤ |Pr[D1 ∩ ¬Bad1]− Pr[D2 ∩ ¬Bad2]|+ |Pr[D1 ∩Bad1]− Pr[D2 ∩Bad2]|

≤ ε1 + ε2 ≤
(2n− s)q

2s
+

(lq)2

22n+1
+

lq

22n−s−1
.

So the theorem follows. �

Since HDBL-1 and HDBL-2 satisfy Type 2 and Type 1 conditions in Proposition 4 respectively, the above
analysis raise a question that potential flaws might exists in the former security results of rate-1 hash functions in
FDBL-II which are given by Satoh et al. [27] and Hirose [9]. To support this considerable point, we present two
counter-examples to show that Hirose’s two necessary conditions will fail in some cases.

First we give a counter-example (denoted by Example-1), which meets Type 2 condition in Proposition 4,
such that c⊕ d = λ1a⊕ λ2b and y ⊕ z = λ3w ⊕ λ4x, for some λ1, λ2, λ3, λ4 ∈ {0, 1}. But a collision attack on
Example-1 can be easily found since hi is irrelevant to gi−1, which will be generalized in Section 3.2.

Example-1: {
hi = Emi,1||mi,2

(hi−1)⊕ hi−1,

gi = Emi,1||mi,2
(hi−1 ⊕ gi−1)⊕ hi−1 ⊕ gi−1.

(15)

The second counter-example (denoted by Example-2) does not satisfy Type 2 condition, which requires the
upper right 2 × 2 submatrices of L and R are both non-singular, but still no efficient collision attack can be
implemented.

Example-2: {
hi = Emi,1||hi−1

(mi,2 ⊕ gi−1)⊕mi,2 ⊕ gi−1,

gi = Emi,1||mi,2
(hi−1)⊕ hi−1.

(16)
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From our analysis and the counter-examples, it is easy to see that Hirose’s two necessary conditions are still
imprecise for rate-1 hash functions in FDBL-II to be optimally secure against preimage, second preimage and
collision attacks. A more rigorous analysis is required to exploit the certain conditions which should be imposed
on FDBL-II for optimal security.

3.2 The Exact Security of FDBL-II

Although Hirose made a comment [9] that the attacks presented by Satoh et al. [27] are infeasible for some hash
functions in FDBL-II, such as HDBL-1 is out of expect that the underlying compression function even unlikely
satisfies the exceptional property. According to the two counter-examples which are described in the previous
section, Hirose’s two necessary conditions become imprecise as well. Moreover, Since HDBL-2 is an instance
of FDBL-II with the exceptional property, our (second) preimage attacks on HDBL-1 and HDBL-2 show that the
exceptional property can not imply the optimal security. Due to the ambiguity of Satoh et al. and Hirose’s results
[9, 27], the exact security of rate-1 hash functions in FDBL-II is reconsidered through the following attacks. First
generic attacks are presented.

Theorem 5 For any rate-1 hash functions in FDBL-II with the form (3), if T operations are required to find a block
mi = mi,1||mi,2 for any given value of (hi−1, gi−1), such that the resulting four-tuple (hi−1, gi−1,mi,1,mi,2)
yields the fixed value for hi (or gi or hi ⊕ gi), then there exist collision, preimage, and second preimage attacks on
the hash function with complexities of about (T + 3)× 2n/2, (T + 3)× 2n, and (T + 3)× 2n, respectively.

Proof. An adversary A starts the attacks by choosing an arbitrary message M = m1||m2|| · · · ||mi−2, and by
computing the values of (hi−2, gi−2) iteratively from the initial value IV = h0||g0. The initial operations for the
values of (hi−2, gi−2) can be ignored if i� 2n/2.

For (second) preimage attacks, A searches for two blocks mi−1 and mi such that the fixed hash value (hi, gi)
is hit. First, A computes the pair (hi−1, gi−1) from the given values (hi−2, gi−2) and (mi−1,1,mi−1,2). Next,
A finds a block (mi,1,mi,2) such that the resulting four-tuple (hi−1, gi−1,mi,1,mi,2) yields the fixed value for
hi(or gi or hi ⊕ gi). This step costs T times of encryption or decryption. Finally, A computes the value of gi

(or hi) from the tuple (hi−1, gi−1,mi,1,mi,2). If the value is not hit, A will repeat the above steps at most 2n

times. Due to randomness of the outputs, the probability of finding the (second) preimage in the above procedure
is non-negligible. The total complexity of these (second) preimage attacks is about (T + 3)× 2n.

For collision attacks, A searches for a pair of the blocks (mi−1,mi) and (m′
i−1,m

′
i) yields the same hash

value (hi, gi). First, A chooses a value of hi. Then A proceeds 2n/2 times in the same way as the preimage attack.
Due to the birthday paradox, the probability of finding the collision in the above procedure is non-negligible. The
total complexity of these collision attacks is about (T + 3)× 2n/2. So the theorem holds. �

Subsequently, the attacks that simultaneously break optimal collision and (second) preimage resistances are
described as follows.

Lemma 2 For any rate-1 hash function in FDBL-II with the form (3), if the rank of L (or R) is less than three,
then there exist collision, preimage, and second preimage attacks on the hash function with complexities of about
4× 2n/2, 3× 2n, and 3× 2n, respectively.

Proof. Consider the general form of FDBL-II. Since the rank of L (or R) is at most two and hi (or gi) depends on
a subspace of (mi,1,mi,2, hi−1, gi−1), it follows that an adversary has at least one dimensional of freedom to find
the values of mi,1 (or mi,2 or mi,1 ⊕ mi,2) yields the given hash value (hi, gi). Based on the attacks defined by
Theorem 5, it is easy to prove that T ' 0 in the (second) preimage attack, and T ' 1 in the collision attack. So the
lemma holds. �

Lemma 3 For any rate-1 hash function in FDBL-II with the form (3), if the rank of L3
r (or L4

r or R3
r or R4

r) is less
than two, then there exist collision, preimage, and second preimage attacks on the hash function with complexities
of about 4× 2n/2, 3× 2n, and 3× 2n, respectively.
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Proof. Consider the general form of FDBL-II. If either the rank of L3
r or L4

r is less than two, then the key A||B of
EA||B(C) (or E−1

A||B(hi ⊕D)) depends on one dimensional of (mi,1,mi,2) (or mi,1 ⊕mi,2). Let (a, b, c, d) be the
values of (A,B, C, D) used in the computations of hi. By computing d = Ea||b(c)⊕hi (in case of Rank(L4

r) < 2)
or c = E−1

a||b(d⊕ hi) (in case of Rank(L3
r) < 2), an adversary can decide the value of mi,1 (or mi,2) from the hash

values of (hi−1, gi−1, hi, gi). Based on the attacks in Theorem 5, it is easy to prove that T ' 0 in the (second)
preimage attack, and T ' 1 in the collision attack. Same result holds if the rank of R3

r or R4
r is less than two. �

Furthermore, the attacks that just break the property of optimal collision or (second) preimage resistance are
described as follows.

Theorem 6 For any rate-1 hash function in FDBL-II with the form (3), if the second column of L or the first column
of R is a zero column, then there exists a collision attack on the hash function with complexity of about O(n ·2n/2).

Proof. Consider the general form of FDBL-II. Because the second column of L or the first column of R is a zero
column, so hi does not depend on gi−1 or gi does not depend on hi−1 in general. Thus hi or gi can be independently
computed from an SBL hash function. Due to Joux’s multicollision attack [12], we can find 2n/2 different messages
yield the same hash value hi (or gi) with complexity of about O(n · 2n/2). Such 2n/2 different messages implies
at least one pair of messages yield the same hash value gi (or hi) with a non-negligible probability. We note that
Example-1 defined by the form (15) is an instance of this collision attack.

In additional, Knudsen et al.’s recent cryptanalysis of MDC-2 [17] is based on the special structure of MDC-2
or MDC-2 like hash functions. In FDBL-II, there is no permutation layer after the computations of hi and gi.
Thus if both the second column of L and the first column of R are zero, then it can be attacked by Knudsen et
al.’s new attacks [17]. In such cases, our collision attack (O(n · 2n/2)) will be more efficient than Knudsen et
al.’s ((log2(n)/n)2n). If the second column of L or the first column of R is a zero column, the complexity of the
preimage attack on this class of hash functions still needs to be analyzed case by case. �

Theorem 7 For any rate-1 hash function in FDBL-II with the form (3), if the rank of L3 (or L4 or R3 or R4) is
less than three, then there exist a collision attack on the hash function with complexities of about O(23n/4).

Proof. Consider the general form of FDBL-II. If the rank of L3 (or L4 or R3 or R4) is less than three, it implies that
an adversary has at least one dimensional of freedom to find the values of (mi,1,mi,2, hi−1, gi−1) from EA||B(C)
(or E−1

A||B(hi ⊕D)). If the freedom is on mi,1 or mi,2, the result goes to the collision attack in Theorem 5 where
T ' 0. Else if the freedom is on hi−1 or gi−1, an adversary A can find a collision as follows.

1. A starts the attacks by choosing an arbitrary message M = m1||m2|| · · · ||mi−2, and by computing the
values of (hi−2, gi−2) iteratively from the given initial value IV = h0||g0.

2. Backward step: Assume Rank(L3) < 3. A computes 23n/4 values of (hi−1, gi−1) from E−1
A||B(hi ⊕ D),

where the tuples mi, hi are selected by A. Similar procedure follows if the rank of L4 (or R3 or R4) is less
than three.

3. Forward step: A randomly selects 23n/4 values of mi−1, then computes 23n/4 values of (h′
i−1, g

′
i−1) from

(mi−1, hi−2, gi−2).

According to the meet-in-the-middle attack, the expected number of matches is 2n/2 = (23n/4)2/2n. Hence a
collision for gi can be found with a non-negligible probability. The total complexity is about O(23n/4). We note
that a similar collision attack given by Satoh et al. [27] has only considered the situation that Rank(L) = 3 and
the upper right 2× 2 submatrices of L is non-singular. �

Theorem 8 For any rate-1 hash function in FDBL-II with the form (3), there exists a (second) preimage attack on
the hash function with complexity of about 4× 23n/2.
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Proof. Consider the general form of FDBL-II. Let (a, b, c, d) be the values of (A,B, C, D) used in the computations
of hi. If the rank of L or R is less than three, then the result follows from Lemma 2; If the rank of L or R is greater
or equal three, an adversary A starts the attacks by choosing an arbitrary message M = m1||m2|| · · · ||mi−2, and
by computing the values of (hi−2, gi−2) iteratively from the given initial value IV = h0||g0.

1. Backward step:

• If the rank of L is three, A randomly chooses 2n values of (a, b, c, d) which satisfy the linear com-
bination of L, then A tries 2n values of (a, b, c, d) to find a tuple (a, b, c, d) yields the given value
hi = Ea||b(c)⊕ d;

• If the rank of L is four, A randomly chooses 2n values of (a, b, c), then A computes 2n values of d
where d = Ea||b(c)⊕hi. A tries to find at least one tuple (hi−1, gi−1,mi) from (a, b, c, d) that satisfies
the equation.

• A repeats the above step 2n/2 times. Due to randomness of the outputs, A can obtain 2n/2 values of
(mi, hi−1, gi−1) yield the fixed value (hi, gi).

2. Forward step: A randomly chooses 23n/2 values of mi−1, then computes 23n/2 values of (h′
i−1, g

′
i−1) from

(mi−1, hi−2, gi−2).

It is easy to see the attack will succeed with a non-negligible probability from the equation (12). The total
complexity is about 4× 23n/2. So the theorem follows. �

We stress that both HDBL-1 and HDBL-2 are failed to be optimally (second) preimage resistance due to
Theorem 8. The time complexity of Kelsey-Schneier second preimage attack on MD structure [13] can be asymp-
totically smaller than ours. But their attack is less practical since it requires a long message. For 2n-bit hash
functions, Kelsey-Schneier second preimage attack requires a 2x-bit long message with about x · 2n+1 + 22n−x+1

complexity. With a 2n/2-bit long message one gets the complexity of about O(23n/2). Moreover, Kelsey-Schneier
second preimage attack will be slightly slower in practice, since finding fixed points of the underlying compression
function could be difficult if padding rules are used in the construction.

By concluding the above results, the necessary conditions for rate-1 hash functions in FDBL-II to be optimally
secure are refined as follows. It is easy to see that the same result similarly follows in the serial situation of FDBL-II.

Corollary 1 For any rate-1 hash functions in FDBL-II, if the compression function matches one of the following
two conditions:

(i) The rank of L or R is less than three;

(ii) The rank of L3
r(or L4

r or R3
r or R4

r) is less than two,

then there exist collision , preimage and second preimage attacks with a non-negligible successful probability must
spend the complexities of about O(2n/2), O(2n) and O(2n), respectively. (iii) If the second column of L or the first
column of R is a zero column, then there exists a collision attack on the hash function with complexity of about
O(n · 2n/2). Furthermore, (iv) if the rank of L3 (or L4 or R3 or R4) is less than three, then there exist collision
attacks on the hash function with complexity of about O(23n/4). For all of the rate-1 hash functions in FDBL-II,
there exist preimage and second preimage attacks with a non-negligible successful probability must spend the same
complexity of about O(23n/2).

We note that HDBL-1, HDBL-2 and Example-2 all satisfy our refined conditions towards optimal collision
resistance. The indifferentiability analysis of HDBL-1 supports that a subclass of rate-1 hash functions in FDBL-II
might be indifferentiable from a random oracle in the ideal cipher model. By implementing the attacks on FDBL-I
and FDBL-II, a fully negative result is extended to a new class of DBL hash functions with rate 1 (denoted by
FDBL-III), where one block cipher has the key length equal to the block length, whereas the other is doubled. For
brevity, details can be found in Appendix A.
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4 Conclusion

In this paper, the security of FDBL-II has been reconsidered and the necessary conditions for optimally collision
resistant are refined. We proved that all rate-1 hash functions in FDBL-II fail to be optimally (second) preimage
resistant. By using the attacks on FDBL-I and FDBL-II, a fully negative result is extended to FDBL-III. Our
cryptanalysis gives an extended view of rate-1 DBL hash functions based on advanced block ciphers, which are
helpful for the design of secure and fast DBL hash functions. Since AES can be simply implemented in hardware
circuits, a fully AES-based cryptosystem on chip (uses AES as block cipher, while uses the proposed DBL schemes
as hash function) will be meaningful in practice.

Since key length will definitely affect performance, such as AES encrypts 20% slower for 192-bit keys and
40% slower for 256-bit keys. The definition of the hash rate is not appropriate for the new designs of double block
length hash functions. For example, the efficiency of a rate-1 DBL hash function in FDBL-I cannot directly com-
pare with such one in FDBL-II. To solve this inaccuracy, a more preferable concept should be defined instead of the
hash rate for the measurement of efficiency. At FSE 2008, Knudsen [15] roughly presented a new definition on the
hash rate, which first takes key schedule into account. But we consider Knudsen’s new definition is still inaccurate
since the key length is ignored. Apparently, the performances of hash functions will be inequivalent, if they are
based on block ciphers with different key lengths but same key schedules and block lengths. Future work is to
summarize a generic proof on block-cipher-based hash functions with variants of block and key lengths through a
preferable definition of the hash rate.
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A. A New Class of Fast DBL Hash Functions

Based on FDBL-I and FDBL-II, a new class of fast DBL hash functions (FDBL-III) can be extended as follows.
Hash functions in FDBL-III can be constructed on a block cipher E ∈ Bloc(κ, n) with variants of key length
where κ = n or κ = 2n.

Definition 4 Let E ∈ Bloc(κ, n) be a block cipher with variants of key length where κ = n or κ = 2n. A new
class of DBL hash functions with rate 1 (denoted by FDBL-III) can be constructed as follows.{

hi = EA(B)⊕ C,
gi = EW ||X(Y )⊕ Z.

(17)

Both (A,B, C) and (W,X, Y, Z) are linear combinations of the n-bit vectors (hi−1, gi−1,mi,1,mi,2). Those
linear combinations can be represented as

A
B
C

 =
(
Ll Lr

)︸ ︷︷ ︸
L

·


hi−1

gi−1

m1
i

m2
i

 ,


W
X
Y
Z

 =
(
Rl Rr

)︸ ︷︷ ︸
R

·


hi−1

gi−1

m1
i

m2
i

 . (18)

By implementing the similar attacks on FDBL-I and FDBL-II, one can easily derive the following attacks on
FDBL-III.

Lemma 4 For any rate-1 hash function in FDBL-III with the form (17), if the rank of L(or R) is less than three,
then there exist collision, preimage, and second preimage attacks on the hash function with complexities of about
4× 2n/2, 3× 2n, and 3× 2n, respectively.

Lemma 5 For any rate-1 hash function in FDBL-III with the form (17), if the rank of L2
r(or L3

r or R3
r or R4

r) is less
than two, then there exist collision, preimage, and second preimage attacks on the hash function with complexities
of about 4× 2n/2, 3× 2n, and 3× 2n, respectively.

Lemma 6 For any rate-1 hash function in FDBL-III with the form (17), there exist free-start collision and free-start
(second) preimage attacks on the hash function with complexities of about 2× 2n/2 and 2× 2n, respectively.

The above lemmas are extended from the similar attacks on FDBL-II, so we omitted the proofs here. In
particular, based on Knudsen et al. result on FDBL-I [16], it is easy to obtain the following lemma.

Lemma 7 For any rate-1 hash function in FDBL-III with the form (17), then there exist (second) preimage attacks
on the hash function with the complexity of about 4× 2n. Furthermore, if the rank of L2

l and L3
l are two, then there

exists a collision attack on the hash function with complexity of about 3× 23n/4, else there exists a collision attack
with complexity of about 4× 2n/2.
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Consequently, the following corollary gives the security bounds of rate-1 hash functions in FDBL-III. From
the results, one can see all rate-1 hash functions in FDBL-III are failed to be optimally secure against collision,
second preimage and preimage attacks. Same result can be obtained in the serial mode of FDBL-III.

Corollary 2 For any rate-1 hash function H in FDBL-III, there exist collision, preimage and second preimage
attacks on the hash function with complexities of about O(23n/4), O(2n) and O(2n), respectively.
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