
A Comparison Between Hardware Accelerators
for the Modified Tate Pairing over F2m and F3m

Jean-Luc Beuchat1, Nicolas Brisebarre2, Jérémie Detrey3, Eiji Okamoto1, and
Francisco Rodŕıguez-Henŕıquez4

1 Graduate School of Systems and Information Engineering, University of Tsukuba,
1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan

2 LIP/Arénaire (CNRS – ENS Lyon – INRIA – UCBL), ENS Lyon, 46, allée d’Italie,
F-69364 Lyon Cedex 07, France

3 Cosec group, B-IT, Dahlmannstraße 2, D-53113 Bonn, Germany
4 Computer Science Section, Electrical Engineering Department, Centro de

Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional
No. 2508, 07300 México City, México

Abstract. In this article we propose a study of the modified Tate pairing
in characteristics two and three. Starting from the ηT pairing introduced
by Barreto et al. [1], we detail various algorithmic improvements in the
case of characteristic two. As far as characteristic three is concerned, we
refer to the survey by Beuchat et al. [4]. We then show how to get back
to the modified Tate pairing at almost no extra cost. Finally, we explore
the trade-offs involved in the hardware implementation of this pairing for
both characteristics two and three. From our experiments, characteristic
three appears to have a slight advantage over characteristic two.

Keywords: modified Tate pairing, reduced ηT pairing, finite field arithmetic,
elliptic curve, hardware accelerator, FPGA.

1 Introduction

Over the past few years, bilinear pairings over elliptic and hyperelliptic curves
have been the focus of an ever increasing attention in cryptology. Since their
introduction to this domain by Menezes, Okamoto & Vanstone [23] and Frey &
Rück [8], and the first discovery of their constructive properties by Mitsunari,
Sakai & Kasahara [26], Sakai, Oghishi & Kasahara [31], and Joux [16], a large
number of pairing-based cryptographic protocols have already been published.
For those reasons, efficient computation of pairings is crucial and, according
to the recommendations of [11, 21], the Tate pairing appears to be the most
appropriate choice.

Miller [24, 25] proposed in 1986 the first algorithm for iteratively comput-
ing the Weil and Tate pairings. In the case of the Tate pairing, a further final
exponentiation of the Miller’s algorithm result is required to obtain a uniquely
defined value. Various improvements were published in [2, 6, 9, 22] and we will

2 J.-L. Beuchat et al.

consider in this paper the modified Tate pairing as defined in [2]. Generaliz-
ing some results by Duursma & Lee [6], Barreto et al. then introduced the ηT

pairing [1], in which the number of iterations in Miller’s algorithm is halved.
This nondegenerate bilinear pairing can also be used as a tool for computing the
modified Tate pairing, at the expense of an additional exponentiation.

General purpose microprocessors are intrinsically not suited for computa-
tions on finite fields of small characteristic, hence software implementations are
bound to be quite slow and the need for special purpose hardware coprocessors
is strong [4, 5, 10, 15, 17, 19, 20, 28–30, 33]. In this context, we extend here to the
characteristic two the results by Beuchat et al. [4] in the case of the hardware
implementation of the reduced ηT pairing in characteristic three.

In Section 2, we detail the algorithms required to compute the reduced ηT

pairing in characteristic two. Some algorithmic improvements in both the pairing
computation and the tower-field arithmetic are also presented, and an accurate
cost analysis in terms of operations over the base field F2m is given. We then
study in Section 3 the relation between the ηT and Tate pairings, and show
that the modified Tate pairing can be computed from the reduced ηT pairing
at almost no extra cost in characteristics two and three. Section 4 gives hard-
ware implementation results of the modified Tate pairing in both characteristics
and for various field extension degrees. Comparisons between F2m and F3m are
presented at equivalent levels of security and they show a slight advantage in
favor of characteristic three. Finally, some comparisons with already published
solutions are also given to attest the meaningfulness of our results.

2 Computation of the Reduced ηT Pairing in
Characteristic Two

2.1 Preliminary Definitions

We consider the supersingular curve E over F2m defined by the equation

y2 + y = x3 + x+ b, (1)

where b ∈ {0, 1} and m is odd. We define δ = b when m ≡ 1, 7 (mod 8); in all
other cases, δ = 1− b. The number of rational points of E over F2m is given by
N = #E(F2m) = 2m + 1 + ν2(m+1)/2, where ν = (−1)δ. The embedding degree
of this curve, which is the least positive integer k such that N divides 2km − 1,
is 4.

Choosing T = 2m − N and a prime ` dividing N , Barreto et al. [1] defined
the ηT pairing of two points P and Q ∈ E(F2m)[`] as:

ηT (P,Q) = fT ′,P ′(ψ(Q)),

where T ′ = −νT , P ′ = [−ν]P , and E(F2m)[`] denotes the `-torsion subgroup of
E(F2m). ψ is a distortion map from E(F2m)[`] to E(F24m)[`] defined as ψ(x, y) =
(x + s2, y + sx + t), for all (x, y) ∈ E(F2m)[`] [1]. s and t are elements of F24m

Hardware Accelerators for the Modified Tate Pairing over F2m and F3m 3

satisfying s2 = s + 1 and t2 = t + s. This allows for representing F24m as an
extension of F2m using the basis (1, s, t, st): F24m = F2m [s, t] ∼= F2m [X,Y]/(X2 +
X + 1, Y 2 + Y +X). Finally, fn,P , for n ∈ N and P ∈ E(F2m)[`], is a rational
function defined over E(F24m)[`] with divisor (fn,P) = n(P)−([n]P)−(n−1)(O).
In our case, we have

fT ′,P ′ : E(F24m)[`] −→ F∗
24m

ψ(Q) 7−→

m−1
2∏

i=0

g[2i]P ′(ψ(Q))2
m−1

2 −i

 lP ′(ψ(Q)), (2)

where:

– The point doubling formula is given by[
2i
]
P ′ =

(
x22i

P ′ + i, y22i

P ′ + ix22i

P ′ + τ(i)
)

,

with

τ(i) =

{
0 if i ≡ 0, 1 (mod 4),
1 otherwise.

– gV , for all V = (xV , yV) ∈ E(F2m)[`], is the rational function defined over
E(F24m)[`] corresponding to the doubling of V . For all (x, y) ∈ E(F24m)[`],
we have gV (x, y) = (x2

V +1)(xV +x)+yV +y [1]. According to the equation of
the elliptic curve (Equation (1)), x3

V +xV + yV = y2
V + b and we obtain [33]:

gV (x, y) = x(x2
V + 1) + y2

V + y + b. (3)

We considered both forms of gV (x, y) when studying ηT pairing algorithms
over F2m and discovered that the second one always leads to the fastest
algorithms.

– lV , for all V = (xV , yV) ∈ E(F2m)[`], is the equation of the line corresponding
to the addition of

[
2

m+1
2

]
V with [ν]V , and defined for all (x, y) ∈ E(F24m)[`]

as follows:

lV (x, y) = x2
V + (xV + α)(x+ α) + x+ yV + y + δ + 1 +

(xV + x+ 1− α)s+ t, (4)

where

α =

{
0 if m ≡ 3, 7 (mod 8),
1 if m ≡ 1, 5 (mod 8).

2.2 Computation of the ηT Pairing in Characteristic Two

Barreto et al. suggested reversing the loop to compute the ηT pairing [1]. They
introduced the new index j = m−1

2 − i and obtained

fT ′,P ′(ψ(Q)) = lP ′(ψ(Q))

m−1
2∏

j=0

(
g»

2
m−1

2 −j

–
P ′

(ψ(Q))

)2j

.

4 J.-L. Beuchat et al.

A tedious case-by-case analysis allows one to prove that:(
g»

2
m−1

2 −j

–
P ′

(ψ(Q))

)2j

= (x2−j

P ′ + α) · (x2j

Q + α) + y2−j

P ′ + y2j

Q + β +

(x2−j

P ′ + x2j

Q + α)s+ t,

where

β =

{
b if m ≡ 1, 3 (mod 8),
1− b if m ≡ 5, 7 (mod 8).

This equation differs from the one given by Barreto et al. [1]: taking advantage of
the second form of gV (Equation 3), we obtain a slight reduction in the number
of additions over F2m .

We suggest a second improvement to save a multiplication over F2m . At first
glance multiplying lP ′(ψ(Q)) by g»

2
m−1

2

–
P ′

(ψ(Q)) involves three multiplications

over F2m . However, when j = 0, we have:

g»
2

m−1
2

–
P ′

(ψ(Q)) = (xP ′ + α)(xQ + α) + yP ′ + yQ + β + (xP ′ + xQ + α)s+ t.

Seeing that α+ β = δ + 1, we rewrite lP ′(ψ(Q)) as follows:

lP ′(ψ(Q)) = g»
2

m−1
2

–
P ′

(ψ(Q)) + x2
P ′ + xQ + α+ s.

Defining g0 = (xP ′ + α)(xQ + α) + yP ′ + yQ + β, g1 = xP ′ + xQ + α, and
g2 = x2

P ′ + xQ + α, we eventually obtain:

g»
2

m−1
2

–
P ′

(ψ(Q)) = g0 + g1s+ t and lP ′(ψ(Q)) = (g0 + g2) + (g1 + 1)s+ t.

The product lP ′(ψ(Q)) · g»
2

m−1
2

–
P ′

(ψ(Q)) can be computed by means of two

multiplications over F2m (see Appendix D.2). Algorithm 1 describes the com-
putation of the ηT pairing according to this construction. Addition over F2m

involves m bitwise exclusive-OR operations that can be implemented in parallel.
We refer to this operation as addition (A) when we give the cost of an algorithm.
However, the addition of an element of F2 requires a single exclusive-OR opera-
tion, denoted by XOR. Additionally, M denotes multiplications, S squarings and
R square roots. We also introduce δ̄ = 1− δ.

The first step consists in computing P ′ = [−ν]P (line 1). Multiplication over
F24m usually requires nine multiplications and twenty additions over F2m . How-
ever, the sparsity of G allows one to compute the product F ·G (line 14) by means
of only six multiplications and fourteen additions over F2m (see Appendix D.2 for
further details). Contrary to what was suggested by Ronan et al. [29], the loop
unrolling technique introduced by Granger et al. [12] in the context of the Tate

Hardware Accelerators for the Modified Tate Pairing over F2m and F3m 5

pairing in characteristic three turns out to be useless in our case. Let Gj and
Gj+1 denote the values of G at iterations j and j + 1, respectively. Algorithm 1
computes (F ·Gj) ·Gj+1 by means of twelve multiplications and some additions
over F2m . The loop unrolling trick consists in taking advantage of the sparsity
of Gj and Gj+1: only three multiplications over F2m are required to compute
the product Gj ·Gj+1. Unfortunately, the result is not a sparse polynomial, and
the multiplication by F involves nine multiplications over F2m . Thus, comput-
ing (Gj · Gj+1) · F instead of (F · Gj) · Gj+1 does not decrease the number of
multiplications over the underlying field.

Algorithm 1 Computation of the ηT pairing in characteristic two: reversed-loop
approach with square roots.
Input: P , Q ∈ F2m [`].
Output: ηT (P, Q) ∈ F∗24m .
1. yP ← yP + δ̄; (δ̄ XOR)

2. u← xP + α; v ← xQ + α (2α XOR)
3. g0 ← u · v + yP + yQ + β; (1 M, 2 A, β XOR)
4. g1 ← u + xQ; g2 ← v + x2

P ; (1 S, 2 A)
5. G← g0 + g1s + t;
6. L← (g0 + g2) + (g1 + 1)s + t; (1 A, 1 XOR)
7. F ← L ·G; (2 M, 1 S, 5 A, 2 XOR)

8. for j = 1 to m−1
2

do
9. xP ←

√
xP ; yP ←

√
yP ; xQ ← x2

Q; yQ ← y2
Q; (2 R, 2 S)

10. u← xP + α; v ← xQ + α (2α XOR)
11. g0 ← u · v + yP + yQ + β; (1 M, 2 A, β XOR)
12. g1 ← u + xQ; (1 A)
13. G← g0 + g1s + t;
14. F ← F ·G; (6 M, 14 A)
15. end for

16. return F M ;

The square roots in Algorithm 1 could be computed according to the tech-
nique described by Fong et al. [7]. However, this approach would require ded-
icated hardware and could potentially slow down a pairing coprocessor. Thus,
it is attractive to study square-root-free algorithms which allow one to design
simpler arithmetic and logic units. Another argument preventing the usage of
square roots is that the complexity of their computation heavily depends on the
particular irreducible polynomial selected for representing the field F2m . On the
other hand, the complexity of squarings is somehow more independent of the
irreducible polynomial [27,32]. To get rid of the square roots, we remark that

ηT (P,Q) = ηT

([
2−

m−1
2

]
P,Q

)2
m−1

2

.

6 J.-L. Beuchat et al.

Let [2j]Q =
(
x[2j]Q, y[2j]Q

)
. Since

g»
2

m−1
2 −j

–„»
2−

m−1
2

–
P ′

«(ψ(Q)) = g[2−j]P ′(ψ(Q)),

the ηT pairing is defined by

fT ′,P ′(ψ(Q)) = l»
2−

m−1
2

–
P ′

(ψ(Q))2
m−1

2

m−1
2∏

j=0

((
g[2−j]P ′(ψ(Q))

)22j)2
m−1

2 −j

,

where

l»
2−

m−1
2

–
P ′

(ψ(Q)) = x2
P ′(x2

P ′ + xQ + α) + (α+ 1)x2
P ′ + y2

P ′ + yQ +

γ + δ + (x2
P ′ + xQ)s+ t,(

g[2−j]P ′(ψ(Q))
)22j

=
(
x2

P ′ + 1
)
·
(
x[2j]Q + 1

)
+

y2
P ′ + y[2j]Q + b+

(
x2

P + x[2j]Q + 1
)
s+ t,

and

γ =

{
0 if m ≡ 1, 7 (mod 8),
1 if m ≡ 3, 5 (mod 8).

Again, one can simplify the computation of the product l»
2−

m−1
2

–
P ′

(ψ(Q)) ·

gP ′(ψ(Q)). Noting that γ + δ = b and defining g′0 = x2
P ′xQ + x2

P ′ + xQ + y2
P ′ +

yq + b+ 1, g′1 = x2
P ′ + xQ + 1, and g′2 = x4

P ′ + xQ + 1, we obtain

l»
2−

m−1
2

–
P ′

(ψ(Q)) · gP ′(ψ(Q)) = ((g′0 + g′2) + (g′1 + 1)s+ t) · (g′0 + g′1s+ t).

An implementation of the ηT pairing following this construction is given in Al-
gorithm 2.

We also studied direct approaches based on Equation (2). However, they
turned out to be slower and we will not consider such algorithms in this paper
(see Appendix A for details).

2.3 Final Exponentiation

The ηT pairing has to be reduced in order to be uniquely defined. We have to
raise ηT (P,Q) to the Mth power, where

M =
24m − 1
N

= (22m − 1)(2m + 1− ν2
m+1

2).

Ronan et al. [29] unrolled the different powerings and proposed an algorithm
involving a single inversion over F24m when ν = 1. Shu et al. [33] discovered
that the final exponentiation only requires an inversion over F22m when ν = −1.

Hardware Accelerators for the Modified Tate Pairing over F2m and F3m 7

Algorithm 2 Computation of the ηT pairing in characteristic two: reversed-loop
approach without square roots.
Input: P , Q ∈ F2m [`].
Output: ηT (P, Q) ∈ F∗24m .
1. yP ← yP + δ̄; (δ̄ XOR)

2. xP ← x2
P ; yP ← y2

P ; (2 S)
3. yP ← yP + b; u← xP + 1; (b + 1 XOR)
4. g1 ← u + xQ; (1 A)
5. g0 ← xP · xQ + yP + yQ + g1; (1 M, 3 A)
6. xQ ← xQ + 1; (1 XOR)
7. g2 ← x2

P + xQ; (1 S, 1 A)
8. G← g0 + g1s + t;
9. L← (g0 + g2) + (g1 + 1)s + t; (1 A, 1 XOR)

10. F ← L ·G; (2 M, 1 S, 5 A, 2 XOR)

11. for j ← 1 to m−1
2

do
12. F ← F 2; (4 S, 4 A)
13. xQ ← x4

Q; yQ ← y4
Q; (4 S)

14. xQ ← xQ + 1; yQ ← yQ + xQ; (1 A, 1 XOR)
15. g0 ← u · xQ + yP + yQ; (1 M, 2 A)
16. g1 ← xP + xQ; (1 A)
17. G← g0 + g1s + t;
18. F ← F ·G; (6 M, 14 A)
19. end for
20. Return F M ;

Let us show that this result can be extended to the case where ν = 1. Since
M = (22m − 1)(2m + 1) + ν(1− 22m)2

m+1
2 , we compute

ηT (P,Q)M =
(
ηT (P,Q)2

2m−1
)2m+1

·
(
ηT (P,Q)ν(1−22m)

)2
m+1

2

,

and we remark that the final exponentiation requires a single inversion over F22m

.
Let U = ηT (P,Q) ∈ F∗

24m . Writing U = U0 + U1t, where U0 and U1 ∈ F22m and
noting that t2

2m

= t+ 1, we obtain U22m

= U0 + U1 + U1t. Therefore, we have:

U22m−1 =
U0 + U1 + U1t

U0 + U1t
=

(U0 + U1 + U1t)2

(U0 + U1t) · (U0 + U1 + U1t)

=
U2

0 + U2
1 + U2

1 s+ U2
1 t

U2
0 + U0U1 + U2

1 s
, and

U1−22m

=
U0 + U1t

U0 + U1 + U1t
=

U2
0 + U2

1 s+ U2
1 t

U2
0 + U0U1 + U2

1 s
,

where U2
0 + U0U1 + U2

1 s ∈ F22m . Algorithm 3 summarizes the computation of
the ηT (P,Q)M :

8 J.-L. Beuchat et al.

– According to our notation, we have U = U0 +U1t, where U0 = u0 + u1s and
U1 = u2 + u3s. Since s2 = s+ 1, we remark that:

U2
0 = (u2

0 + u2
1) + u2

1s,

U2
1 = (u2

2 + u2
3) + u2

3s, U2
1 s = u2

3 + u2
2s.

Therefore, 4 squarings and 2 additions over F2m allow us to get T0 = U2
0 ,

T1 = U2
1 , and T2 = U2

1 s.
– Multiplication over F22m on line 3 is performed according to the Karatsuba-

Ofman’s scheme and involves three multiplications and four additions over
F2m :

T3 = U0U1 = u0u2 + u1u3 + ((u0 + u1)(u2 + u3) + u0u2)s.

– Thanks to the tower field, inversion of D = U2
0 + U0U1 + U2

1 s ∈ F22m is
replaced by an inversion (denoted by I), a squaring, three multiplications,
and two additions over F2m (see Appendix C for details).

– The next step consists in computing V = V0 + V1t = U22m−1 and W =
W0 + W1t = Uν(1−22m), where V0, V1, W0, and W1 ∈ F22m . Defining T5 =

U2
0+U2

1 s

U2
0+U0U1+U2

1 s
and T6 = U2

1
U2

0+U0U1+U2
1 s

(line 6), we easily check that U22m−1 =

(T5 + T6) + T6t and U1−22m

= T5 + T6t. Thus,

V0 = T5 + T6, W0 =

{
T5 + T6 if ν = −1,
T6 if ν = 1,

V1 = W1 = T6.

– Raising V = V0+V1t ∈ F∗
24m to the (2m+1)th power over F24m (line 15) con-

sists in multiplying V 2m by V . This operation turns out to be less expensive
than the usual multiplication over F24m (see Appendix D.3 for details).

2.4 Overall Cost Evaluations

Table 1 summarizes the costs of the algorithms studied in this section in terms
of arithmetic operations over F2m . Software implementations benefit from the
Extended Euclidean Algorithm (EEA) to perform the inversion over F2m . How-
ever, supplementing a pairing coprocessor with dedicated hardware for the EEA
is not the most appropriate solution. Computing the inverse of a ∈ F2m by
means of multiplications and squarings over F2m according to Fermat’s little
theorem and Itoh and Tsujii’s work [14] allows one to keep the circuit area as
small as possible without impacting too severely on the performances [3]. Since

a−1 =
(
a2m−1−1

)2

, we first raise a to the power of 2m−1−1 using a Brauer-type

addition chain for m− 1. Then, a squaring over F2m suffices to obtain a−1. We
reported the cost of this inversion scheme for typical values of m in Table 2.

Hardware Accelerators for the Modified Tate Pairing over F2m and F3m 9

Algorithm 3 Final exponentiation of the reduced ηT pairing.
Input: U = u0 + u1s + u2t + u3st ∈ F∗24m .

The intermediate variables mi belong to F2m . The Ti’s, Vi’s, Wi’s, and D belong
to F22m . V and W ∈ F24m .

Output: V = UM ∈ F∗24m , with M = (22m + 1)(2m − ν2
m+1

2 + 1).
1. m0 ← u2

0; m1 ← u2
1; m2 ← u2

2; m3 ← u2
3; (4 S)

2. T0 ← (m0 + m1) + m1s; T1 ← (m2 + m3) + m3s; (2 A)
3. T2 ← m3 + m2s; T3 ← (u0 + u1s) · (u2 + u3s); (3 M, 4 A)
4. T4 ← T0 + T2; D ← T3 + T4; (4 A)
5. D ← D−1; (1 I, 3 M, 1 S, 2 A)
6. T5 ← T1 ·D; T6 ← T4 ·D; (6 M, 8 A)
7. V0 ← T5 + T6; (2 A)
8. V1, W1 ← T5;
9. if ν = −1 then

10. W0 ← V0;
11. else
12. W0 ← T6;
13. end if

14. V ← V0 + V1t; W ←W0 + W1t;
15. V ← V 2m+1 (5 M, 2 S, 9 A)
16. for i← 1 to m+1

2
do

17. W ←W 2; (4 S, 4 A)
18. end for
19. Return V ·W ; (9 M, 20 A)

3 Computation of the Modified Tate Pairing

Several researchers designed hardware accelerators over F2m and F3m for the
modified Tate pairing. According to Barreto et al. [1], a second exponentiation
allows one to compute the modified Tate pairing from the reduced ηT pairing.
Thus, the modified Tate pairing is believed to be slower and a comparison be-
tween architectures for the modified Tate and ηT pairings would be unfair. Here,
we take advantage of the bilinearity of the reduced ηT pairing and show how to
get the modified Tate pairing almost for free.

3.1 Modified Tate Pairing in Characteristic Two

The modified Tate pairing in characteristic two is given by ê(P,Q)M =
ηT (P,Q)MT , where M = 24m−1

N and T = 2m − N [1]. Let V = ηT (P,Q)M .
We have V N = ηT (P,Q)2

4m−1 = 1. Since ηT (P,Q)M is a bilinear pairing, we
obtain:

ê(P,Q)M = V T = V 2m−N = V 2m

= ηT (P,Q)M ·2m

= ηT ([2m]P,Q)M ,

where [2m]P = (xP +1, xP +yP +α+1). Thus, it suffices to provide a hardware
accelerator for the reduced ηT pairing with [2m]P and Q to get the modified

10 J.-L. Beuchat et al.

Table 1. Cost of the presented algorithms for computing the reduced ηT pairing in
characteristic two in terms of operations over the underlying field F2m .

ηT pairing with ηT pairing without
Final Exponentiation

square roots square root
(Algorithm 3)

(Algorithm 1) (Algorithm 2)

Additions 10 + 17 · m−1
2

11m 2m + 53

XORs
3 + δ̄ +

5 + δ̄ + b + m−1
2

–
(2α + β) · m+1

2

Multiplications 3 + 7 · m−1
2

3 + 7 · m−1
2

26

Squarings m + 1 4m 2m + 9

Square roots m− 1 – –

Inversions – – 1

Table 2. Cost of inversion over F2m according to Itoh and Tsujii’s algorithm in terms
of multiplications and squarings.

Field F2239 F2251 F2283 F2313

Cost 10 M, 238 S 10 M, 250 S 11 M, 282 S 10 M, 312 S

Tate pairing. Since this preprocessing step involves an XOR operation and an
addition over F2m , it can be computed in software. Conversely, a processor for
the modified Tate pairing computes the ηT pairing if its inputs are [2−m]P and
Q:

ηT (P,Q)M = ê([2−m]P,Q)M ,

where [2−m]P = (xP + 1, xP + yP + α).

3.2 Modified Tate Pairing in Characteristic Three

The same approach allows one to compute the modified Tate pairing in charac-
teristic three. Letm be a positive integer coprime to 6 and E be the supersingular
elliptic curve defined by E : y2 = x3 − x+ b, where b ∈ {−1, 1}. The number of
rational points of E over F3m is given by N = #E(F3m) = 3m + 1 + µb3

m+1
2 ,

with

µ =

{
1 if m ≡ 1, 11 (mod 12),

−1 if m ≡ 5, 7 (mod 12).

In characteristic three, we have the following relation between the reduced ηT

and modified Tate pairings [1]:(
ηT (P,Q)M

)3T 2

=
(
ê(P,Q)M

)L
,

with M = 36m−1
N , T = 3m −N , and L = −µb3m+3

2 . Defining V = ηT (P,Q)M ∈
F∗

36m and seeing that V N = 1, we obtain

V 3T 2
= V 32m+1−2·3m+1·N+3N2

= V 32m+1
.

Hardware Accelerators for the Modified Tate Pairing over F2m and F3m 11

Dividing by L at the exponent level, we finally get the following relation between
the reduced ηT and modified Tate pairings:

ê(P,Q)M = V
32m+1

L

= V −µb3
3m−1

2 = ηT

([
−µb3

3m−1
2

]
P,Q

)M

,

where
[
−µb3 3m−1

2

]
P = (3

√
xP − b,−µbλ 3

√
yP) and

λ = (−1)
m+1

2 =

{
1 if m ≡ 7, 11 (mod 12),

−1 if m ≡ 1, 5 (mod 12).

Again, the overhead introduced is negligible compared to the calculation time of
the reduced ηT pairing. Consider now the cube-root-free reversed-loop algorithm
proposed by Beuchat et al. (Algorithm 4 in [4]). In this case, we suggest to

compute ηT

(
[−µb]P,

[
3

3m−1
2

]
Q
)M

. Surprisingly, the modified Tate pairing in
characteristic three turns out to be slightly less expensive than the ηT pairing:
we save two cubings and one addition over F3m (see Appendix B for details).
Conversely, a processor for the modified Tate pairing provided with [−µb]P and[
3
−3m+1

2

]
Q will return the reduced ηT pairing.

4 Implementation Results and Comparisons

4.1 A Unified Operator for the Arithmetic over F2m and F3m

In [3], Beuchat et al. presented an FPGA-based accelerator for the computation
of the ηT pairing in characteristic three. The coprocessor was based on a uni-
fied operator capable of handling all the necessary arithmetic operations over
the base field F3m . This streamlined design led to smaller circuits while retain-
ing competitive performances with respect to the other published architectures.
For these reasons, we chose to use such a unified operator for our own imple-
mentations in characteristic three. We also adapted the operator for supporting
finite-field arithmetic in characteristic two.

The core of this unified operator is an array multiplier [34] for computing the
product of two elements of Fpm (where p = 2 or 3), represented in a polynomial
basis using a degree-m polynomial f(x) irreducible over Fp: Fpm ∼= Fp[x]/(f(x)).
D coefficients of the multiplicand are processed at each clock cycle. The D cor-
responding partial products are then shifted and reduced modulo f(x) according
to their respective weight, and finally summed into a register thanks to a tree of
adders over Fpm . A feedback loop allows the accumulation of the previous partial
products. A product over Fpm is therefore computed in dm/De clock cycles.

With only slight modifications, it is possible for this multiplier to also sup-
port the other operations required by the computation of the modified Tate
pairing. For instance, bypassing the shift/modulo-f(x) reduction stage allows

12 J.-L. Beuchat et al.

for additions, subtractions and accumulations. Similarly, the Frobenius endo-
morphism (i.e. squaring in characteristic two or cubing in characteristic three)
only amounts to a linear combination of the coefficients of the polynomial. This
linear combination can be computed at design time and then directly hard-wired
as an alternative datapath during the shift/modulo stage.

4.2 Characteristic Two versus Characteristic Three

It is common knowledge that arithmetic over F2m is more compact and efficient
than over F3m . However, due to the different embedding degrees enjoyed by the
elliptic curves of interest, competitive levels of security for pairing implementa-
tions in characteristic two are only achieved at the price of working over extension
degrees much larger than what their counterparts in characteristic three require.

For a better understanding of this trade-off, we present here FPGA imple-
mentation results of a coprocessor for the modified Tate pairing in both char-
acteristics two and three. The coprocessor is based on the previously described
unified operator and implements the square- and cube-root-free reversed-loop
algorithms (Algorithm 2, and Algorithm 4 in [4]) along with the corresponding
final exponentiation. We also experimented with several values for D, aiming at
a more exhaustive study of the trade-off between cost and performances.

Tables 3 and 4 present the post-place-and-route results for characteristic two
and three respectively. These results were obtained for a Xilinx Virtex-II Pro 20
FPGA with average speedgrade, using the Xilinx ISE 9.2i tool suite. The two
tables are also summarized in Figure 1.

The given results show a slight advantage of characteristic three over char-
acteristic two, for all the studied levels of security. This goes against the per-
formances obtained by Barreto et al. in the case of software implementation [1],
but also against the hardware results published by Shu et al. in [33].

Moreover, the optimal number D of coefficients processed per clock cycle for
the array multiplier appears to be 15 in characteristic two and 7 in characteris-
tic three. However, modifying the value of this parameter does not change but
slightly the overall area-time product. According to each application’s require-
ments in terms of area and speed, one can then select the most appropriate value
for D.

4.3 Comparisons

Tables 5, 6 and 7 present the cost and performances of other coprocessors for
the computation of the modified Tate and reduced ηT pairings in characteristics
two and three as published in the open literature. The results are summarized
in Figure 2 as a comparison of these solutions against our proposed architecture
in terms of their area-time product.

Despite its inherent lack of parallelism between operations, our unified opera-
tor greatly benefits from its compact design in order to reach higher frequencies.
Combined with the algorithmic improvements described in this paper and in [4],

Hardware Accelerators for the Modified Tate Pairing over F2m and F3m 13

Table 3. Implementation results of the modified Tate pairing in characteristic two
using our unified operator (on a Xilinx Virtex-II Pro xc2vp20, speedgrade -6).

Field
Security

D
Area Frequency

#cycles
Estimated

[bits] [slices] [MHz] calc. time [µs]

7 2366 199 39075 196
F2239 956 15 2736 165 20830 127

31 4557 123 13147 107

7 2270 185 41969 227
F2251 1004 15 3140 145 22846 157

31 4861 126 14794 117

7 2517 169 52820 313
F2283 1132 15 3481 140 27942 200

31 5350 127 17765 140

7 2661 182 63167 347
F2313 1252 15 3731 156 33283 213

31 6310 111 20831 186

7 3809 168 129780 771
F2459 1836 15 5297 135 66589 492

31 8153 115 37601 327

Table 4. Implementation results of the modified Tate pairing in characteristic three
using our unified operator (on a Xilinx Virtex-II Pro xc2vp20, speedgrade -6).

Field
Security

D
Area Frequency

#cycles
Estimated

[bits] [slices] [MHz] calc. time [µs]

3 1896 156 27800 178
F397 922 7 2711 128 14954 117

15 4455 105 9657 92

3 2003 151 32649 217
F3103 980 7 2841 126 16633 132

15 4695 103 10227 99

3 2223 140 41788 299
F3119 1132 7 3225 125 20814 166

15 5293 99 12607 127

3 2320 149 47234 317
F3127 1208 7 3379 129 24028 186

15 5596 99 14349 145

3 3266 147 100668 682
F3193 1835 7 4905 111 48205 433

15 8266 90 26937 298

14 J.-L. Beuchat et al.

1000

2000

3000

4000

5000

6000

7000

8000

9000

900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900

Security [bits]

Char. 2 Char. 3
D = 7
D = 15
D = 31

D = 3
D = 7
D = 15

Area [slices]

0

100

200

300

400

500

600

700

800

900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900

Security [bits]

Char. 2 Char. 3
D = 7
D = 15
D = 31

D = 3
D = 7
D = 15

Calc. time [µs]

Fig. 1. Area (left) and calculation time (right) for the modified Tate pairing on our
unified operator, in both characteristics two and three, for various extension degrees
and different values for the parameter D.

this leads to competitive calculation times. Additionally, the streamlined design
allows for reaching higher extension degrees and levels of security without risking
to exhaust the FPGA resources: the slow increase of the area-time product with
the security level of the system hints at the high scalability of the coprocessor.

Finally, the good performances of our solution against the previously pub-
lished works vouches for a strong confidence in the outcome of our comparison
between characteristics two and three for the hardware implementation of the
modified Tate pairing.

5 Conclusion

We discussed several algorithms to compute the ηT pairing and its final expo-
nentiation in characteristic two. We then showed how to get back to the modified
Tate pairing at almost no extra cost. Finally, we explored the trade-offs involved
in the hardware implementation of the modified Tate pairing for both charac-
teristic two and three. Our architectures are based on the unified arithmetic
operator introduced in [3], and achieve a better area-time trade-off compared to
previously published solutions [10,15,17,19,20,28–30,33].

Our modified Tate pairing coprocessors embed a single multiplier. A challenge
consists in designing parallel architectures with the same (or even a smaller) area-
time product. Future work should also include a study of the ηT pairing over
genus-2 curves. The Ate pairing [13] would also be of interest, for it supports
non-supersingular curves.

Acknowledgment

This work was supported by the New Energy and Industrial Technology Devel-
opment Organization (NEDO), Japan.

Hardware Accelerators for the Modified Tate Pairing over F2m and F3m 15

Table 5. FPGA-based accelerators for the modified Tate pairing over F2m in the
literature. The parameter D refers to the number of coefficients processed at each
clock cycle by a multiplier. The architectures by Shu et al. [33] include four kinds of
multipliers.

Curve FPGA #mult. D
Area Freq. Calculation

[slices] [MHz] time [µs]

6 16

Shu et al. [33] E(F2239) xc2vp100
1 4

25287 84 41
1 1
1 2

1 16621 50 6440
Keller et al. [17] E(F2251) xc2v6000 13 6 21955 43 2580

10 27725 40 2370

1 6 3788 40 4900
Keller et al. [19] E(F2251) xc2v6000 3 6 6181 40 3200

9 6 13387 40 2600

1 18599 50 7980
Keller et al. [17] E(F2283) xc2v6000 13 4 22636 49 3230

6 24655 47 2810

1 6 4273 40 6000
Keller et al. [19] E(F2283) xc2v6000 3 6 6981 40 3800

9 6 15065 40 3000

6 32

Shu et al. [33] E(F2283) xc2vp100
1 4

37803 72 61
1 1
1 2

4 34675 55 203
Ronan et al. [29] E(F2313) xc2vp100 14 8 41078 50 124

12 44060 33 146

4 21021 51 206
Ronan et al. [30] C(F2103) xc2vp100 20 8 24290 46 152

16 30464 41 132

Table 6. FPGA-based accelerators for the modified Tate pairing over F397 in the
literature. The parameter D refers to the number of coefficients processed at each
clock cycle by a multiplier.

FPGA #mult. D
Area Freq. Calculation

[slices] [MHz] time [µs]

Grabher and Page [10] xc2vp4 1 4 4481 150 432.3

Kerins et al. [20] xc2vp125 18 4 55616 15 850

16 J.-L. Beuchat et al.

Table 7. FPGA-based accelerators for reduced ηT pairing over F397 in the literature.
The parameter D refers to the number of coefficients processed at each clock cycle by
a multiplier.

FPGA #mult. D
Area Freq. Calculation

[slices] [MHz] time [µs]

Ronan et al. [28] xc2vp100 5 4 10540 84.8 187

Jiang [15] xc4vlx200 Not specified 7 74105 77.7 20.9

Beuchat et al. [4] xc2vp4 1 3 1833 145 192

Beuchat et al. [5]
xc2vp30 9 3 10897 147 33.0
xc4vlx25 9 3 11318 200 24.2

0.1

1

10

100

900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900

Security [bits]

AT product [slices · s]

[33]

[33]

[17]
[17]

[19]
[19]

[29]
[30]

[10], [28]

[20]

[15]

[5]

Unified operator, char. 2 (D = 15)
Unified operator, char. 3 (D = 7)
Results from the literature

Fig. 2. Area-time product of the proposed coprocessor for the modified Tate pairing
in characteristics two and three against the other solutions published in the literature.

Hardware Accelerators for the Modified Tate Pairing over F2m and F3m 17

References

1. P. S. L. M. Barreto, S. D. Galbraith, C. Ó hÉigeartaigh, and M. Scott. Efficient
pairing computation on supersingular Abelian varieties. Designs, Codes and Cryp-
tography, 42:239–271, 2007.

2. P. S. L. M. Barreto, H. Y. Kim, B. Lynn, and M. Scott. Efficient algorithms
for pairing-based cryptosystems. In M. Yung, editor, Advances in Cryptology –
CRYPTO 2002, number 2442 in Lecture Notes in Computer Science, pages 354–
368. Springer, 2002.

3. J.-L. Beuchat, N. Brisebarre, J. Detrey, and E. Okamoto. Arithmetic operators for
pairing-based cryptography. In P. Paillier and I. Verbauwhede, editors, Proceedings
of CHES 2007, number 4727 in Lecture Notes in Computer Science, pages 239–255.
Springer, 2007.

4. J.-L. Beuchat, N. Brisebarre, J. Detrey, E. Okamoto, M. Shirase, and T. Takagi.
Algorithms and arithmetic operators for computing the ηT pairing in characteristic
three. Cryptology ePrint Archive, Report 2007/417, 2007.

5. J.-L. Beuchat, M. Shirase, T. Takagi, and E. Okamoto. An algorithm for the ηT

pairing calculation in characteristic three and its hardware implementation. In
P. Kornerup and J.-M. Muller, editors, Proceedings of the 18th IEEE Symposium
on Computer Arithmetic, pages 97–104. IEEE Computer Society, 2007.

6. I. Duursma and H. S. Lee. Tate pairing implementation for hyperelliptic curves
y2 = xp − x + d. In C. S. Laih, editor, Advances in Cryptology – ASIACRYPT
2003, number 2894 in Lecture Notes in Computer Science, pages 111–123. Springer,
2003.

7. K. Fong, D. Hankerson, J. López, and A. Menezes. Field inversion and point halving
revisited. IEEE Transactions on Computers, 53(8):1047–1059, August 2004.

8. G. Frey and H.-G. Rück. A remark concerning m-divisibility and the discrete
logarithm in the divisor class group of curves. Mathematics of Computation,
62(206):865–874, April 1994.

9. S. D. Galbraith, K. Harrison, and D. Soldera. Implementing the Tate pairing. In
C. Fieker and D.R. Kohel, editors, Algorithmic Number Theory – ANTS V, number
2369 in Lecture Notes in Computer Science, pages 324–337. Springer, 2002.

10. P. Grabher and D. Page. Hardware acceleration of the Tate pairing in characteristic
three. In J. R. Rao and B. Sunar, editors, Cryptographic Hardware and Embedded
Systems – CHES 2005, number 3659 in Lecture Notes in Computer Science, pages
398–411. Springer, 2005.

11. R. Granger, D. Page, and N. P. Smart. High security pairing-based cryptography
revisited. In F. Hess, S. Pauli, and M. Pohst, editors, Algorithmic Number Theory
– ANTS VII, number 4076 in Lecture Notes in Computer Science, pages 480–494.
Springer, 2006.

12. R. Granger, D. Page, and M. Stam. On small characteristic algebraic tori in
pairing-based cryptography. LMS Journal of Computation and Mathematics, 9:64–
85, March 2006.

13. F. Hess, N. Smart, and F. Vercauteren. The Eta pairing revisited. IEEE Transac-
tions on Information Theory, 52(10):4595–4602, October 2006.

14. T. Itoh and S. Tsujii. A fast algorithm for computing multiplicative inverses in
GF(2m) using normal bases. Information and Computation, 78:171–177, 1988.

15. J. Jiang. Bilinear pairing (Eta T Pairing) IP core. Technical report, City University
of Hong Kong – Department of Computer Science, May 2007.

18 J.-L. Beuchat et al.

16. A. Joux. A one round protocol for tripartite Diffie-Hellman. In W. Bosma, ed-
itor, Algorithmic Number Theory – ANTS IV, number 1838 in Lecture Notes in
Computer Science, pages 385–394. Springer, 2000.

17. M. Keller, T. Kerins, F. Crowe, and W. P. Marnane. FPGA implementation of a
GF(2m) Tate pairing architecture. In K. Bertels, J.M.P. Cardoso, and S. Vas-
siliadis, editors, International Workshop on Applied Reconfigurable Computing
(ARC 2006), number 3985 in Lecture Notes in Computer Science, pages 358–369.
Springer, 2006.

18. M. Keller, T. Kerins, and W. P. Marnane. FPGA implementation of a GF(24m)
multiplier for use in pairing based cryptosystems. In Field-Programmable Logic
and Applications, pages 594–597. IEEE, 2005.

19. M. Keller, R. Ronan, W. P. Marnane, and C. Murphy. Hardware architectures
for the Tate pairing over GF(2m). Computers and Electrical Engineering, 33(5–
6):392–406, 2007.

20. T. Kerins, W. P. Marnane, E. M. Popovici, and P. S. L. M. Barreto. Efficient
hardware for the Tate pairing calculation in characteristic three. In J. R. Rao and
B. Sunar, editors, Cryptographic Hardware and Embedded Systems – CHES 2005,
number 3659 in Lecture Notes in Computer Science, pages 412–426. Springer, 2005.

21. N. Koblitz and A. Menezes. Pairing-based cryptography at high security levels. In
N. P. Smart, editor, Cryptography and Coding, number 3796 in Lecture Notes in
Computer Science, pages 13–36. Springer, 2005.

22. S. Kwon. Efficient Tate pairing computation for elliptic curves over binary fields.
In C. Boyd and J. M. González Nieto, editors, Information Security and Privacy –
ACISP 2005, volume 3574 of Lecture Notes in Computer Science, pages 134–145.
Springer, 2005.

23. A. Menezes, T. Okamoto, and S. A. Vanstone. Reducing elliptic curves loga-
rithms to logarithms in a finite field. IEEE Transactions on Information Theory,
39(5):1639–1646, September 1993.

24. V. S. Miller. Short programs for functions on curves. Available at
http://crypto.stanford.edu/miller, 1986.

25. V. S. Miller. The Weil pairing, and its efficient calculation. Journal of Cryptology,
17(4):235–261, 2004.

26. S. Mitsunari, R. Sakai, and M. Kasahara. A new traitor tracing. IEICE Trans.
Fundamentals, E85-A(2):481–484, Feb 2002.

27. F. Rodŕıguez-Henŕıquez, G. Morales-Luna, and J. López. Low-complexity bit-
parallel square root computation over GF(2m) for all trinomials. IEEE Transac-
tions on Computers, 57(4):472–480, April 2008.

28. R. Ronan, C. Murphy, T. Kerins, C. Ó hÉigeartaigh, and P. S. L. M. Barreto. A
flexible processor for the characteristic 3 ηT pairing. Int. J. High Performance
Systems Architecture, 1(2):79–88, 2007.

29. R. Ronan, C. Ó hÉigeartaigh, C. Murphy, M. Scott, and T. Kerins. FPGA ac-
celeration of the Tate pairing in characteristic 2. In Proceedings of the IEEE
International Conference on Field Programmable Technology – FPT 2006, pages
213–220. IEEE, 2006.

30. R. Ronan, C. Ó hÉigeartaigh, C. Murphy, M. Scott, and T. Kerins. Hardware
acceleration of the Tate pairing on a genus 2 hyperelliptic curve. Journal of Systems
Architecture, 53:85–98, 2007.

31. R. Sakai, K. Ohgishi, and M. Kasahara. Cryptosystems based on pairing. In
2000 Symposium on Cryptography and Information Security (SCIS2000), Okinawa,
Japan, pages 26–28, January 2000.

Hardware Accelerators for the Modified Tate Pairing over F2m and F3m 19

32. M. Scott. Optimal irreducible polynomials for GF(2m) arithmetic. Cryptology
ePrint Archive, Report 2007/192, 2007.

33. C. Shu, S. Kwon, and K. Gaj. FPGA accelerated Tate pairing based cryptosystem
over binary fields. In Proceedings of the IEEE International Conference on Field
Programmable Technology – FPT 2006, pages 173–180. IEEE, 2006.

34. L. Song and K. K. Parhi. Low energy digit-serial/parallel finite field multipliers.
Journal of VLSI Signal Processing, 19(2):149–166, July 1998.

A Computation of the ηT Pairing in Characteristic Two:
Direct Approach

Shu et al. [33] started from Equation (2) to design their square root-free ηT

pairing algorithm. First, they compute:

g[2i]P ′(ψ(Q)) = (x2
[2i]P ′ + 1)(xQ + 1) + y2

[2i]P ′ + yQ + b+

(x2
[2i]P ′ + xQ + 1)s+ t.

For i = m−1
2 , they have

g»
2

m−1
2

–
P ′

(ψ(Q)) = xP ′xQ + αxP ′ + αxQ + yP ′ + yQ + α+ β +

(xP ′ + xQ + α)s+ t.

Since

lP ′(ψ(Q)) = x2
P ′ + xP ′xQ + αxP ′ + αxQ + xQ + yP ′ + yQ + α+ δ + 1 +

(xP ′ + xQ + α+ 1)s+ t,

and α+ β = δ + 1, they obtain:

lP ′(ψ(Q)) = g»
2

m−1
2

–
P ′

(ψ(Q)) + x2
P ′ + xQ + α+ s.

Algorithm 4 summarizes the computation of the ηT pairing according to the
above equations.

Let us see what happens when computing

ηT (P,Q)M = 2
m−1

2

√(
ηT (P,Q)2

m−1
2
)M

=

(
ηT

(
P,
[
2−

m−1
2

]
Q
)2

m−1
2
)M

.

We have to calculate

fT ′,P ′ (ψ (Q′))2
m−1

2
=

m−1
2∏

i=0

(
g[2i]P ′ (ψ (Q′))

)2m−i−1

 lP ′ (ψ (Q′))2
m−1

2
,

20 J.-L. Beuchat et al.

Algorithm 4 Computation of the ηT pairing: direct approach without square
roots [33].
1. yP ← yP + δ̄; (δ̄ XOR)

2. xP ← x2
P ; yP ← y2

P ; (2 S)
3. x′P ← xP ;
4. xP ← xP + 1; yQ ← yQ + b; u← xQ + 1; (b + 2 XOR)
5. g0 ← xP · u + yP + yQ; (1 M, 2 A)
6. g1 ← xP + xQ; (1 A)
7. G← g0 + g1s + t;

8. F ← G2; (2 S, 1 A, 1 XOR)
9. xP ← x4

P ; yP ← y4
P ; (4 S)

10. xP ← xP + 1; yP ← xP + yP ; (1 A, 1 XOR)
11. g0 ← xP · u + yP + yQ; (1 M, 2 A)
12. g1 ← xP + xQ; (1 A)
13. G← g0 + g1s + t;
14. F ← F ·G; (3 M, 6 A, 2 XOR)

15. for i← 2 to m−1
2

do
16. F ← F 2; (4 S, 4 A)
17. xP ← x4

P ; yP ← y4
P ; (4 S)

18. xP ← xP + 1; yP ← xP + yP ; (1 A, 1 XOR)
19. g0 ← xP · u + yP + yQ; (1 M, 2 A)
20. g1 ← xP + xQ; (1 A)
21. G← g0 + g1s + t;
22. F ← F ·G; (6 M, 14 A)
23. end for

24. g2 ← x′P + xQ + α; (1 A, α XOR)
25. L← (g0 + g2) + (g1 + 1)s + t; (1 A, 1 XOR)
26. F ← F · L; (6 M, 14 A)

27. Return F M ;

where

Q′ =
[
2−

m−1
2

]
Q

=
(
x2−m+1

Q +
m− 1

2
, y2−m+1

Q +
m− 1

2
x2−m+1

Q + τ

(
−m− 1

2

))
.

Noting that (m− 1)/2 = α+ 1, and τ(−(m− 1)/2) = γ, we obtain

Q′ =
(
x2−m+1

Q + α+ 1, y2−m+1

Q + (α+ 1) · x2−m+1

Q + γ
)

.

One checks that:

g[2i]P ′(ψ(Q′))2
m−i−1

= (x2i

P ′ + α)(x2−i

Q + α) + y2i

P ′ + y2−i

Q + β +

(x2i

P ′ + x2−i

Q + α)s+ t.

Hardware Accelerators for the Modified Tate Pairing over F2m and F3m 21

For i = m−1
2 , we obtain:

g»
2

m−1
2

–
P ′

(ψ(Q′))2
m−1

2 = x2
m−1

2
P ′ x2−

m−1
2

Q + αx2
m−1

2
P ′ + αx2−

m−1
2

Q + y2
m−1

2
P ′ +

y2−
m−1

2
Q + α+ β +

(
x2

m−1
2

P ′ + x2−
m−1

2
Q + α

)
s+ t.

Since α+ β = δ + 1 and

lP ′(ψ(Q′))2
m−1

2 =
(
x2

m−1
2

P ′

)2

+ x2
m−1

2
P ′ x2−

m−1
2

Q + αx2
m−1

2
P ′ + αx2−

m−1
2

Q +

x2−
m−1

2
Q + y2

m−1
2

P ′ + y2−
m−1

2
Q + α+ δ + 1 +(

x2
m−1

2
P ′ + x2−

m−1
2

Q + α+ 1
)
s+ t,

we deduce that:

lP ′(ψ(Q′))2
m−1

2 = g»
2

m−1
2

–
P

(ψ(Q′))2
m−1

2 +
(
x2

m−1
2

P ′

)2

+ x2−
m−1

2
Q + α+ s.

We obtain an algorithm with square roots to compute the ηT pairing in charac-
teristic two (Algorithm 5).

Table 8 summarizes the cost of these algorithms. The reversed-loop approach
allows one to save a single multiplication over F2m and to reduce the size of the
code.

Table 8. Cost of the direct algorithms for computing the reduced ηT pairing in char-
acteristic two in terms of operations over the underlying field F2m .

ηT pairing without ηT pairing with
square root square roots

(Algorithm 4) (Algorithm 5)

Additions 11m− 3 11 + 17 · m−1
2

XORs 7 + δ̄ + α + b + m−1
2

3 + δ̄ + α +
(2α + β) · m+1

2

Multiplications 4 + 7 · m−1
2

4 + 7 · m−1
2

Squarings 4m− 4 m− 1

Square roots – m− 1

B Computation of the Modified Tate Pairing in
Characteristic Three

Beuchat et al. [4] proposed a cube root-free reversed-loop algorithm for the
reduced ηT pairing (Algorithm 6). Recall that the modified Tate pairing is given

22 J.-L. Beuchat et al.

Algorithm 5 Computation of the ηT pairing: direct approach with square roots.
1. yP ← yP + δ̄; (δ̄ XOR)

2. u← xP + α; v ← xQ + α; (2α XOR)
3. g0 ← u · v + yP + yQ + β; (1 M, 2 A, β XOR)
4. g1 ← u + xQ; (1 A)
5. F ← g0 + g1s + t;

6. xP ← x2
P ; yP ← y2

P ; (2 S)
7. xQ ←

√
xQ; yQ ←

√
yQ; (2 R)

8. u← xP + α; v ← xQ + α; (2α XOR)
9. g0 ← u · v + yP + yQ + β; (1 M, 2 A, β XOR)

10. g1 ← u + xQ; (1 A)
11. G← g0 + g1s + t;
12. F ← F ·G; (3 M, 6 A, 2 XOR)

13. for i← 2 to m−1
2

do
14. xP ← x2

P ; yP ← y2
P ; (2 S)

15. xQ ←
√

xQ; yQ ←
√

yQ; (2 R)
16. u← xP + α; v ← xQ + α; (2α XOR)
17. g0 ← u · v + yP + yQ + β; (1 M, 2 A, β XOR)
18. g1 ← u + xQ; (1 A)
19. G← g0 + g1s + t;
20. F ← F ·G; (6 M, 14 A)
21. end for

22. g2 ← x2
P + xQ + α; (1 S, 1 A, α XOR)

23. l0 ← g0 + g2; (1 A)
24. l1 ← g1 + 1; (1 XOR)
25. L← l0 + l1s + t;
26. F ← F · L; (6 M, 14 A)

27. Return F M ;

by ηT

(
[−µb]P,

[
3

3m−1
2

]
Q
)M

, where
[
3

3m−1
2

]
Q =

(
3
√
xQ − b, λ 3

√
y
)
. Thus, we

can modify Algorithm 6 as follows:

– Since (−µb)2 = 1, we remove line 2.
– It is no longer necessary to compute the cube of xP and yp (line 3).
– t is now given by xP − b+ xQ − b = xP + xQ and we save an addition.

Algorithm 7 summarizes these modifications.

C Inversion over F22m

Let V = v0 + v1s ∈ F22m be the multiplicative inverse of U = u0 + u1s ∈ F22m ,
U 6= 0, where u0, u1, v0, and v1 ∈ F2m . Since UV = 1, we obtain{

u0v0 + u1v1 = 1,
u0v1 + u1v0 + u1v1 = 0.

Hardware Accelerators for the Modified Tate Pairing over F2m and F3m 23

Algorithm 6 Cube-root-free reversed-loop algorithm for computing the reduced
ηT pairing in characteristic three [4].
Input: P, Q ∈ E(F3m)[`].
Output: ηT (P, Q) ∈ F∗36m .
1. xP ← xP + b; (1 A)
2. yP ← −µbyP ;

3. xQ ← x3
Q; yQ ← y3

Q; (2 C)
4. t← xP + xQ; (1 A)
5. R← (λyP t− λyQσ − λyP ρ) · (−t2 + yP yQσ − tρ− ρ2); (6 M, 1 C, 6 A)

6. for j ← 1 to m−1
2

do
7. R← R3; (6 C, 6 A)
8. xQ ← x9

Q − b; yQ ← −y9
Q; (4 C, 1 A)

9. t← xP + xQ; u← yP yQ; (1 M, 1 A)
10. S ← −t2 + uσ − tρ− ρ2; (1 M)
11. R← R · S; (12 M, 59 A)
12. end for

13. return RM ;

The solution of this system of equations is then given by

v0 = w−1 · (u0 + u1), and v1 = w−1 · u1,

where w = u2
0 + (u0 + u1)u1 ∈ F2m . Thus, inversion over F22m involves three

multiplications, two additions, one squaring, and an inversion over F2m (Algo-
rithm 8).

D Arithmetic over F24m

D.1 Squaring over F24m

Let U = u0 + u1s + u2t + u3st ∈ F24m . V = U2 is given by U2 = u2
0 + u2

1s
2 +

u2
2t

2 + u2
3s

2t2. Since s2 = s+ 1, t2 = t+ s, and s2t2 = 1 + t+ st, we obtain the
following coefficients for V = U2:

v0 = u2
0 + u2

1 + u2
3, v1 = u2

1 + u2
2,

v2 = u2
2 + u2

3, v2 = u2
3.

Thus, four squarings and four additions over F2m allow one to compute V = U2.

D.2 Multiplication over F24m

General Algorithm. Multiplication over F24m is performed according to
Karatsuba-Ofman’s technique (Algorithm 9). It requires nine multiplications
and twenty additions over F2m . Note that we managed to save two additions
over F2m compared to the solution proposed by Keller et al. [18].

24 J.-L. Beuchat et al.

Algorithm 7 Computation of the modified Tate pairing in characteristic three.
Input: P, Q ∈ E(F3m)[`].
Output: ηT (P, Q) ∈ F∗36m .
1. t← xP + xQ; (1 A)
2. R← (λyP t− yQσ − λyP ρ) · (−t2 + λyP yQσ − tρ− ρ2); (6 M, 1 C, 6 A)

3. for j ← 1 to m−1
2

do
4. R← R3; (6 C, 6 A)
5. xQ ← x9

Q − b; yQ ← −y9
Q; (4 C, 1 A)

6. t← xP + xQ; u← λyP yQ; (1 M, 1 A)
7. S ← −t2 + uσ − tρ− ρ2; (1 M)
8. R← R · S; (12 M, 59 A)
9. end for

10. return RM ;

Algorithm 8 Computation of (u0 + u1s)−1.
Input: U = u0 + u1s ∈ F22m , U 6= 0.
Output: V = u−1 = v0 + v1 ∈ F22m .
1. a0 ← u0 + u1; (1 A)
2. m0 ← u2

0; m1 ← a0 · u1; (1 S, 1 M)
3. a1 ← m0 + m1; (1 A)
4. i0 ← a−1

1 ; (1 I)
5. v0 ← a0 · i0; (1 M)
6. v1 ← u1 · i0; (1 M)
7. Return v0 + v1s;

Computation of (u0 + u1s + t) · (v0 + v1s + t). The first multiplication
over F24m of Algorithm 4 (line 14) and Algorithm 5 (line 12) involves three
multiplications and six additions over F2m , as well as two XORs (Algorithm 10):

(u0 + u1s+ t) · (v0 + v1s+ t) = u0v0 + u1v1 +
((u0 + u1)(v0 + v1) + u0v0 + 1)s+
(u0 + v0 + 1)t+ (u1 + v1)st.

Computation of (g0 + g1s + t) · ((g0 + g2) + (g1 + 1)s + t). The first
multiplication over F24m of Algorithm 1 (line 7) and Algorithm 2 (line 10) can
be significantly simplified. Since

(g0 + g1s+ t) · ((g0 + g2) + (g1 + 1)s+ t) = g0 · (g0 + g2) + g2
1 + g1 +

(g0 + g1 · g2 + g2
1 + g1 + 1)s+

(g2 + 1)t+ st,

This operation involves one squaring, two XORs, two multiplications, and five
additions over F2m (Algorithm 11).

Hardware Accelerators for the Modified Tate Pairing over F2m and F3m 25

Algorithm 9 Multiplication over F24m .
Input: U = u0 + u1s + u2t + u3st ∈ F24m and V = v0 + v1s + v2t + v3st ∈ F24m .
Output: W = U · V .
1. a0 ← u0 + u1; a1 ← v0 + v1; (2 A)
2. a2 ← u0 + u2; a3 ← v0 + v2; (2 A)
3. a4 ← u1 + u3; a5 ← v1 + v3; (2 A)
4. a6 ← u2 + u3; a7 ← v2 + v3; (2 A)
5. a8 ← a0 + a6; a9 ← a1 + a7; (2 A)
6. m0 ← u0 · v0; m1 ← u1 · v1; m2 ← u2 · v2; m3 ← u3 · v3; (4 M)
7. m4 ← a0 · a1; m5 ← a2 · a3; m6 ← a4 · a5; m7 ← a6 · a7; m9 ← a8 · a9; (5 M)
8. a10 ← m0 + m1; a11 ← m0 + m4; (2 A)
9. w0 ← a10 + m2 + m7; (2 A)

10. w1 ← a11 + m3 + m7; (2 A)
11. w2 ← a10 + m5 + m6; (2 A)
12. w3 ← a11 + m5 + m8; (2 A)
13. Return w0 + w1s + w2t + w3st;

Algorithm 10 Computation of (u0 + u1s+ t) · (v0 + v1s+ t).
Input: U = u0 + u1s + t ∈ F24m and V = v0 + v1s + t ∈ F24m .
Output: W = U · V .
1. a0 ← u0 + u1; a1 ← v0 + v1; (2 A)
2. m0 ← u0 · v0; m1 ← u1 · v1; m2 ← a0 · a1; (3 M)
3. w0 ← m0 + m1; (1 A)
4. w1 ← m0 + m2 + 1; (1 A, 1 XOR)
5. w2 ← u0 + v0 + 1; (1 A, 1 XOR)
6. w3 ← u1 + v1; (1 A)
7. Return w0 + w1s + w2t + w3st;

Computation of (g0 + g1s + t) · (f0 + f1s + f2t + f3st). The main loop
of the ηT pairing algorithms studied in Section 2 requires the multiplication of
F ∈ F24m by G = g0 + g1s+ t. Taking advantage of the sparsity of G, we obtain
an algorithm involving only six multiplications and fourteen additions over F24m

(Algorithm 12).

D.3 Computation of U2m+1 over F24m

Let U = u0 + u1s + u2t + u3st ∈ F24m . Seeing that s2
m

= s + 1 and t2
m

=
t+ s+ α+ 1, we obtain:

U2m

=

{
(u0 + u1 + u3) + (u1 + u2)s+ (u2 + u3)t+ u3st if α = 1,
(u0 + u1 + u2) + (u1 + u2 + u3)s+ (u2 + u3)t+ u3st if α = 0.

A first solution to compute U2m+1 would be to multiply U2m

by U according to
Algorithm 9. There is however a faster way to raise U to the power of 2m + 1.
Defining m0 = (u0 + u1)(u2 + u3), m1 = u0u1, m2 = u0u3, m3 = u1u2, and

26 J.-L. Beuchat et al.

Algorithm 11 Computation of (g0 + g1s+ t) · ((g0 + g2) + (g1 + 1)s+ t).
Input: U = g0 + g1s + t ∈ F24m and V = (g0 + g2) + (g1 + 1)s + t ∈ F24m .
Output: W = U · V .
1. s0 ← g2

1 ; (1 S)
2. a0 ← g0 + g2; a1 ← g1 + s0; (2 A)
3. m0 ← g0 · a0; m1 ← g1 · g2; (2 M)
4. w0 ← m0 + a1; (1 A)
5. w1 ← m1 + g0 + a1 + 1; (2 A, 1 XOR)
6. w2 ← g2 + 1; (1 XOR)
7. w3 ← 1;
8. Return w0 + w1s + w2t + w3st;

m4 = u2u3, we have

U2m+1 = (u0u1 + u0u3 + u1u2 + u2
0 + u2

1) +
(u0u2 + u1u2 + u1u3 + u2u3 + u2

2 + u2
3)s+

(u0u3 + u1u2 + u2u3 + u2
2 + u2

3)t+ (u2u3 + u2
2 + u2

3)st
= (u0u1 + u0u3 + u1u2 + (u0 + u1)2) +

((u0 + u1)(u2 + u3) + u0u3 + u2u3 + (u2 + u3)2)s+
(u0u3 + u1u2 + u2u3 + (u2 + u3)2)t+ (u2u3 + (u2 + u3)2)st

= (m1 +m2 +m3 + (u0 + u1)2) + (m0 +m2 +m4 + (u2 + u3)2)s+
(m2 +m3 +m4 + (u2 + u3)2)t+ (m4 + (u2 + u3)2)st,

when α = 1, and

U2m+1 = (u0u1 + u0u2 + u1u2 + u1u3 + u2
0 + u2

1) +
(u0u2 + u0u3 + u1u3 + u2u3 + u2

2 + u2
3)s+

(u0u3 + u1u2)t+ (u2u3 + u2
2 + u2

3)st
= ((u0 + u1)(u2 + u3) + u0u1 + u0u3 + (u0 + u1)2) +

((u0 + u1)(u2 + u3) + u1u2 + u2u3 + (u2 + u3)2)s+
(u0u3 + u1u2)t+ (u2u3 + (u2 + u3)2)st

= (m0 +m1 +m2 + (u0 + u1)2) + (m0 +m3 +m4 + (u2 + u3)2)s+
(m2 +m3)t+ (m4 + (u2 + u3)2)st,

when α = 0. Thus, computing U2m+1 involves only five multiplications, two
squarings, and nine additions over F2m (Algorithm 13).

Hardware Accelerators for the Modified Tate Pairing over F2m and F3m 27

Algorithm 12 Computation of (g0 + g1s+ t) · (f0 + f1s+ f2t+ f3st).
Input: G = g0 + g1s + t ∈ F24m and F = f0 + f1s + f2t + f3st ∈ F24m .
Output: W = G · F .
1. a0 ← g0 + g1; a1 ← f0 + f1; a2 ← f2 + f3; (3 A)
2. m0 ← g0 · f0; m1 ← g1 · f1; m2 ← g0 · f2; m3 ← g1 · f3; (4 M)
3. m4 ← a0 · a1; m5 ← a0 · a2; (2 M)
4. w0 ← m0 + m1 + f3; (2 A)
5. w1 ← m0 + m4 + f2 + f3; (3 A)
6. w2 ← m2 + m3 + f0 + f2; (3 A)
7. w3 ← m2 + m5 + f1 + f3; (3 A)
8. Return w0 + w1s + w2t + w3st;

Algorithm 13 Computation of U2m+1 over F24m .
Input: U = u0 + u1s + u2t + u3st ∈ F24m .
Output: V = U2m+1.
1. a0 ← u0 + u1; a1 ← u2 + u3; (2 A)
2. m0 ← a0 · a1; m1 ← u0 · u1; m2 ← u0 · u3; (3 M)
3. m3 ← u1 · u2; m4 ← u2 · u3; (2 M)
4. s0 ← a2

0; s1 ← a2
1; (2 S)

5. v3 ← m4 + s1; (1 A)
6. v2 ← m2 + m3; (1 A)
7. if α = 1 then
8. v1 ← v3 + m0 + m2; (2 A)
9. v0 ← v2 + m1 + s0; (2 A)

10. v2 ← v2 + v3; (1 A)
11. else
12. v1 ← v3 + m0 + m3; (2 A)
13. v0 ← m0 + m1 + m2 + s0; (3 A)
14. end if
15. Return v0 + v1s + v2t + v3st;

