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Abstract

We initiate the study of one-wayness under correlated products. We are interested in identify-
ing necessary and sufficient conditions for a function f and a distribution on inputs (x1, ..., zt),
so that the function (f(x1),...,f(x)) is one-way. The main motivation of this study is the
construction of public-key encryption schemes that are secure against chosen-ciphertext attacks
(CCA). We show that any collection of injective trapdoor functions that is secure under a very
natural correlated product can be used to construct a CCA-secure public-key encryption scheme.
The construction is simple, black-box, and admits a direct proof of security.

We provide evidence that security under correlated products is achievable by demonstrating
that lossy trapdoor functions (Peikert and Waters, STOC ’08) yield injective trapdoor functions
that are secure under the above mentioned correlated product. Although we eventually base
security under correlated products on existing constructions of lossy trapdoor functions, we
argue that the former notion is potentially weaker as a general assumption. Specifically, there
is no fully-black-box construction of lossy trapdoor functions from trapdoor functions that are
secure under correlated products.
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1 Introduction

The construction of secure public-key encryption schemes lies at the heart of cryptography. Fol-
lowing the seminal work of Goldwasser and Micali [20], increasingly strong security definitions
have been formulated. The strongest notion to date is that of semantic security against a chosen-
ciphertext attack (CCA) [25, 29], which protects against an adversary that is given access to
decryptions of ciphertexts of her choice.

Constructions of CCA-secure public-key encryption schemes have followed several structural
approaches. These approaches, however, either result in rather complicated schemes, or rely only
on specific number-theoretic assumptions. Our goal in this paper is to construct a simple CCA-
secure public-key encryption scheme based on general computational assumptions.

The first approach for constructing a CCA-secure public-key encryption scheme was put forward
by Naor and Yung [25], and relies on any semantically secure public-key encryption scheme and non-
interactive zero-knowledge (NIZK) proof system for NP (which currently requires the existence of
enhanced trapdoor permutations). Their approach was later extended by Dolev, Dwork and Naor
[9] for a more general notion of chosen-ciphertext attack, and subsequently simplified by Sahai
[32] and Lindell [24]. Encryption schemes resulting from this approach, however, are somewhat
complicated and impractical due to the use of generic NIZK proofs.

An additional approach was introduced by Cramer and Shoup [8], and is based on “smooth
hash proof systems”, which were shown to exist based on several number-theoretic assumptions.
Elkind and Sahai [10] observed that both the above approaches can be viewed as special cases of
a single paradigm in which ciphertexts include “proofs of well-formedness”. Even though in some
cases this paradigm lead to elegant and efficient constructions [7], the complexity of the underlying
notions makes the general framework somewhat cumbersome.

A different approach was suggested by Canetti, Halevi and Katz [4] (followed by [1, 2, 3]) who
constructed a CCA-secure public-key encryption scheme based on any identity-based encryption
(IBE) scheme. Their scheme is very simple, avoids “proofs of well-formedness”, and essentially pre-
serves the efficiency of the underlying IBE scheme. However, IBE is a rather strong cryptographic
primitive, which is currently realized only based on a small number of specific number-theoretic
assumptions.

Recently, Peikert and Waters [28] introduced the intriguing notion of lossy trapdoor functions,
and demonstrated that such functions can be used to construct an elegant CCA-secure public-key
encryption scheme in a black-box manner. Lossy trapdoor functions seem to be a very powerful
primitive. In particular, they were shown to also imply oblivious transfer protocols and collision-
resistant hash functions®. It is thus conceivable that CCA-secure encryption can be realized based
on weaker primitives.

1.1 Owur Contributions

Motivated by the task of constructing a simple CCA-secure public-key encryption scheme, we
initiate the study of one-wayness under correlated products. The main question in this context is
to identify necessary and sufficient conditions for a collection of functions F and a distribution
on inputs (z1,...,x) so that the function (fi(x1),..., fx(zx)) is one-way, where fi,..., fi are
independently chosen from F. Our results are as follows:

"We note, however, that the constructions of CCA-secure encryption and collision-resistant hash functions pre-
sented in [28] require lossy trapdoor functions that are “sufficiently lossy” (i.e., the constructions rely on lossy trapdoor
functions with sufficiently good parameters).



1. We show that any collection of injective trapdoor functions that is secure under a very natural
correlated product can be used to construct a CCA-secure public-key encryption scheme.
The construction is simple, black-box, and admits a direct proof of security. Arguably, both
the underlying assumption and the proof of security are simple enough to be taught in an
undergraduate course in cryptography.

2. We demonstrate that any collection of lossy trapdoor functions (with appropriately chosen
parameters) yields a collection of injective trapdoor functions that is secure under the corre-
lated product that is required by our encryption scheme. The parameters we require from the
lossy trapdoor functions are exactly the same parameters that are required by the scheme of
Peikert and Waters [28].2 In turn, existing constructions of lossy trapdoor functions guaran-
teing these parameters [28, 31] imply that our encryption scheme can currently be based on
the hardness of the decisional Diffie-Hellman problem, and of Paillier’s decisional composite
residuosity problem.

3. We argue that security under correlated products is potentially weaker than lossy trapdoor
functions as a general computational assumption. Specifically, we prove that there is no fully-
black-box construction of lossy trapdoor functions from trapdoor functions (and even from
enhanced trapdoor permutations) that are secure under correlated products.

In the remainder of this section we provide a high-level overview of our contributions, and then
turn to describe the related work.

1.2 Security Under Correlated Products

It is well known that for every collection of one-way functions F = {fs}ses and polynomially-

bounded k € N, the collection Fj, = {f517.,,78k}(517'”7%)651@, whose members are defined as

fsl,...,sk (5317 .. ,l’k) = (fsl (xl)a oo afsk(mk))

is also one-way. Moreover, such a direct product amplifies the one-wayness of F [18, 34], and this
holds even when considering a single function (i.e., when s; = --- = s;). In general, however,
the one-wayness of Fj is guaranteed only when the inputs are independently chosen, and when
the inputs are correlated no such guarantee can exist. Indeed, if collections of one-way functions
exist, then there exists a collection of one-way functions F = {fs}scs such that fs, s (z,z) =
(fs;(z), fs,(x)) is not one-way. However, this does not rule out the possibility of constructing a
collection of one-way functions whose product remains one-way even when the inputs are correlated.
Informally, given a collection F of functions and a distribution Cy, of inputs (z1,...,zx), we say
that F is secure under a Cg-correlated product if Fj, is one-way when the inputs (x1,...,x%) are
distributed according to Cj (a formal definition is provided in Section 3). The main goal in this
setting is to characterize the class of collections F and distributions Cj that satisfy this notion.
We motivate the study of security under correlated products by relating it to the study of
chosen-ciphertext security. Specifically, we show that any collection of injective trapdoor functions
that is secure under a very natural correlated product can be used to construct a CCA-secure
public-key encryption scheme. The simplest form of distribution Ci on inputs that is sufficient for
our construction is the uniform k-repetition distribution that outputs k copies of a uniformly chosen

2Peikert and Waters eventually base their encryption scheme on all-but-one lossy trapdoor functions, a seemingly
stronger primitive which is currently not known to be implied by lossy trapdoor functions without sufficiently good
parameters. This allowed them to base their encryption scheme also on worst-case lattice assumptions, although
these are currently not known to provide lossy trapdoor functions with the required parameters.



input . We note that although this seems to be a strong requirement, we demonstrate that it can
be based on various number-theoretic assumptions.

More generally, our construction can rely on any distribution Cj with the property that any
(z1,..., k) in the support of C, can be reconstructed given any t = (1—e¢)k entries from (x4, ..., xg),
for some constant 0 < € < 1. For example, C; may be a distribution that evaluates a random
polynomial of degree at most ¢t — 1 on a fixed set of k points (in this case the values z;’s are t-wise
independent, but other choices which do not guarantee such a strong property are also possible).

1.3 Chosen-Ciphertext Security via Correlated Products

Consider the following, very simple, public-key encryption scheme. The public-key consists of an
injective trapdoor function f, and the secret-key consists of its trapdoor td. Given a message m €
{0,1}, the encryption algorithm chooses a random input z and outputs the ciphertext (f(z),m @
h(zx)), where h is a hard-core predicate of f. The decryption algorithm uses the trapdoor to
retrieve x and then extracts m. In what follows we frame our approach as a generalization of this
fundamental scheme.

The above scheme is easily proven secure against a chosen-plaintext attack. Any adversary A
that distinguishes between an encryption of 0 and an encryption of 1 can be used to construct an
adversary A’ that distinguishes between h(x) and a randomly chosen bit with exactly the same
probability. Specifically, A’ receives a function f, a value y = f(z), and a bit w (which is either
h(z) or a uniformly chosen bit), and emulates A with f as the public-key and (y,m @ w) as the
challenge ciphertext for a random message m. This scheme, however, fails to be proven secure
against a chosen-ciphertext attack (even when considering only CCA1 security). There is a conflict
between the fact that A’ is required to answer decryption queries, and the fact that A’ does not
have the trapdoor for inverting f.

The following simplified variant of our scheme is designed to resolve this conflict. The public-key

consists of k pairs of functions (fY, f1),...,( f,?, f,%), where each function is sampled independently
from a collection F of injective trapdoor functions®. The secret-key consists of a random value
vt =wvj---vf € {0, 1}* and the trapdoors (td}_vl, e ,td;_v’“), where each td:_vi is the trapdoor

of fil_vf (the secret-key consists of one trapdoor for each pair). Given a message m € {0, 1}, the
encryption algorithm chooses a random v = vy - - - vy, € {0, 1}’“, a random input x, and outputs the
ciphertext

Epx(m;v,z) = (v, f{ (x),..., [i*(z),m & h(z)) ,

where h is a hard-core predicate of Fj with respect to the uniform k-repetition distribution. The
decryption algorithm acts as follows: If v = v* the decryption fails. Otherwise, since v # v* it can
invert one of the functions f;” to retrieve x, which is then used to verify that the remaining values
are indeed the outputs of the functions fi*,..., f.* on the input z. In this case the algorithm
outputs m.4

In order to prove the CCA1 security of this scheme, we show that any adversary A that breaks
the CCA1 security of the scheme can be used to construct an adversary A’ that distinguishes

between h(x) and a randomly chosen bit with exactly the same probability. The adversary A’

3For CCAL1 security any k = w(logn) is sufficient, where n is the security parameter. For our more generalized
construction that guarantees CCA2 security, any k = n° for some constant 0 < € < 1 is sufficient.

We note that it is straightforward to eliminate the negligible probably of a decryption error. The secret-key
may contain all the 2k trapdoors (tdS,td}), ..., (td%,tdy) (in this case the value v* is not necessary), and given a
ciphertext (v,y1,...,Yyx,c) the decryption algorithm can now always invert all the y;’s and verify that they have
the same preimage x. We chose, however, to present the scheme with a decryption error in order to emphasize the
simplicity and main ideas in the proof of security.



receives as input k functions fi,..., fr € F, k values y1 = fi(z),...,yx = fr(z), and a bit w
(which is either h(z) or a uniformly chosen bit). A" simulates the CCA1 interaction to A by

choosing a random value v* = v} --- v} € {0, l}k, and for each pair ( 2-0, fil) it sets flvk’ = f; and
samples filka; together with its trapdoor from F. Note that now A’ is able to answer decryption
queries as long as none of them contain the value v*, and in this case we claim that no information
on v* is revealed. The challenge ciphertext is then computed as (v*,y1, ..., yr, m@®w) for a random
message m.

Our construction is inspired by the one based on lossy trapdoor functions [28], and specifically,
by the generic construction of all-but-one trapdoor functions from lossy trapdoor functions. How-
ever, the proof security of our construction is simpler than that of [28] due to the additional hybrids
resulting from using both lossy trapdoor functions and all-but-one trapdoor functions. In addition,
our construction only relies on computational hardness, whereas the construction of [28] relies on
the statistical properties of lossy trapdoor functions. We note that one can trace several common
themes with other previous approaches:

e The scheme can be viewed as an application of the Naor-Yung paradigm [25] in which a
message is encrypted using several independently chosen keys, and ciphertexts include “proofs
of well-formedness”. In our scheme, however, the decryption algorithm can verify “well-
formedness” without any additional “proof”: given any one of the trapdoors it is possible
to verify that the remaining values are consistent with the same input = (this is akin to the
construction based on lossy trapdoor functions).

e The construction and proof of security are also similar to that of the IBE-based schemes
[2, 3, 4]. The value v* can be viewed as the challenge identity, for which A" does not have the
secret key, and is therefore not able to decrypt ciphertexts for this identity. For any other
identity v # v*, A’ has sufficient information to decrypt ciphertexts.

In some sense, our approach enjoys “the best of both worlds” in that both the underlying assumption
and the proof of security are simpler than those of previous approaches.

1.4 A Black-Box Separation

Currently, our encryption scheme relies on the same number-theoretic assumptions as the lossy
trapdoor functions based scheme of Peikert and Waters [28]. We claim, however, that security
under correlated products is potentially weaker than lossy trapdoor functions as a general compu-
tational assumption. Specifically, we prove that there is no fully-black-box construction of lossy
trapdoor functions from trapdoor functions that are secure under correlated products. We present
an oracle relative to which there exists a collection of injective trapdoor functions (and even of en-
hanced trapdoor permutations) that is secure under a correlated product with respect to the above
mentioned uniform k-repetition distribution, but there is no collection of lossy trapdoor functions.
The oracle is essentially the collision-finding oracle due to Simon [33], and the proof follows the
approach of Haitner et al. [21] while overcoming several technical difficulties.

Informally, consider a circuit A which is given as input (fi(z), ..., fx(x)), and whose goal is to
retrieve . The circuit A is provided access to an oracle Sam that receives as input a circuit C' and
outputs random w and w’ such that C'(w) = C(w’). As in the approach of Haitner et al. the idea
underlying the proof is to distinguish between two cases: one in which A obtains information on
x via one of its Sam-queries, and the other in which none of A’s Sam-queries provides information
on z. The proof consists of two modular parts dealing with these two cases separately. In first



part we generalize an argument of Haitner et al. (who in turn generalized the reconstruction lemma
of Gennaro and Trevisan [12]) to deal with the product of several functions. We show that the
probability that A retrieves x in the first case is exponentially small. In the second part we show
that the second case can essentially be reduced to the first case. This part of the proof is simpler
than the corresponding argument of Haitner et al. that considers a more interactive setting.

1.5 Related Work

Much research has been devoted for the construction of CCA-secure public-key encryption schemes.
A significant part of this research was already mentioned in the previous sections, and here we
mainly focus on recent results regarding the possibility and limitations of basing such schemes on
general computational assumptions.

Pass, shelat and Vaikuntanathan [26] constructed a public-key encryption scheme that is non-
malleable against a chosen-plaintext attack from any semantically secure one (building on the
scheme of Dolev, Dwork and Naor [9]). Their technique was later shown by Cramer et al. [6] to
also imply non-malleability against a weak notion of chosen-ciphertext attack, in which the number
of decryption queries is bounded. These approaches, however, are rather impractical due to the
use of generic (designated verifier) NIZK proofs. Very recently, Choi et al. [5] showed that the
latter notions of security can in fact be elegantly realized in a black-box manner based on the same
assumptions. The reader is referred to [9, 27] for classifications of the different notions of security.

Impagliazzo and Rudich [22] introduced a paradigm for proving impossibility results for cryp-
tographic constructions. They showed that there are no black-box constructions of key-agreement
protocols from one-way permutations, and substantial additional work in this line followed (see,
for example [11, 13, 15, 23, 33] and many more). The reader is referred to [30] for a comprehen-
sive discussion and taxonomy of black-box constructions. In the context of public-key encryption
schemes, most relevant to our result is the work of Gertner, Malkin and Myers [14], who addressed
the question of whether or not semantically secure public-key encryption schemes imply the exis-
tence of CCA-secure schemes. They showed that there are no black-box constructions in which the
decryption algorithm of the proposed CCA-secure scheme does not query the encryption algorithm
of the semantically secure one.

1.6 Paper Organization

The remainder of the paper is organized as follows. In Section 2 we briefly review several fundamen-
tal definitions. In Section 3 we provide a formal treatment of security under correlated products,
which is shown to be satisfied by lossy trapdoor functions. In Section 4 we describe a simplified
version of our encryption scheme which already illustrates the main ideas underlying our approach.
The more general construction is described in Section 5. Finally, in Section 6 we prove that there is
no fully-black-box construction of lossy trapdoor functions from trapdoor functions secure against
correlated products.

2 Preliminaries

We denote by N the set of all integers, and for an integer n € N we denote by [n] the set {1,...,n}.
For a finite set X, we denote by x <+ X the experiment of choosing an element of X according to
the uniform distribution over X. Similarly, for a distribution D over a set X, we denote by x <« D
the experiment of choosing an element of X according to the distribution D.

ot



In the remainder of this section we briefly review the notions of one-way functions, hard-
core predicates, trapdoor functions, lossy trapdoor functions, public-key encryption, and one-time
signature schemes. We refer the reader to [16, 17, 28] for more elaborated expositions of these
notions.

2.1 One-Way Functions and Hard-Core Predicates

Informally, a collection F of functions is said to be one-way if: (1) it is easy to sample a function f
from the collection, (2) given an input z it is easy to compute f(z), and (3) it is computationally
infeasible to find a pre-image of f(x) with non-negligible advantage over the choice of z. Typically,
it is assumed that x is chosen uniformly at random from the set of all possible inputs, and thus
the specification of the exact distribution under which the collection of functions is hard to invert
is omitted. However, for the purposes of this paper, it is necessary for us to explicitly specify the
input distribution.

Definition 2.1 (Efficiently computable functions). A collection of efficiently computable functions
is a pair of probabilistic polynomial-time algorithms F = (G, F') such that:

1. The algorithm G on input 1™ outputs a description s € {0,1}" of a function fs : {0,1}" —
{0,1}n.5

2. The algorithm F on input (s,x) € {0,1}" x {0,1}" outputs fs(x).

Notation 2.2. Given a collection of function F = (G, F) and a pair (s,y) € {0,1}" x {0,1}", we
let F~(s,y) = {z € {0,1}" |y = F(s,2)}.

Definition 2.3 (One-way functions). LetZ be a distribution where Z(1") is distributed over {0, 1}".
A collection of efficiently computable functions F = (G, F') is said to be one-way with respect to
the input distribution Z if for every probabilistic polynomial-time algorithm A and polynomial p(-),
it holds that

1
Pr[A(1", s, F(s,z)) € F~Y(s,F(s,2))] < — ,
A", 5, F(s,2) € F 71 (s, Flsva))] < o

for all sufficiently large n, where s — G(1™) and x «— Z(1™).

Definition 2.4 (Hard-core predicate). Let Z be a distribution where Z(1™) is distributed over
{0,1}", and let F = (G, F) be a collection of efficiently computable functions. A polynomial-time
algorithm H : {0,1}* x {0,1}* — {0, 1} is said to be a hard-core predicate of F with respect to the
input distribution Z if for every probabilistic-polynomial time algorithm A and polynomial p(-), it
holds that ]

Pr[A(1",s, F(s,z)) = H(s,z)] < 5 + =)
for all sufficiently large n, where s «— G(1™) and x «— Z(1™).

We note that an alternative approach for dealing with arbitrary input distributions in Definitions
2.3 and 2.4 is as follows: Given a collection F and an input distribution Z, consider the family Fr
whose members are defined as f(Z(x)) for every f € F. For the purpose of this paper, we could
have required that Fr is one-way with respect to the uniform distribution.

In this paper we focus on injective functions, and in this case the hardness of predicting the
value of a predicate from the value of the function implies in particular the hardness of inverting

®Generally speaking, the input, the output and the description of a function may be of different lengths (though
polynomially related). For simplicity, we assume that all three are n-bit strings.



the function. The Goldreich-Levin theorem [19] can be used in our setting (where considering
arbitrary input distributions) to guarantee the existence of a hard-core predicate for any collection
of one-way functions. The hard-core predicate exists with respect to the same input distribution
for which the collection of functions is one-way.

Corollary 2.5. Let T be a distribution where Z(1™) is distributed over {0,1}", and let F = (G, F)
be a collection of efficiently computable injective functions. Then, F is one-way with respect to T
if and only if F has a hard-core predicate with respect to T.

2.2 Injective Trapdoor Functions and Lossy Trapdoor Functions

In the following we define the notions of injective trapdoor functions and lossy trapdoor functions.

Definition 2.6 (Trapdoor functions). A collection of injective trapdoor functions is a triplet of
probabilistic polynomial-time algorithms F = (G, F, F~') such that:

e The algorithm G on input 1™ outputs a pair (s,td) € {0,1}" x {0,1}".

e The pair (G, F) is a collection of injective one-way functions, where G, denotes the left part
of the output of G.

e For every (s,td) in the range of G and x € {0,1}", the algorithm F~' on input (td, F(s,x))
outputs x.

Definition 2.7 (Lossy trapdoor functions). A collection of (n,{)-lossy trapdoor functions is a
triplet of probabilistic polynomial-time algorithms (G, F, F~') such that:

1. G(1™,injective) outputs a pair (s,td) € {0,1}" x {0,1}". The algorithm F(s,-) computes an
injective function fs(-) over {0,1}", and F~(td,-) computes f;1(-).

2. G(1™,lossy) outputs s € {0,1}". The algorithm F(s,-) computes a function fs(-) over {0,1}"
whose image has size at most 2.

3. The description of functions sampled using G(1", injective) and G(1™,lossy) are computation-
ally indistinguishable.
2.3 Public-Key Encryption Schemes
The following definition describes the functionality of a public-key encryption scheme:

Definition 2.8 (Public-key encryption). A public-key encryption scheme is a triplet (KG, E, D)
of probabilistic polynomial-time algorithms such that:

1. The key generation algorithm KG receives as input a security parameter 1™ and outputs a
public key PK and a secret key SK.

2. The encryption algorithm E receives as input a public key PK and a message m (in some
implicit message space), and outputs a ciphertezt c.

3. The decryption algorithm D receives as input a ciphertext ¢ and a secret key SK , and outputs
a message m or the symbol 1.

4. For any message m it holds that D(SK, E(PK, m)) = m with overwhelming probability over
the internal coin tosses of KG, E and D.



In this paper we consider public-key encryption schemes that are secure against an adaptive
chosen-ciphertext attacks, defined as follows.

Definition 2.9 (Chosen-ciphertext security). A public-key encryption scheme (KG, E, D) is said
to be CCAZ2-secure if the advantage of any probabilistic polynomial-time adversary A in the following
interaction is negligible in the security parameter:

1. KG(1™) outputs (PK, SK), and A is given PK.
2. A may adaptively query a decryption oracle D(SK,-).

3. At some point A outputs two messages mg and my with |mg| = |ma|, and receives a challenge
ciphertext c = E(PK, my) for a uniformly chosen bit b € {0,1}.

4. A may continue to adaptively query the decryption oracle D(SK,-) on any ciphertext other
than the challenge ciphertext.

5. Finally, A outputs a bit V.
We say that A succeeds if b/ = b, and denote the probability of this event by Pr[Success|. The
advantage of A is defined as |Pr [Success| — 1/2]|.
2.4 Signature Schemes

The following definitions describe the functionality of a signature scheme, and the security notion
of one-time strong unforgeability that is used in this paper.

Definition 2.10 (Signature scheme). A signature scheme is a triplet (KGsig, Sign, Ver) of proba-
bilistic polynomial-time algorithms such that:

1. The key generation algorithm KGsig receives as input a security parameter 1" and outputs a
verification key vk and a signing key sk.

2. The signing algorithm Sign receives as input a signing key sk and a message m (in some
implicit message space), and outputs a signature o.

3. The verification algorithm Ver receives as input a verification key vk, a message m, and a
signature o, and outputs a bit b € {0, 1}.

4. For any message m it holds that Ver(vk, m,Sign(sk,m)) = 1 with overwhelming probability
over the internal coin tosses of KGsig, Sign and Ver.

Definition 2.11 (One-time strong unforgeability). A signature scheme (KGsig, Sign, Ver) is said
to be one-time strongly unforgeable if the success probability of any probabilistic polynomial-time
adversary A in the following interaction is negligible in the security parameter:

1. KGsig(1™) outputs (vk,sk), and A is given vk.
2. A may output a message m, and is then given in return o = Sign(sk, m).
3. A outputs a pair (m*,c*).

We say that A succeeds if Ver(vk,m*,c*) =1 and (m*,0*) # (m, o).



3 Security Under Correlated Products

In this section we formally define the notion of security under correlated products, and demonstrate
that the notion is satisfied by any collection of lossy trapdoor functions (with appropriately chosen
parameters) for a very natural and useful correlation. We then discuss the exact parameters that
are required for our encryption scheme, and the number-theoretic assumptions that are currently
known to guarantee such parameters.

A collection of functions is represented as a pair of algorithms F = (G, F), where G is a
generation algorithm used for sampling a description of a function, and F' is an evaluation algorithm
used for evaluating a function on a given input. The following definition formalizes the notion of a
k-wise product which introduces a collection Fj, consisting of all k-tuples of functions from F.

Definition 3.1 (k-wise product). Let F = (G, F') be a collection of efficiently computable functions.
For any integer k, we define the k-wise product Fy = (G, F) as follows:

e The generation algorithm Gy, on input 1" invokes G(1™) for k times independently and outputs

($1,...,8k). That is, a function is sampled from Fj by independently sampling k functions
from F.

e The evaluation algorithm Fy, on input (s1,..., Sk, T1,...,x) invokes F to evaluate each func-
tion s; on x;. That is, Fp(s1,..., 8k, 1,...,2k) = (F(s1,21), ..., F(sg, xx)).

The notion of a one-way function asks for a function that is efficiently computable but is hard
to invert given the image of a uniformly chosen input. More generally, one can naturally extend
this notion to consider one-wayness under any specified input distribution, not necessarily the
uniform distribution. That is, informally, we say that a function is one-way with respect to an
input distribution Z if it is efficiently computable but hard to invert given the image of a random
input sampled according to Z (see Section 2 for a formal definition).

In the context of k-wise products, a rather straightforward argument shows that for any col-
lection F which is one-way with respect to some input distribution Z, the k-wise product Fj, is
one-way with respect to the input distribution which samples k independent inputs from Z. The
following definition formalizes the notion of security under correlated products, where the inputs
for Fi may be correlated.

Definition 3.2 (Security under correlated products). Let F = (G, F) be a collection of efficiently
computable functions, and let Cy, be a distribution where Cx(1") is distributed over {0,1}¥™ for some
integer k = k(n). We say that F is secure under a Cg-correlated product if Fy is one-way with
respect to the input distribution Cy.

Correlated products security based on lossy trapdoor functions. We conclude this section
by demonstrating that, for an appropriate choice of parameters, any collection of lossy trapdoor
functions yields a collection of injective trapdoor functions that is secure under a Cg-correlated
product. The input distribution under consideration, C, samples a uniformly random input x and
outputs k copies of x. We refer to this distribution as the uniform k-repetition distribution, and
this distribution is the one required for the simplified variant of our encryption scheme, presented
in Section 4.

Specifically, given a collection of lossy trapdoor functions F = (G, F, F~!) we define a collection
Finj of injective trapdoor functions by restricting F to its injective functions. That is, Fin; =
(Ginjs F, F71) where Gipj(1") = G(1", injective). We prove the following theorem:



Theorem 3.3. Let F = (G,F,F~!) be a collection of (n,{)-lossy trapdoor functions. Then, for

any nteger k < %, for any probabilistic polynomial-time algorithm A and polynomial p(-),

it holds that

1
Pr[A(1™, F(s1,x),...,F(sp,x),81,...,8;) = a] < —— ,
[A(L", F(s1, z) (sk,) ) =7 o)
for all sufficiently large n, where the probability is taken over the choices of s1 < Ginj(1"), ..., 855 —

Ginj(1™), © — {0,1}", and over the internal coin tosses of A.

Proof. Peikert and Waters [28, Lemma 3.1] proved that any collection of (n,w(logn))-lossy trap-
door functions is one-way. Thus, it is sufficient to prove that Fj is a collection of (n,w(logn))-lossy
trapdoor functions. For any k functions si,...,s, sampled according to Ginj(1"), the function
Fr(s1,..., Sk, x1, ... xp) = (F(s1,21),...,F(sk, xk)) is injective. For any k functions sq,..., sk
sampled according to Glossy(1"), the function Fj(si,..., sk, @1,..., o) = (F(s1,21),. .., F(sg, x1))
obtains at most 2¥("=%) values, which is upper bounded by 2"~“0°87) for any k < %. Finally,
note that a standard hybrid argument shows that the distribution obtained by independently sam-
pling k functions according to Gjnj(1") is computationally indistinguishable from the distribution
obtained by independently sampling & functions according to Giessy(1"). Thus, Fy, is a collection
of (n,w(logn))-lossy trapdoor functions. |

The required parameters for our scheme. The assumption underlying our encryption scheme
asks for k(n) = w(logn) for CCA1 security, and for k(n) = n® (for some constant 0 < ¢ < 1) for
CCA2 security. These are exactly the same parameters that are required for basing the scheme of
Peikert and Waters [28] on lossy trapdoor functions. In turn, existing constructions of lossy trapdoor
functions guaranteing these parameters [28, 31] imply that security under correlated products is
currently achievable under the hardness of the decisional Diffie-Hellman problem, and of Paillier’s
decisional composite residuosity problem. The construction based on lattice assumptions [28],
however, guarantees only a constant k(n), which still satisfies a highly non-trivial requirement but
is not sufficient for our encryption scheme. We note that Peikert and Waters eventually base their
encryption scheme on all-but-one lossy trapdoor functions, a seemingly stronger primitive which is
currently not known to be implied by lossy trapdoor functions without sufficiently good parameters.
This allowed them to base their encryption scheme also on worst-case lattice assumptions, although
these are currently not known to provide lossy trapdoor functions with the required parameters.

4 A Simplified Construction

In this section we describe a simplified version of our construction which already illustrates the
main ideas underlying our approach. The encryption scheme presented in the current section is a
simplification in the sense that it relies on a seemingly stronger computational assumption than
the more generalized construction which is presented in Section 5. In what follows we state the
computational assumption, describe the encryption scheme, and prove its security.

The underlying computational assumption. The computational assumption underlying the
simplified scheme is that there exists a collection F of injective trapdoor functions and an integer
function k = k(n) such that F is secure under a Cg-correlated product, where Cj is the uniform
k-repetition distribution (i.e., outputs k copies of a uniformly distributed input z). Specifically,
our scheme uses a hard-core predicate h : {0,1}* — {0,1} for Fj with respect to Cx. That is, the
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underlying computational assumption is that for any probabilistic polynomial-time predictor P it
holds that

1
‘Pr [P(1", F(s1,x),...,F(sg,x),s1,...,5k) = h(s1,...,8k,x)] — 5

is negligible in n, where the probability is taken over the choices of s1 «— G(1"),..., s, «— G(1"),
x < {0,1}", and over the internal coin tosses of P.

The integer function k(n) should correspond to the bit-length of verification keys of some one-
time strongly-unforgeable signature scheme (KGgig,Sign,Ver). By applying a universal one-way
hash function to the verification keys (as in [9]) it suffices that the above assumption holds for
k(n) = n® for a constant 0 < € < 1. For simplicity, however, when describing our scheme we do
not apply a universal one-way hash function to the verification keys. We also note that for an
even more simplified version which is only CCAl-secure (the one described in Section 1.3), any
k(n) = w(logn) suffices.

The construction. The following describes our simplified encryption scheme given by the triplet
(KG,E,D).

e Key generation: On input 1" the algorithm invokes G(1") for 2k times independently to

obtain 2k descriptions of functions from F denoted (s,s}),...,(s?,st) together with the

corresponding trapdoors (td(l],td%),...,(tdo,td}c). Then, it samples (vk*, sk*) «— KGgig(1"),
where vk* = vkj o --- o vk} € {0,1}*, and outputs the pair (PK, SK) defined as

PK = ((s(l),s%) ey (sg,s,lg))

SK = (vk*, tdy ML ,tdi_vk;;)

e Encryption: On input a message m € {0,1} and a public key PK, the algorithm samples
(vk, sk) < KGsig(1™) where vk = vkj o --- o vky € {0,1}%, chooses a uniformly distributed
x € {0,1}", and outputs (vk,yi,..., Yk, C1,C2) Where

y, = F (kai,x> Vi € [k]
co=mdh (sll’kl,...,szkk,x)
Cy = Sign(5k> (y17"'7ykacl)) .

e Decryption: On input a ciphertext (vk,yi, ..., yk, c1,c2) and a secret key SK, the algorithm
acts as follows. If vk = vk* or Ver(vk, (y1,...,Yk,c1),c2) = 0, it outputs L. Otherwise, it

picks some i € [k] for which vk; # vk} and computes z = F~1 (tdfki,yi). If for every j € [k]

it holds that y; = F' (s?kj,az), it outputs c¢; & h (811)1“, .. ,szk’“, x), and otherwise it outputs
1.

We first note that the correctness of the encryption scheme is rather straightforward: for any
message m the probability that D(SK, E(PK,m)) # m is exactly that probability that vk* = vk,
where vk* and vk are two independently sampled verification keys using KGsig(1™). This probability
is negligible due to the security of the one-time signature scheme. In the remainder of the section
we prove the security of the scheme.

11



Theorem 4.1. Assuming that F is secure under a Cy-correlated product, where Cy, is the uniform
k-repetition distribution, and that (KGsig, Sign, Ver) is one-time strongly unforgeable, the encryption
scheme (KG, E, D) is CCA2-secure.

Proof. Let A be a probabilistic polynomial-time CCA2-adversary (see Definition 2.9). We de-
note by Forge the event in which for one of A’s decryption queries (vk,yi,...,¥Yk,c1,c2) dur-
ing the CCA2 interaction it holds that vk = wvk* (where vk* is given in the secret key) and
Ver(vk, (y1,...,Yk,c1),c2) = 1. We first argue that the event Forge has a negligible probability
due to the security of the one-time signature scheme. Then, assuming that the event Forge does
not occur, we construct a probabilistic polynomial-time algorithm P that predicts the hard-core
predicate h while preserving the advantage of A.

More formally, we denote by Success the event in which A successfully guesses the bit b used for
encrypting the challenge ciphertext. Then, the advantage of A in the CCA2 interaction is bounded
as follows:

1 1

‘Pr [Success| — 2‘ = ‘Pr [Success A Forge] + Pr [Success A Forge| — 2‘
_— 1
< Pr[Forge] + ‘Pr [Success A Forge| — 2‘

The theorem follows from the following two claims:

Claim 4.2. Pr[Forge| is negligible.

Proof. We show that any probabilistic polynomial-time adversary A for which Pr [Forge| is non-
negligible, can be used to construct a probabilistic polynomial-time adversary A’ that breaks the
security of the one-time signature with the same probability. The adversary A’ is given a verification
key vk* sampled using KGsig(1™) and simulates the CCA2 interaction to A as follows. A’ begins by
invoking the key generation algorithm on input 1™ and using vk* for forming the public and secret
keys. In the decryption phases, whenever 4 submits a decryption query (vk,yi,...,yx,c1,c2), A’
acts as follows. If vk = vk* and Ver(vk, (y1,...,yk,c1),c2) = 1, then A’ outputs ((y1,...,yx, 1), C2)
as the forgery and halts. Otherwise, A’ invokes the decryption procedure. In the challenge phase,
upon receiving two message mg and mq, A’ chooses b € {0,1} and = € {0, 1}" uniformly at random,
and computes

yi = F (sfk’ ,ZL') Vi € [k]

cio=mp®dh <sql)kf,...,szkk,x>
Then, it obtains a signature ¢, on (y1,. .., Yk, c1) with respect to vk* (recall that A" is allowed to
ask for a signature on one message). Finally, it sends (vk*,y1,..., Yk, c1,c2) to A. We note that

during the second decryption phase, if .4 submits the challenge ciphertext as a decryption query,
then A’ responds with L.

Note that prior to the first decryption query in which Forge occurs (assuming that Forge indeed
occurs), the simulation of the CCA2 interaction is perfect. Therefore, the probability that A’ breaks
the security of the one-time signature scheme is exactly Pr [forge]. The security of the signature
scheme implies that this probability is negligible. [

Claim 4.3. |Pr [Success A Forge|] — 3| is negligible.
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Proof. Given a probabilistic polynomial-time adversary A for which ‘Pr [Success A Forge| — %‘ is
non-negligible, we construct a probabilistic polynomial-time predictor P that breaks the security
of the hard-core predicate h. That is,

1
Pr[P(1", F(s1,2),..., F(sk,x),81,...,8k) = h(s1,..., 8k, x)] — 3

is non-negligible, where s «— G(1"),...,s; < G(1™) independently, and the probability is taken
over the uniform choice of z € {0,1}", and over the internal coin tosses of both G and P.

For simplicity, we first construct an efficient distinguisher A’ which receives input of the form
(1™, F(s1,2),...,F(sk,x),s1,...,8¢) and a bit w € {0,1} which is either h(si,..., sk, z) or a uni-
formly random bit, and is able to distinguish between the two cases with non-negligible probability.
The distinguisher A’ acts by simulating the CCA2 interaction to A. More specifically, on input
(1™ Y1, Yk, S1,- - -, Sk) and a bit w, the distinguisher A’ first creates a pair (PK, SK) as follows.

It samples (vk*, sk*) « KGgig(1™), where vk* = vk} o --- o vk} € {0,1}*, and for every i € [k] sets

sM — 5; and samples (s;_ka,tdl_ka) — G(1™). Then, A’ sets

PK = ((s?,s%) e (sg,s,lg))

SK = (vk*,td}‘”’q,...,td,lc‘”’“'?> ,

and sends PK to A. In the decryption phases, whenever A submits a decryption query of the
form (vk,y1,..., Yk, c1,c2), A acts as follows. If vk = vk* and Ver(vk, (y1,...,yx,c1),c2) =1 (i.e.,
the event Forge occurs), then A" halts. Otherwise, A’ invokes the decryption procedure. In the
challenge phase, given two messages mgy and my, A’ chooses a random bit b € {0,1} and replies
with the challenge ciphertext

*
¢ = (Uk 7y1a"'7yk761702) )

where ¢; = my ® w, and cg = Sign(sk*, (y1,...,Yk,c1)). We note that during the second decryption
phase, if A submits the challenge ciphertext as a decryption query, then A’ responds with L. At
the end of this interaction A outputs a bit ¢'. If b’ = b then A’ outputs 1, and otherwise A’ outputs
0.

In order to compute the advantage of A" in distinguishing between h(sq, ..., sk, z) and a uni-
formly random bit, we observe the following:

1. If w is a uniformly random bit, then the challenge ciphertext in the simulated interaction is
independent of b. Therefore, the probability that A" outputs 1 in this case is exactly 1/2.

2. If w = h(s1,...,sk,x), then as long as the event Forge does not occur, the simulated in-
teraction is identical to the CCA2 interaction (a formal argument follows). Therefore, the
probability that A’ outputs 1 in this case is exactly Pr [Success A Forge|.

Note that the only difference between the CCA2 interaction and the simulated interaction
is the distribution of the challenge ciphertext: In the CCA2 interaction the value vk in the
challenge ciphertext is a randomly chosen verification key, and in the simulated interaction
the value vk in the challenge ciphertext is taken from the secret key. In what follows we
claim that as long as the event Forge does not occur, the distribution of vk in the challenge
ciphertext is identical in the two cases.

Formally, denote by vk, ..., vk, the random variables corresponding to the value of vk in A’s
decryption queries (without loss of generality we assume that A always submits ¢ queries,
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and that the signature verification never fails on these queries). In the CCA2 interaction,
as long as the event Forge does not occur, it holds that the verification key used for the
challenge ciphertext is a random verification key with the only restriction that it is different
than vky,...,vk,. In the simulated interaction, given that vk* ¢ {vky,...,vk,}, we claim
that from A’s point of view, the value vk* is also a random verification key which is different
than vki,...,vk,. That is, each vk* ¢ {vki,...vk,} produces exactly the same transcript.
Indeed, first note that the public key is independent of vk*. Now consider a decryption query
(vk,y1,..., Yk, c1,c2) for some vk € {vki,...,vk,}. For any vk* # vk, if y1,...,y; have the

same preimage z, then the decryption algorithm will always output ¢y & h (sqfkl, . ,szkk, .CE)

In addition, for any vk*™ # vk, if y1, ..., yr do not have the same preimage, then the decryption
algorithm will always output L.

The above observations imply that
‘Pr [A' outputs 1 | w = h(sq,... ,sk,a:)] —Pr [A’ outputs 1 | w is randorn”

= |Pr [Success A Forge| — %

A standard argument (see, for example, [16, Chapter 3.4]) can be applied to efficiently transform
A’ into a predictor P that predicts h(si,..., sk, x) with the same probability. [

5 The Full-Fledged Construction

In this section we present a more generalized variant of the encryption scheme presented in Section
4. The construction is based on the following ingredients:

1. A collection F = (G,F,F~1) of injective trapdoor functions which is secure under a Cj-
correlated product, where Cy can be any input distribution with the following property: Any
(z1,...,7k) in the support of Cr(1™) can be reconstructed given any t = (1 — €)k entries
from (z1,...,xx), for some constant 0 < € < 1. The simplified construction from Section 4
represents the case t = 1.

Specifically, our scheme uses a hard-core predicate h : {0,1}* — {0,1} for Fj with respect to
Ci. That is, we assume that for any probabilistic polynomial-time predictor P it holds that

1
Pr[P(1", F(s1,21)y. -, F(Sk,Tk),81,- -, Sk) = h(S1, -+, Sk, X1y .., T)] — B
is negligible in n, where the probability is taken over the choices of s; «— G(1"),..., s, <
G(1™), (z1,...,x) < Cx(1™), and over the internal coin tosses of P.

2. An error-correcting code ECC : ¢ — ¥¥ with distance ¢ and polynomial-time encoding.

3. A strongly-unforgeable one-time signature scheme (KGsig, Sign, Ver). For simplicity we assume
that verification keys are elements of ¢ (we implicitly assume the existence of any injective
mapping from the set of verification keys to X). As mentioned in Section 4, it is possible to
apply a universal one-way hash function to the verification keys to improve the efficiency of
the scheme.
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The following describes the encryption scheme given by the triplet (KG, E, D).

e Key generation: On input 1™ the algorithm invokes G(1™) for k- |X| times independently to
obtain k-|X| descriptions of functions from F denoted {s{} o ---, {57}, ¢y, together with the
corresponding trapdoors {td{} cs,...,{td}}, os.- Then, it samples (vk*, sk*) « KGsig(1"),
and outputs the pair (PK, SK) defined as

PK = ({sclf}o-ez geeey {Sg}UEZ)
SK = (’U]{/’*7 {td({}aez\{af} ge ey {tdg}o.ez\{o-:}> )

where ECC(vk*) = 0% 0--- 00} € XF.

e Encryption: On input a message m € {0,1} and a public key PK, the algorithm samples
(vk,sk) < KGgig(1™) and (z1,...,x) < Cr(1™). Then, it computes ECC(vk) = o1 0--- 00y,
and outputs ¢ = (vk,y1,..., Yk, c1,c2) where

yi = F(s],z;) Vie k]
co=m@h(s]', ..., s, w, ..., x)

c2 = Sign (sk, (Y1, ..., Yk, c1))

e Decryption: On input a ciphertext ¢ = (vk,y1,...,Yyk,c1,c2) and a secret key SK, the
algorithm acts as follows. If vk = vk* or Ver(vk,(y1,...,yk,c1),c2) = 0, it outputs L.
Otherwise, let ECC(vk) =01 0--- 00y, and the algorithm picks some distinct i1, ..., € [k]
for which o; # o for every i € {iy,...4t}. It computes

Ty = F_l (td;f;l 5 y”Ll)

T = F_l (td:btyylt) 5

and uses the values (i1, %;,), ..., (it,z;,) to reconstruct the unique tuple (z1,...,zx) in the
support of Ci(1™) which is consistent with (i1, x;,),..., (it, ;). Finally, if for every j € [k]
it holds that y; = F (s?j,xj), then it outputs ¢1 & h(s7',..., s ", x1,...,xx). Otherwise, it
outputs L.

The following theorem establishes the security of the scheme (KG, E, D). We note that the
formal proof is almost identical to that of Theorem 4.1, and below we point out the required
modifications.

Theorem 5.1. Assuming that F is secure under a Cy-correlated product, and that the signature
scheme (KGsig, Sign, Ver) is one-time strongly unforgeable, the encryption scheme (KG, E, D) is
CCA2-secure.

Proof. Given a probabilistic polynomial-time CCA2-adversary A, we denote by Forge the event in
which for one of A’s decryption queries (vk,yi, ..., Yk, c1,c2) during the CCA2 interaction it holds
that vk = vk* (where vk* is given in the secret key) and Ver(vk, (y1,...,Yk,c1),c2) = 1. As in the
proof of Theorem 4.1, we first argue that the event Forge has a negligible probability due to the
security of the one-time signature scheme. Then, assuming that the event Forge does not occur,
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we construct a probabilistic polynomial-time algorithm P that predicts the hard-core predicate h
while preserving the advantage of A.

We denote by Success the event in which A successfully guesses the bit b used for encrypting
the challenge ciphertext. Then, the advantage of A in the CCA2 interaction is bounded as follows:

1 1

‘Pr [Success| — 2‘ = ‘Pr [Success A Forge] + Pr [Success A Forge| — 2‘
_— 1
< Pr[Forge] + ’Pr [Success A Forge| — 2‘

Proving that Pr[Forge| is negligible is essentially identical to the proof of Claim 4.2, which uses
A to break the security of the signature scheme. Proving that ‘Pr [Success A Forge| — %‘ is al-
most identical to the proof of Claim 4.3, which uses A to guess that hard-core predicate h.
The only technical difference is in arguing that whenever the event Forge does not occur and

w = h(s1,...,8k,21,-..,2k), the simulated interaction is identical to the CCA2 interaction. The
argument, however, is still very similar, and is based on the fact that any decryption query in which
vk is different than vk* does not reveal any information on vk*. [

6 A Black-Box Separation

In this section we show that there is no fully-black-box construction of lossy trapdoor functions
(with even a single bit of lossiness) from injective trapdoor functions that are secure under correlated
products. We show that this holds for the seemingly strongest form of correlated product, where
independently chosen functions are evaluated on the same input (i.e., we consider the uniform
k-repetition distribution).

Our proof consists of constructing an oracle O relative to which there exists a collection of
injective trapdoor functions that are permutations secure under a correlated product®, but there
are no collections of lossy trapdoor functions. In what follows, we describe the oracle O, and show
that it breaks the security of any collection of lossy trapdoor functions.

The oracle. The oracle O is of the form (7,Sam7), where 7 is a collection of trapdoor permu-
tations, and Sam” is an oracle that samples random collision. Specifically, Sam receives as input
a description of a circuit C' (which may contain 7-gates), chooses a random input w, and then
samples a uniformly distributed w’ € C~1(C(w)).

We now explain how exactly Sam samples w and w’. We provide Sam with a collection of
permutations F, where for every possible circuit C' the collection F contains two permutations fé
and f2 over the domain of C. Given a circuit C : {0,1}™ — {0,1}™) for some m and £(m), the
oracle Sam uses f1 to compute w = f%(0™). Then, it computes w’ = f2(t) for the lexicographically
smallest ¢ € {0,1}™ such that C(f2(t)) = C(w). Note that whenever the permutations f and
f(% are chosen uniformly at random, and independently of all other permutations in F, then w
is uniformly distributed over {0,1}™, and w’ is uniformly distributed over C~*(C(w)). In the
remainder of the proof, whenever we consider the probability of an event over the choice of the
collection F, we mean that for each circuit C, two permutations f and f2 are chosen uniformly
at random and independently of all other permutations. A complete and formal description of the
oracle is provided in Figure 1.

5These functions are in fact enhanced trapdoor permutations, but we note that this is not essential for our result.
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On input a circuit C : {0,1}™ — {0,1}¥("™), the oracle Sam™% acts as follows:
1. Compute w = f&(0™).
2. Compute w’ = fZ(t) for the lexicographically smallest ¢ € {0,1}™ such that C(f2(t)) = C(w).
3. Output (w,w’)

Figure 1: The oracle Sam.

Distinguishing between injective functions and lossy functions. The oracle Sam can be
easily used to distinguish between the injective mode and the lossy mode of any collection of (n, 1)-
lossy functions. Consider the following distinguisher A: given a circuit C' (which may contain
T-gates”), which is a description of either an injective function or a lossy function (with image size
at most 2"~ 1), A queries Sam with C. If Sam returns (w,w’) such that w = w’, then A outputs 1,
and otherwise A outputs 0. Clearly, if C' corresponds to an injective function, then always w = w’
and A outputs 1. In addition, if C' corresponds to a lossy function, then with probability at least
1/4 it holds that w # w’, where the probability is taken over the randomness of Sam (i.e., over the
collection F).

Outline of the proof. For simplicity we first consider only two permutations. Then, we extend
our argument to more than two permutations, and to trapdoor permutations. Our goal is to
upper bound the success probability of circuits having oracle access to Sam in the task of inverting
(m1(x), m2(z)) for random permutations 7y, € II,, and a random x € {0,1}" (where I, is the set
of all permutations over {0,1}"). We prove the following theorem:

Theorem 6.1. For any circuit A of size at most 240 and for all sufficiently large n, it holds that

™ T 1
P T, 70 A7r1,7r2,Sam L2 e i| < — .
* g (o) ma(a) =] < o7
Consider a circuit A which is given as input (71 (x), m2(x)), and whose goal is to retrieve x. The
idea underlying the proof is to distinguish between two cases: one in which A obtains information
on z via one of its Sam-queries, and the other in which none of A’s Sam-queries provides information
on x. More specifically, we define:

Definition 6.2. A Sam-query C produces a x-hit if Sam outputs (w,w’) such that some m1-gate
or ma-gate in the computations of C(w) or C(w') has input x.

Given 7y, m, F, a circuit A, and a pair (71 (x), m2(x)), we denote by SamHIT,, the event in which
one of the Sam-queries made by A produces a z-hit. From this point on, the proof proceeds in two
modular parts. In the first part of the proof, we consider the case that the event SamHIT, does not
occur, and generalize an argument of Haitner et al. [21] (who in turn generalized the reconstruction
lemma of Gennaro and Trevisan [12]). We show that if a circuit A manages to invert (1 (x), m2(x))
for many x’s, then m; and me have a short representation given A. This enables us to prove the
following lemma;:

Lemma 6.3. For any circuit A of size at most 27 and for all sufficiently large n, it holds that

Pr «)mp.7 A’Tl’”’samﬂlﬂ’f(ﬂl(a?),ﬂg(w)) =z A SamHITw} <27n/8

w—{0,1}7

"We allow the circuits given as input to Sam to contain 7-gates, but we do not allow them to contain Sam-gates.
This suffices, however, for ruling out fully-black-box constructions.
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In the second part of the proof, we show that the case where the event SamHIT, does occur
can be reduced to the case where the event SamHIT, does not occur. Given a circuit A that tries
to invert (m(x),ma(x)), we construct a circuit M that succeeds almost as well as A, without M’s
Sam-queries producing any z-hits. This proof is a simpler case of a similar argument due to Haitner
et al. [21]. The following theorem is proved:

Lemma 6.4. For any circuit A of size s(n), if
1
s(n)

for infinitely many values of n, then there exists a circuit M of size O(s(n)) such that

71,70, F

{Amm’sam ((m1(z), m2(x))) = :z:} >

Pr 1,79, F
z—{0,1}"

Pr nym,# [Mm’m’samﬂwz’f((Wl(x),Wg(x))) =z A SamHITm} >

z+—{0,1}"™ s(n)5

for infinitely many values of n.

In what follows we show that Theorem 6.1 in obtained as a straightforward corollary of Lemmata
6.3 and 6.4. In Section 6.1 we prove Lemma 6.3, and in Section 6.2 we prove Lemma 6.4. Finally,
in Section 6.3 we extend Theorem 6.1 to consider more than two permutations and to consider
trapdoor permutations.

Proof of Theorem 6.1. Assume towards a contradiction that there exists a circuit A of size at
most s(n) = 2% such that

S 7,7, F 1
Pr g [AT S (o) ma() = 1] 2 o

for infinitely many values of n. Lemma 6.4 states that there exists a circuit M of size O(s(n)) < 27
such that

1 j—
s(n)>  2on/8

Prosyogr [MPFSm T (o (0) my(a)) = A SamHIT,] >

z—{0,1}"

for infinitely many values of n. This, however, contradicts Lemma 6.3.

6.1 The Reconstruction Lemma

In this section we prove Lemma 6.3. The idea underlying the reconstruction argument is the
following: Fix any two permutations m and . If a circuit A manages to invert (m(z), m2(z)) on
some set of z’s, then given the circuit A, the permutations 7y and ms can be described without
specifying their value on a relatively large fraction of this set.

Claim 6.5. For every m,me € I,,, F, circuit A of size s and integer n, if

7,70, F

Prx%{()’l}n |:A7T1,7r2,Sam (m(z),m(z)) =2 A Wx} > €,

then, given F and A, the permutations w and mw can be described using log (2:) + log (22”) +
2log((2" — a)!) bits, where a > 2™/ (2s7).
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Proof. Denote by I C {0,1}" the set of points z € {0,1}" on which A inverts (mi(x),ma(z))
with no z-hits. We claim that there exists a relatively large set X C I, such that m; and my are
completely determined by F, A, X, Y = {(mi(x), m2(z)) : z € X}, and the values of m; and 73 on
{0,1}™\ X.

We define the set X via the following sequential process. Let P = {(m1(x),m2(x)) : © € I}.
Initially X is empty, and we remove the lexicographically smallest element (y1,y2) = (71 (x), m2(x))
from P and insert x into X. Then, we follow the computation ATz, SamTLT2 (y1,y2), denote by
C1,...,Cqy the circuits on which A queries Sam, and by (w1, w}),.. ., (wg, wy) the corresponding
answers. In addition, denote by x1, ..., x; the inputs of all the 71-gates and ma-gates in the compu-
tations of C1(w1), C1(wy), ..., Cq(wy), Cy(wy) and the inputs of all A’s direct queries to 71 and to
mp. We now remove (mi(x1),m2(21)),. .., (m1(zq), m2(24)) from the set P (note that these are not
necessarily in the set P). Then, remove the lexicographically smallest element from the remaining
elements of P, and continue in the same manner until the set P is emptied.

Note that at each iteration one element is inserted into the set X, and at most s>+ s+ 1 < 2s?
elements are removed from the set P (the number ¢ of Sam-queries made by A is at most s, and in
each circuit given by A as input to Sam the number of 71-gates and ma-gates is again at most s. In
addition, A may directly query 71 and 7o on at most s inputs). Since the set P initially contains
at least €2" elements, then when the process terminates we have that | X| > €2"/(2s?).

We now claim that m; and m are completely determined by F, A, X, Y = {(mi(x),m(x)) :
x € X}, and the values of m; and 7o on {0,1}" \ X. More specifically, we show that the values
{(m1(x),m2(x)) : © € X} can be reconstructed. For each (y1,y2) € Y taken in lexicographical
increasing order, we reconstruct * such that (yi,y2) = (m1(z*), m2(z*)) by simulating (71, 7o and
Sam™ ™7 in the computation A”l’”’samwl’wzf(yl, y2). Note that if the simulation is correct, then
A will output z*. On input a query C; with two corresponding permutation féi, féi c F, we
simulate Sam as follows:

1. Let w; = f¢ (0™).

2. Compute C(w;). It is not immediately clear that we can indeed compute this value without
full access to m and ms since the circuit C' may contain 7i-gates and mo-gates. We need to
show that we can answer of the m-queries and 7me-queries in this computation C(w;). This
computation may involve four possible m1-queries (an identical argument holds for me-queries):

e m-query on = € {0,1}™\ X. The value is explicitly given.

e m-query on x € X for which (m1(z), m2(2)) <iex (y1,¥y2). The required value was already
reconstructed.

e mi-query on x € X for which (mi(x), m2(2)) >ier (y1,y2). We claim that this is impos-
sible. Assume towards a contradiction that such a 7i-query is made. This implies that
both z € X and z* € X (recall that 2* is such that (y1,y2) = (w1 (z*), m2(2*))). Consider
the process which defined the set X. At the beginning of this process we had that both
(m1(x), m2(xz)) € P and (71 (x*), ma(2*)) € P, and in each iteration we chose the minimal
element from the remaining elements in P. Since (m1(x), m2(x)) >ier (m1(2*), m2(2*)),
then we chose (m(z*),m2(x*)) before (m(z),m2(z)). This implies, however, that we
then removed (71 (x), m2(z)) from P (since a mi-query on z is made in the computation
of C(w;)). Thus, it is not possible that z € X.

e mi-query on x € X for which (mi(z), m2(z)) = (y1,y2). Impossible, otherwise the Sam-
query C; produces a z-hit.

3. Let w} = fa (t) for the minimal ¢ such that Cz(fa (t)) can be computed (i.e., all m-queries
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and ma-queries can be answered) and its resulting value is C;(w;). This value can be computed
for the same reason that C;(w;) can be computed.

4. Output (w;,w}).

We also have to show that we can answer all of A’s direct 7j-queries (an identical argument
holds for mo-queries). Whenever A asks for the value of 7; on some value x, we act as follows: if
this value is already known (i.e., explicitly given or already reconstructed), then we output ()
to A. Otherwise, if the value is not known, we claim that it must be that x = z*, and in this case
we have successfully reconstructed the desired value and halt. Indeed, there are four possible such
queries:

e m-query on z € {0,1}"\ X. The value is explicitly given.

e mi-query on x € X for which (m1(z),m2(x)) <jex (y1,y2). The required value was already

reconstructed.

e mi-query on z € X for which (71 (x), m2(2)) >iex (y1,y2). This is impossible (as above).

e mi-query on z € X for which (m(z), m2(z)) = (y1,y2). In this case z = x*.

Thus, we can successfully reconstruct the values of w1 ad w2 on the set X. Finally, note that
describing the sets X and Y, and the values of m; and 72 on the set {0,1}"\ X requires log (\%;LI) +

log (y)) + 2log((2" — | X|)!) bits. _
Now we are able to prove the following lemma, which is a stronger form of Lemma 6.3.

Lemma 6.6. For every F, circuit A of size at most 27 and for all sufficiently large n,

Pray mpe, [A”l’”’samﬂl’ﬂzj(ﬂl(x),7r2(x)) =z A SamHITw] <98

z—{0,1}71
Proof. Let e = 27™/7 then Claim 6.5 implies that for every circuit A of size s < 2/7 and for every
collection F of permutations, the fraction of pairs of permutations (7, m2) € II,, x II,, for which

Proc oy |[A™ S (1) (2), ma(2) =@ A SamHIT, | > 277

is at most

M) YN —a)))?
(N1)2 ’

where N = 2" and a > 277 . N/(2s?) > N*7/2. Using the inequalities a! > (a/e)® and
(x/y)Y < (;) < (xze/y)Y, we can bound the above expression as follows
W —an? ()
(N1)2 (M) (al)?
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for sufficiently large N. Therefore,

AT ,m2,Sam71: 72,7

(y) =2 A SamHIT,| <2 NV7/2 4 o=n/T < 9-n/s

PI‘ 71,moIn
xz—{0,1}"

6.2 Avoiding x-Hits

In this section we prove Lemma 6.4. Given a circuit A of size s(n) such that

Pr rymyr [ATTS (0 (0) @) = o] 2
e {0,1}n s(n)
we would like to construct a circuit M which is almost as successful as A, but its Sam-queries do
not produce any z-hits. Recall (Definition 6.2), that we say that a Sam-query C' produces a z-hit if
Sam outputs (w,w’) such that some 7-gate or m-gate in the computations of C(w) or C'(w') has
input z. In addition, we denoted by SamHIT, the event in which at least one Sam-query produces
a z-hit.

Description of M. On input (y1,ys2), the circuit M feeds A with (y1,y2) as its input, and
delivers all of A’s queries to Sam and to 7 and me with the following exception: for each Sam-query
C: {0,1}™ — {0, 1}*(™) that A submits, M first chooses a random z € {0,1}" and computes C(z).
If some 71-gate or me-gate in the computation of C'(z) has input = such that (y1,y2) = (m1(z), m2(z))
then M outputs x and halts. Otherwise, M submits C' to Sam and delivers the result (w,w’) back
to A. If M did not halt before the termination of A’s computation, then it outputs the output of
A and halts.

Proof of Lemma 6.4. The circuit M does not make any additional Sam-queries other than those
made by A. Therefore, if A inverts (71 (x), m2(x)) without producing any z-hits in its Sam-queries,
then so does M. Formally, if

T, T, S HIT 1
Pr ey [ATS T (0 (0) o) =2 A SamIT,] >
i 2s(n)
then 1
P 1,70, F Cam T
e [M P SamTeE 0y o)) = A samHsz} o

Thus, for the rest of the proof we focus on the more interesting case, in which A does produce an
2z-hit. That is, we assume that

T, 70, 1

Pr e [ATTS (0 (1) 7o (1) =2 A SamHIT,] > . (6.1)

e {0,1}7 2s(n)
We now fix 71, m and = € {0,1}", and prove the following lemma:
Lemma 6.7. For every mi, mo and x € {0,1}", if
1 ,m2,Sam™ 1727 1
Prr [A 1, (mi(z), m(2)) =z A SamHlTx} > 50 (6.2)
s(n

then

71,70, F

Prr [M’Tl’”’sam (mi(x), m(z)) =2 A SamHITa;}

>
= 10245(n)?
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Proof of Lemma 6.7. Fix m, mp and = € {0,1}", and let s = s(n). We introduce the following
conventions and notations:

e Without loss of generality, the circuit A does not query 1 or mo directly®.

e We denote by C1,...,C; the random variables corresponding to A’s Sam-queries. In addi-
tion, we denote by (w1,wy), ..., (wy,wy) the random variables corresponding to the answers
returned by Sam.

e Given a circuit C' and an input w, we say that w produces a (C,x)-hit if some m1-gate or
mo-gate in the computation of C'(w) has input x.

e For every 1 < i < g we denote by «; the probability that w; produces a (C;, z)-hit (note that
this is exactly the same probability that w] produces a (Cj, z)-hit). Formally,

a; = Pry,, [w; produces a (Cj, z)-hit]
e For every 1 < i < ¢, we denote by JUMP; the event that o; > 1/(32s?), and let JUMP =
7 JUMP;.
=1 1

Equation 6.2 states that A has a noticeable probability in producing a z-hit. Notice that in
this case the event JUMP must occur with noticeable probability. If JUMP does not occur, then
the a;’s are too small in order to produce a z-hit with noticeable probability.

Claim 6.8. Prz [SamHIT, | JUMP]| < 1/(16s).

Proof. Assuming that the event JUMP does not occur, that is a; < 1/(32s?) for every 1 <i < g,
it holds that

q
Prr [SamHITI ‘ JUMP] < ZPr}- [wi or w; produce a (Ci,:v)—hit]

=1
q
1 1
S Q2SS e T g

|
As a result of the previous claim, we now show that the event JUMP has noticeable probability.

Claim 6.9. Prr [JUMP] > 1/(16s).

Proof. On one hand, Equation 6.2 implies in particular that

1
Prr[SamHIT,] > — .
rr [Sam ]_83

However, on the other hand, Claim 6.8 implies that
Prg [SamHIT,] < Prz [JUMP] + Prg [SamHITm ‘ JUI\/IP]

1
< Prs [JUMP] + — .
< Prr| T
Therefore,
PrrJUMP] > = — 1 > L
r = 8s 165 — 165

8The oracle Sam can be modified to output (w,w’, C(w)), and therefore any 71-query and ma-query can be replaced
by a single Sam-query by creating a circuit C' that ignores its input and always outputs m1(z) or m2(x) for some z.
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Assume now that the event JUMP occurs, and denote by ¢* the minimal 1 < i < ¢ for which
JUMP; occurs. When A submits the query Cj«, then M has probability a;« > 1/(32s%) to retrieve
x without submitting the query to Sam. In addition, since ¢* is the minimal 1 < i < ¢ for which
JUMP; occurs, then with high probability Sam’s answers to C1q,...,Cj+_1 do not produce an z-hit.
The following claim concludes the proof of Lemma 6.7.

Claim 6.10. Pry |M™m2:Sam™ ™27 (0 0y () = A SamHITx] >1/(1024s°).
Proof. Given that the event JUMP occurs, denote by ¢* the minimal 1 < ¢ < g for which JUMP;
occurs. Whenever the event JUMP occurs, we consider the following events:

e None of the queries C1,...,Cj+_1 produces a x-hit. Since for every such query C; the event
JUMP; does not occur, then, exactly as in the proof of Claim 6.8, the probability of this event
is at least 1 — 1/(16s).

e Given Cj«, M samples a random z which produces a (Cj+, z)-hit. Since JUMP;« occurs, the
probability of this event is ;= > 1/(32s?).

Note that these two events are independent (since the permutations in F are chosen independently).
Putting these together, we obtain

—_— S 1 1
Prg [M’”’“Q’Sa"‘ VT ey (x), ma(2)) =2 A SamHIT,| > Pry [JUMP] - (1 — )

165 ) 3252
1 1 1
> L.
~ 16s 2 32s2
1
>
= 102453

This concludes the proof of Lemma 6.7. We now turn to complete the proof of Lemma 6.4 using
a standard averaging argument. Recall that we were left to deal with the case that

P 7,7, F 1
Pr oz [ATTS (), m(e)) =2 A SamHIT| 2 5oy

Let

_ . T ,m2,Sam™1: 72,7 — > 71
T {(:U,m,m).Pry: [A (1 (z), mo(z)) =2 A SamHm} > SS(n)}

Then Pry 7, ., [(z,71,m2) € T] > 1/8s(n), and Lemma 6.7 implies that for every such (z, 71, m2) € T
we have

1,70, F SammHIT
Pry [M”l’”’saml M mi(e), ma(z) =2 A SamH'Tr} = 1024s(n)?

Therefore

Pr )y [M’flvmsé‘m”l’”z’f((m(x),m(a;))):a; A SamHITx}

we{0,1}n
1
> Pr myn el ——=
Z P iy (@mom) €11 q5 e
1 1
> .
~ 8s(n) 1024s(n)3
< 1
~s(n)®
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6.3 Extensions of Theorem 6.1

In this section we extend Theorem 6.1 to consider more than two permutations and to consider
trapdoor permutations.

More than two permutations. The proof for the case of k > 2 permutations is obtained
as a direct generalization. Recall that the proof consists of two parts: the first part proves the
reconstruction lemma, and the second part shows that x-hits can be avoided. We note that the
second part of the proof is oblivious to the number of permutations, and therefore the proof of
Lemma 6.4 remains exactly the same. The first part of the proof is not oblivious to the number of
permutations, but can be easily adapted as follows.

The exact same proof of Claim 6.5 easily generalizes to consider permutations 71,..., 7. In
this case, given F and A, the permutations 71, ..., 7, can be described using log (2:) + log (2Zn) +
klog((2™ — a)!) bits, where a > €2"/(2s*). Then, in the proof of Lemma 6.6 the fraction of
permutations 71, ..., 7, on which A successfully inverts is at most

(DD —at <4>
(N1)k — \ N7 ’

where N = 2", and a > 27/7- N/(2s%) > N*/7/2. As long as k < cn, for some constant 0 < ¢ < 1,
then this fraction is at most 2~™/7, and the exact same argument goes through.

Trapdoor permutations. The extension to trapdoor permutations is almost identical to the
corresponding extension of Haitner et al. [21], and therefore we only provide here the intuition.
The basic idea in extending the result for trapdoor permutation is in applying Theorem 6.1 twice.
Consider a collection 7 = (G,F, F‘l) of trapdoor permutations over {0,1}", and let A be a
circuit which successfully inverts the correlated product of two independently chosen trapdoor
permutations. That is, we independently sample two pairs (pki,td;) < G(1") and (pka,tds) «—
G(1™), sample a uniformly distributed = € {0,1}", and A given input (F'(pki, x), F'(pka, x)) outputs
x.

We consider now two cases. In the first case, during A’s computation the procedure F~! is
queried with either td; or tdy. Without loss of generality assume that F'~! is queried with td;. In
this case the circuit A can be used to invert a random permutation 7 = G on a random input td;.
In the second case, the procedure F'~! is not queried with wither one of td; and tds. In this case
the circuit A can be used to invert the correlated product (m(x), m2(z)), where m = F(pki,-) and

o = F(pka, ).
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