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Abstract. We present efficiently computable homomorphisms of the groups G2 and GT for
pairings G1 × G2 → GT . This allows exponentiation in G2 and GT to be accelerated using
the Gallant-Lambert-Vanstone method.
Keywords: pairings.

1 Introduction

Let r be a prime and let G1, G2 and GT be cyclic groups of order r with a bilinear pairing

e : G1 ×G2 → GT .

In practice G1 is a set of points on some elliptic curve E over Fp and G2 is a set of points on a
twist E′ of E over some field Fpe . The group GT is a subgroup of F∗pk , where k is the embedding
degree, and is usually represented in a compressed form by using traces or algebraic tori.

Pairings over ordinary elliptic curves suffer in comparison to those over supersingular curves, in
that a larger group G2 is often required for one of the two parameters to the pairing. The quadratic
twist is always an option if k is even, so e = k/2 and for the case k = 2 the quadratic twist is again
over the base field. There is a family of pairing-friendly curves [7] of embedding degree k = 6 where
the sextic twist applies, and again in this case e = k/6 = 1. However for most other cases of interest
e > 1. For example for the BN curves, even though the sextic twist applies, G2 is over the field Fp2 .
This suggests that manipulations of points over G2 in some pairing-based protocols are in general
likely to be more expensive than those over G1, and perhaps much more expensive. Here we will
demonstrate that this is not necessarily the case.

Gallant, Lambert and Vanstone (GLV) [9] gave a method to speed up operations in groups
when a suitable group homorphism is available. The main result of the paper is to get such a group
homomorphism from the Frobenius maps in Fpk . This particularly speeds up operations in G2, but
also has implications for GT .
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1. To speed up arithmetic in G2 and GT using the GLV method.
2. To show that simpler GLV decompositions of an exponent are often possible for pairing friendly

curves (i.e., not requiring lattice reduction as a precomputation), especially for Ate friendly
curves.

3. Remark that parameters for Ate-friendly curves give rise to good parameters for XTR and torus
based cryptography.

4. Note that our methods can be used to obtain larger equivalence classes for the Pollard rho
method.

We now outline the paper. Sections 2 and 3 recall basic facts about pairings and the GLV
method. Section 4 analyses the methods of Stam and Lenstra when applied in the target group GT

for pairing-based cryptography. Section 5 contains our main result, namely the construction of a
group homomorphism on G2. Section 6 studies some specific examples. Section 7 summarises the
costs and benefits of the GLV method. Sections 8 and 9 mention some consequences for trace/torus
cryptography and the difficulty of the DLP in G2, and we conclude in section 10.

2 Elliptic Curves and Pairings

Let E be an elliptic curve over Fp where p is prime. Let n = #E(Fp) be the number of points on
the curve, where n = p + 1 − t, and t is the trace of the Frobenius. Let r | n be a large prime.
The embedding degree is the smallest integer k such that r | (pk − 1). We assume that no proper
subfield of F∗pk contains elements of order r.

Let G1 = E(Fp)[r] and let GT be the subgroup of F∗pk of elements of order r. Denote by πp

the p-power Frobenius map on E. Define G2 to be the subgroup of E(Fpk)[r] such that πp acts
as multiplication by p. We assume we have a non-degenerate bilinear pairing (such as the ate
pairing [11])

e : G1 ×G2 → GT .

Following Section 4 of [11] we represent G2 as a group of points on a twist E′ of E. This
means there is an isomorphism φ : E′ → E with field of definition Fpd . It is necessary that the
automorphism group Aut(E) contain an element of order d. Hence the only non-trivial possibilities
are d = 2, d = 4 if j(E) = 1728 (i.e., CM discriminant D = −4) and d = 3, 6 if j(E) = 0
(CM discriminant D = −3). We assume d | k and write k = de. Then G2 = E′(Fpe)[r] and
φ(G2) ⊂ E(Fpk). If r > d then the image of E′(Fpe)[r] under φ does lie in the eigenspace of the
q-power Frobenius on E(Fpk) with eigenvalue p.

For efficient pairing computation, much work has been done to find viable bilinear pairings,
with the maximum degree of Miller loop truncation. Starting with the Duursma-Lee method [6]
and subsequent work by Barreto et al. [3] (in the context of supersingular curves), Hess al. extended
the idea to ordinary elliptic curves with the discovery of the Ate pairing. Now the main Miller loop
in the pairing computation, iterates only lg(t− 1) times, rather than lg(r) times as required by the
Tate pairing. An “Ate pairing friendly curve” is defined as one where t − 1 is as small as possible
compared to r. It has been conjectured that the minimum possible ratio between t − 1 and r is
1/φ(r), and indeed this ideal condition is met by some pairing-friendly families of curves. Recently
Lee, Lee and Park [12] and Vercauteren [20] have shown how to achieve the same level of loop
truncation on curves, even if they are not Ate pairing friendly.

Many families of pairing-friendly curves have been found - see [7] for a survey. The most sought
after curves are those with the minimum value of ρ, which is defined as the rounded fraction
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lg(p)/ lg r. It is relatively easy to find families of curves with ρ ≈ 2, but it is much preferred that
ρ ≈ 1, as this leads to more efficient implementations.

3 The GLV method

Gallant, Lambert and Vanstone [9] introduced a method to speed up general point multiplication
nP in E(Fp)[r]. In its simplest form their method works if, given a point P , one can somehow
have knowledge of a non-trivial multiple of P . This extra information is available if there is an
endomorphism ψ on E defined over Fp such that ψ(P ) = λP . One can compute nP efficiently by
writing n ≡ n0 + n1λ (mod r) with |ni| <

√
r and then performing the double exponentiation

n0P + n1ψ(P ). Decomposing n as n0 + n1λ (mod r) is done by solving a closest vector problem
in a lattice and the Euclidean algorithm can be used to compute a suitable lattice basis, see [9] for
the details. We call this the GLV method.

Double exponentiation algorithms require precomputation and storage, but their efficiency comes
from halving the number of field squarings. One can simultaneously reduce the number of multi-
plications by using window methods, but this adds further precomputation and storage. Another
method to reduce the number of multiplications is to allow signed representations for n0 and n1

and compute their joint sparse form (i.e., such that the signed expansions of n0 and n1 both have
i-th bit equal to 0 with probability approximately 1/2). We refer to Section 9.1.5 of [1] for further
details.

The idea generalises to m-dimensional expansions n ≡ n0 + n1λ + · · · + nm−1λ
m−1 (mod r)

assuming that the powers of λ are sufficiently different modulo r (the typical requirement is that
the endomorphism ψ satisfies a characteristic polynomial of degree > m; see the discussion below).
We call this the m-dimensional GLV method.

The task of decomposing k is again solving a closest vector problem in a lattice, which can be
computed efficiently using Babai’s rounding method if an LLL-reduced lattice basis is precomputed.
More precisely, define the modular lattice

L =

{
x ∈ Zm :

m−1∑

i=0

xiλ
i ≡ 0 (mod r)

}
. (1)

The 2m vectors (0, . . . , 0, r, 0, . . . , 0) and (0, . . . , 0, λ,−1, 0, . . . , 0) generate the (row) lattice L if
gcd(λ, r) = 1. Run LLL on this basis to obtain a new basis. Given an exponent n use the Babai
rounding technique to find a lattice vector x = (x0, . . . , xm−1) close to w = (n, 0, . . . , 0). Define
u = w − x. Then

∑m−1
i=0 uiλ

i ≡ n (mod r) by definition. If the LLL-reduced basis is sufficiently
good then the coefficients ui will be such that |ui| ≈ r1/m. The practical performance of this
approach depends on the particular parameters under consideration.

We remark that there are natural boundaries on the size of m. For example, let r | (p2 − p + 1)
and let ψ be the p-power Frobenius map in the subgroup GT of F∗p6 of order r. Then λ ≡ p (mod r)
satisfies λ6 ≡ 1 (mod r) and one might expect to be able to take m = 6. However, since λ2 ≡ λ−1
(mod r) it follows that n0 + n1λ + n2λ

2 ≡ (n0 − n2) + (n1 + n2)λ (mod r). Therefore the size
of the largest coefficient ni in the 3-dimensional expansion cannot be smaller than the size of the
largest coefficient in the 2-dimensional case.

The original proposal of Gallant, Lambert and Vanstone specifically proposed using the auto-
morphisms of elliptic curves E with j(E) = 0, 1728. Hence it is standard that the GLV method can
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be used to speed up point multiplication in G1 and G2 in the cases for which using twists gives
good compression of G2. In both cases the automorphisms satisfy a characteristic polynomial of
degree 2 with coefficients in {0, 1}, so only the two-dimensional GLV method applies.

4 Using Frobenius to speed up operations in GT

In this case much of the work has already been done by Stam and Lenstra. However here we consider
their results in the context of pairings.

We call the subgroup of F∗pk of order Φk(p) (where Φk(x) is the k-th cyclotomic polynomial) the
‘cyclotomic group’. The group GT of order r is a subgroup of the cyclotomic group in F∗pk . For the
case k = 6, r | (p2 − p + 1) and GT is a subgroup of the well studied ‘XTR subgroup’ of F∗p6 . Also
for the case k = 2, the cyclotomic group is of order p + 1, as used in the LUC crypto system, also
considered by Stam and Lenstra [17].

There are three approaches for efficient arithmetic in cyclotomic subgroups. The simplest ap-
proach is to perform arithmetic using a standard representation for Fpk and to exploit tricks which
arise from elements having order dividing Φk(p) (for example, the fact that the inverse of an element
can be computed efficiently). The other approaches are based on compression of field elements using
traces or algebraic tori. All three methods can be applied for efficient exponentiation in GT (for
example see [10]). The latter two methods are also useful for minimising bandwidth in pairing-based
cryptography.

Stam and Lenstra [18] discuss the first approach. They exploit the fact that elements in the
cylotomic group have some extra properties that do not hold for general elements in Fpk . Specifically
field inversion is a simple conjugation, and thus effectively free, and the field squaring operation can
be significantly cheaper. Also as inversion is free, faster NAF methods of windowing are applicable
[15].

For exponentiation in the XTR subgroup the most efficient method is to use traces. For XTR the
trace is over Fp2 , so the compression is times 3, for LUC the trace is over Fp, and the compression
is times 2. However traces can only be manipulated in limited ways, and for example multiplication
of subgroup elements, if required by a protocol, is non-trivial. When using compression by a factor
of 2 then exponentiating using a torus representation is competitive with LUC [10]. One advantage
of tori is that one can efficiently multiply group elements as well as exponentiate.

In [17] a method for double exponentiation using traces is proposed, for both the LUC and
XTR cases. This is required for example for the application of LUC/XTR to ElGamal-like digital
signature verification schemes. But the authors also point out that the Frobenius endomorphism
can be used to implement a single exponentiation using a variant of the GLV idea (independently
discovered) with their double exponentiation algorithm, and indeed this is the fastest way to do it.
In section 4.4 of [17] it is pointed out that if p mod r ≈ √

r then the 2-dimensional decomposition
of the exponent is particularly easy, and the decomposition can be found at the cost a division and
a remainder. In the sequel we will refer to such a decomposition as “natural”. As we will see, in the
context of pairings, natural decompositions arise quite frequently.

It is apparently non-trivial to extend the double exponentiation of traces to multi-exponentiation
[17], and so if multi-exponentiation is possibly beneficial then we must either use torus methods or
else work in the full F∗pk (see Stam and Lenstra [18]).

Pairings evaluate as elements in GT , often in higher degree cyclotomic fields than those consid-
ered by Stam and Lenstra. Many of the same ideas apply immediately if the embedding degree is
a multiple of 2 or 6. However in the context of pairings, since we know that p and r | n arise in
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the context of an elliptic curve, we know that p = n + t − 1, and so p mod r = t − 1. Fortunately
for us, for many pairing friendly curves |t− 1| is often rather small compared with r, in which case
higher dimensional natural decompositions will also be possible. Application of the Frobenius to an
element x gives us the value of xp ≡ xt−1, so the exponent m can be expressed to the base (t−1) and
multi-exponentiation applied as xm0 .(xp)m1 .(xp2

)m3 . . .. See the examples below for more details.

5 The new homorphism on G2

As described above, the group G2 is a subgroup of E′(Fpe) and there is a group homomorphism
φ : E′(Fpe) → E(Fpk). We now explain how to use the p-power Frobenius on E(Fpk) to get an
efficiently computed group homomorphism on G2.

Lemma 1. Let notation be as above. Denote by πp is the p-power Frobenius map on E. Then
ψ = φ−1πpφ is an endomorphism of E′ such that ψ : G2 → G2. Further, for Q ∈ G2 we have
ψk(Q) = Q and ψ(Q) = pQ.

Proof. Clearly ψ is a morphism from E′ to E′ which fixes the point at infinity. Hence ψ is an
endomorphism of E′.

Let Q ∈ E′(Fpe)[r]. Then φ(Q) ∈ E(Fpk) and, as mentioned in Section 2, we have πp(φ(Q)) =
pψ(Q). Hence Q′ = πp(φ(Q)) lies in the image of E′(Fpe) under φ and so Q′′ = φ−1(Q′) ∈ E′(Fpe).
Define ψ(Q) to be Q′′

Clearly ψk = φ−1πk
pφ = φ−1πpkφ. Since πk

p = 1 on E(Fpk) it follows that ψk(Q) = Q. Finally,
as noted above, πp(φ(Q)) = pψ(Q) and so

ψ(Q) = φ−1πpφ(Q) = φ−1pφ(Q) = pQ.

This completes the proof. ¤

The group homomorphism ψ can be computed efficiently. However, there are cases when this
map is just a familiar homomorphism arising in an unfamiliar way. Our main interest is when our
construction gives something which was not previously used for efficient computation. The following
result shows that if e = 1 then we are just recovering elements of the automorphism group of the
curve.

Lemma 2. If e = 1 then ψ is equal to ρπ′p where π′p is the p-power Frobenius on E′ and where ρ
is an element of Aut(E′).

Proof. By Corollary 2.12 of [16] ψ can be written as ρπp where πp : E′ → E′(p) is the p-power
Frobenius to a Galois conjugate of E′ and ρ : E′(p) → E′ is an isomorphism. In the case e = 1 we
have E′ = E′(p) and so ρ ∈ Aut(E′).

This result shows that our methods give no new result in the case e = 1 (although decomposition
of a random exponent is always simpler than the general case of GLV). The case e > 1 is interesting
as it gives potential for new and improved applications of the GLV method. In particular, we have
homomorphisms which do not come from Aut(E′).

We mention that a similar optimisation for G1 was proposed by Granger, Page and Stam in
Section 4 of [10]. They considered a supersingular elliptic curve E(F3m) and used the fact that
multiplication by 3m on E is given by a simple and easy to compute formula. Since 3m ≡ ±3(m+1)/2−
1 (mod r) they remarked that it is easy to obtain a GLV decomposition in this case.
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6 Examples

Pairing families vary significantly in detail, so the benefits of our methods are best considered on
a case-by-case basis. The first two examples correspond to the case e = 1 and, as explained earlier,
our methods give nothing new in this case. However, it is useful to demonstrate how simple the
GLV decomposition is in these cases.

Example 1. Consider the pairing-friendly family of k = 6, ρ = 2 curves (see Section 6.7 of [7]), with
D = −3 and j(E) = 0

p = 27x4 + 9x3 + 3x2 + 3x + 1 r = 9x2 + 3x + 1 t = 3x + 2

One can construct an elliptic curve E : y2 = x3 + B over Fp having r points. The embedding
degree is 6 and one can identify G2 with E′(Fp) where E′ is the sextic twist of E defined over Fp

(in other words, e = 1).
Since j(E) = 0 the standard GLV method applies immediately to G1. However observe that r

is of the form λ2 + λ + 1, with λ = 3x. Therefore the standard automorphism ρ(x, y) = (ζ3x, y)
applied to a point P = (x, y), gives us the point λP , and presents us with a natural 2-dimensional
decomposition of a point multiplier into its quotient and remainder modulo 3x.

Now consider our new homomorphism ψ. let T = t − 1 = 3x + 1. For Q ∈ G2 the point
multiplication by n < r can be written as n0Q + n1ψ(Q) using the simple decomposition n =
n0 +Tn1, where n0 and n1 will (almost certainly) be of the same length in bits, and half the length
of r. It is notable that the two approaches are not identical, though they yield essentially the same
results.

Exponentiation in GT can use the fast trace methods of [17]. However the decomposition is
again simple to obtain, as p mod r = 3x + 1 ≈ √

r.

Example 2. Miyaji, Nakabayashi and Takano [14] gave parameters for curves of prime order r over
Fp with embedding degree 6. These curves are ideal, in the sense that ρ = 1.

p = x2 + 1 r = x2 − x + 1 t = x + 1

One major drawback of the MNT method is the necessity of solving Pell equations to generate
the curves. Furthermore, certain CM discriminants cannot be used. Indeed, it is not possible to
generate a suitable curve with j(E) = 0. In the more general setting we have Aut(E) = {1,−1} and
the GLV method cannot usefully be applied. The best representation for G2 is then as a subgroup
of E′(Fp3) where E′ is a quadratic twist of E which is defined over Fp.

In this case nothing can be done for G1, but E′ is now a ‘subfield curve’ so it is natural to use
the Frobenius map π′p on E′ to speed up arithmetic on E′(Fp3). For the subgroup of relevance πp

satisfies π′2p + π′p + 1 = 0 and so a 2-dimensional GLV method is the best on can hope for.
As with the previous example, our approach gives the same performance with simpler decompo-

sition of the exponents. The group homomorphism ψ on G2 defined above satisfies ψ2 − ψ + 1 = 0
and acts as multiplication by t− 1.

Example 3. Consider this family of Ate pairing-friendly curves [2], with k = 12, D = 3, ρ = 3/2.

p = (x6 − 2x5 + 2x3 + x + 1)/3 r = x4 − x2 + 1 t = x + 1
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In this case standard GLV applies to G1, and again a natural 2-dimensional decomposition is
possible with the standard automorphism, given the special form of r. The group G2 is a subgroup
of the sextic twist E′(Fp2). Since j(E′) = 0 we could use the standard GLV method, but in this
case e = 2 so it is possible to do better. In this case for G2 and GT we get a natural 4-dimensional
decomposition, as any multiplier in G2 or exponent in GT can be written as a degree 4 polynomial in
T = t−1 = x. For GT trace methods are probably not practical for a degree 4 multi-exponentiation,
so fast non-trace based methods should be used here instead.

Example 4. Consider this family of Ate pairing-friendly curves [2], with k = 24, D = 3, ρ = 5/4.
This curve might be appropriate at the highest levels of security.

p = (x10 − 2x9 + x8 − x6 + 2x5 − x4 + x2 + 1 + 1)/3 r = x8 − x4 + 1 t = x + 1

As before standard GLV applies to G1, again with a natural decomposition. G2 is a subgroup of the
sextic twist E′(Fp4). In this case for G2 and GT we get a natural 8-dimensional decomposition, as
any multiplier in G2 or exponent in GT can be written as a degree 8 polynomial in T = t− 1 = x.
Again for GT fast non-trace-based methods should be used.

Example 5. (BN curves [4]) Consider the BN parameters

t = 6x2 + 1, p = 36x4 + 36x3 + 24x2 + 6x + 1, r = p + 1− t.

One can construct an elliptic curve E : y2 = x3 + a over Fp having r points. The embedding degree
is 12 and one can identify G2 with a subgroup of E′(Fp2) where E′ is a twist of E defined over Fp2 .

Taking φ−1π2
pφ gives the usual automorphism ζ6(x, y) = (ζ3x, y) which satisfies the characteristic

polynomial ζ2
6 + ζ6 + 1 = 0. It is standard that the GLV method using this automorphism speeds

up point multiplication on E′.
Now consider ψ = φ−1πpφ, which satisfies ψ4 − ψ2 + 1 = 0 and so behaves as ζ12. Note that

Aut(E′) does not contain an element of order 12. Since ψ acts as multiplication by p and p ≡ (t−1)
(mod r) one can naturally decompose n as n0 +n1(t−1) such that |n0| < |t−1| and n1 is a similar
size. Hence one gets the 2-dimensional GLV method with natural decomposition.

Unlike the previous two examples, |t− 1| 6≈ r1/m and so obtaining the GLV expansion is not as
simple as writing the exponent n in base (t− 1). In this case it is necessary to use lattice reduction.
Let x be the parameter in the BN polynomial family. Then an LLL reduced basis for the lattice L
of equation (1) with λ = T = 6x2 is

B =




x + 1 x x −2x
2x + 1 −x −(x + 1) −x

2x 2x + 1 2x + 1 2x + 1
x− 1 4x + 2 −(2x− 1) x− 1


 .

We illustrate the method with a toy example. Let x = 10267 and choose the ‘random’ exponent
n = 123456789123456789. The first step is to decompose the vector (n, 0, 0, 0) with respect to the
basis formed by the rows of B. This gives

(n, 0, 0, 0)B−1 ≈ (65069354.114, 4008077037066.796, 2004038520117.596,−65063017.013).

Rounding these coefficients to the nearest integer gives a vector w such that wB is a close vector
in the lattice to (n, 0, 0, 0). Finally, compute

u = (n, 0, 0, 0)− wB = (−11418,−5569,−4753,−8683)
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and one can check that n ≡ ∑3
i=0 uiT

i (mod r) as required. Note that all the entries in the vector
u satisfy |ui| < r1/4.

7 Multiexponentiation

As high-dimensional exponent decompositions are now possible, it is a useful exercise to see just
how much improvement can be expected from using them. Here we follow the analysis and methods
of Möller [15]. In particular we consider the wNAF-based interleaving windowed exponentiation
method, which applies both for G2 and for GT . NAF methods apply when inversion is easy in
the group (i.e., in the case of additive groups, when negation is easy). It is well known that the
latter applies for multiplication of points on an elliptic curve, but perhaps not as well known
that is also applies to elements in GT . Indeed as part of the final exponentiation of the pairing,
there is a component in that exponentiation of pk/2−1. After this exponentiation elements become
“unitary”, and with this property inversion becomes a simple conjugation, and field squaring become
significantly cheaper [18].

Here for simplicity, we do not further consider trace-based methods, as they are limited by the
extent to which they can exploit multi-exponentiation. But we will of course exploit the “unitary”
property of elements in GT .

When estimating the cost of multiexponentiation, it is important to estimate the relative costs
of field multiplication and squaring in GT , and of point doubling and addition in G2. So we make
the assumption that a point addition/field multiplication is c times the complexity of a point
doubling/field squaring, where we will keep c as a variable.

In fact the relative costs of these operations for an elliptic curve over a prime field is the subject
of much debate, and improved formulae for both doubling and addition are still being found, often
using novel coordinate systems [5]. On the other hand, for curves over larger extension fields the
subject has not received much attention. Indeed it seems likely that affine coordinates may be faster
than projective coordinates for higher extensions. In GT the matter is also not so clear cut - but
the fast methods for field squaring of unitary elements [18] are certainly relevant.

Assuming that the same window size is used for all exponents, the cost of multi-exponentiation
[15] is approximated by

(kc(2w−1 − 1 + b/(w + 2)) + b)

point doublings/field squarings for a k-dimensional decomposition, using a window size of w,
and exponents of constant size b bits. Here w is simply chosen to minimise this cost – we ignore
the space required for the precomputation. Clearly we have a choice as to the extent to exploit the
possible decomposition, so we might double k (which will half the size of b) to see how this effects
the cost.

Our estimates are given in Table 1, for a group whose order r is 256-bits, assuming that a 1, 2,
or 4 dimensional decomposition is possible (as is the case for the BN curve). We conclude that it is
beneficial to decompose to the maximum extent possible, assuming that space for precomputation
is not an issue.
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Table 1. Cost of multi-exponentiation (Optimal w in brackets)

k c=1.0 c=1.33 c=1.66 c=2.0 c=3.0

1 306 (4) 322 (4) 338 (4) 355 (4) 405 (4)
2 185 (4) 203 (4) 222 (4) 241 (4) 298 (4)
4 127 (3) 148 (3) 169 (3) 190 (3) 254 (3)

8 Application to XTR and torus-based cryptography

As mentioned in Section 4.7 of Stam’s thesis [19], a natural problem is to develop the XTR cryp-
tosystem in Fp6m . The main obstacle is efficient key generation. A key generation algorithm was
given in [13] but it requires factoring integers so is not very practical for large security levels.

A fact (which does not seem to have been noted before) is that polynomial families of param-
eters for pairing-friendly curves give efficient key generation algorithms for XTR or torus based
cryptography over extension fields. Once such parameters are available then one can immediately
apply the GLV method to speed up exponentiation (see [17, 18, 10]).

Furthermore, if one works in a subgroup of order r where r = p− T is ‘super ate friendly’ then
one can also benefit from the easy decomposition of exponents using the base-|T | expansion and
hence get very efficient multiexponentiation in dimension > 2.

9 Security implications

Gallant, Lambert and Vanstone [8] and Wiener and Zuccherato [21] showed how to speed up the
parallel Pollard rho algorithm by using equivalence classes coming from efficiently computed endo-
morphisms on elliptic curves. One can always work with equivalence classes of size #Aut(E).

Such methods can also exploit our new homomorphism, giving a slight lowering of security for the
group G2 compared with what was previously believed. As shown in Lemma 1, the homomorphism
ψ on G2 has order k and so we can partition G2 − {0} into equivalence classes of size k. Similarly
GT − {1} can be partitioned into equivalence classes of size k.

The size of equivalence classes for G2 and GT is therefore k, while the size of equivalence classes
for G1 is Aut(E). When e = 1 then k = #Aut(E) and so our result is not new, but when e > 1
then k > #Aut(E). For example, with BN curves the size of equivalence classes is 6 for G1 and 12
for G2 and GT . This does not imply that the DLP is easier by a factor

√
2 in G2 and GT than G1,

since those groups are defined over larger fields; in practice it will still be quicker to solve the DLP
in G1 = E(Fp)[r] than in G2 or GT .

10 Conclusion

In the deployment of pairing-based cryptography there has been much emphasis on the efficiency
of the pairing itself. But in real protocols the efficiency of operations in the groups G1, G2 and GT

are also of significance, but have been rather overlooked. In this paper we address this imbalance
by suggesting faster algorithms for group operations in GT , and particularly in G2. The latter is of
particular significance for pairing-friendly ordinary elliptic curves, where G2 may be defined over
an extension field.
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