
Linear Bandwidth Naccache-Stern Encryption

Benôıt Chevallier-Mames David Naccache, Jacques Stern

DCSSI, École normale supérieure
51, Boulevard de la Tour Maubourg 45 rue d’Ulm

75700 Paris, France f-75230 Paris cedex 05, France
benoit.chevallier-mames@sgdn.gouv.fr {david.naccache,jacques.stern}@ens.fr

Abstract. The Naccache-Stern (ns) knapsack cryptosystem is a public-
key encryption scheme which is not widely known or used, despite (or
because of) its original design. In this scheme, the ciphertext is obtained
by multiplying the public-keys indexed by the message bits modulo a
system parameter p. The cleartext is then recovered by factoring the
ciphertext raised to a secret power modulo p.
ns encryption requires one multiplication per two bits on the average,
while decryption is roughly as costly as an rsa decryption. However, ns
features a bandwidth sublinear in log p, namely log p/ log log p.
This paper presents new ns variants allowing to reach bandwidths linear
in log p. The price to pay for reaching a linear bandwidth is a public-key
of size log3 p/ log log p. We hope that these modifications will make the
ns knapsack cryptosystem more practical and attracting, allowing its use
in more cryptographic protocols.

1 Introduction

The Naccache-Stern cryptosystem (ns), introduced a decade ago in [NS97], is a
public-key cryptosystem based on the following problem:

given p, c and a set {pi}, find a binary vector x such that c =
n−1∏
i=0

pxi
i mod p.

Trivially, if the pi-s are relatively prime and much smaller than p, the above
problem can be solved in polynomial time by factoring c in N.

A trapdoor is obtained by extracting a secret (s-th) modular root of each pi

and publishing these roots, denoted vi = s
√

pi mod p. By raising a product of
such roots to the s-th power, each vi shrinks back to a much smaller pi and x
can be found by factoring the result in N.

Unfortunately, no security proofs linking ns’s security to standard complex-
ity assumptions are known, but at the same time, no efficient chosen-plaintext
attacks against ns’s one-wayness are known either.

More formally, let p be a large public prime1 and denote by n the largest
integer such that:

p >
n−1∏
i=0

pi where pi is the i-th prime (start from p0 = 2).

1 For technical reasons, p must be a safe prime, cf. to Section 2.4 of [NS97] or Section 5.

The secret-key 0 < s < (p − 1) is a random integer such that gcd(p − 1, s) = 1
and the public-keys are the n roots:

vi = s
√

pi mod p.

A message m =
n−1∑
i=0

2i mi, where mi ∈ {0, 1}, is encrypted as c =
n−1∏
i=0

vmi
i mod p

and recovered by:

m =
n−1∑
i=0

2i

pi − 1
×

 gcd(pi, c
s mod p)− 1

.

Denoting by ln(x) natural logarithms and by log(x) base-2 logarithms, it is
easy to see that ns’s bandwidth is sublinear: As pi ∼ i ln i, we have

ln p ∼
n∑

i=0

ln pi ∼ n lnn ⇒ ln ln p ∼ lnn,

which in turn gives:

n ∼ ln p

ln ln p
∼ log p

log log p
.

In a typical setting, a 1024-bit p corresponds to a sixteen kilobyte public-key
and allows encrypting 131-bit messages.

[NS97] also describes a variant depending on a parameter ` ∈ N. Here, p is
such that

p >
n−1∏
i=0

pi
`.

m =
n−1∑
i=0

(` + 1)i mi, expressed in base (` + 1) (here mi ∈ [0, `]), is encrypted as

c =
n−1∏
i=0

vmi
i mod p,

and decryption is straightforwardly modified. In this paper, we refer this version
as the “(` + 1)-base variant”.

The goal of this work is to improve the scheme’s bandwidth using more so-
phisticated arithmetic encoding techniques. In next section, we propose a tech-
nique based on modular fractions that multiplies bandwidth by log2 3 ' 1.58 for
binary-message ns.2 Section 3 describes a new message encoding technique that
dramatically increases bandwidth (to become linear in log p). Section 4 extends
the previous idea to (` + 1)-base ns, thereby further increasing bandwidth. In
Section 5, we have a look on the security issues of the proposed improvements.
Finally, Section 6 describes a number of combinatorial problems whose solutions
would yield even more efficient ns variants.
2 The factor becomes log1+` (2` + 1) for (` + 1)-base variant.

2

2 Fractional Message Encoding

In this section, we show how to add signs to message bits for free. Consider a
message represented in a signed binary notation, i.e.,

m =
n−1∑
i=0

2i mi where mi ∈ {−1, 0, 1}

and an unchanged encryption procedure. During decryption, the receiver will
find a u such that:

u = cs =
a

b
mod p, with


a =

∏
mi=1

pi

b =
∏

mi=−1
pi.

The following theorem shows that, given u, one can recover a and b efficiently
using Gauss’s algorithm for finding the shortest vector in a two-dimensional
lattice [Val91].

Theorem 1 ([FSW02]). Let a, b ∈ Z such that |a| 6 A and 0 < b 6 B. Let
p be a prime such that 2AB < p. Let u = a/b mod p. Then given {A,B, u, p},
one can recover {a, b} in polynomial time.

Taking A = B = b√pc − 1, we have that 2AB < p. If we assume in addition
that m was such that 0 6 a 6 A and 0 < b 6 B, we can recover a and b from
s in polynomial time. And by testing the divisibility of a and b by the small
primes pi, the receiver can eventually recover m as before.

But what happens if |a| > A or b > B?

To solve this case too, let us tweak the definition of p to p > 2w ×
n−1∏
i=0

pi,

for some small integer w > 1 (we suggest to take w = 50), and define a finite
sequence {Ai, Bi} of integers such that:

Ai = 2wi and Bi =
⌊

p− 1
2Ai

⌋
.

For all i > 0, we have that ab < 2AiBi < p. Moreover, there must exist
at least one index i such that 0 6 a 6 Ai and 0 < b 6 Bi. Then using the
algorithm of Theorem 1, given Ai, Bi, p and s, one can recover a and b, and
eventually recover m. The problem is that we have just lost the guarantee that
such an {a, b} is unique. Namely, we could in theory hit another {a′, b′} whose
ratio gives the same u, for some other index i′ 6= i. But we expect this to happen
with negligible probability for large enough w.

Senders wishing to eliminate even the negligible probability that decryption
will produce more than one plaintext can still simulate the decryption’s Gaussian
phase and, in case, re-randomize m until decryption is unambiguous.

The effect of this optimization is noteworthy as for the price of a constant
increase (e.g. ' 50 bits) in p, bandwidth is multiplied by a factor of log2 3.

3

Note that as ` > 1 is used in conjunction with this technique (i.e., in the
(` + 1)-base variant), bandwidth improvement tends to 1 bit per prime as `
grows. Namely, fractional encoding increases bandwidth from n log(1 + `) to
n log(1 + 2`).

3 Small Prime Packing

3.1 Description

Let the integer γ > 2 be a system parameter. We now group the small primes
pi into n packs containing γ small primes each.3 That is, the first pack will
contain primes p1 to pγ , the second pack will include primes pγ+1 to p2γ etc. As
previously, the pi-s are indexed in increasing order.

We also update the condition on the large prime p to:

n∏
i=1

pγi < p.

In other words, we do not request anymore p to be larger than the product
of all the small primes. Instead, we only request p to be larger than the product
of the largest representatives of each pack.

We now represent m in base γ, i.e.,

m =
n−1∑
i=0

γi mi where mi ∈ [0, γ − 1]

and encode m by picking in pack i the prime representing the message’s i-th
digit mi and multiplying all so chosen pi-s modulo p:

encoding(m) =
n−1∏
i=0

pγi+mi+1 mod p.

We can now apply this encoding to the ns and re-define encryption as:

c = encryption(m) =
n−1∏
i=0

vγi+mi+1 mod p.

To decrypt c, the receiver computes u = cs mod p and recovers m by factoring
u. Note that as soon as a representative of pack i is found, the receiver can stop
sieving within pack i and start decrypting digit i + 1.

3.2 A Small Example

We illustrate the mechanism by a small toy-example.
3 For simplicity of reading, we now set the first prime as p1 = 2.

4

• key generation for n = 3 and γ = 4:

The prime p = 4931 > pγ × p2γ × p3γ = 7 × 19 × 37 and the secret s = 3079
yield the v-list:

p
ac

k
1

8>><
>>:

v1 = s
√

2 modp = 1370

v2 = s
√

3 modp = 1204

v3 = s
√

5 modp = 1455

v4 = s
√

7 modp = 3234

p
ac

k
2

8>><
>>:

v5 = s
√

11 modp = 2544

v6 = s
√

13 modp = 3366

v7 = s
√

17 modp = 1994

v8 = s
√

19 modp = 3327

p
ac

k
3

8>><
>>:

v9 = s
√

23 modp = 4376

v10 = s
√

29 modp = 1921

v11 = s
√

31 modp = 3537

v12 = s
√

37 modp = 3747

• encryption of m = 50:

We start by writing m is base γ = 4, i.e., m = 50 = 3024 and encrypt it as:

c = v(0·4+3+1) × v(1·4+0+1) × v(2·4+2+1) = v4 × v5 × v11 mod 4931 = 4484.

• decryption:

By exponentiation, the receiver retrieves:

cs mod p = 44843079 mod 4931 = 7×11×31 = p(0·4+3+1)×p(1·4+0+1)×p(2·4+2+1),

whereby m = 3024.

3.3 Bandwidth Considerations

The bandwidth gain stems from the fact that, for large i, we have pγi+1 ' pγi+γ

which allows the new format to accommodate log2 γ message bits at the price
of one single pγi+γ . This situation is much more favorable than the original ns,
where each message bit costs a new pi.

More precisely, pγi ∼ γi ln i yields an (n log γ)-bit bandwidth where:

n ∼ ln p/ln ln p ∼ log p/log log p

The bandwidth gain is thus a constant multiplicative factor (namely log γ)
and the increase in n is logarithmic. Note that at the same time, the vi-list
becomes γ times longer.

The following table shows the performances of the new encoding rule for a
1024-bit p. The first row represents the features of the original ns for the sake
of comparison.

γ n plaintext bits = n log γ public key size = γn log p information rate= n log γ
log p

ns 131 131 bits 16 kilobytes 0.13%

2 116 116 bits 29 kilobytes 0.11%
4 104 208 bits 52 kilobytes 0.20%
8 94 282 bits 94 kilobytes 0.28%

16 86 344 bits 172 kilobytes 0.34%
32 79 395 bits 316 kilobytes 0.39%
64 73 438 bits 584 kilobytes 0.43%

128 68 476 bits 1088 kilobytes 0.46%
256 64 512 bits 2048 kilobytes 0.50%
512 60 540 bits 3840 kilobytes 0.53%

1024 56 560 bits 7168 kilobytes 0.55%

As one can see, the bandwidth improvement is significant.

5

3.4 Linear Bandwidth

Setting γ = n (i.e., n packs containing n primes each), we can approximate:

pγi ∼ γi ln i ∼ ni ln i ⇒
n∑

i=0

ln pγi ∼
n∑

i=0

ln(n2 lnn) ∼ n ln(n2) ∼ 2n lnn ∼ ln p.

As ln n ∼ ln ln p, we get an n log n bit bandwidth with:

n ∼ ln p

2 ln ln p
∼ log p

2 log log p
.

Substituting the expressions of n and log n into the bandwidth formula (that
is n log n), we see that the resulting information rate turns out to be 1

2 . This
encoding scheme therefore features a linear bandwidth, while ns is only sublinear.
Note that this format is compatible with fractional encoding (Section 2), thereby
allowing further bandwidth gains.

3.5 Optimizing the Encoding of Zeros

We now observe that the encoding of zeros does not require using new primes.
The corresponding tweak to the encryption procedure is straightforward and
allows to lower the number of pi-s from γn to (γ − 1)n. This increases n and
hence the information rate.

For the previous toy-example, the packs will become:

p
ac

k
1

8>><
>>:

v1 = 1

v2 = s
√

2 modp

v3 = s
√

3 modp

v4 = s
√

5 modp

p
ac

k
2

8>><
>>:

v5 = 1

v6 = s
√

7 modp

v7 = s
√

11 modp

v8 = s
√

13 modp

p
ac

k
3

8>><
>>:

v9 = 1

v10 = s
√

17 modp

v11 = s
√

19 modp

v12 = s
√

23 modp

p can now be chosen as p = 1499 > pγ × p2γ × p3γ = 5× 13× 23, which is indeed
somewhat shorter than the modulus used in Section 3.2.

Figures are given in the following table, where the first row (i.e., γ = 2)
represents the original ns. As before, this results stand for a 1024-bit p. The
optimization is particularly interesting for small γ values.

γ n plaintext bits = n log γ public key size = (γ − 1) n log p information rate= n log γ
log p

2 131 131 bits 16 kilobytes 0.13% (original ns)
4 108 216 bits 40 kilobytes 0.21%
8 96 288 bits 84 kilobytes 0.28%

16 86 344 bits 161 kilobytes 0.34%
32 79 395 bits 306 kilobytes 0.39%
64 73 438 bits 575 kilobytes 0.43%

128 68 476 bits 1080 kilobytes 0.46%
256 64 512 bits 2040 kilobytes 0.50%
512 60 540 bits 3832 kilobytes 0.53%

1024 57 570 bits 7289 kilobytes 0.56%

6

4 Using Powers of Primes

In this section we apply prime-packing to the (`+1)-base variant. We start with
an example, to explain as simply as possible the obtained scheme.

4.1 A Small Example

Take n = 1 and γ = 4, i.e. a single pack, containing {p1 = 2, p2 = 3, p3 = 5, p4 =
7}. We also set ` = 2, pick a modulus p > 7` = 72 = 49, define the public key
as:

{v1 = s
√

2 mod p, v2 = s
√

3 mod p, v3 = s
√

5 mod p, v4 = s
√

7 mod p}

and consider all pi products of weight smaller or equal to `:

70 × 50 × 30 × 20 70 × 50 × 30 × 21 70 × 50 × 30 × 22

70 × 50 × 31 × 20 70 × 50 × 31 × 21 70 × 50 × 32 × 20

70 × 51 × 30 × 20 70 × 51 × 30 × 21 70 × 51 × 31 × 20

70 × 52 × 30 × 20 71 × 50 × 30 × 20 71 × 50 × 30 × 21

71 × 50 × 31 × 20 71 × 51 × 30 × 20 72 × 50 × 30 × 20

All in all, we have 1 + 4 + 10 =
(
γ+`

`

)
= 15 products4 that can be associated

to 15 message digit values. Therefore, to encode a message digit m0 ∈ [0, 14],
we use any unranking algorithm [SW86] returning unrank(m0) = {a, b, c, d} and
encrypt m0 as:

c = encryption(m0) = v1
a × v2

b × v3
c × v4

d mod p.

For instance, using a lexicographic ranking of words of weight two:

unrank(0) = {0, 0, 0, 0} 70 × 50 × 30 × 20

unrank(1) = {0, 0, 0, 1} 70 × 50 × 30 × 21

unrank(2) = {0, 0, 0, 2} 70 × 50 × 30 × 22

unrank(3) = {0, 0, 1, 0} 70 × 50 × 31 × 20

unrank(4) = {0, 0, 1, 1} 70 × 50 × 31 × 21

unrank(5) = {0, 0, 2, 0} 70 × 50 × 32 × 20

unrank(6) = {0, 1, 0, 0} 70 × 51 × 30 × 20

unrank(7) = {0, 1, 0, 1} 70 × 51 × 30 × 21

unrank(8) = {0, 1, 1, 0} 70 × 51 × 31 × 20

unrank(9) = {0, 2, 0, 0} 70 × 52 × 30 × 20

unrank(10) = {1, 0, 0, 0} 71 × 50 × 30 × 20

unrank(11) = {1, 0, 0, 1} 71 × 50 × 30 × 21

unrank(12) = {1, 0, 1, 0} 71 × 50 × 31 × 20

unrank(13) = {1, 1, 0, 0} 71 × 51 × 30 × 20

unrank(14) = {2, 0, 0, 0} 72 × 50 × 30 × 20

4 The attentive reader would rightly note that there are actually more pi products
smaller than p. This is true for very small primes in the first packs, but when one
considers packs where the minimal and maximal pi-s are roughly equivalent in size,
the number of products quickly tends to

�
γ+`

`

�
.

7

m0 = 12 will be encrypted as encryption(12) = s
√

3 × s
√

7 = v2 × v4 mod p.
Decryption recovers 20 × 31 × 50 × 71 by exponentiation and determines that
m0 = rank({1, 0, 1, 0}) = 12.

The improvement of the method comes from the fact that we encrypt log(15)
bits where the (` + 1)-base variant only encrypts log(3). In other words, the
prime-packing idea fits particularly well to the (` + 1)-base system.

Also, as is all practical instances
(
γ+`

`

)
will remain moderate (typically less

than one hundred), functions rank(·) and unrank(·) can be implemented as simple
lookup tables rather than full-fledged constructive combinatorial algorithms.

4.2 Formal Description

Let us describe now the scheme formally. Let ` > 1 and γ be two integer parame-
ters5 and consider n packs containing γ small primes each (the primes starting
from p1 = 2). We pick a prime p such that:

n∏
i=1

pγi
` < p.

A classical result6 shows that there are
(
γ+`

`

)
different γ-tuples {d1, . . . , dγ}

such that 0 6 dk and
∑

k dk 6 `. We thus define unrank(·) as an invertible
function mapping integers in [0,

(
γ+`

`

)
− 1] to {d1, . . . , dγ}-tuples.

To encrypt a message expressed in base
(
γ+`

`

)
, i.e., m =

n−1∑
i=0

(
γ+`

`

)i
mi with

mi ∈ [0,
(
γ+`

`

)
− 1] one computes:

c = encryption(m) =
n−1∏
i=0

γ∏
j=1

vγi+j
di,j mod p where {di,1, . . . , di,γ} = unrank(mi)

To decrypt the ciphertext factor cs mod p in N and recover each mi by:

mi = rank({di,1, . . . , di,γ})

4.3 Bandwidth Considerations

The table below shows that the variant described in this Section features a
better bandwidth and smaller public-keys than the basic prime-packs encoding
of Section 3. Data was generated for several public-key sizes (namely 10, 20, 50,
and 500 kilobytes) and a 1024-bit p, being reminded that first line (γ, `) = (1, 1)
is the original ns:

5 ns corresponds to the case {γ, `} = {1, 1} and the (` + 1)-base variant corresponds
to γ = 1.

6 Proof is given in Appendix A.

8

γ ` n plaintext bits = n log
�γ+`

`

�
public key size = γn log p information rate= n

log
�

γ+`
`

�

log p

1 1 131 131 bits 16 kilobytes 0.13%

3 9 17 132 bits 7 kilobytes 0.13%
5 10 14 162 bits 10 kilobytes 0.16%

10 8 15 231 bits 20 kilobytes 0.23%
12 10 12 232 bits 20 kilobytes 0.23%

39 10 10 329 bits 50 kilobytes 0.32%

570 10 7 489 bits 500 kilobytes 0.48%

5 About the Influence of Our Improvements on Security

As we already said, the original ns did not come with a proof of security, and
we have no hope nor claim that our modifications may correct this lack. In this
section however, we recapitulate certain facts or arguments of security, some of
which are already known since [NS97], for the clarity and the self-containment
of this paper.

5.1 What Security Can Be Attained?

The most important security notion that one would expect from an encryption
scheme to fulfil is the property of one-wayness (OW): an attacker should not be
able to recover the plaintext matching a given ciphertext. We capture this notion
more formally by saying that for any adversary A, succeeding in inverting the
effects of encryption on a ciphertext c should occur with negligible probability.

The notion of semantic security (IND) [GM84], as known as indistinguishabil-
ity of encryptions captures a stronger notion of privacy. The adversary A is said
to break IND when, after choosing two messages m0 and m1 of same length, he
can decide whether a given ciphertext corresponds to m0 or m1. An encryption
scheme is said to be semantically secure or indistinguishable if no probabilistic
algorithm can break IND.

The ns cryptosystem, or the variants we have presented in Section 2, 3 or 4
can not ensure indistinguishability, since they are by nature deterministic. The
hope however is that there may be one-way. To achieve full-security with ours
variants (or with ns), one would use generic transformations as those by Fujisaki
and Okamoto in [FO99,FO00]: nevertheless, as there is no formal reduction from
a known recognized cryptographic problem to an attack of a ns-type scheme
(either in the original form or in the variants we propose), the application of these
generic rules will not achieve a provably-secure scheme, but give only empirical
arguments of security.

5.2 Security Arguments of Our Variants and Discussions

Our schemes can be broken if one solves the discrete-logarithm. It
is clear that an attacker that has an access to a discrete-logarithm oracle can
easily and totally break the ns scheme or the variants presented in this paper.

9

Indeed, to this aim, it is sufficient to ask the oracle for the discrete-logarithm of
p1 in base v1, which actually is the secret key s of the scheme. Even if the primes
are hidden or sorted in a non-conventional order to obscure the attacker, the fact
that primes must be small for efficiency makes that they are easily guessable,
and the attacker can get the secret key after few tries.

Larger message space may make ns-type problems harder. As one can
see, the schemes presented in this paper are — as original ns — multiplicative
knapsacks. Even if there is no known efficient algorithm to solve this kind of
problem, one has to ensure that a brute-force attack consisting in testing all the
products is impossible. More precisely, getting back the arguments of Naccache
and Stern in Section 2.3 of [NS97], it is at least required that the message space
is larger than 160 bits, if one wants 80-bit security. In this sense, our bandwidth
improvements go in the direction of better security: the larger the message space,
the stronger the security may be. However, we cannot provably claim that the
variants are stronger, as improvements come also with larger public-keys, which
— at least in the information theoretic sense — give more information to the
attacker about the secret key.

About small factors of (p − 1). As depicted in Section 2.4 of [NS97], the
small factors of (p−1) are of importance. To rephrase Naccache and Stern, noting
QRp and QRp the quadratic and non-quadratic residues modulo p respectively,
imagine one has a ns ciphertext

c =
n−1∏
i=0

vmi
i mod p.

By computing a = c
p−1
2 mod p, one will get

a =
∏

vi∈QRp

(−1)mi mod p,

which in turn leaks the value
∑

vi∈QRp
mi mod 2. This partial recovery of infor-

mation about message can also be declined with other small factors of (p − 1).
Therefore, the authors of [NS97] advised to prefer strong prime p, and to use
one of the bit of the message space to cancel the leakage (in other words, they
simply make that

∑
vi∈QRp

mi mod 2 is constant).
For our variants, it is not as simple to use same kind of attacks. Indeed,

in a given prime pack, there might be some primes in QRp and others in
QRp. For example, with the variant of Section 3, getting c = encryption(m) =∏n−1

i=0 vγi+mi+1 mod p, the attacker may compute a = c
p−1
2 mod p. As

a =
∏

vγi+mi+1∈QRp

(−1) mod p,

10

this gives the attacker the parity of the number of message digits mi so that their
corresponding primes is in QRp. Even if the information is less precise than in
ns case, we however consider this as a possible leak, and, since there is a light
protection, we recommend also to use strong prime for our variants.

About the possibility of a reduction from attacking ns to attacking
our variants. At first sight, it might be believed that there exists reductions
between ns and the variants we proposed: indeed, one may hope that if we have
an access to a decryption oracle D of one of our scheme, one can build a ns
decryption oracle D′.

However, a simple observation shows that it is certainly not possible: in the
variants we propose, the public key is longer, made of more elements related to
the secret key. Therefore, from a ns public key and challenge, it may certainly
be possible to build a challenge for our variants, but there is very little hope
that one can construct the whole correct public key.

Thus, we have no formal proof or argument that the difficulty of original ns
or the variants proposed in this paper is equivalent or related, even if it looks
— if the additional public keys we give for our improvements do not leak too
much about the secret key — both original ns and our variants are similar uses
of multiplicative knapsacks, with an advantage for our solutions being that the
number of possible products is much larger.

6 Further Research and Open Problems

We conclude this paper with a couple of interesting combinatorial problems
whose solution might further improve the ns’s bandwidth.

Setting ` = 1, not all collections of γn integers allow encoding γn combina-
tions. Let A = {A1, ..., An} be n integer-sets, each of size γ and denote by Ai[j]
the j-th element of Ai. We call A an encoder if its Ai-s can be used as a collection
of packs encoding exactly n log2 γ bits, or, in other words, if no collisions in the
integer sub-products of A occur. Improving the ns consists in finding “better”
encoders.

To compare encoders, we use their head-products, namely:

h(A) =
n∏

i=1

max
j

(Ai[j])

Head-products lower-bound the modulus p and hence “measure” bandwidth.
We saw that when the Ai[j] are the first small primes, A is an encoder

and h(A) =
∏n

i=1 piγ (Section 3). We also saw that when the smallest element
in each Ai is one, the resulting A is still an encoder whose head-product is
h(A) =

∏n
i=1 pi(γ−1) (Section 3.5).

This gives raise to interesting combinatorial problems such as finding al-
gorithms for efficiently testing that a given A is an encoder, or finding al-
gorithms for constructing optimal encoders, i.e. encoders featuring a minimal
head-product (and consequently a maximal bandwidth).

11

As an example, a (rather inefficient) computer-aided exploration for n = 3
and γ = 4 discovered the optimal encoder A whose h(A) = 4× 8× 13 = 416:

p
ac

k
1

8>><
>>:

A1[1] = 1
A1[2] = 2
A1[3] = 3
A1[4] = 4

p
ac

k
2

8>><
>>:

A2[1] = 1
A2[2] = 5
A2[3] = 7
A2[4] = 8

p
ac

k
3

8>><
>>:

A3[1] = 1
A3[2] = 9
A3[3] = 11
A3[4] = 13

Interestingly, this encoder contains primes, but also powers of primes. Moreover,
throughout our search, non-optimal encoders containing composite integers (such
as 6) were found as well.

Decoding messages encoded with such complicated A-s might not always be
straightforward as in such atypical encoders, decoding is based on impossibilities
of certain factor combinations rather than on the occurrence of certain factors
in the product.

The above questions also generalize to packs of rationales.

References

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asym-
metric and symmetric encryption schemes. In Advances in Cryptology –
CRYPTO ’99, volume 1666 of Lecture Notes in Computer Science, pages 537–
554. Springer-Verlag, 1999.

[FO00] Eiichiro Fujisaki and Tatsuaki Okamoto. How to enhance the security of
public-key encryption at minimum cost. IEICE Transaction of Fundamentals
of Electronic Communications and Computer Science, E83-A(1):24–32, 2000.

[FSW02] Pierre-Alain Fouque, Jacques Stern and Jan-Geert Wackers. Cryptocomput-
ing with rationals. In Financial Cryptography – fc 2002, volume 2357 of
Lecture Notes in Computer Science, pages 136–146. Springer-Verlag, 2002.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. In Journal of
Computer and System Sciences, 28(2):270–299, 1984.

[NS97] David Naccache and Jacques Stern. A new public-key cryptosystem. In
Advances in Cryptology – eurocrypt ’97, volume 1233 of Lecture Notes in
Computer Science, pages 27–36. Springer-Verlag, 1997.

[SW86] Dennis Stanton and Dennis White. Constructive combinatorics, Springer-
Verlag New York, Inc., New York, ny, 1986.

[Val91] Brigitte Vallée. Gauss’ algorithm revisited. Journal of Algorithms, 12(4):556–
572, 1991.

A Proof of Theorem 1

In this appendix, we remind how we evaluate the number, denoted R`,γ , of
different γ-tuples {d1, . . . , dγ} such that 0 6 dk and

∑
k dk 6 `.

The number of sequences of γ integers whose sum equals i is
(
γ+i−1

i

)
. There-

fore, we have:

R`,γ =
∑̀
i=0

(
γ + i− 1

i

)
.

12

Assume that we have R`,γ =
(
γ+`

`

)
. What happens for (` + 1)?

R`+1,γ =

`+1X
i=0

γ + i− 1

i

!
= R`,γ +

γ + ` + 1− 1

` + 1

!
=

γ + `

`

!
+

γ + `

` + 1

!
=

γ + ` + 1

` + 1

!

where the last line stem’s from Pascal’s rule.
As R0,γ = 1 =

(
γ
0

)
, we get by induction that:

R`,γ =
(

γ + `

`

)
.

13

