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Abstract

Probabilistic compositeness tests are of great practical importance in cryptogra-
phy. Besides prominent tests (like the well-known Miller-Rabin test) there are tests
that use Lucas-sequences for testing compositeness. One example is the so-called
Frobenius test that has a very low error probability. Using a slight modification of
the above mentioned Lucas sequences we present a simple derivation for the Frobenius

pseudoprime test in the version proposed by Crandall and Pommerance in [CrPo05].

1 Lucas and Frobenius Pseudoprimes

For f(x) = 2? — ax + b € Z[x] the Lucas sequences are given by

2l — (a—x)!
. . (1)
Vi =Vj(a,b) = 2/ 4+ (a—=x) (mod f(x))

These sequences both satisfy the same recurrence relation
Uj = an—l — ij_Q N V] = CLVj_l — ij_g for j Z 2
with initial values

Uy=0,U1=1 V=2 Vi=a

The following theorem is the basis for a probabilistic prime test, called the Lucas test:
Theorem 1. Let a,b € Z\ {0}, A := a*® —4b and the sequences (U,), (V;) defined as above.
If p is prime, with ged(p, 2abA) = 1, we have:

Up_(%) =0 (mod p) (2)

Proof.

If A is a quadratic nonresidue modulo p, then the polynomial f(x) € Zy[z] is irreducible



over Zp, which means that Z,[x]/(f(z)) is a field and isomorphic to F,2. The elements of
the subfield Z, are exactly those elements i + jx € Zy[z]/(f(z)) with j = 0.
The zeroes of the polynomial f(x) are x and a—x, both in Fp2 \Zy, and therefore permuted

by the Frobenius automorphism. Thus we have

2P =a—2z (mod f(x),p)

in the case (&) = —1:
(p) (a—2z) =2 (mod f(x),p)

which implies 2P — (@ — 2)P*! = z(a — 2) — (a — )z =0 (mod f(z),p), as claimed.
If, on the other hand, A is a quadratic residue modulo p, then f(z) mod p has two roots
in Z, and R := Z,[x]/(f(x)) is isomorphic to the direct product Z, x Z,. In this case the

Frobenius automorphism acts trivially on R and we have:

2P =2z (mod f(z),p)

in the case (é) =1:
’ (a—az) =a—z (mod f(x),p)

Since ged(p,b) = 1 and since x(a — ) = b (mod f(z),p), the elements x and a — x are

units in R. Therefore we have 2P~ = (a — )P~ = 1 as desired. O

Definition 2. Let a,b € Z\ {0}, with A = a? — 4b not a square. A composite integer n,
with ged(2abA,n) = 1 is called a Lucas pseudoprime with respect to f(z) := 22 — az + b,
if Un—(é) =0 (mod n)

n

The first Lucas pseudoprime with respect to the Fibonacci-polynomial 2> — 2 — 1 is
323 =17-19.

Grantham proposed a stronger test, the Frobenius test (see [Gra9d8] and [Gra0l]). The

definition of the Frobenius pseudoprime is given by

Definition 3. Let a,b € Z \ {0}, with A = a? — 4b not a square. A composite integer n,
with ged(2abA,n) = 1 is called a Frobenius pseudoprime with respect to f(x) := 2?—ax+b,
if

a—2z (mod f(x),n) ,if (%) =-1

z (mod f(z),n) , if (%) =1

" =

Next we show that the Frobenius pseudoprime test is at least as strong as the Lucas
pseudoprime test:

Theorem 4. Let f(x) := 22 —ax + b and n € N. If n is Frobenius pseudoprime with

respect to f(x), then n is also Lucas pseudoprime with respect to f(x).

Before we can prove this theorem we need the following lemma:



Lemma 5. Let m,n € N, f(x),g(z),r(x) € Z[z]. If f(r(z)) = 0 (mod f(x),n) and
2™ = g(z) (mod f(x),n), then r(z)™ = g(r(x)) (mod f(z),n).

Proof. Clearly ™ = ( Yh(z) + g(x) (mod n) for h(x) € Z[z]. Since x is a variable
we also have r(x)™ = f(r(z))h(r(x)) + g(r(x)) (mod n). Because we have f(r(z)) =0
(mod f(x),n), it follows r(z)™ = g(r(z)) (mod f(z),n) O

Now the the proof for Theorem 4 is easy:

Proof. Let n be Frobenius pseudoprime with respect to f(x), according to Definition 3.
Assume (%) = 1. Then 2" = z (mod f(x),n). Since ged(b,n) = 1, x modulo (f(z),n)
is invertible and we have "' = 1 (mod f(z),n). Since f(a — z) = 0 (mod f(x),n)
Lemma 5 implies the congruence (a — 2)"~!' = 1 (mod f(z),n), i.e. (a — )" = (a — z)
(mod f(z),n).

On the other hand, if (%) = —1, we get from 2" =a — 2 (mod f(x),n) and f(a—x) =0
(mod f(z),n) directy by Lemma 5 the congruence (a — )" = (mod f(x),n) as desired.

Thus in both cases n is Lucas pseudoprime with respect to f(x). O

The Frobenius property for quadratic polynomials can be expressed using the Lucas se-
quences (U;) and (Vj):

Theorem 6. Leta,b € N, with A = a?>—4b not a square. An integer n, with gcd(2abA,n) =
1 is Frobenius pseudoprime with respect to f(x) := 2% — ax + b, if and only if

2b (mod n) ,if (&) =-1

(3)
2 (modn) ,if (%) =1

g
s>
11l

0 (mod n) and Vn—(é) = {

Proof. From the definitions of the Lucas sequences (1) one easily sees, that
2 =Vj+ (20 —a)U; (mod f(x)) (4)

Assume (3). In the case (%) = —1Eqn. (4) implies 2"*! = b (mod f(x),n) and in the case
(2) =1 Eqn. (4) gives 2" ! =1 (mod f(z),n). The latter implies z" = z (mod f(z),n),
and since x(a —z) = b (mod f(z),n) the first leads to " = a — z (mod f(x),n). So n is

Frobenius pseudoprime.

On the other hand, if n is Frobenius pseudoprime with respect to f(z), we have U ( A)
ne (A
n
0 (mod n) by Theorem 4. For j =n — (2) Eqn. (4) gives

(%)
20" \n) = Vn—(é) (mod f(x),n)
Assume (%) = —1. Then Definition 3 gives 2"*! = (a — z)z = b (mod f(z),n), i.e.
Vot1 = 2b (mod n). Finally assume (£) = 1. Since z is invertible in Z,[z]/(f(z)), i
follows z"~! =1 (mod f(x),n), i.e. V,_1 =2 (mod n). O



The first Frobenius pseudoprime with respect to the Fibonacci polynomial 22 — z — 1 is
4181, the nineteenth Fibonacci number, the first with (%) = —1 is 5777. Thus not every
Lucas pseudoprime is a Frobenius pseudoprime. We conclude that the Frobenius test is

more stringent than the Lucas test.

2 Efficient implementation

Suppose we want to apply the Frobenius test on a given number n. Choose a,b € N, with

A = a® — 4b not a square such that ged(2abA,n) = 1.

A

Since ged(2A,n) = 1 the number n — (g) is always even, say n — (%

):2m,m€N.

Following Williams [Wil98] we define the following modified Lucas sequence
W;:=b"7Vy; (mod n) (5)
Since ged(b,n) = 1 the sequence (W;) := (W}); >0 is well defined and starts with
Wo=2 (modn) and W;=a’*"1'—-2 (modn)

The sequence (W;) can be computed efficiently. In fact, the following two formulas allow

the computation of the values Wy; and Woj41 from W; and Wy (j > 0):

W, = I/Vj2 —2 (mod n)
W2j+1 = Wjo+1 — W1 (HlOd ’I’L)

(6)

Proof. Let 6 :=x — (a — ), i.e
P=2>-2+(a—x)2=d>—4b=A (mod f(z),n)
Also, (1) has the consequence
Vi +0U; =227 and V; —6Uj =2(a — x)’
So we have for arbitrary j,k € N

(V; +0U;) - (Vi + 6Uy) = 427 = 2(Vjp + 0U; 1)
(V= 0U;) - (Vi = 0Ux) = A(a— )™ = 2(Vjp — 6Uj 1)

Adding these equations yields
2V = V;Vi + AU, Uy, (7)
Backwards reading of the recurrence relation leads to

VWU_,=—-U, und bV =V



Subsituting this in equation (7) gives
2%V = V;Vi, — AU;Uy, (8)

Putting k = j yields
VP — AUF = 4/

From (7) we get for k = j the identity
2Vo; =V + AU}
Adding the last two equations leads to
Vaj =V}’ — 20/
Putting j := 2j the definition (5) gives
Wy; = Wj2 —2 (mod n) (9)
To derive a formula for Wy;1, subtract equation (8) from (7) and get
View = ViV — 0"V
Here we take two adjacent even numbers, i.e. we put j := 25 + 2 and k := 25 and get
Viji2 = VajVajio — b9V
In terms of the W-sequence (5) this is:
Wajt1 = WjWi1 — Wi (mod n) (10)
]

To compute for a given index j € N the value W} write j in binary, say j = (bobi ... bg)2.
Now go through all bits and compute the sequence of pairs S; = {A, B} (i > 0)

A2—2,AB—W d 7sz :0
Si={A,B} - S := { 1} (mod n) , if by "
{AB—W;,B? -2} (modn) ,ifbyq=1

Initialising So := {Wy, W1} one gets with the pair Sy, exactly the values W; und Wj44. So
the sequence (W;) can be computed in a time O (logn).
The sequence (W;) shall now be used for the Lucas test. Let n be Lucas pseudoprime. Let
m:= (n— (%))/2 Then we get U, = 0 (mod n). Putting j := 2m, k := 2 in formula
(7), it follows

2Vomao = Vo Vo + AUz, Us



Since ged(b,n) = 1 it follows by (5):
WWni1 = Wi Wi 4+ b~V AU,,, Uy (mod n)
Because n is Lucas pseudoprime, we get
2Wt1 = Wy, W1 (mod n)

Since ged(abA,n) =1 the converse also holds.

To summarize:

Theorem 7. Let n,a,b,A,m and the sequence (W;) defined as above. Then n is Lucas

pseudoprime if and only if 2Wy,41 = W1iW,, (mod n)

Let now n € N>3 be a number, that fullfills the assumptions of Definition 3. Then the
Frobenius test can be easily implemented using the sequence (W;). This sequence can be
used for the Frobenius test, since from ged(2A,n) = 1 follows, that n — (%) = 2m is even.
Clearly Theorem 7 can be used, to test if n is Lucas pseudoprime. We need a congruence

in terms of the sequence (W), that is equivalent to the fact

)
)

Let now n be Frobenius pseudoprime and m = (n — (%)) /2. Then from the definition of

v ~J2b (modn) ,if (
n_( ) 2 (modn) ,if (

-1
1

s>
Il
3> 3>

the sequence (W;) we get
W, = 20~ ™D/ (mod n)

Putting B := b(»~1/2 it follows
BW,, =2 (mod n)
To summarize we get the following theorem:

Theorem 8. Let n,a,b, A, m and the sequence (W;) defined as above. Then n is Frobenius
pseudoprime if and only if 2Wy,41 # WiW,, (mod n) and BW,, = 2 (mod n), where
B =pn—1)/2



3

The Algorithm

We get the following algorithm:

10
11
12
13

Input : An odd integer n € N>3
Output: A boolean value which indicates that n is Frobenius-pseudoprime with

respect to the polynomial 2> — ax + b

choose a,b € {1,...,n — 1} uniformly at random,
such that A = a? — 4b not a square and ged(2Aab,n) = 1;
W1« a?b~! — 2 (mod n);

m— 3(n— (%))

compute W,, Wy, 41 using equations (9) and (10)
if (WAWy, # 2W,41 (mod n)) then

‘ return false;

end

B «— b(»=D/2 (mod n);
if (BW,, =2 (mod n)) then
‘ return true;
else
‘ return false;

end

According to [CrPo05] the runtime of the Lucas test is that of two Miller-Rabin tests,
i.e. O (logn) multiplications modulo n. For the Frobenius test additionally 5(~1/2 must

be computed, so the test takes approximately the time of three Miller-Rabin tests, which

Algorithm 1: Frobenius-Test

are again O (logn) multiplications modulo n.
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